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ABSTRACT
Background: Neuropsychiatric symptoms (NPS) can be an early manifestation of Alzheimer’s
disease (AD). However, the associations among NPS, cognition, and AD biomarkers across the
disease spectrum are unclear.

Objectives: We analyzed cross-sectional mediation pathways between cerebrospinal fluid (CSF)
biomarkers of AD (Ap1-42, p-tauis), cognitive function, and NPS.

Methods: Primary models included 781 participants from the National Alzheimer’s
Coordinating Center (NACC) data set who had CSF analyzed for AD biomarkers using
Lumipulse. NPS were assessed with the Neuropsychiatric Inventory Questionnaire (NPI-Q). We
assessed cognition with the harmonized MMSE/MoCA, as well as neuropsychological tests
sensitive to AD pathology: story recall, naming, animal fluency, and Trails B. The Clinical
Dementia Rating (CDR®) scale assessed dementia severity. Mediation models were estimated
with Kemeny metric covariance in a structural equation model framework, controlling for age,
education, sex, and APOE &4.

Results: The sample was older adults (M=73.85, SD=6.68; 49.9% male, 390; 27.9% dementia,
218) who were predominantly white (n=688, 88.1%). Higher p-tauisi/Ap1-42 ratio predicted
higher NPI-Q, which was partially mediated by the MMSE/MoCA and, in a second model, story
recall. No other pathway was statistically significant. Both the MMSE/MoCA and NPI-Q
independently mediated the association between p-tauisi/Ap1-42 ratio and CDR global
impairment. With dementia excluded, p-tauisi/Api-42 ratio was no longer associated with the
NPI-Q.

Conclusion: NPS may be secondary to cognitive impairment and AD pathology through direct
and indirect pathways. NPS independently predict dementia severity in AD. However, AD
pathology likely plays less of a role in NPS in samples without dementia.

Keywords: Alzheimer’s disease, Neuropsychiatric Symptoms, Cognition, Cerebrospinal Fluid,
Biomarkers, Amyloid, P-tau



INTRODUCTION

Neuropsychiatric symptoms (NPS) are a common feature experienced by patients diagnosed with
dementia and mild cognitive impairment (MCI) due to Alzheimer’s disease (AD)[1,2]. NPS are
associated with early pathological changes, including disruption in various neurotransmitter
systems [3], and brainstem involvement may be instrumental in AD pathogenesis [4]. NPS are
also predictors of cognitive decline, and thus are of growing interest to clinicians and caregivers
[2,5-7]. NPS in AD include changes to personality as well as mood and behavioral disturbances
with the most prevalent symptoms including apathy [8,9], anxiety [10,11], and depression [12].
Some authors have proposed mild behavioral impairment as a distinct syndrome of prodromal
dementia [5,13,14]. However, the etiology of NPS in dementia remains unclear. A number of
studies have suggested that NPS are driven by AD pathology including the aggregation of tau
neurofibrillary tangles and amyloid plaques [15-17]. There may even be region specific
mechanisms for NPS profiles in AD. For example, apathy appears related to AD pathology
impacting the anterior cingulate-subcortical circuit, whereas depression and anxiety appear
related to impact on frontal-limbic circuits, hallucinations appear related to impact on frontal and
temporal lobes, and delusions appear related to impact on anterior-posterior networks and
anterior insular regions (see [18]). Other studies have shown that NPS are a prodrome for
incident cognitive impairment among healthy community-dwelling participants [19-21].
However, the etiology of NPS in individuals across disease stages is not entirely understood
(e.g., preclinical, MCI, and AD dementia) [22,23].

NPS in dementia have been linked to AD pathology in numerous studies of fluid
biomarkers [11,15,24-26]. For example, a study with a large AD sample showed patients with a
slightly elevated and subsequently increasing score on the Cornell Scale for Depression in
Dementia (CSDD) had significantly lower cerebrospinal fluid amyloid beta (CSF Api-42) level
compared to patients who scored consistently low on the CSDD, suggesting that symptoms of
depression may be linked to higher disease burden [25]. Further, a study of patients with MCI from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort showed that the presence of
anxiety was associated with abnormal CSF Af1-42 and total tau (t-tau) concentrations [11]. A recent
review study found a large degree of heterogeneity in findings related to CSF correlates of NPS in
patients with AD and MCI, emphasizing the need for further exploration into these relationships
[27]. Most of the research done in this area has focused on or included patients with cognitive
impairment, leading to a gap in knowledge regarding the etiology of NPS in individuals without
substantial disease burden. It remains undetermined if AD pathology causes NPS directly or if
NPS are indirectly mediated by a decline in cognitive function. That is, NPS could be exacerbated
by AD-related cognitive decline without a direct relationship to the underlying pathology (e.g.,
through secondary effects such as diminished ability to engage in hobbies and social interaction).

