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Abstract: Introduction: The broader determinants of health including a wide range of community
assets are extremely important in relation to public health outcomes. Multiple health conditions,
multimorbidity, is a growing problem in many populations worldwide. Methods: This paper
quantified the effect of community assets on major health conditions for the population of England
over six years, at a fine spatial scale using a data analytic approach. Community assets, which
included indices of the health system, green space, pollution, poverty, urban environment, safety,
and sport and leisure facilities, were quantified in relation to major health conditions. The health
conditions examined included high blood pressure, obesity, dementia, diabetes, mental health,
cardiovascular conditions, musculoskeletal conditions, respiratory conditions, kidney and liver
disease, and cancer. Cluster analysis and dendrograms were calculated for the community assets
and major health conditions. For each health condition, a statistical model with all community assets
was fitted, and model selection was performed. The number of significant community assets for
each health condition was recorded. The unique variance, explained by each significant community
asset per health condition, was quantified using hierarchical variance partitioning within an analysis
of variance model. Results: The resulting data indicate major health conditions are often clustered,
as are community assets. The results suggest that diversity and richness of community assets are
key to major health condition outcomes. Primary care service waiting times and distance to public
parks were significant predictors of all health conditions examined. Primary care waiting times
explained the vast majority of the variances across health conditions, with the exception of obesity,
which was better explained by absolute poverty. Conclusions: The implications of the combined
findings of the health condition clusters and explanatory power of community assets are discussed.
The vast majority of determinants of health could be accounted for by healthcare system performance
and distance to public green space, with important covariate socioeconomic factors. Emphases
on community approaches, significant relationships, and asset strengths and deficits are needed
alongside targeted interventions. Whilst the performance of the public health system remains of key
importance, community assets and local infrastructure remain paramount to the broader determinants
of health.

Keywords: data analytics; multimorbidity; environmental health; healthcare; green space;
community assets

1. Introduction

Addressing the population and health system challenges presented by multiple long-
term conditions (i.e., multimorbidity) is a national and global health priority [1,2]. Devel-
oping a multimorbidity strategy is identified as a target for several governments including
the UK, Denmark, Finland, Germany, and the Netherlands [3–6]. Around 25% of patients
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admitted to hospitals in England have more than one health condition, with onset arising
several years before admission [3,7]. The age at which people acquire multiple conditions
in England is falling, and those living in the most disadvantaged communities can expect
to have two or more conditions 10 years earlier than those in the least deprived [8]. The
number of people with multiple conditions is high and growing in older adults; it is pro-
jected to significantly deteriorate in the near future [2,3]. The way biological, psychological,
behavioural, socioeconomic, and environmental factors interact to trigger health conditions
is complex, and sufficient knowledge on the best approaches to prevent multiple condi-
tions is generally lacking [2,3]. The importance of deprivation and other common public
health risk factors implies that effective prevention merits population-based strategies that
combine the environmental, social, and economic determinants of health [9,10]. Reducing
health inequalities has been a priority in the UK and elsewhere; however, despite these
efforts, progress has been limited [8].

Some conditions are more prevalent than others in people with multiple condi-
tions [2,7] and tend to form clusters. A cluster can be an excess of cases in either space (i.e.,
geographic cluster) or time (i.e., temporal cluster), or both [11]. The fact that patients often
have multiple health conditions implies that understanding their clustering could offer
novel insights into patterns, processes, and co-occurrences, as well as designing interven-
tions and setting public health priorities [8]. Whilst studies have found high numbers of
potential cluster combinations, there is also a significant proportion of people in no distinct
cluster category [12]. The lack of distinct clusters means that an interdisciplinary approach
may be more appropriate than treatment based on a single health condition or a specific
disease cluster [13,14]. From a statistical perspective, clusters imply correlations between
health conditions or community assets, and their unique effect is hard to quantify [15].
As the issue is complex, an ecosystem approach, embracing the complexity and investi-
gating how asset diversity brings about stability, may be applicable [16]. Data analytical
approaches may provide novel insight into understanding patterns, relationships, and a
bigger picture, despite not providing mechanisms or causality [17,18].

