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Plasma phosphorylated-tau217 (p-tau217) has been shown to be one of the most accurate diagnostic markers for 
Alzheimer’s disease. No studies have compared the clinical performance of p-tau217 as assessed by the fully auto
mated Lumipulse and single molecule array (SIMOA) AlZpath p-tau217.
The study included 392 participants, 162 with Alzheimer’s disease, 70 with other neurodegenerative diseases with CSF 
biomarkers and 160 healthy controls. Plasma p-tau217 levels were measured using the Lumipulse and ALZpath SIMOA 
assays. The ability of p-tau217 assessed by both techniques to discriminate Alzheimer’s disease from other neurode
generative diseases and controls was investigated using receiver operating characteristic analyses.
The p-tau217 levels measured by the two techniques demonstrated a strong correlation, showing a consistent relation
ship with CSF p-tau181 levels. In head-to-head comparison, Lumipulse and SIMOA showed similar diagnostic accuracy 
for differentiating Alzheimer’s disease from other neurodegenerative diseases [area under the curve (AUC) 0.952, 95% 
confidence interval (CI) 0.927–0.978 versus 0.955, 95% CI 0.928–0.982, respectively] and healthy controls (AUC 0.938, 95% 
CI 0.910–0.966 and 0.937, 95% CI 0.907–0.967 for both assays).
This study demonstrated the high precision and diagnostic accuracy of p-tau217 for the clinical diagnosis of 
Alzheimer’s disease using fully automated or semi-automated techniques.
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Introduction
CSF biomarkers are informative, sensitive and specific for the de
tection of Alzheimer’s disease (AD) in clinical and research settings 
from early stages of the disease.1,2 The recent development of plas
ma biomarkers is dramatically changing the AD scenario, as they 
are scalable tools to aid clinical evaluation and trial recruitment.3,4

Phosphorylated tau (p-tau) species stand at the forefront of emer
ging AD blood tests, exhibiting superior accuracy in diagnosis 
and specificity for the disease compared to the amyloid-beta (Aβ) 
42/40 ratio or other suggested biomarkers.5-9

To date, phosphorylated tau at threonine 217 (p-tau217) ap
peared to be one of the most sensitive and specific AD markers 
compared to other p-tau species for differentiating AD from other 
neurodegenerative disorders.6,10-16

In addition, p-tau217 exhibits a unique longitudinal trajectory in 
preclinical AD amyloid-positive individuals, with increases over 
time being significantly associated with worsening cortical atrophy 
and declining cognitive performance.4,6,13,17,18

Most published studies focusing on p-tau species have used 
immunoassays on either the Meso Scale Discovery (MSD) or sin
gle molecule array (SIMOA) platforms.5,10,11,15,19 The recent de
velopment of similar assays using chemiluminescent enzyme 
immunoassay (CLEIA) technology (including the fully automated 
Lumipulse platform) represents an attractive further step for their 
easier use and wider consistent applicability in clinical practice. 
The fully automated platform produces more consistent results be
tween laboratories and overtime in the same laboratory.

For Lumipulse p-tau217, only one preliminary study suggested a 
high discrimination accuracy for AD diagnosis, though without a 
head-to-head comparison available to date.20 Despite the growing 
amount of preprint data available, there is an urgent need for high- 
quality technical and clinical validation of newly developed 
p-tau217 markers.

The objective of the study was therefore to compare the 
diagnostic accuracy performance of Lumipulse versus SIMOA 
plasma p-tau217 in a large real-world memory clinic scenario 

with clinically approved CSF AD biomarkers as the reference 
standard.

Material and methods
Study population

The study included participants with mild cognitive impairment 
(MCI) or mild dementia who underwent CSF assessment at the out
patient Neurodegenerative clinic of the Brescia University Hospital, 
Italy, and age- and sex-matched healthy control (HC) subjects. A 
standardized full cognitive and behavioural assessment, including 
Mini-Mental State Examination (MMSE), Neuropsychiatric Inventory 
(NPI) and Clinical Dementia Rating Scale (CDR), as well as an evalu
ation of comorbidity using the Cumulative Illness Rating Scale 
(CIRS), was performed in each participant.