A small number of studies have considered cognition when examining the potential
relationship between NPS and AD pathology [24,28,29]. Krell-Roesch et al. found that lower CSF
Api-42and higher t-tau/ APi-42 and phosphorylated tau (p-tau)/ Api-42 ratios were associated with
clinical symptoms of depression and anxiety in older non-demented adults, suggesting that NPS
expression may result from AD pathology and potentially independent of cognitive status [28].
Analyses did not control for cognitive function; however, a stronger association between lower



CSF Apai-42 and clinical symptoms of anxiety and depression was found in individuals with MCI
(versus normal cognition). This stresses the need for further investigation into the role of cognitive
status in preclinical AD. Babulal et al. [29] examined the presence of NPS and mood changes in a
mixed cohort from the WU Knight ADRC (cognitively normal patients, some with positive AD
biomarkers). Results showed that participants with higher CSF tau/ APi-42 ratio had a greater
increase in overall mood disturbance across a one year follow up compared to participants with
lower values. Higher values also predicted specific increases in symptoms of anxiety and
depression. However, there was no significant correlation between change in scores on the Mini-
Mental State Examination (MMSE) and total mood disturbance, NPS, or depression. In contrast,
Banning et al. [24] found that lower levels of CSF Api-42 and higher levels of CSF p-tau and t-tau
were associated with the presence of NPS, and that these associations were mediated by MMSE
scores. The results suggest NPS in dementia are partially mediated by cognitive functioning.
However, the study failed to assess psychometric properties of NPS in the sample and combined
different measures of CSF biomarker analysis. Although an agreement between methods has been
established, this relationship is not absolute and could lead to skewed results [30]. Likewise, it is
unclear whether these findings will only hold for AD dementia, versus earlier stages in the disease
spectrum.

In this study, we investigated the associations between CSF biomarkers (Ap1-42, p-tauisz),
NPS, and cognitive function across the disease spectrum. We leveraged a large cross-sectional
cohort from the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set (UDS)
but restricted our primary analyses to participants with a single CSF assay method (Lumipulse).
This study includes only cross-sectional data because of the complexity of the models and the
lack of consistent data across timepoints. We included multiple neuropsychological tests that are
sensitive to AD pathology and conducted factor analyses to assess the structure of the NPS
measure. Along with models examining NPS as the outcome, we assessed a secondary model to
see whether cognition and NPS independently mediate the relationship between CSF biomarkers
and dementia severity.

METHODS
Participants and Design
The sample included data from 2009 participants from the NACC who completed UDS visits
between 2005 and 2020, and who had baseline CSF biomarker data from within a year of their
UDS visit. Of these, 781 had CSF analyzed by Lumipulse, which was the primary analytic
sample used for this study. This was chosen because it was the most common CSF collection
method, and originated from a single site (the Knight Alzheimer Disease Research Center
(ADRC) at Washington University in St. Louis, MO). Of note, all participants from the Knight
ADRC are offered biomarker testing, including lumbar puncture (LP) with CSF analysis.
Approximately 76.8% of all Knight ADRC participants receive a baseline LP in place of or along
with another biomarker method (e.g., amyloid positron emission tomography). While almost all
participants agree to LP in principle, many are excluded due to physician objection or known
contraindication (e.g., ongoing anticoagulant therapy or space-occupying cerebral lesion). In
addition, LP participation is optional for participants from under-represented groups and



participants with advanced dementia do not receive LP. Despite this, the majority of eligible
participants receive at least a baseline LP (see [31]).

Since 2005, >30 ADRCs have participated in the NACC-UDS, a database of standardized
cognitive, behavioral, and functional evaluations (full description can be found elsewhere
[32,33]). Of these, nine sites had available CSF biomarker data. We included a larger sample
from all nine sites in secondary models (to increase the generalizability of the findings; see
analytic plan). Supplemental Figure 1 provides a CONSORT flow diagram of participants
included.

