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ABSTRACT 

Background: Neuropsychiatric symptoms (NPS) can be an early manifestation of Alzheimer’s 

disease (AD). However, the associations among NPS, cognition, and AD biomarkers across the 

disease spectrum are unclear.  

 

Objectives: We analyzed cross-sectional mediation pathways between cerebrospinal fluid (CSF) 

biomarkers of AD (Aβ1-42, p-tau181), cognitive function, and NPS.  

 

Methods: Primary models included 781 participants from the National Alzheimer’s 

Coordinating Center (NACC) data set who had CSF analyzed for AD biomarkers using 

Lumipulse. NPS were assessed with the Neuropsychiatric Inventory Questionnaire (NPI-Q). We 

assessed cognition with the harmonized MMSE/MoCA, as well as neuropsychological tests 

sensitive to AD pathology: story recall, naming, animal fluency, and Trails B. The Clinical 

Dementia Rating (CDR®) scale assessed dementia severity. Mediation models were estimated 

with Kemeny metric covariance in a structural equation model framework, controlling for age, 

education, sex, and APOE ε4.  

 

Results: The sample was older adults (M=73.85, SD=6.68; 49.9% male, 390; 27.9% dementia, 

218) who were predominantly white (n=688, 88.1%). Higher p-tau181/Aβ1-42 ratio predicted 

higher NPI-Q, which was partially mediated by the MMSE/MoCA and, in a second model, story 

recall. No other pathway was statistically significant. Both the MMSE/MoCA and NPI-Q 

independently mediated the association between p-tau181/Aβ1-42 ratio and CDR global 

impairment. With dementia excluded, p-tau181/Aβ1-42 ratio was no longer associated with the 

NPI-Q. 

 

Conclusion: NPS may be secondary to cognitive impairment and AD pathology through direct 

and indirect pathways. NPS independently predict dementia severity in AD. However, AD 

pathology likely plays less of a role in NPS in samples without dementia.  
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INTRODUCTION 

 

Neuropsychiatric symptoms (NPS) are a common feature experienced by patients diagnosed with 

dementia and mild cognitive impairment (MCI) due to Alzheimer’s disease (AD)[1,2]. NPS are 

associated with early pathological changes, including disruption in various neurotransmitter 

systems [3], and brainstem involvement may be instrumental in AD pathogenesis [4]. NPS are 

also predictors of cognitive decline, and thus are of growing interest to clinicians and caregivers 

[2,5–7]. NPS in AD include changes to personality as well as mood and behavioral disturbances 

with the most prevalent symptoms including apathy [8,9], anxiety [10,11], and depression [12]. 

Some authors have proposed mild behavioral impairment as a distinct syndrome of prodromal 

dementia [5,13,14]. However, the etiology of NPS in dementia remains unclear. A number of 

studies have suggested that NPS are driven by AD pathology including the aggregation of tau 

neurofibrillary tangles and amyloid plaques [15–17]. There may even be region specific 

mechanisms for NPS profiles in AD. For example, apathy appears related to AD pathology 

impacting the anterior cingulate-subcortical circuit, whereas depression and anxiety appear 

related to impact on frontal-limbic circuits, hallucinations appear related to impact on frontal and 

temporal lobes, and delusions appear related to impact on anterior-posterior networks and 

anterior insular regions (see [18]). Other studies have shown that NPS are a prodrome for 

incident cognitive impairment among healthy community-dwelling participants [19–21].  

However, the etiology of NPS in individuals across disease stages is not entirely understood 

(e.g., preclinical, MCI, and AD dementia) [22,23].  

 

NPS in dementia have been linked to AD pathology in numerous studies of fluid 

biomarkers [11,15,24–26]. For example, a study with a large AD sample showed patients with a 

slightly elevated and subsequently increasing score on the Cornell Scale for Depression in 

Dementia (CSDD) had significantly lower cerebrospinal fluid amyloid beta (CSF Aβ1-42) level 

compared to patients who scored consistently low on the CSDD, suggesting that symptoms of 

depression may be linked to higher disease burden [25]. Further, a study of patients with MCI from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort showed that the presence of 

anxiety was associated with abnormal CSF Aβ1-42 and total tau (t-tau) concentrations [11]. A recent 

review study found a large degree of heterogeneity in findings related to CSF correlates of NPS in 

patients with AD and MCI, emphasizing the need for further exploration into these relationships 

[27]. Most of the research done in this area has focused on or included patients with cognitive 

impairment, leading to a gap in knowledge regarding the etiology of NPS in individuals without 

substantial disease burden. It remains undetermined if AD pathology causes NPS directly or if 

NPS are indirectly mediated by a decline in cognitive function. That is, NPS could be exacerbated 

by AD-related cognitive decline without a direct relationship to the underlying pathology (e.g., 

through secondary effects such as diminished ability to engage in hobbies and social interaction).  