Community assets, such as healthcare facilities, environmental conditions, green space,
cultural organisations, living conditions, financial conditions, infrastructure, and safety, are
key factors influencing health conditions [19]. These assets are often unequally distributed
across locations, potentially causing deprivation. More often than not, people in disadvan-
taged areas have poorer access to health facilities and green space; their environments tend
to be more polluted, overpopulated, and less safe [20,21]. However, the relative importance
of community assets to each major health condition, as well as their combined effect, is not
well known. This lack of knowledge derives from methodological limitations; results can
be difficult to compare and the findings contradictory, and there is a scarcity of data, as well
as difficulties in making comparisons between different data sources and regions [22]. In
addition, community assets are diverse, spanning green space and pollution to healthcare
system metrics; consequently, their effects across health conditions are hard to quantify.

The environment is of fundamental importance to health conditions [23]. Exposure
to air pollution is a serious health risk factor linked to among other illnesses, respiratory
problems, heart disease, and lung cancer [24]. There is evidence that the natural environ-
ment and green space, such as public parks or private gardens, improve cognition and
cardiovascular conditions [25,26]. Moreover, the natural environment and green space
reduce stress and anxiety, and they have a positive effect on mental health [27]. The way the
urban environment is formed and partitioned among people also has a pronounced effect
on health conditions [28]. Household overcrowding can lead to poor childcare, mental
health problems, exposure to respiratory hazards and infectious diseases and, ultimately,
reduce life expectancy [29]. Homelessness or rough sleeping is closely connected to declines
in physical and mental health. Homeless people suffer high rates of infectious diseases
due to poor sanitary conditions and a general health decline due to exposure to extreme
weather [30]. In addition, rough sleepers face barriers to accessing the healthcare system
due to the lack of a permanent address, lack of health insurance, or social deprivation [31].
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Access to, as well as the state of, the healthcare system has a profound effect on
prevention and treatment of health conditions [32]. A good healthcare system needs
to be accessible in terms of proximity, as people need to be able to access primary care
easily [33]. In addition, healthcare needs to be accessible in terms of admission and waiting
times [34]. Financial factors also determine the health status of people, as many poor
individuals have no supplementary healthcare access other than the one freely offered, as
well as to nonprescribed medicine [9,10]. Ultimately, access to healthcare or to community
assets, in general, depends on other factors such as personal safety; the detrimental health
effects from exposure to crime and violence, for instance, include hypertension, respiratory,
cardiovascular, and mental health problems [35].

The current study quantified the effects of community assets on major health condi-
tions using a spatiotemporal data set covering the population of England at a fine spatial
scale over six years. Community assets included green space, environmental conditions,
health system performance, the built environment, and financial variables [9,10,19,36–38],
depending on the data available. Rather than formulate any explicit hypotheses, a data-
driven analysis was performed, making the implicit hypothesis that an underlying in-
terdependence among the collected data can be objectively mined [39,40]. Data-driven
approaches are not in conflict with hypothesis-led studies in scientific knowledge discovery
but are complementary and iterative with them [41,42].

In order to ask the question ‘What are the effects of community assets on major health
conditions in England?’, the research employed a data analytic approach, as follows: Pub-
licly available spatiotemporal data at the level of the local healthcare unit were mined in
terms of health conditions and community assets. Data were standardised sequentially to
facilitate comparisons in space and time across differing demographics. Cluster analysis
of health conditions and community assets was performed. Using each health condition
as a dependent variable, the effects of community assets were quantified using statistical
models. Model selection was performed by eliminating the least informative community
assets per health condition. The diversity of the remaining community assets as significant
predictors of a health condition was quantified. The percentage of unique variance ex-
plained by each community asset on each health condition was assessed using hierarchical
variance partitioning within an analysis of variance model. The results are synthesised
and discussed.