Standard protocol approvals, registrations, and patient consents

The NACC database was approved by the University of Washington Institutional Review Board.
Informed consent was obtained at each individual ADC. Involvement of human subjects was
done in accord with the Helsinki Declaration of 1975.

CSF Biomarkers

LP is not routine for all ADRCs that contribute to NACC and sharing of CSF data to NACC is
voluntary. Nine sites in the current data had available CSF data. In the present sample, we
analyzed participants whose CSF biomarker data was analyzed using Lumipulse (n=781). All
Lumipulse-based samples were collected at a single ADRC, the Knight ADRC. Primary models
included p-tauisi/ APi-42 ratio as the assumed best predictor of underlying AD pathology (i.e.,
given widespread clinical use and superior concordance with amyloid PET scans compared to
individual biomarkers) [34-36]. As a sensitivity analysis, models were recomputed with p-tauis:
and Aa-42 as individual predictors. Of note, t-tau was not a significant predictor in any model
(alone or in combination with other biomarkers), and was not included in the analysis to
minimize model complexity. Samples were collected and processed as previously described [37].
LP was done after overnight fasting. Samples were collected in a 50 mL polypropylene tube
using an atraumatic Sprotte 22-gauge spinal needle. CSF was placed on ice and centrifuged at
low speed within two hours. CSF was transferred to another 50 mL tube and aliquoted at 500 uL
into polypropylene tubes and stored at —80°C [38]. For biomarker analysis, samples were
brought to room temperature, vortexed, and transferred to polystyrene cuvettes. Concentrations
of each biomarker were measured by chemiluminescent enzyme immunoassay using a fully
automated platform (LUMIPULSE G1200, Fujirebio, Ghent, Belgium). A single lot of reagents
were used.

Of the other eight sites, 704 samples were analyzed using Luminex, 512 were analyzed by
enzyme-linked immunosorbent assay (ELISA), and 12 were analyzed using Athena ADMark.
These last 12 participants were excluded due to the small numbers in the group. These
participants were only analyzed in secondary models due to differences in analyte concentrations
by assay methods (see Methods).

Neuropsychiatric Symptoms

The Neuropsychiatric Inventory Questionnaire (NPI-Q) was used as a measure of NPS [39]. In the
NPI-Q, study partners (collateral sources) are asked to evaluate the patient on 12 symptoms over
the past month. Each symptom is rated on a scale from 0 (absent) to 3 (severe). The NPI-Q was
intended to produce a composite or summary score. Numerous factor analyses have been
conducted in various samples with the NPI-Q, with diverse structures retained across the samples



(see [40]). However, several of these studies (e.g., [41-43]) used principal component analysis, a
factor analytic method which hypothesizes the absence of measurement error, and is therefore
inappropriate for a Likert scale such as the NPI1-Q (see [44]). In this study, we employed a factor
analytic method without this limitation (see Measurement and Latent Constructs). We used factor
models given the original intention of the NPI-Q [39], and to reduce multiple comparisons.

Neuropsychological Tests and Dementia Severity

Participants receive the UDS neuropsychological battery at approximately annual visits to each
ADRC [45-47]. The UDS has had three versions, with the most recent (UDS version 3.0)
released in March 2015 [45]. At this most recent update, several tests from the
neuropsychological battery were replaced with non-proprietary alternatives. We used results
from the Crosswalk study to harmonize scores between versions [46]. From the full UDS battery,
we included tests that are sensitive to AD pathology, including tests of episodic memory (i.e.,
story recall; Logical Memory Delayed Recall and Craft Story Delayed Recall) [48,49],
confrontation naming (Boston Naming Test and Multilingual Naming Test) [50-52], semantic
fluency (Animals) [53,54], and set shifting (i.e., switching between instructional sets; Trail
Making Test Part B [TMT-B]) [55]. We also included a global cognitive screening measure
(Mini-Mental State Examination [MMSE] or Montreal Cognitive Assessment [MoCA]) [56,57].
Raw scores were used for these measures. Of note, the full battery of tests did not fit into a latent
measurement model (see Results).

Lower scores indicate worse performance for all but one test, TMT-B, where slower speed in
seconds indicates worse performance. As noted, for participants who received earlier versions of
the NACC UDS, neuropsychological test scores were harmonized with the Crosswalk study [46].
This included scores from Logical Memory, the Boston Naming Test, and the MoCA. Final
harmonized cognitive test variables included the MMSE/MoCA, Story Recall, Naming, Animal
Fluency, and TMT-B.