 

A small number of studies have considered cognition when examining the potential 

relationship between NPS and AD pathology [24,28,29]. Krell-Roesch et al. found that lower CSF 

Aβ1-42 and higher t-tau/ Aβ1-42 and phosphorylated tau (p-tau)/ Aβ1-42 ratios were associated with 

clinical symptoms of depression and anxiety in older non-demented adults, suggesting that NPS 

expression may result from AD pathology and potentially independent of cognitive status [28]. 

Analyses did not control for cognitive function; however, a stronger association between lower 



CSF Aβ1-42 and clinical symptoms of anxiety and depression was found in individuals with MCI 

(versus normal cognition). This stresses the need for further investigation into the role of cognitive 

status in preclinical AD. Babulal et al. [29] examined the presence of NPS and mood changes in a 

mixed cohort from the WU Knight ADRC (cognitively normal patients, some with positive AD 

biomarkers). Results showed that participants with higher CSF tau/ Aβ1-42 ratio had a greater 

increase in overall mood disturbance across a one year follow up compared to participants with 

lower values. Higher values also predicted specific increases in symptoms of anxiety and 

depression. However, there was no significant correlation between change in scores on the Mini-

Mental State Examination (MMSE) and total mood disturbance, NPS, or depression. In contrast, 

Banning et al. [24] found that lower levels of CSF Aβ1-42 and higher levels of CSF p-tau and t-tau 

were associated with the presence of NPS, and that these associations were mediated by MMSE 

scores. The results suggest NPS in dementia are partially mediated by cognitive functioning. 

However, the study failed to assess psychometric properties of NPS in the sample and combined 

different measures of CSF biomarker analysis. Although an agreement between methods has been 

established, this relationship is not absolute and could lead to skewed results [30]. Likewise, it is 

unclear whether these findings will only hold for AD dementia, versus earlier stages in the disease 

spectrum.  

 

 In this study, we investigated the associations between CSF biomarkers (Aβ1-42, p-tau181), 

NPS, and cognitive function across the disease spectrum. We leveraged a large cross-sectional 

cohort from the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set (UDS) 

but restricted our primary analyses to participants with a single CSF assay method (Lumipulse). 

This study includes only cross-sectional data because of the complexity of the models and the 

lack of consistent data across timepoints. We included multiple neuropsychological tests that are 

sensitive to AD pathology and conducted factor analyses to assess the structure of the NPS 

measure. Along with models examining NPS as the outcome, we assessed a secondary model to 

see whether cognition and NPS independently mediate the relationship between CSF biomarkers 

and dementia severity.  

 

   

 

METHODS 

Participants and Design  

The sample included data from 2009 participants from the NACC who completed UDS visits 

between 2005 and 2020, and who had baseline CSF biomarker data from within a year of their 

UDS visit. Of these, 781 had CSF analyzed by Lumipulse, which was the primary analytic 

sample used for this study. This was chosen because it was the most common CSF collection 

method, and originated from a single site (the Knight Alzheimer Disease Research Center 

(ADRC) at Washington University in St. Louis, MO). Of note, all participants from the Knight 

ADRC are offered biomarker testing, including lumbar puncture (LP) with CSF analysis. 

Approximately 76.8% of all Knight ADRC participants receive a baseline LP in place of or along 

with another biomarker method (e.g., amyloid positron emission tomography). While almost all 

participants agree to LP in principle, many are excluded due to physician objection or known 

contraindication (e.g., ongoing anticoagulant therapy or space-occupying cerebral lesion). In 

addition, LP participation is optional for participants from under-represented groups and 



participants with advanced dementia do not receive LP. Despite this, the majority of eligible 

participants receive at least a baseline LP (see [31]).    

Since 2005, >30 ADRCs have participated in the NACC-UDS, a database of standardized 

cognitive, behavioral, and functional evaluations (full description can be found elsewhere 

[32,33]). Of these, nine sites had available CSF biomarker data. We included a larger sample 

from all nine sites in secondary models (to increase the generalizability of the findings; see 

analytic plan). Supplemental Figure 1 provides a CONSORT flow diagram of participants 

included.  

 

Standard protocol approvals, registrations, and patient consents  

The NACC database was approved by the University of Washington Institutional Review Board. 