2. Methods
2.1. Study Area and Data

The data on major health conditions and community assets were retrieved from
publicly available databases of the NHS-registered population of England, 57.1 million
people. The data included ten indices of major health conditions and ten indices of com-
munity assets (Table 1). The temporal replicate encompassed six years (2015–2020) at
an annual temporal resolution. The spatial extent covered England at a spatial resolu-
tion of lower tier local authority (LTLA) with a spatial replicate of 308 LTLAs per an-
num (Figure 1a). For a block diagram of the proposed approach, see Figure 1b. Data are
available at: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/
healthandwellbeing/articles/howhealthhaschangedinyourlocalarea2015to2020/2022-11-09 (ac-
cessed on 20 February 2024) and https://www.ons.gov.uk/economy/environmentalaccounts/
datasets/accesstogardensandpublicgreenspaceingreatbritain) (accessed on 20 February 2024).

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/articles/howhealthhaschangedinyourlocalarea2015to2020/2022-11-09
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/articles/howhealthhaschangedinyourlocalarea2015to2020/2022-11-09
https://www.ons.gov.uk/economy/environmentalaccounts/datasets/accesstogardensandpublicgreenspaceingreatbritain
https://www.ons.gov.uk/economy/environmentalaccounts/datasets/accesstogardensandpublicgreenspaceingreatbritain


Healthcare 2024, 12, 1608 4 of 23

Table 1. Health condition and community asset indices and their units. Polarity refers to whether
lower or higher scores are desirable. In order to facilitate comparisons among locations with substan-
tially different populations, health conditions and community assets, data were standardised and,
thus, used as % scores (see Section 2.4 Data standardisation).

Variable Type of Value and Unit Polarity

Health condition:
Mental health conditions % Low is good

Cancer % Low is good
Cardiovascular conditions % Low is good

Dementia % Low is good
Diabetes % Low is good

Kidney and liver disease % Low is good
Musculoskeletal conditions % Low is good

Respiratory conditions % Low is good
High blood pressure % Low is good

Obesity and overweight in adults % Low is good

Community asset:
Private outdoor space % High is good

Distance to GP services Median, km Low is good
Distance to sports or leisure facilities Median, km Low is good

GP waiting times % Low is good
Personal crime Per 1000 persons Low is good

Absolute poverty % Low is good

Air pollution Population-weighted annual
mean PM2.5 in µg m−3 Low is good

Household overcrowding % Low is good
Road safety Accidents per km2 Low is good

Rough sleeping Per 100,000 Low is good
Distance to parks Median, km Low is good

The health conditions examined here account for over 60% of the years lost to early
death or lived in ill health in England [3]. Thus, the data set used here has a substantial
temporal replicate, a fine spatial resolution allowing for detailed differentiations among
locations and covering a large number of individuals across the major health conditions.
In addition, the data set is open access, facilitating transparency and accountability. More
detailed data sets exist for specific locations or health conditions but do not permit compar-
isons in other locations or health conditions due to their limitations or data format. Data
from later years were still not available for all locations and health conditions and using
some of them would have compromised both the spatial extent and the number of health
conditions and community assets examined. In addition, data from 2021 and onwards
include COVID-19 cases, with additional interactions with the major health conditions ex-
amined here. Our intention was not to map the most recent situation in the local healthcare
units; instead, we sought to quantify complex relationships between health conditions and
community assets.
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Figure 1. (a) A spatial plot of a local healthcare unit (LTLA). Map plotted in Google maps using data
from the Geoportal Statistics UK, available at: https://geoportal.statistics.gov.uk/datasets/196d1a0
72aaa4882a50be333679d4f63/explore?showTable=true (accessed 20 February 2024). (b) Block diagram
of the framework applied here. Initially data were mined from publicly available spatiotemporal
data sets at the level of an LTLA. Data were standardised sequentially to facilitate comparisons across
space, time, and unequal demographics. Clusters of community assets and health conditions were
computed and visualised. Generalised linear models (GLMs) were fitted for each health condition as
dependent variables and community assets as explanatory variables. Model selection was performed
for each GLM eliminating the least informative community asset variables per health condition.
The diversity of community assets as significant predictors per health condition was calculated.
Hierarchical variance partitioning between each health condition and the significant explanatory
community assets was computed indicating the unique variance explained by each community assets
per health condition.