We assessed dementia severity using global rating scores from the Clinical Dementia Rating
(CDR®) Dementia Staging Instrument [58]. The CDR stages severity of dementia using
informant report of orientation, judgment/problem solving, memory, home and hobbies, personal
care, and community affairs. Higher scores reflect worse severity of dementia. Participants were
excluded from respective models if data on mediators or outcomes were missing, including the
MMSE/CDR (n=21) and other neuropsychological tests (n=68). The same participants were
missing data from the MMSE/MoCA and CDR.

Measurement and Latent Constructs

Prior to inferential models, we examined the factor structure of the NPI-Q to better understand
our primary outcome in this sample. Given diverse factor structures previously documented with
the NPI-Q [40], we initially conducted parallel analysis [see 55]. We next assessed the
recommended number of retained factors with confirmatory factor analyses (CFAs). For all
factor analyses and subsequent structural models, we used the Kemeny metric space to construct
a non-parametric covariance matrix with a generalized linear rank framework. These associations
are affine-linearly invariant over all monotone transformations, enabling stable linear
decomposition and analysis [60]. Loadings were estimated with generalized least squares (GLS).
Higher factor scores suggest increased NPS. Confirmatory fit was assessed with the comparative



fit index (CFI), the root mean square error of approximation (RMSEA), and the standardized
root-mean-square residual (SRMR).[61-63] Satisfactory fit criteria were as follows: CFI>0.95,
RMSEA <0.06, and SRMR < 0.08 [63]. When relevant, models were compared with the
Bayesian information criterion (BIC), with lower values suggesting a better model [64,65].

Missing NPI-Q data were rare in the sample (< 1%) and no NPI-Q data were missing in samples
included in structural models (i.e., participants without missing relevant moderators). Mean
values for NPI-Q items ranged from 0.02 (hallucinations) to 0.37 (irritability/lability). Skewness
was high for several items including delusions (5.99), hallucinations (11.97), elation/euphoria
(9.49), disinhibition (3.89), motor disturbance (4.91), and appetite/eating (3.21); kurtosis was > 4
for all items, further supporting a nonparametric approach. While many of the factor loadings
were low and cannot be validly interpreted as part of the construct, we did not remove these
items from structural models because to do so would remove the ability to account for
measurement error from these items, and because they were considered an important part of the
overall construct when the scale was designed (i.e., items to be interpreted with a summary
score; see [39]). In addition, exploratory factor analyses were run to compare unidimensional and
multidimensional models. In all cases, the unidimensional model was the preferred model (e.g.,
BICractor1= -255.7, BICfactorz= 38.18, BlCractors = 286.12).

As a final step, we assessed whether the full battery of neuropsychological tests would fit into a
latent measurement model following the same procedure.

Statistical Analyses

Analyses were performed with the lavaan package in the statistical programming language R
(version 4.2.3) [66]. Primary models assessed whether cognition, as measured by
neuropsychological tests, mediated the relationship between CSF biomarkers and the NPI-Q. As
described, harmonized raw scores were used for neuropsychological tests. In addition, p-tauisi/
AP1-42ratio was used in primary models and individual CSF biomarkers in sensitivity models. To
replicate the most similar past study, and due to discrepancies in missing data, we initially used
the MMSE/MoCA as a stand-alone mediator. We then conducted a second model with Story
Recall, Naming, Animal Fluency, and TMT-B as independent mediators. Mediation models were
assessed in an SEM framework. Unlike the Baron & Kenny approach [67], SEM simultaneously
estimates latent variables and mediation pathways while correcting for measurement error; the
schema for and definition of mediation analyses can be found in Figure 1. Based on these
findings, an exploratory model included NPI-Q factor scores and MMSE/MoCA scores as
independent mediators of the relationship between CSF biomarkers and CDR global impairment
scores. We did not include additional neuropsychological tests in this model given the sample
size differences and the complexity of the model. Age, biological sex, years of education, and
Apolipoprotein E (APOE) &4 allele genotyping (¢4 carriers vs. non-carriers) were included as
covariates in all models. When multiple mediation pathways were statistically significant,
contrasts were used to compare statistical differences between pathways. Statistics of variance
are presented as R2. The absolute value of standardized weights can be directly compared to
assess the relative importance of a predictor in a particular model.