Informed consent was obtained at each individual ADC. Involvement of human subjects was 

done in accord with the Helsinki Declaration of 1975. 

 

CSF Biomarkers 

LP is not routine for all ADRCs that contribute to NACC and sharing of CSF data to NACC is 

voluntary. Nine sites in the current data had available CSF data. In the present sample, we 

analyzed participants whose CSF biomarker data was analyzed using Lumipulse (n=781). All 

Lumipulse-based samples were collected at a single ADRC, the Knight ADRC. Primary models 

included p-tau181/ Aβ1-42 ratio as the assumed best predictor of underlying AD pathology (i.e., 

given widespread clinical use and superior concordance with amyloid PET scans compared to 

individual biomarkers) [34–36]. As a sensitivity analysis, models were recomputed with p-tau181 

and Aβ1-42 as individual predictors. Of note, t-tau was not a significant predictor in any model 

(alone or in combination with other biomarkers), and was not included in the analysis to 

minimize model complexity. Samples were collected and processed as previously described [37].  

LP was done after overnight fasting. Samples were collected in a 50 mL polypropylene tube 

using an atraumatic Sprotte 22-gauge spinal needle. CSF was placed on ice and centrifuged at 

low speed within two hours. CSF was transferred to another 50 mL tube and aliquoted at 500 uL 

into polypropylene tubes and stored at −80°C [38]. For biomarker analysis, samples were 

brought to room temperature, vortexed, and transferred to polystyrene cuvettes. Concentrations 

of each biomarker were measured by chemiluminescent enzyme immunoassay using a fully 

automated platform (LUMIPULSE G1200, Fujirebio, Ghent, Belgium). A single lot of reagents 

were used.  

 

Of the other eight sites, 704 samples were analyzed using Luminex, 512 were analyzed by 

enzyme-linked immunosorbent assay (ELISA), and 12 were analyzed using Athena ADMark. 

These last 12 participants were excluded due to the small numbers in the group. These 

participants were only analyzed in secondary models due to differences in analyte concentrations 

by assay methods (see Methods).  

 

Neuropsychiatric Symptoms 

The Neuropsychiatric Inventory Questionnaire (NPI-Q) was used as a measure of NPS [39]. In the 

NPI-Q, study partners (collateral sources) are asked to evaluate the patient on 12 symptoms over 

the past month. Each symptom is rated on a scale from 0 (absent) to 3 (severe). The NPI-Q was 

intended to produce a composite or summary score. Numerous factor analyses have been 

conducted in various samples with the NPI-Q, with diverse structures retained across the samples 



(see [40]). However, several of these studies (e.g., [41–43]) used principal component analysis, a 

factor analytic method which hypothesizes the absence of measurement error, and is therefore 

inappropriate for a Likert scale such as the NPI-Q (see [44]). In this study, we employed a factor 

analytic method without this limitation (see Measurement and Latent Constructs). We used factor 

models given the original intention of the NPI-Q [39], and to reduce multiple comparisons.  

 

Neuropsychological Tests and Dementia Severity 

Participants receive the UDS neuropsychological battery at approximately annual visits to each 

ADRC [45–47]. The UDS has had three versions, with the most recent (UDS version 3.0) 

released in March 2015 [45]. At this most recent update, several tests from the 

neuropsychological battery were replaced with non-proprietary alternatives. We used results 

from the Crosswalk study to harmonize scores between versions [46]. From the full UDS battery, 

we included tests that are sensitive to AD pathology, including tests of episodic memory (i.e., 

story recall; Logical Memory Delayed Recall and Craft Story Delayed Recall) [48,49], 

confrontation naming (Boston Naming Test and Multilingual Naming Test) [50–52], semantic 

fluency (Animals) [53,54], and set shifting (i.e., switching between instructional sets; Trail 

Making Test Part B [TMT-B]) [55]. We also included a global cognitive screening measure 

(Mini-Mental State Examination [MMSE] or Montreal Cognitive Assessment [MoCA]) [56,57]. 

Raw scores were used for these measures. Of note, the full battery of tests did not fit into a latent 

measurement model (see Results).  

 

Lower scores indicate worse performance for all but one test, TMT-B, where slower speed in 

seconds indicates worse performance. As noted, for participants who received earlier versions of 

the NACC UDS, neuropsychological test scores were harmonized with the Crosswalk study [46]. 

This included scores from Logical Memory, the Boston Naming Test, and the MoCA. Final 

harmonized cognitive test variables included the MMSE/MoCA, Story Recall, Naming, Animal 

Fluency, and TMT-B.   