https://geoportal.statistics.gov.uk/datasets/196d1a072aaa4882a50be333679d4f63/explore?showTable=true
https://geoportal.statistics.gov.uk/datasets/196d1a072aaa4882a50be333679d4f63/explore?showTable=true
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2.2. Health Conditions

High blood pressure was calculated as the weighted number of people answering
‘yes’ to ‘high blood pressure’ in the question, ‘Which, if any, of the following long-term
conditions do you have?’, divided by the total number of surveys. Source: GP patient
survey, NHS statistics.

Obesity was calculated as the number of adults aged 18+ with a body mass index
(BMI) classified as overweight (including obese) divided by the number of adults aged 18+
with a valid height and weight recorded. Source: Fingertips (93088).

Dementia was calculated as the weighted percentage of the number of people answer-
ing ‘yes’ to ‘Alzheimer’s disease or other cause of dementia’ in the question, ‘Which, if
any, of the following long-term conditions do you have?’, divided by the total number of
surveys. Source: GP patient survey, NHS statistics.

Diabetes was calculated as the weighted percentage of the number of people an-
swering ‘yes’ to ‘diabetes’ in the question, ‘Which, if any, of the following long-term
conditions do you have?’, divided by the total number of surveys. Source: GP patient
survey, NHS statistics.

Mental health was calculated as the weighted percentage of the number of people
answering ‘yes; to ‘a mental health condition’ in the question ‘Which, if any, of the following
long-term conditions do you have?’, divided by the total number of surveys. Source: GP
patient survey, NHS Statistics.

Cardiovascular conditions were calculated as the weighted percentage of the number
of people answering ‘yes’ to ‘heart condition, such as angina or atrial fibrillation’ in the
question, ‘Which, if any, of the following long-term conditions do you have?’, divided by
the total number of surveys. Source: GP patient survey, NHS statistics.

Musculoskeletal conditions were calculated as the weighted percentage of the number
of people answering ‘yes’ to ‘arthritis or ongoing problem with back or joints’ in the
question, ‘Which, if any, of the following long-term conditions do you have?’, divided by
the total number of surveys. Source: GP patient survey, NHS statistics.

Respiratory conditions were calculated as the weighted percentage of the number of
people answering ‘yes’ to ‘breathing condition such as asthma or COPD’ in the question,
‘Which, if any, of the following long-term conditions do you have?’, divided by the total
number of surveys. Source: GP patient survey, NHS statistics.

Kidney and liver disease was calculated as the weighted percentage of the number
of people answering ‘yes’ to ‘kidney or liver disease’ in the question, ‘Which, if any, of
the following long-term conditions do you have?’, divided by the total number of surveys.
Source: GP patient survey, NHS statistics.

Cancer was calculated as the weighted percentage of the number of people answering
‘yes’ to ‘self-reported cancer (diagnosis or treatment in the last 5 years)’ in the question,
‘Which, if any, of the following long-term conditions do you have?’, divided by the total
number of surveys. Source: GP patient survey, NHS Statistics.

2.3. Community Assets

Community assets were considered in a broad sense here, including social infrastruc-
ture, green space, clean air, access to healthcare, and living standards. Whilst a community
asset has a positive effect, a pragmatic approach was used, which also included inverse
indicators for practical reasons related to data availability and interoperability across the
study area and the time span. Community asset variables included distance to parks and
access to private outdoor space as indices of green space. Distance to a general practitioner
(GP) service and acceptable GP appointment times were selected as indices of the health
system. Distance to sport and leisure facilities was selected as a proxy of public access to
health and wellbeing activities. Air pollution was selected as an inverse proxy of cleanliness
of the environment, personal crime for safety of the living space and location, and house-
hold overcrowding on the partitioning of living space. Absolute poverty, indicated by the
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number of children in low-income families, as well as rough sleeping (i.e., homelessness)
were selected as indicators of financial deprivation.