To examine the impact of early versus late-stage disease, we conducted sensitivity analyses in
which we removed all participants with dementia from the models (as diagnosed by the local



ADRC). These models included smaller samples with complete data on the MMSE/MoCA
(n=546) and complete data on other neuropsychological tests (n=539). To ensure that the
findings from the sample with Lumipulse CSF collection were not due to undocumented
confounds compared to other participants, we replicated primary models in the full sample with
any specified CSF collection method (N=2009), including participants with complete data on the
MMSE/MoCA (n=1665) and complete data on other neuropsychological tests (n=1478). We
added covariates to account for CSF collection method to these models. These variables were
converted into binary indicators (i.e., dummy coding) to permit analysis with our generalized
linear rank framework. We recognize that adding collection method as a covariate does not fully
and properly account for discrepancies in method. For this reason, we only included these
models as a sensitivity analysis and focused on a single biomarker method (Lumipulse) for
primary models.

RESULTS
Descriptive Characteristics
The primary sample included 781 NACC participants with Lumipulse CSF biomarker collection.
Of these, 688 identified as non-Hispanic White (88.1%) and 390 identified as male (49.9%). The
sample were older adults (Median = 74, Interquartile range [69, 78]), highly educated (Myears =
15.67; SD = 2.81), primarily English speaking (n=776; 99.4%), and right-hand dominant (n=686;
87.8%). Descriptive characteristics stratified by dementia status can be found in Table 1. In the
sample with dementia (n = 218), most received a clinical diagnosis of Alzheimer’s disease
(94.5%). There were two individuals diagnosed with traumatic brain injury (0.9%). Other
participants were diagnosed with frontotemporal lobar degeneration (0.5%), depression (0.5%),
and anxiety (0.5%). There were seven participants with an unspecified or unclear diagnosis
(3.2%).

Overall, moderate to severe NPS were relatively rare in the sample, but this varied by NPI-Q
item (see Table 2). Of note, 376 (48.1%) had at least one positive value for at least one symptom
(NPI-Q > 0). In the sample without dementia, 199 (35.3%) had at least one positive value.

Factor analyses

For samples with Lumipulse-generated CSF biomarker results and complete data on the
MMSE/MoCA/CDR (n=760), as well as complete data on neuropsychological tests (n=713),
parallel analysis suggested that only one factor should be retained from the NPI-Q. A specified
unidimensional CFA demonstrated excellent model fit in both samples (% = 4.27, df =54, p =
1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, and, ¥* = 3.61, df = 54, p = 1.00, CFI = 1.00,
RMSEA = 0.00, SRMR = 0.01, respectively). While most factor loadings were significantly
different from zero in both samples (p < 0.05), several had minimal contribution to the factor
(standardized loadings below 0.20; see Table 3). Overall item contribution was similar between
both samples. Items were not removed from the model as described in Methods (Measurement
and Latent Constructs). All correlation residuals were below |0.10.

In the sample with Lumipulse-generated CSF biomarker results and complete data on
neuropsychological tests (n=713), parallel analysis suggested that five factors should be retained
for the full battery of neuropsychological tests. A specified unidimensional CFA demonstrated
poor fit (x2 = 618.82, df = 54, p < 0.002, CFI = 0.34, RMSEA = 0.12, SRMR = 0.15). No model



with fewer than four factors demonstrated adequate fit with any of these fit indices and there
were not sufficient indicators (i.e., neuropsychological tests) to construct a multi-dimensional
latent model. As a result, only raw scores for a priori selected tests were used.

Mediation Models

In the sample with Lumipulse-generated CSF biomarker results and complete data on the
MMSE/MoCA (n=760), we assessed the MMSE/MoCA as mediator for the association between
CSF biomarkers and the NPI-Q. The initial (c-path) model had excellent fit, x> = 12.13, df = 109,
p =1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, R? = 0.09, as did the full mediation model,
¥? = 14.38, df = 120, p = 1.00, CFIl = 1.00, RMSEA = 0.00, SRMR = 0.01, R? = 0.15. In the
initial model, higher p-tauisi/APi-42 ratio predicted higher NPI1-Q. These effects were present but
reduced in the full mediation model, suggesting partial mediation (i.e., the mediator only
partially accounts for the initial association). Specifically, the association between p-tauisi/ Api-
a2 ratio and the NPI-Q was partially mediated by the MMSE/MoCA, standardized indirect effect
(IEz) = 0.066, 95% CI [0.034, 0.099]. See Table 4a and Figure 2a.