 

We assessed dementia severity using global rating scores from the Clinical Dementia Rating 

(CDR®) Dementia Staging Instrument [58]. The CDR stages severity of dementia using 

informant report of orientation, judgment/problem solving, memory, home and hobbies, personal 

care, and community affairs. Higher scores reflect worse severity of dementia. Participants were 

excluded from respective models if data on mediators or outcomes were missing, including the 

MMSE/CDR (n=21) and other neuropsychological tests (n=68). The same participants were 

missing data from the MMSE/MoCA and CDR. 

 

Measurement and Latent Constructs 

Prior to inferential models, we examined the factor structure of the NPI-Q to better understand 

our primary outcome in this sample. Given diverse factor structures previously documented with 

the NPI-Q [40], we initially conducted parallel analysis [see 55]. We next assessed the 

recommended number of retained factors with confirmatory factor analyses (CFAs). For all 

factor analyses and subsequent structural models, we used the Kemeny metric space to construct 

a non-parametric covariance matrix with a generalized linear rank framework. These associations 

are affine-linearly invariant over all monotone transformations, enabling stable linear 

decomposition and analysis [60]. Loadings were estimated with generalized least squares (GLS). 

Higher factor scores suggest increased NPS. Confirmatory fit was assessed with the comparative 



fit index (CFI), the root mean square error of approximation (RMSEA), and the standardized 

root-mean-square residual (SRMR).[61–63] Satisfactory fit criteria were as follows: CFI > 0.95, 

RMSEA < 0.06, and SRMR < 0.08 [63]. When relevant, models were compared with the 

Bayesian information criterion (BIC), with lower values suggesting a better model [64,65]. 

 

Missing NPI-Q data were rare in the sample (≤ 1%) and no NPI-Q data were missing in samples 

included in structural models (i.e., participants without missing relevant moderators). Mean 

values for NPI-Q items ranged from 0.02 (hallucinations) to 0.37 (irritability/lability). Skewness 

was high for several items including delusions (5.99), hallucinations (11.97), elation/euphoria 

(9.49), disinhibition (3.89), motor disturbance (4.91), and appetite/eating (3.21); kurtosis was > 4 

for all items, further supporting a nonparametric approach. While many of the factor loadings 

were low and cannot be validly interpreted as part of the construct, we did not remove these 

items from structural models because to do so would remove the ability to account for 

measurement error from these items, and because they were considered an important part of the 

overall construct when the scale was designed (i.e., items to be interpreted with a summary 

score; see [39]). In addition, exploratory factor analyses were run to compare unidimensional and 

multidimensional models. In all cases, the unidimensional model was the preferred model (e.g., 

BICfactor1= -255.7, BICfactor2= 38.18, BICfactor3 = 286.12). 

 

As a final step, we assessed whether the full battery of neuropsychological tests would fit into a 

latent measurement model following the same procedure.  

 

Statistical Analyses 

Analyses were performed with the lavaan package in the statistical programming language R 

(version 4.2.3) [66]. Primary models assessed whether cognition, as measured by 

neuropsychological tests, mediated the relationship between CSF biomarkers and the NPI-Q. As 

described, harmonized raw scores were used for neuropsychological tests. In addition, p-tau181/ 

Aβ1-42 ratio was used in primary models and individual CSF biomarkers in sensitivity models. To 

replicate the most similar past study, and due to discrepancies in missing data, we initially used 

the MMSE/MoCA as a stand-alone mediator. We then conducted a second model with Story 

Recall, Naming, Animal Fluency, and TMT-B as independent mediators. Mediation models were 

assessed in an SEM framework. Unlike the Baron & Kenny approach [67], SEM simultaneously 

estimates latent variables and mediation pathways while correcting for measurement error; the 

schema for and definition of mediation analyses can be found in Figure 1. Based on these 

findings, an exploratory model included NPI-Q factor scores and MMSE/MoCA scores as 

independent mediators of the relationship between CSF biomarkers and CDR global impairment 

scores. We did not include additional neuropsychological tests in this model given the sample 

size differences and the complexity of the model. Age, biological sex, years of education, and 

Apolipoprotein E (APOE) 4 allele genotyping (4 carriers vs. non-carriers) were included as 

covariates in all models. When multiple mediation pathways were statistically significant, 

contrasts were used to compare statistical differences between pathways. Statistics of variance 

are presented as R2. The absolute value of standardized weights can be directly compared to 

assess the relative importance of a predictor in a particular model.  