Distance to a park, public garden, or playing field (‘parks’) was calculated as the
median distance in km from all addresses (houses and flats) to the nearest park. Source:
calculated by the Office of National Statistics (ONS) using data from Natural England and
postcode centroids from the ONS Geoportal website.

Access to private outdoor space was calculated as a weighted percentage of the number
of addresses (houses and flats) with private outdoor space divided by the total number of
addresses in each LTLA. Source: produced by ONS using ONS and Ordnance Survey data,
available at the ONS website.

Distance to GP services (primary care distance) was calculated as a median distance
in km of all addresses to the nearest GP practice services. Source: calculated by ONS
using GP practice addresses form NHS digital and postcode centroids from the ONS
Geoportal website.

GP appointments (primary care waiting times) was calculated as the weighted per-
centage of people answering ‘No’ and ‘I did not take an appointment’ to ‘Were you satisfied
with the type of appointment (or appointments) you were offered?’, divided by the total
number of surveys. Source: GP patient survey NHS Statistics.

Distance to sport and leisure facilities was calculated as the median distance in km from
all addresses (houses and flats) to the nearest sport facility address. Source: calculated by
ONS using sport facility addresses from Sport England (Sport Facility addresses from Active
Places Power website) and postcode centroids from the NSPL (ONS Geoportal website).

Air pollution was calculated as population-weighted annual mean PM2.5 in µg m−3.
Source: Defra website, UK air.

Personal crime was calculated as the sum of personal crime offenses (violence against
the person, sexual offences, robbery, theft, criminal damage, and arson) per 1000 persons,
mid-year population estimates. Source: ONS website, recorded crime data by Community
Safety Partnership area. ONS website for population estimates for denominator.

Household overcrowding was calculated as the weighted percentage of the sum
of number of households with occupancy rating of −1 and −2 or less, divided by the
number of households. Occupancy rating provides a measure of whether a household’s
accommodation is overcrowded or under-occupied. An occupancy rating of negative 1 or
less implies that a household has fewer bedrooms than required according to the Bedroom
Standard, so is overcrowded (for example, negative 1 means one bedroom fewer than
required, negative 2 has two fewer than required). Source: Nomis (QS408EW).

Absolute poverty was calculated as the weighted percentage of the number of children
aged under 16 years living in absolute low-income families, divided by the total number
of children. Source: Department for Work and Pensions, gov.uk website: children in
low-income families.

Rough sleeping was calculated as the weighted percentage of people sleeping rough
on a single night between 1st October and 30th November per 100,000 residents of the area.
Source: Ministry of Housing, Communities and local government, gov.uk website: rough
sleeping statistics. ONS website for population estimates for denominator.

2.4. Data Standardisation

Demographic factors play important roles in health conditions and need to be ac-
counted for when evaluating the effects of community assets across time and space [43].
In order to facilitate comparisons among LTLAs with substantially different populations,
health conditions, and community assets, data were standardised [43]. Variables for each
health condition and community asset were scaled to obtain a mean value of 100 and a
standard deviation of 10, with 2015 as the base year. For example, obesity was scaled using
the mean obesity value for England in 2015. Values higher than 100 indicate locations or
years within the same location with less obesity than the mean of England in 2015, and
values below 100 indicate worse. The scale is such that for indicators at the LTLA level, a
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score of 110 represents a score of one standard deviation higher than England’s 2015 score
for that same variable, and 120 represents a value two standard deviations higher, etc. This
process ensures that all variables are spatiotemporally comparable and that assumptions of
the analysis of variance (ANOVA) in terms of residual heteroscedasticity are successfully
met. All analyses were conducted in R open access statistical software [44].