Patients were clinically classified as MCI, dementia with Lewy 
bodies (DLB),21 MCI associated with motor neuron disease22 or be
havioural frontotemporal dementia (FTD).23 The diagnosis of AD 
was carried out clinically and confirmed biologically according to 
CSF AD-pattern Aβ42/p-tau181 ratio >11.1.24-26 Subjects with clinically 
defined NDD but AD-related pattern were excluded. A group of neuro
logically and cognitively normal individuals (HC) was recruited from 
participants’ caregivers, as part of the Life-BIO cohort. The following 
exclusion criteria were applied: (i) diagnosis of any neurological dis
order; (ii) presence of subjective cognitive complaints; (iii) normal 
neurological examination and Montreal Cognitive Assessment 
screening; (iv) major psychiatric disorder; or (v) recent inflamma
tory events. The study was approved by the local ethics committee 
(NP 1471, DMA, Brescia) and performed in conformity with the 
Declaration of Helsinki; informed consent was obtained from 
each study participant or their legally authorized representative.

CSF collection and analyses

Each patient underwent lumbar puncture in fasting condition 
according to the standardized protocol of the outpatient 
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neurodegenerative clinic. The CSF specimens were collected in 
15-ml polypropylene sterile tubes, gently mixed to avoid gradient 
effects and sent directly to the hospital laboratory for routine as
sessments and Lumipulse CSF core AD markers.24 The internal cut- 
off value of Lumipulse was Aβ42/p-tau181 ratio >11.1; amyloid posi
tivity was additionally evaluated using the Aβ42/Aβ40 < 0.069 cut-off.

Plasma collection and analysis

Blood samples were collected from each participant using 7.5 ml 
tubes containing K2-EDTA. The tubes were gently inverted 5 to 10 
times to mix the blood and then centrifuged at 2500g for 10 min at 
room temperature. Next, 0.5-ml plasma aliquots were pipetted into 
polypropylene cryotubes and directly stored at ultra-low tempera
ture freezing (ULTF) −80°C for both Lumipulse and SIMOA analyses.

On the day of analysis, the plasma samples were brought to room 
temperature (21°C–23°C). Following the manufacturer’s instructions, 
plasma samples were centrifuged at 2000g for 5 min. The plasma was 
then transferred to the instrument cuvettes for testing on Lumipulse 
using the Lumipulse® G p-tau217—Plasma Immunoreaction 
Cartridges RUO (for research use only) made up of three different 
components: the anti-phosphorylated tau (217) monoclonal antibody 
(mouse)-coated particles, antibodies conjugate and assay buffer 
solution. The reagents are designed for a fully automated chemilu
minescent enzyme immunoassay (CLEIA); the limit of detection is 
0.030 pg/ml and the dynamic range is 0.030–10 pg/ml.

The commercial ALZpath p-tau217 assay uses a proprietary 
monoclonal p-tau217 specific capture antibody, an N-terminal de
tector antibody and a peptide calibrator.5 It has been validated as 
a fit-for-purpose assay27 with a limit of detection of 0.0052– 
0.0074 pg/ml, a functional lower limit of quantification of 
0.06 pg/ml and a dynamic range of 0.007–30 pg/ml. The spike re
covery for the endogenous analyte was 80%, and intrarun and in
terrun precision was 0.5%–13% and 9.2%–15.7%, respectively. 
Before SIMOA testing, the samples were spun at 14 000g for 
3 min or equivalent to precipitate debris. SIMOA analyses were 
performed on HD-X with commercially available p-tau217 
ALZpath Simoa® pTau-217 V2 Kits (Quanterix) at the Clinical 
Neurochemistry Laboratory, Sahlgrenska University Hospital, 
Mölndal, Sweden.5