 

To examine the impact of early versus late-stage disease, we conducted sensitivity analyses in 

which we removed all participants with dementia from the models (as diagnosed by the local 



ADRC). These models included smaller samples with complete data on the MMSE/MoCA 

(n=546) and complete data on other neuropsychological tests (n=539). To ensure that the 

findings from the sample with Lumipulse CSF collection were not due to undocumented 

confounds compared to other participants, we replicated primary models in the full sample with 

any specified CSF collection method (N=2009), including participants with complete data on the 

MMSE/MoCA (n=1665) and complete data on other neuropsychological tests (n=1478). We 

added covariates to account for CSF collection method to these models. These variables were 

converted into binary indicators (i.e., dummy coding) to permit analysis with our generalized 

linear rank framework. We recognize that adding collection method as a covariate does not fully 

and properly account for discrepancies in method. For this reason, we only included these 

models as a sensitivity analysis and focused on a single biomarker method (Lumipulse) for 

primary models.  

 

RESULTS 

Descriptive Characteristics 

The primary sample included 781 NACC participants with Lumipulse CSF biomarker collection. 

Of these, 688 identified as non-Hispanic White (88.1%) and 390 identified as male (49.9%). The 

sample were older adults (Median = 74, Interquartile range [69, 78]), highly educated (Myears = 

15.67; SD = 2.81), primarily English speaking (n=776; 99.4%), and right-hand dominant (n=686; 

87.8%). Descriptive characteristics stratified by dementia status can be found in Table 1. In the 

sample with dementia (n = 218), most received a clinical diagnosis of Alzheimer’s disease 

(94.5%). There were two individuals diagnosed with traumatic brain injury (0.9%). Other 

participants were diagnosed with frontotemporal lobar degeneration (0.5%), depression (0.5%), 

and anxiety (0.5%). There were seven participants with an unspecified or unclear diagnosis 

(3.2%).  

 

Overall, moderate to severe NPS were relatively rare in the sample, but this varied by NPI-Q 

item (see Table 2).  Of note, 376 (48.1%) had at least one positive value for at least one symptom 

(NPI-Q > 0). In the sample without dementia, 199 (35.3%) had at least one positive value.   

 

Factor analyses 

For samples with Lumipulse-generated CSF biomarker results and complete data on the 

MMSE/MoCA/CDR (n=760), as well as complete data on neuropsychological tests (n=713), 

parallel analysis suggested that only one factor should be retained from the NPI-Q. A specified 

unidimensional CFA demonstrated excellent model fit in both samples (χ2 = 4.27, df = 54, p = 

1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, and, χ2 = 3.61, df = 54, p = 1.00, CFI = 1.00, 

RMSEA = 0.00, SRMR = 0.01, respectively). While most factor loadings were significantly 

different from zero in both samples (p < 0.05), several had minimal contribution to the factor 

(standardized loadings below 0.20; see Table 3). Overall item contribution was similar between 

both samples. Items were not removed from the model as described in Methods (Measurement 

and Latent Constructs).  All correlation residuals were below |0.10|. 

 

In the sample with Lumipulse-generated CSF biomarker results and complete data on 

neuropsychological tests (n=713), parallel analysis suggested that five factors should be retained 

for the full battery of neuropsychological tests. A specified unidimensional CFA demonstrated 

poor fit (χ2 = 618.82, df = 54, p < 0.002, CFI = 0.34, RMSEA = 0.12, SRMR = 0.15). No model 



with fewer than four factors demonstrated adequate fit with any of these fit indices and there 

were not sufficient indicators (i.e., neuropsychological tests) to construct a multi-dimensional 

latent model. As a result, only raw scores for a priori selected tests were used.  

 

Mediation Models 

In the sample with Lumipulse-generated CSF biomarker results and complete data on the 

MMSE/MoCA (n=760), we assessed the MMSE/MoCA as mediator for the association between 

CSF biomarkers and the NPI-Q. The initial (c-path) model had excellent fit, χ2 = 12.13, df = 109, 

p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, R2 = 0.09, as did the full mediation model, 

χ2 = 14.38, df = 120, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, R2 = 0.15. In the 

initial model, higher p-tau181/Aβ1-42 ratio predicted higher NPI-Q. These effects were present but 

reduced in the full mediation model, suggesting partial mediation (i.e., the mediator only 

partially accounts for the initial association). Specifically, the association between p-tau181/ Aβ1-

42 ratio and the NPI-Q was partially mediated by the MMSE/MoCA, standardized indirect effect 

(IEz) = 0.066, 95% CI [0.034, 0.099]. See Table 4a and Figure 2a.  