2.5. Cluster Analysis of Health Conditions and Community Assets

In order to quantify correlations and clustering groups among variables, cluster anal-
ysis was performed for all health conditions’ variables [45]. The cluster analysis was
replicated for community asset variables. The cluster analysis deployed a hierarchical pro-
cedure to form the clusters [45,46]. Variables were grouped together that were correlated
(similarity) with each other [45,47]. At each step, two clusters were joined, until just a single
cluster was formed at the final step. Similarity and distance values were calculated for
the clusters at each step to determine the final grouping of variables [47]. Cluster analysis
can be used to detect meaningful subgroups in a sample [48]. Clusters were calculated
using complete linkage, one of several methods of agglomerative hierarchical clustering.
Complete linkage clustering considers the distance between two clusters to be the distance
between their most distant data points. The method can result in more compact, evenly
sized clusters compared to single linkage. It is less sensitive to noise and outliers, as it min-
imises the maximum distance between the points in each cluster using Pearson correlation.
It is suited to cases in which it is important to ensure that clusters are composed of closely
related points, such as the data used here deriving from potentially unequal and distant
LTLAs. The final cluster, which can be visualised as a dendrogram consists, of a single
cluster with subclusters grouped by similarity levels [49].

2.6. Effects of Community Assets on Health Conditions

Generalised linear models (GLMs) were fitted for each health condition as a dependent
variable [50,51]; ten models were fitted in total, one for each health condition. Independent
explanatory variables included all ten community asset variables. Model selection of
the most parsimonious model structure eliminating the noninformative community asset
variables was performed for each health condition using the Akaike information criterion
(AIC) [52]. Any deletion of nonsignificant variables that did not increase AIC > 2 was
deemed justified [53]. The variables that remained in the final most parsimonious (i.e.,
optimal) model, after model selection, were recorded with their effect sizes (i.e., model
coefficients) thereby quantifying the identity and diversity of the community assets that
were significant predictors for each health condition.

2.7. Variance Partitioning per Community Asset

Quantifying the variance uniquely explained by multiple variables is a powerful com-
putational tool for understanding the explanatory power of each variable, especially when
variables are correlated. Given that ANOVA evaluates whether variance among groups
is greater than the variance within a group, the test can be used to partition variance by
dividing the total variance into the sources or predictors of that variation. Hierarchical
variance partitioning additionally describes the relative importance of individual predic-
tors or groups of predictors. Hierarchical variance partitioning was performed among the
independent variables of the optimal GLM for each health condition to account for the
unique contribution of each explanatory variable to the total variance of that health condi-
tion [54]. Variance partitioning is a computational statistical technique capable of handling
potentially correlated independent variables, whilst ranking the predictor importance of
each variable [54–56]. It is calculated from the AIC weights of each independent variable
and based upon the number of times that a variable was significant among all possible
combinations of the explanatory variables [55]. The ‘average shared variance’ method for
the predictor in multiple regression and canonical analyses was used [57]. This method
suggests that shared variance can be partitioned into equal components according to the
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number of predictors involved, so that the relative importance of each predictor can be
estimated by its part R2 plus the sum of all allocated average shared R2 and unique variance
attributed to each variable can be quantified [57]. Whilst the sum of the relative importance
of each predictor in terms of the explained variance adds to 100%, the unique variance
explained by each predictor is smaller than or equal to 100%. Here, the amount of unique
variance was computed to explain the contribution by each significant community asset as
a predictor of a health condition.

3. Results
3.1. Clusters

Cluster analysis of health conditions indicated that musculoskeletal conditions had
the highest similarity with high blood pressure, forming a larger cluster together with
cardiovascular conditions and cancer. Mental health conditions exhibited high similarity
with respiratory conditions forming a cluster. Diabetes and kidney and liver disease formed
a cluster together, having lower similarities than other clusters, whilst dementia and obesity
did not cluster well together with other major health conditions (Figure 2a).
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(i.e., similarity) to each other. Similarity is indicated by the Pearsons’ correlation values. (b) Dendro-
grams of the cluster analysis among the assets. The cluster analysis deployed a hierarchical procedure
to form the clusters. Variables were grouped together that are correlated (i.e., similarity) with each
other. Similarity is indicated by the Pearsons’ correlation values.