Testing precision analyses

The study investigated the within-lab precision of the Lumipulse 
plasma Immunoreaction Cartridges RUO through repeated inter- 
day testing schemes 3 × 5 and 5 × 5. For the 3 × 5 testing, three plas
ma aliquots from a healthy control (negative control) and three 
plasma aliquots from an AD patient (positive control) were used. 
Two commercial quality control (QC) samples, namely the high 
(Level 2, L2) and the low (Level 1, L1) levels provided by the com
pany, were tested five times a day for 5 days. The Lumipulse testing 
precision has been assessed in 15 and 25 runs based on the CLSI 
EP15.28 The 15 independent negative control and positive control 
plasma samples were stored at −80°C during the 5 days of the as
sessments. The L1 and L2 controls of the p-tau217 kit were kept 
at −20°C as per the manufacturer’s instructions.

Outliers were defined based on single values higher/lower than 
3 SD compared to the mean of the group.

Statistical analyses

Normality distribution was evaluated using the Shapiro-Wilk test 
and Q-Q plots. To compare clinical and demographic 

characteristics as well as cognitive assessments and CSF and plas
ma markers between diagnostic groups (AD, HC, NDD), the Kruskal– 
Wallis test was conducted. The between-group differences in plas
ma markers were evaluated in a univariate model adjusted for age, 
sex and CIRS total score. The comparability between the two ana
lytical platforms was assessed using Passing-Bablok regression, 
while their imprecision was assessed by calculating the labora
tory’s coefficient of variation (CV). The association between plasma 
and CSF biomarkers was determined using Spearman’s correlation 
coefficient within a correlation matrix.

The accuracy in discriminating between AD and NDD/HC and 
between subjects with amyloid positivity (using the Aβ42/Aβ40 ratio) 
using plasma biomarkers, in terms of specificity and sensibility, 
was assessed using a receiver operating characteristic (ROC) ap
proach. Area under the ROC curves (AUCs) were computed using 
the pROC package in R. The same statistical analyses were per
formed only considering AD-MCI and NDD-MCI subgroups (i.e. 
CDR <1). All analyses were conducted using R statistical software 
(https://www.r-project.org/). Statistical significance was defined at 
α = 0.05, and all tests were two-tailed.

Results
Precision and repeatability of p-tau217 Lumipulse 
G600II testing

Fifteen different specimens of 500 μl were aliquoted from plasma 
samples collected from one AD CSF-confirmed patient (positive 
control, PC) and a healthy control subject (negative control), both 
tested as independent samples to perform the between-day repeat
ability and calculate the testing precision. For p-tau217, the clinical 
laboratory and between-run CVs (%) for positive and negative con
trols were 2.340 and 1.310 for the positive control and 3.749 and 
2.280 for the negative control, respectively (Supplementary Tables 
1, 2 and 5). Likewise, the commercial QC samples resulted in within- 
laboratory and between-run CVs of 5.080 and 5.340 for L1, and 3.387 
and 3.490 for L2, respectively (Supplementary Tables 3–5).

Clinical validation and SIMOA head-to-head 
comparison

The clinical study included 392 subjects, namely 232 patients and 
160 controls. The clinical assessment and CSF AD markers allowed 
the classification of patients in 162 AD (of which 112 had MCI) and 
70 other NDD (of which 45 had MCI) cases (Supplementary Fig. 1). 
No outliers were detected and all SIMOA and Lumipulse values 
were included in the final analyses. In the whole cohort and AD/ 
NDD/HC subgroups, no correlations between age or sex and plasma 
p-tau217 levels (tested by Lumipulse and SIMOA) were detected. 
Clinical and demographic data and CSF core biomarkers are indi
cated in Table 1. P-tau217 values showed a constant, systematic 
and proportional error between the two detection methods as high
lighted by the Passing-Bablok regression (Fig. 1). The intercept was 
0.067 [95% confidence interval (CI) 0.046–0.084] and the slope = 1.552 
(95% CI 1.433–1.703). AD showed higher levels of plasma p-tau217 
assessed with both techniques compared to both NDD and HC 
(Table 1 and Fig. 1).