 

In the sample with Lumipulse-generated CSF biomarker results and complete data on 

neuropsychological tests (n=713), we assessed Story Recall, Naming, Animal Fluency, and 

TMT-B scores as mediators for the association between CSF biomarkers and the NPI-Q. The 

initial (c-path) model had excellent fit, χ2 = 9.59, df = 109, p = 1.00, CFI = 1.00, RMSEA = 0.00, 

SRMR = 0.01, R2 = 0.08, as did the full mediation model, χ2 = 112.55, df = 159, p = 0.99, CFI = 

1.00, RMSEA = 0.00, SRMR = 0.04, R2 = 0.13. In the initial model, higher p-tau181/ Aβ1-42 ratio 

predicted higher NPI-Q. These effects were present but reduced in the full mediation model, 

suggesting partial mediation. The association between p-tau181/ Aβ1-42 ratio and the NPI-Q was 

significantly mediated by Story Recall, IEz = 0.049, 95% CI [0.011, 0.088]. None of the other 

mediation pathways were statistically significant. However, the mediation effect of TMT-B was 

near statistical significance, IEz = 0.024, 95% CI [-0.003, 0.051]. See Table 4b and Figure 2b.  

 

In the sample with complete data on the MMSE/MoCA and CDR (n=760), we assessed the 

MMSE/MoCA and NPI-Q as mediators for the association between CSF biomarkers and CDR 

global impairment scores. The initial (c-path) model had excellent fit, χ2 < 0.01, df = 5, p = 1.00, 

CFI = 1.00, RMSEA = 0.00, SRMR = 0.00, R2 = 0.11, as did the full mediation model, χ2 = 

36.08, df = 132, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.02, R2 = 0.25. In the initial 

model, higher p-tau181/ Aβ1-42 ratio predicted higher CDR global impairment. These effects were 

present but reduced in the full mediation model, suggesting partial mediation.  The association 

between p-tau181/ Aβ1-42 ratio and CDR global impairment was partially mediated by the 

MMSE/MoCA, IEz = 0.058, 95% CI [0.034, 0.082], as well as the NPI-Q, IEz = 0.091, 95% CI 

[0.040, 0.143]. The difference between these pathways was not statistically significant 

(suggesting neither is the more complete mediator), βz = 0.034, 95% CI [-0.021, 0.088].  See 

Table 4c and Figure 2c.  

 

Sensitivity Models 

For all models, including CSF Aβ1-42 and CSF p-tau181 as independent predictors replicated 

findings from models using p-tau181/ Aβ1-42 ratio. That is, lower CSF Aβ1-42 and higher CSF p-

tau181 predicted higher NPI-Q. These effects reduced and/or were no longer statistically 

significant in full mediation models, suggesting partial to more complete mediation. The same 



mediation pathways were and were not statistically significant (see Supplemental Table 1a,b). 

Statistics of variance were slightly higher (MMSE/MoCA: R2 = 0.16; neuropsychological tests: 

R2 = 0.14). Likewise, in the sample with complete data on the MMSE/MoCA and CDR (n=760), 

lower CSF Aβ1-42 and higher CSF p-tau181 predicted higher CDR global impairment. These 

effects were present but reduced in the full mediation model, suggesting partial mediation. 

Statistics of variance were again slightly higher (baseline: R2 = 0.12, mediation: R2 = 0.26). The 

same mediation pathways were statistically significant (see Supplemental Table 2). Likewise, the 

difference between these pathways was not statistically significant.  

 

To examine the impact of early versus late-stage disease, we assessed whether the 

MMSE/MoCA continued to mediate the association between CSF biomarkers and the NPI-Q in 

participants without dementia (n=546). The initial (c-path) model had excellent fit, χ2 = 4.16, df 

= 109, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01. However, CSF biomarkers were not 

significant predictors of the NPI-Q in the sample. As a result, a full mediation model was not 

conducted. We assessed whether Story Recall, Naming, Animal Fluency, or TMT-B mediated 

the association between CSF biomarkers and the NPI-Q in participants without dementia 

(n=539). The initial (c-path) model had excellent fit, χ2 = 4.09, df = 109, p = 1.00, CFI = 1.00, 

RMSEA = 0.00, SRMR = 0.01. However, CSF biomarkers were again not significant predictors 

of the NPI-Q in the sample. As a result, a full mediation model was not conducted.  