The cluster analysis of community assets indicated that distance to sports or leisure
facilities had very high similarity with distance to GP services. Private outdoor space had
high similarity with household overcrowding, forming a larger cluster together with air
pollution and rough sleeping. Distance to parks and personal crime had high similarity,
forming a larger cluster with GP waiting times. Absolute poverty was isolated from other
community asset variables (Figure 2b).

3.2. Effects of Community Assets on Health Conditions

The optimal model between mental health conditions and community assets included
the effects of distance to parks, private outdoor space, distance to GP services, GP waiting
times, air pollution, household overcrowding, personal crime, absolute poverty, and rough
sleeping and was calculated using ANOVA (Table 2).

Table 2. ANOVA results of the optimal model for mental health conditions. The nonsignificant
effects of private outdoor space cannot be eliminated based on the AIC and, thus, remain in the
final model after model selection. Variables with p-values < 0.001 are indicated with ***, variables
with p-values < 0.01 with **, and variables with p-values < 0.05 with *. Final model AIC = 12,722,
dAIC = 1.68.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 161,239
Dist_parks 1 6552.4 1840 154,687 <0.001 ***

Private_outdoor_space 1 19.2 1839 154,668 0.566
Dist_GP_services 1 1662 1838 153,006 <0.001 ***

Acceptable_GP_appointment 1 28,939.6 1837 124,066 <0.001 ***
Air_pollution 1 10,539 1836 113,527 <0.001 ***

Household_overcrowding 1 298.1 1835 113,229 0.024 *
Personal_crime 1 3011.9 1834 110,217 <0.001 ***
Child_poverty 1 628.9 1833 109,588 0.001 **

Rough_sleeping 1 3116.1 1832 106,472 <0.001 ***

The optimal model between high blood pressure and community assets included
the effects of distance to parks, private outdoor space, distance to GP services, distance
to sports or leisure facilities, GP waiting times, air pollution, personal crime, and rough
sleeping and was calculated using ANOVA (Table 3).

Table 3. ANOVA results of the optimal model for high blood pressure. The nonsignificant effects of
distance to parks cannot be eliminated based on the AIC and, thus, remained in the final model after
model selection. Variables with p-values < 0.001 are indicated with ***, variables with p-values < 0.01
with **. Final model AIC = 13,115, dAIC = 2.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 222,890
Dist_parks 1 2 1840 222,887 0.858

Private_outdoor_space 1 8329 1839 214,558 <0.001 ***
Dist_GP_services 1 10,638 1838 203,920 <0.001 ***

Dist_sports_or_leisure_facilities 1 830 1837 203,091 <0.001 ***
Acceptable_GP_appointments 1 69,044 1836 134,047 <0.001 ***
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Table 3. Cont.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

Personal_crime 1 727 1835 133,320 0.002 **
Rough_sleeping 1 1414 1834 131,906 <0.001 ***

The optimal model between obesity and community assets included the effects of
distance to parks, private outdoor space, GP waiting times, distance to sports or leisure fa-
cilities, household overcrowding, personal crime, and absolute poverty and was calculated
using ANOVA (Table 4).