The correlation analyses demonstrated a positive relationship 
between plasma p-tau217 analysed by Lumipulse testing and CSF 
p-tau181 and t-tau (respectively, ρ = 0.743, P < 0.001 and ρ = 0.879, 
P < 0.001). A similar correlation was found for plasma p-tau217 
tested by SIMOA and CSF p-tau181 and t-tau (respectively, 
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Table 1 Participants’ characteristics and plasma biomarkers assessed by Lumipulse and SIMOA platforms

HC 
(n = 160)

AD 
(n = 162)

NDD 
(n = 70)

P-value η2

Age, years 71.016 (5.450) 72.478 (7.287) 69.593 (7.332) 0.005a 0.035
Sex, female:male 101:59 102:60 28:42 <0.001a –
Ethnicity Caucasian 100% Caucasian 100% Caucasian 100% – –
MMSE, adjusted score 28.70 (1.0) 24.897 (5.230) 25.667 (4.926) <0.001b,c 0.118
Comorbidities and medical treatment
CIRS, total 1.772 (1.053) 7.746 (6.947) 8.724 (7.430) <0.001b,c 0.323
CIRS, liver 0.081 (0.306) 0.230 (0.459) 0.172 (0.384) 0.009b,c 0.031
CIRS, kidney 0.027 (0.211) 0.248 (0.591) 0.276 (0.528) <0.001b 0.056
AD CSF core biomarkers
t-tau, pg/ml – 696.481 (388.766) 360.904 (257.172) <0.001 0.159
p-tau181, pg/ml – 113.943 (61.599) 40.007 (15.040) <0.001 0.063
Aβ42, pg/ml – 479.332 (165.290) 1060.177 (1051.273) <0.001 0.412
Plasma biomarkers
Plasma p-tau217 (L), pg/ml 0.181 (0.222) 0.794 (0.511) 0.163 (0.105) <0.001a,b 0.418
Plasma p-tau217 (S), pg/ml 0.353 (0.349) 1.163 (0.565) 0.323 (0.196) <0.001a,b 0.465

Data are expressed as mean and standard deviation. P-values show the difference between Alzheimer’s disease (AD) CSF core biomarkers profile groups and were computed 

with a Mann–Whitney U-test [age, Mini-Mental State Examination (MMSE), AD CSF core biomarkers] or a chi-squared test (sex). Aβ42 = amyloid-beta 1–42; CIRS = cumulative 

index rating scale; HC = healthy control; NDD = non-Alzheimer neurodegenerative disorders; p-tau181 = phosphorylated tau 181 isoform; p-tau217 (L)/(S) = phosphorylated tau 
217 tested on Lumipulse (L) and SIMOA (S); t-tau = total tau. SIMOA = single molecule array.
aSignificant comparison AD versus NDD.
bSignificant comparison AD versus HC.
cSignificant comparison NDD versus HC.

Figure 1 Plasma p-tau217 levels detected by Lumipulse and SIMOA in the whole cohort and subgroups of participants. Passing-Bablok regression in A 
shows the comparison between the two testing platforms Lumipulse (L) and SIMOA (S), which highlights a constant, systematic and proportional error 
between the two detection methods. In B, p-tau217 levels in Alzheimer’s disease (AD), healthy control (HC) and non-Alzheimer’s neurodegenerative 
disorders (NDD) groups measured using Lumipulse (L) and SIMOA (S). p-Tau217 is significantly higher in AD compared with both HC and NDD, for 
both testing platforms. p-tau217 (L)/(S) = phosphorylated tau 217 tested on Lumipulse (L) and SIMOA (S). SIMOA = single molecule array.
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ρ = 0.688, P < 0.001 and ρ = 0.555, P < 0.001), being p-tau217 Lumipulse/ 
SIMOA levels highly correlated (ρ = 0.892, P < 0.001). p-Tau 217 
tested with both Lumipulse and SIMOA negatively correlated 
with CSF Aβ42 levels (ρ = −0.451, P < 0.001; ρ = −0.468, P < 0.001, 
respectively).