 

To ensure generalizability, we assessed whether the MMSE/MoCA continued to mediate the 

association between CSF biomarkers and the NPI-Q in the sample with relevant complete data and 

any CSF collection method (n=1665). The initial (c-path) model had excellent fit, χ2 = 35.45, df = 

142, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, R2 = 0.10, as did the full mediation 

model, χ2 = 41.30, df = 153, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, R2 = 0.19. 

Findings were largely the same compared to the sample with Lumipulse-generated CSF biomarker 

results. Next, we assessed whether Story Recall, Naming, Animal Fluency, or TMT-B scores 

mediated the association between CSF biomarkers and the NPI-Q in the sample with relevant 

complete data and any CSF collection method (n=1478).  The initial (c-path) model had excellent 

fit, χ2 = 25.61, df = 142, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, R2 = 0.08. However, 

there was evidence of poor fit in the full mediation model, χ2 = 318.62, df = 192, p < 0.001, CFI = 

0.64, RMSEA = 0.02, SRMR = 0.05, R2 = 0.14. There were also a few differences in findings 

compared to the sample with Lumipulse-generated CSF biomarker results. Along with story recall, 

which remained a significant mediator, TMT-B was a statistically significant mediator in the larger 

sample, IEz = 0.029, 95% CI [0.007, 0.051]. See Supplemental Tables 3a,b for full model results 

from these analyses. 

 

 

DISCUSSION 

The purpose of this study was to investigate whether cognition plays a mediating role in the 

relationship between CSF biomarkers (Aβ1-42, p-tau181) and NPS across the AD disease 

spectrum. In addition to analyzing models with NPS as the primary outcome, we also explored 

whether cognition and NPS act as independent mediators in the association between CSF 

biomarkers and dementia severity. Findings suggest that higher p-tau181/ Aβ1-42 ratio, the 

assumed best predictor of underlying AD pathology [34–36], was associated with worse 

cognitive performance, consequently resulting in more pronounced NPS. Estimates of variance 



explained were modest and relatively consistent between models, likely due to the previously 

stated measurement error within the NPI-Q (see Measurement and Latent Constructs). CSF 

biomarkers and mediators were relatively stronger predictors than other covariates based on 

standardized weights. However, cognitive measures only partially mediated the relationship 

between CSF biomarkers and NPS, suggesting an independent, direct relationship between AD 

pathology and NPS (i.e., independent of cognitive effects in an AD sample). Among cognitive 

tests included in this study, story recall emerged as the only retained mediator, with the highest 

standardized effect. This is consistent with past research that poor recall is a prominent cognitive 

deficit expected in AD throughout the disease course [68,69]. Global cognition and NPS 

independently mediated the relationship between CSF biomarkers and dementia severity, with 

minimal difference between the pathways. As such, AD pathology may disrupt both cognition 

and mental health, which independently contribute to functional disturbance.  

 

Patients with AD have higher frequency of NPS than general populations [70,71], which can 

precede cognitive impairment [7,72], and impacts quality of life, daily function, caregiver 

burden, and institutionalization [13,73,74]. However, the independent and shared pathways 

between cognition and NPS in AD may lead to different expressions throughout the disease 

course. Studies have shown that NPS tend to fluctuate within and between patients over time, 

compared to the relatively steady cognitive decline seen in AD [72,75,76]. Likewise, some 

studies have found that baseline NPS predicts longitudinal cognitive decline [77–79], but this is 

not consistent [72,80]. Since psychiatric symptoms impact cognitive test performance (see [81]), 

it is possible that cognitive functions and NPS create a feedback loop in AD patients over time 

[82]. That is, cognitive deficits exacerbate NPS and elevated NPS may worsen cognitive deficits.  

 

In our study, when participants with dementia were excluded from models, CSF biomarkers no 

longer predicted NPS. In contrast to past research ([83] provides a review), this suggests that 

NPS may not necessarily serve as a better early indicator of AD compared to cognitive measures. 

However, this observation also supports the directional assumptions made in our primary 

analyses. In early stages of the disease with less AD pathology, NPS might stem from a variety 

of factors, including pre-existing psychiatric conditions and psychosocial factors. When 

pathology builds and disperses in the brain, we observe increased cognitive consequences, 

potentially exacerbating NPS. It may be that only stable, late onset NPS stemming specifically 

from AD correlates with worsened cognitive decline (versus transient psychiatric symptoms 

resulting from factors other than AD; see [84]). 