In the sample with Lumipulse-generated CSF biomarker results and complete data on
neuropsychological tests (n=713), we assessed Story Recall, Naming, Animal Fluency, and
TMT-B scores as mediators for the association between CSF biomarkers and the NPI1-Q. The
initial (c-path) model had excellent fit, ¥* = 9.59, df = 109, p = 1.00, CFI = 1.00, RMSEA = 0.00,
SRMR =0.01, R?=0.08, as did the full mediation model, y?> = 112.55, df = 159, p = 0.99, CFI =
1.00, RMSEA = 0.00, SRMR = 0.04, R? = 0.13. In the initial model, higher p-tauisi/ AP1-42ratio
predicted higher NPI-Q. These effects were present but reduced in the full mediation model,
suggesting partial mediation. The association between p-tauisi/ Api-42 ratio and the NPI-Q was
significantly mediated by Story Recall, IE; = 0.049, 95% CI [0.011, 0.088]. None of the other
mediation pathways were statistically significant. However, the mediation effect of TMT-B was
near statistical significance, IE; = 0.024, 95% CI [-0.003, 0.051]. See Table 4b and Figure 2b.

In the sample with complete data on the MMSE/MoCA and CDR (n=760), we assessed the
MMSE/MoCA and NPI-Q as mediators for the association between CSF biomarkers and CDR
global impairment scores. The initial (c-path) model had excellent fit, > < 0.01, df = 5, p = 1.00,
CFI =1.00, RMSEA = 0.00, SRMR = 0.00, R? = 0.11, as did the full mediation model, x> =
36.08, df = 132, p = 1.00, CFIl = 1.00, RMSEA = 0.00, SRMR = 0.02, R? = 0.25. In the initial
model, higher p-tauisi/ APi-42ratio predicted higher CDR global impairment. These effects were
present but reduced in the full mediation model, suggesting partial mediation. The association
between p-tauisi/ APi-42ratio and CDR global impairment was partially mediated by the
MMSE/MoCA, IE; = 0.058, 95% CI [0.034, 0.082], as well as the NPI-Q, IE; = 0.091, 95% CI
[0.040, 0.143]. The difference between these pathways was not statistically significant
(suggesting neither is the more complete mediator), Bz = 0.034, 95% CI [-0.021, 0.088]. See
Table 4c and Figure 2c.

Sensitivity Models

For all models, including CSF Api-42 and CSF p-tauzs: as independent predictors replicated
findings from models using p-tauisi/ APi-42ratio. That is, lower CSF Api-42 and higher CSF p-
tauis predicted higher NPI-Q. These effects reduced and/or were no longer statistically
significant in full mediation models, suggesting partial to more complete mediation. The same



mediation pathways were and were not statistically significant (see Supplemental Table 1a,b).
Statistics of variance were slightly higher (MMSE/MoCA: R? = 0.16; neuropsychological tests:
R2 =0.14). Likewise, in the sample with complete data on the MMSE/MoCA and CDR (n=760),
lower CSF Api-42 and higher CSF p-tauis: predicted higher CDR global impairment. These
effects were present but reduced in the full mediation model, suggesting partial mediation.
Statistics of variance were again slightly higher (baseline: R? = 0.12, mediation: R? = 0.26). The
same mediation pathways were statistically significant (see Supplemental Table 2). Likewise, the
difference between these pathways was not statistically significant.

To examine the impact of early versus late-stage disease, we assessed whether the
MMSE/MoCA continued to mediate the association between CSF biomarkers and the NPI-Q in
participants without dementia (n=546). The initial (c-path) model had excellent fit, > = 4.16, df
=109, p=1.00, CFIl = 1.00, RMSEA = 0.00, SRMR = 0.01. However, CSF biomarkers were not
significant predictors of the NPI-Q in the sample. As a result, a full mediation model was not
conducted. We assessed whether Story Recall, Naming, Animal Fluency, or TMT-B mediated
the association between CSF biomarkers and the NPI-Q in participants without dementia
(n=539). The initial (c-path) model had excellent fit, ¥ = 4.09, df = 109, p = 1.00, CFI = 1.00,
RMSEA = 0.00, SRMR = 0.01. However, CSF biomarkers were again not significant predictors
of the NPI-Q in the sample. As a result, a full mediation model was not conducted.