Discriminant analyses for Alzheimer’s disease 
diagnosis

The discriminatory accuracy of plasma biomarkers analysed with 
Lumipulse and SIMOA techniques for the diagnosis of AD with re
spect to both HC and NDD was separately evaluated using 
AUC-ROC analysis (Fig. 2 and Table 2). Plasma p-tau217 analysed 
on the Lumipulse system resulted in an AUC for AD versus 
NDD of 0.952 (95% CI 0.927–0.978) and 0.938 (95% CI 0.910–0.966) ver
sus HC.

Plasma p-tau217 tested on SIMOA yielded similar diagnostic ac
curacy, with an AUC of 0.955 (95% CI 0.928–0.982) for the 

discrimination of AD from NDD and 0.937 (95% CI 0.907–0.967) 
from HC. The calculated best cut-offs (i.e highest Youden index) 
for AD versus HC and AD versus NDD were 0.291 pg/ml and 
0.276 pg/ml (Fig. 2), respectively, for Lumipulse. The computed 
best cut-offs considering p-tau217 levels in SIMOA for AD versus 
HC and AD versus NDD were 0.542 pg/ml and 0.518 pg/ml, respect
ively, (highest Youden index).

In the MCI subset, including 112 AD-MCI and 45 NDD-MCI, the 
AUC and the cut-offs were similar to the whole cohort 
(Supplementary Tables 6 and 7). Specifically, Lumipulse p-tau217 
yielded an AUC of 0.946 (95% CI 0.911–0.981) for discrimination be
tween AD-MCI and NDD-MCI and 0.960 (95% CI 0.936–0.985) for dif
ferentiation from HC. SIMOA ALZpath p-tau217 exhibited similar 
accuracy, with AUCs of 0.934 (95% CI 0.893–0.976) AD-MCI versus 
NDD-MCI and 0.960 (95% CI 0.936–0.985) for HC (Supplementary 
Table 7). NDD subjects who resulted positive to p-tau217 
Lumipulse (n = 11) or SIMOA (n = 9) showed similar CSF core AD 
markers compared to NDD below the established cut-off 

Figure 2 Diagnostic accuracy of p-tau217 for Alzheimer’s disease diagnosis using Lumipulse and SIMOA. Alzpath assessment or receiver operating 
characteristic (ROC) curve of Alzheimer’s disease-healthy control (AD-HC) and Alzheimer’s disease-non-Alzheimer’s neurodegenerative disorders 
(AD-NDD) populations with the area under the curve (AUC) and optimal Youden cut-off represented by the dashed grey line in the distribution plots 
for (A) Lumipulse (L) and (B) SIMOA (S). p-tau217 (L)/(S) = phosphorylated tau 217 tested on Lumipulse (L) and SIMOA (S). SIMOA = single molecule array.

Table 2 Diagnostic accuracy of Lumipulse and SIMOA plasma p-tau217

AUC 95%CI Sensitivity Specificity Youden cut-off Fold-change

p-tau217 (L) AD versus HC 0.938 0.910–0.966 0.882 0.893 0.291 4.387
AD versus NDD 0.952 0.927–0.978 0.894 0.841 0.276 4.871

p-tau217 (S) AD versus HC 0.937 0.907–0.967 0.919 0.874 0.542 3.295
AD versus NDD 0.955 0.928–0.982 0.938 0.887 0.518 3.601

Area under the curve (AUC), 95% confidence intervals (CI), sensitivity, specificity and Youden cut-off for receiver operating characteristic (ROC) analysis on Lumipulse (L) and 
SIMOA (S) testing. AD = Alzheimer’s disease; HC = healthy control; NDD = non-Alzheimer’s neurodegenerative disorders; p-tau217 (L)/(S) = phosphorylated tau 217 tested on 

Lumipulse (L) and SIMOA (S). SIMOA = single molecule array.
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(Supplementary Table 8). The head-to-head comparison with 
ALZpath p-tau217 showed a fold-change for Lumipulse equal to 
4.387 and 4.871 for AD versus HC and NDD and a fold-change for 
SIMOA of 3.295 and 3.601, respectively. In the subset of 168 with 
available CSF Aβ42/Aβ40 ratio, 116 were amyloid-positive; p-Tau 217 
Lumipulse and SIMOA showed AUCs in the ROC analyses of 
0.90 and 0.91 for differentiating amyloid positivity, respectively 
(Supplementary Fig. 2).