 

A difference between transient and stable NPS would explain inconsistent associations between 

AD pathology and NPS across the disease spectrum, particularly in studies that combine groups 

[17,24,85]. Prevalence of NPS at a given disease stage may vary by symptom, with each 

symptom having a distinct atrophy, neuropathologic, and regional cerebral blood activation 

profile [86–88]. There may also be instrumental limitations impacting findings. For example, the 

NPI-Q was validated to assess psychopathology in dementia patients, rather than earlier in the 

disease course [39]. Longitudinal worsening of NPS may be a better indicator of AD pathology 

[29,81,89,90], which we did not examine in this cross-sectional study. Regardless, our findings 

are relatively consistent with and expand upon the most similar past study described above [24]. 

Likewise, these findings have implications for management of NPS in AD patients.  

 



The cognitive sequelae of AD may exacerbate NPS, making it crucial to address cognitive 

symptoms in treatment of these patients. Memantine, particularly in combination with 

acetylcholinesterase inhibitors (AChEI), demonstrates improved efficacy for NPS, compared to 

AChEI alone [91,92]. However, monotherapy with AchEI can also provide relief [93]. 

Conversely, psychotropic medications in this context have varying support and/or more severe 

side-effect profiles [94–96]. One meta-analysis found that risperidone and galantamine had the 

best evidence for treatment of NPS across dementia syndromes [97]. Current investigations 

explore glycogen synthase kinase-3 (GSK3) inhibitors and other kinase inhibitors [98,99], while 

monoclonal antibody medications targeting Ab (like lecanemab) await evaluation for NPS 

impact [100]. For non-responsive or contraindicated cases, emerging evidence supports 

behavioral, interpersonal, and environmental interventions [101–104]. However, additional 

studies are needed to identify at-risk AD patients and tailor treatment to specific symptom 

profiles. 

 

This study has several strengths which contribute to the reliability and significance of findings. 

First, we addressed non-standardized CSF assay methods by focusing primary analyses on 

participants with CSF analyzed by Lumipulse, and conducting sensitivity analyses to confirm the 

consistency of results. Second, our study employed appropriate psychometric analyses of the 

NPI-Q, which improves upon the existing literature. Third, utilizing innovative nonparametric 

methods presents a practical alternative for studies employing the NPI-Q (versus assessing items 

individually or combining items without consideration for measurement error). Fourth, we 

extended past research by incorporating several neuropsychological tests sensitive to AD 

pathology. This permits interrogation of the specific aspects of cognition linked to the proposed 

mediation pathways (e.g., memory). Finally, leveraging data from NACC provided a large, 

methodologically consistent cohort, further fortifying the credibility of the research. 

 

Our study has several limitations, particularly stemming from analysis of the NPI-Q. We 

observed that NPI-Q item loadings varied. In some instances, items cannot be reliably interpreted 

as integral to the construct. In our sample, these items do not operate as intended by the scale's 

design, which was meant for interpretation with a summary score (see [39]). Despite this, we 

opted to include these items in analyses. Doing so permits the opportunity to account for 

measurement error, and these items were considered a crucial part of the construct when the 

scale was formulated. In primary models, we focused on a single CSF biomarker method, which 

limits the generalizability of the sample. Likewise, our sensitivity models are limited in 

addressing variations in CSF assay method. Partialling out variance likely does not fully account 

for these differences. While mediation suggests potential causality in a cross-sectional study, this 

represents only one possible explanation. For example, these models do not include all possible 

covariates; unmeasured variables could be either primary or secondary confounds to the outcome 

or association being studied (see [105] for a discussion). As noted, we included cross-sectional 

data for this study because of the complexity of our models and the lack of consistent data across 

timepoints. Future studies should investigate longitudinal models with NACC samples while 

perhaps sacrificing psychometric complexity. Finally, the NACC is comprised of individuals 

from ADRCs across the U.S. and is not representative of the general population. As with any 

CSF biomarker study, samples from the NACC that choose to undergo LP are not necessarily 

reflective of all AD patients. For example, participants from the Knight ADRC with advanced 



dementia do not receive LP. Regardless, examining NPS in this sample provides value, and 

ongoing replication will address concerns from any particular study.  

 

Our findings suggest that higher p-tau181/ Aβ1-42 ratio, a strong indicator of AD pathology, was 

associated with worse cognitive performance and more pronounced NPS. However, cognitive 

measures only partially explained the relationship, indicating an independent link between AD 

pathology and NPS. Global cognition and NPS independently mediated the relationship between 

CSF biomarkers and dementia severity, suggesting the independent impact of AD pathology on 

functional disturbance through both cognitive decline and NPS. Early in the disease course, NPS 

may result from various factors. As AD pathology progresses, cognitive effects may exacerbate 

NPS, creating complex and varied symptom expressions in patients with AD. 
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