To ensure generalizability, we assessed whether the MMSE/MoCA continued to mediate the
association between CSF biomarkers and the NPI-Q in the sample with relevant complete data and
any CSF collection method (n=1665). The initial (c-path) model had excellent fit, x* = 35.45, df =
142, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, R? = 0.10, as did the full mediation
model, % = 41.30, df = 153, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR = 0.01, R? = 0.19.
Findings were largely the same compared to the sample with Lumipulse-generated CSF biomarker
results. Next, we assessed whether Story Recall, Naming, Animal Fluency, or TMT-B scores
mediated the association between CSF biomarkers and the NPI-Q in the sample with relevant
complete data and any CSF collection method (n=1478). The initial (c-path) model had excellent
fit, > = 25.61, df = 142, p = 1.00, CFI = 1.00, RMSEA = 0.00, SRMR =0.01, R? = 0.08. However,
there was evidence of poor fit in the full mediation model, x* = 318.62, df = 192, p < 0.001, CFI =
0.64, RMSEA = 0.02, SRMR = 0.05, R? = 0.14. There were also a few differences in findings
compared to the sample with Lumipulse-generated CSF biomarker results. Along with story recall,
which remained a significant mediator, TMT-B was a statistically significant mediator in the larger
sample, 1E; = 0.029, 95% CI [0.007, 0.051]. See Supplemental Tables 3a,b for full model results
from these analyses.

DISCUSSION
The purpose of this study was to investigate whether cognition plays a mediating role in the
relationship between CSF biomarkers (Api-42, p-tauis1) and NPS across the AD disease
spectrum. In addition to analyzing models with NPS as the primary outcome, we also explored
whether cognition and NPS act as independent mediators in the association between CSF
biomarkers and dementia severity. Findings suggest that higher p-tauisi/ Api-42ratio, the
assumed best predictor of underlying AD pathology [34—36], was associated with worse
cognitive performance, consequently resulting in more pronounced NPS. Estimates of variance



explained were modest and relatively consistent between models, likely due to the previously
stated measurement error within the NPI-Q (see Measurement and Latent Constructs). CSF
biomarkers and mediators were relatively stronger predictors than other covariates based on
standardized weights. However, cognitive measures only partially mediated the relationship
between CSF biomarkers and NPS, suggesting an independent, direct relationship between AD
pathology and NPS (i.e., independent of cognitive effects in an AD sample). Among cognitive
tests included in this study, story recall emerged as the only retained mediator, with the highest
standardized effect. This is consistent with past research that poor recall is a prominent cognitive
deficit expected in AD throughout the disease course [68,69]. Global cognition and NPS
independently mediated the relationship between CSF biomarkers and dementia severity, with
minimal difference between the pathways. As such, AD pathology may disrupt both cognition
and mental health, which independently contribute to functional disturbance.

Patients with AD have higher frequency of NPS than general populations [70,71], which can
precede cognitive impairment [7,72], and impacts quality of life, daily function, caregiver
burden, and institutionalization [13,73,74]. However, the independent and shared pathways
between cognition and NPS in AD may lead to different expressions throughout the disease
course. Studies have shown that NPS tend to fluctuate within and between patients over time,
compared to the relatively steady cognitive decline seen in AD [72,75,76]. Likewise, some
studies have found that baseline NPS predicts longitudinal cognitive decline [77—-79], but this is
not consistent [72,80]. Since psychiatric symptoms impact cognitive test performance (see [81]),
it is possible that cognitive functions and NPS create a feedback loop in AD patients over time
[82]. That is, cognitive deficits exacerbate NPS and elevated NPS may worsen cognitive deficits.

In our study, when participants with dementia were excluded from models, CSF biomarkers no
longer predicted NPS. In contrast to past research ([83] provides a review), this suggests that
NPS may not necessarily serve as a better early indicator of AD compared to cognitive measures.
However, this observation also supports the directional assumptions made in our primary
analyses. In early stages of the disease with less AD pathology, NPS might stem from a variety
of factors, including pre-existing psychiatric conditions and psychosocial factors. When
pathology builds and disperses in the brain, we observe increased cognitive consequences,
potentially exacerbating NPS. It may be that only stable, late onset NPS stemming specifically
from AD correlates with worsened cognitive decline (versus transient psychiatric symptoms
resulting from factors other than AD; see [84]).