Discussion
This study demonstrated the excellent clinical accuracy of plasma 
p-tau217 for AD detected using Lumipulse and SIMOA techniques. 
These findings suggest that both techniques are valid, solid and 
comparable alternatives for assessing plasma p-tau217 levels, po
tentially broadening the accessibility of this biomarker in clinical 
settings.

The technical validation of Lumipulse p-tau217 assessment 
showed a CV within-laboratory of around 5% for p-tau217 lower 
concentrations (negative control and L1) and below 3.5% for higher 
concentrations (positive control and L2). These values are in line 
with the precision levels observed for both SIMOA and MSD techni
ques.5,15 The method comparison analysis (Passing-Bablok) 
showed that the two testing platforms identified different but high
ly related p-tau217 concentrations. Therefore, two distinct cut-offs 
(or conversion methods) for p-tau217 are required for Lumipulse 
and SIMOA techniques. This is consistent with previous data evalu
ating p-tau181 assays across techniques in clinical settings.24

When applied in a clinical setting, the p-tau217 plasma assay 
confirmed its high biological validity, with a high discrimination ac
curacy of more than 93% for AD compared to other CSF-confirmed 
patients with NDDs and age-matched HCs. These results are 
consistent with the greater fold-change of p-tau217 compared 
to other p-tau species, namely p-tau231 and p-tau181 recently de
monstrated.4,5,10-16

Of note, the cut-offs resulting in the highest Youden index in the 
ROC analyses for discriminating AD from NDD and controls re
sulted in very similar cut-off values across assays, suggesting the 
possible adoption of a single value for AD diagnosis, ideally to be es
tablished by multi-centre validation studies.

The strong correlation between plasma p-tau217 and CSF 
p-tau181 standard levels further supports its utility as a non-invasive 
alternative for diagnosing AD, potentially limiting CSF analysis to a 
subset of subjects with borderline levels.29 Of note, the study in
cluded subjects with different diseases and ages, without any a priori 
selection, thus confirming the broad applicability of such techniques 
in real-life settings. Nevertheless, further technical validations of the 
testing methods are warranted to challenge the stability of biomar
kers in different settings, as testing immediately after −80°C storage 
is not always available. This is particularly important when consider
ing the transition from research to clinical use of such an assay, 
which is still awaiting the ongoing technical and clinical validation 
process.24,30 While our study demonstrates high concordance be
tween the Lumipulse and SIMOA techniques, further validation ef
forts are warranted to confirm the biological relevance of plasma 
p-tau217 as a reliable biomarker for AD in different patient popula
tions and disease stages, as well as a marker of copathology in other 
clinically-defined diseases even using different AD biological marker 
combinations (i.e CSF versus imaging methods).

Future research should focus on addressing the remaining val
idation gaps by using predefined cut-off values and optimizing 
the clinical utility of plasma p-tau217 assays. Furthermore, 

longitudinal studies are needed to establish the stability of 
p-tau217 at the individual level over days/weeks or months. 
Moreover, further studies are needed to evaluate the prognostic va
lue of plasma p-tau217 in predicting disease progression and treat
ment response in AD patients, even in combination with other 
existing plasma biomarkers. In addition, efforts should be made 
to standardize assay protocols and establish reference ranges for 
plasma p-tau217 levels to facilitate its integration into routine clin
ical practice for early detection and monitoring of the AD 
continuum.

In conclusion, our study adds to the growing body of evidence 
supporting the utility of plasma p-tau217 as a reliable biomarker 
for the diagnosis of AD. The validation of Lumipulse p-tau217 high
lights its potential to complement existing diagnostic approaches 
and improve the accuracy of AD detection in clinical practice.

Data availability
The datasets used and analysed during the current study are avail
able from the corresponding author on reasonable request.
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