A difference between transient and stable NPS would explain inconsistent associations between
AD pathology and NPS across the disease spectrum, particularly in studies that combine groups
[17,24,85]. Prevalence of NPS at a given disease stage may vary by symptom, with each
symptom having a distinct atrophy, neuropathologic, and regional cerebral blood activation
profile [86-88]. There may also be instrumental limitations impacting findings. For example, the
NPI-Q was validated to assess psychopathology in dementia patients, rather than earlier in the
disease course [39]. Longitudinal worsening of NPS may be a better indicator of AD pathology
[29,81,89,90], which we did not examine in this cross-sectional study. Regardless, our findings
are relatively consistent with and expand upon the most similar past study described above [24].
Likewise, these findings have implications for management of NPS in AD patients.



The cognitive sequelae of AD may exacerbate NPS, making it crucial to address cognitive
symptoms in treatment of these patients. Memantine, particularly in combination with
acetylcholinesterase inhibitors (AChEI), demonstrates improved efficacy for NPS, compared to
AChEI alone [91,92]. However, monotherapy with AchEI can also provide relief [93].
Conversely, psychotropic medications in this context have varying support and/or more severe
side-effect profiles [94-96]. One meta-analysis found that risperidone and galantamine had the
best evidence for treatment of NPS across dementia syndromes [97]. Current investigations
explore glycogen synthase kinase-3 (GSK3) inhibitors and other kinase inhibitors [98,99], while
monoclonal antibody medications targeting Ab (like lecanemab) await evaluation for NPS
impact [100]. For non-responsive or contraindicated cases, emerging evidence supports
behavioral, interpersonal, and environmental interventions [101-104]. However, additional
studies are needed to identify at-risk AD patients and tailor treatment to specific symptom
profiles.

This study has several strengths which contribute to the reliability and significance of findings.
First, we addressed non-standardized CSF assay methods by focusing primary analyses on
participants with CSF analyzed by Lumipulse, and conducting sensitivity analyses to confirm the
consistency of results. Second, our study employed appropriate psychometric analyses of the
NPI-Q, which improves upon the existing literature. Third, utilizing innovative nonparametric
methods presents a practical alternative for studies employing the NPI-Q (versus assessing items
individually or combining items without consideration for measurement error). Fourth, we
extended past research by incorporating several neuropsychological tests sensitive to AD
pathology. This permits interrogation of the specific aspects of cognition linked to the proposed
mediation pathways (e.g., memory). Finally, leveraging data from NACC provided a large,
methodologically consistent cohort, further fortifying the credibility of the research.

Our study has several limitations, particularly stemming from analysis of the NPI-Q. We
observed that NPI-Q item loadings varied. In some instances, items cannot be reliably interpreted
as integral to the construct. In our sample, these items do not operate as intended by the scale's
design, which was meant for interpretation with a summary score (see [39]). Despite this, we
opted to include these items in analyses. Doing so permits the opportunity to account for
measurement error, and these items were considered a crucial part of the construct when the
scale was formulated. In primary models, we focused on a single CSF biomarker method, which
limits the generalizability of the sample. Likewise, our sensitivity models are limited in
addressing variations in CSF assay method. Partialling out variance likely does not fully account
for these differences. While mediation suggests potential causality in a cross-sectional study, this
represents only one possible explanation. For example, these models do not include all possible
covariates; unmeasured variables could be either primary or secondary confounds to the outcome
or association being studied (see [105] for a discussion). As noted, we included cross-sectional
data for this study because of the complexity of our models and the lack of consistent data across
timepoints. Future studies should investigate longitudinal models with NACC samples while
perhaps sacrificing psychometric complexity. Finally, the NACC is comprised of individuals
from ADRCs across the U.S. and is not representative of the general population. As with any
CSF biomarker study, samples from the NACC that choose to undergo LP are not necessarily
reflective of all AD patients. For example, participants from the Knight ADRC with advanced



dementia do not receive LP. Regardless, examining NPS in this sample provides value, and
ongoing replication will address concerns from any particular study.

Our findings suggest that higher p-tauisi/ APi-42 ratio, a strong indicator of AD pathology, was
associated with worse cognitive performance and more pronounced NPS. However, cognitive
measures only partially explained the relationship, indicating an independent link between AD
pathology and NPS. Global cognition and NPS independently mediated the relationship between
CSF biomarkers and dementia severity, suggesting the independent impact of AD pathology on
functional disturbance through both cognitive decline and NPS. Early in the disease course, NPS
may result from various factors. As AD pathology progresses, cognitive effects may exacerbate
NPS, creating complex and varied symptom expressions in patients with AD.
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