Table 4. ANOVA results for the optimal model for obesity. The nonsignificant effects of house-
hold overcrowding cannot be eliminated based on the AIC and, thus, remained in the final model
after model selection. Variables with p-values << 0.001 are indicated with ***, and variables with
p-values < 0.05 with *. Final model AIC = 12,573, dAIC = 1.824.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 200,352
Dist_parks 1 292 1840 200,060 0.02 *

Private_outdoor_space 1 64,298 1839 135,762 <0.001 ***
Acceptable_GP_appointments 1 4153 1838 131,609 <0.001 ***

Dist_sports_or_leisure_facilities 1 210 1837 131,398 0.048 *
Household_overcrowding 1 4 1836 131,394 0.784

Personal_crime 1 10,971 1835 120,423 <0.001 ***
Child_poverty 1 22,056 1834 98,367 <0.001 ***

The optimal model between cancer and community assets included the effects of
private outdoor space, distance to GP services, GP waiting times, distance to sport or
leisure facilities, air pollution, absolute poverty, and rough sleeping and was calculated
using ANOVA (Table 5).

Table 5. ANOVA results for the optimal model for cancer. The nonsignificant effects of distance to
sports of leisure facilities cannot be eliminated based on the AIC and, thus, remained in the final
model after model selection. Variables with p-values < 0.001 are indicated with ***, variables with
p-values < 0.05 with *. Final model AIC = 13,085, dAIC = 1.58.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 181,694
Dist_parks 1 57,16.4 1840 175,977 <0.001 ***

Private_outdoor_space 1 2100.2 1839 173,877 <0.001 ***
Dist_GP_services 1 15,118.7 1838 158,758 <0.001 ***

Acceptable_GP_appointments 1 20,817.2 1837 137,941 <0.001 ***
Dist_sports_or_leisure_facilities 1 65.2 1836 137,876 0.337

Air_pollution 1 454.1 1835 137,422 0.011 *
Child_poverty 1 6586 1834 130,836 <0.001 ***

Rough_sleeping 1 1152.3 1833 129,684 <0.001 ***

The optimal model among cardiovascular conditions included the effects of distance
to parks, private outdoor space, distance to GP services, GP waiting times, air pollution,
household overcrowding, absolute poverty, and rough sleeping and was calculated using
ANOVA (Table 6).
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Table 6. ANOVA results for the optimal model for cardiovascular conditions. Variables with p-values
< 0.001 are indicated with ***, variables with p-values < 0.01 with **. Final model AIC = 12,650,
dAIC = 1.87.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 170,547
Dist_parks 1 8287.1 1840 162,260 <0.001 ***

Private_outdoor_space 1 23,954.1 1839 138,306 <0.001 ***
Dist_GP_services 1 6393.1 1838 131,913 <0.001 ***

Acceptable_GP_appointments 1 21,357.2 1837 110,556 <0.001 ***
Air_pollution 1 4637.9 1836 105,918 <0.001 ***

Household_overcrowding 1 447.7 1835 105,470 0.005 **
Child_poverty 1 902.6 1834 104,568 <0.001 ***

Rough_sleeping 1 2085 1833 102,483 <0.001 ***

The optimal model between diabetes and community assets included the effects of
distance to parks, private outdoor space, distance to GP services, GP waiting times, distance
to sports or leisure facilities, household overcrowding, personal crime, absolute poverty,
and rough sleeping and was calculated using ANOVA (Table 7).

Table 7. ANOVA results for the optimal model for diabetes. The nonsignificant effects of private
outdoor space and household overcrowding cannot be eliminated based on the AIC and, thus,
remained in the final model after model selection. Variables with p-values < 0.001 are indicated with
***, variables with p-values < 0.01 with **, and variables with p-values < 0.05 with *. Final model
AIC = 13,203, dAIC = 2.01.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 226,135
Dist_parks 1 5720 1840 220,415 <0.001 ***

Private_outdoor_space 1 41 1839 220,375 0.463
Dist_GP_services 1 959 1838 219,415 <0.001 ***

Acceptable_GP_appointments 1 71,258 1837 148,157 <0.001 ***
Dist_sports_or_leisure_facilities 1 308 1836 147,849 0.043 *

Household_overcrowding 1 33 1835 147,816 0.508
Personal_crime 1 698 1834 147,118 0.002 **
Child_poverty 1 7183 1833 139,935 <0.001 ***

Rough_sleeping 1 1691 1832 138,243 <0.001 ***

The optimal model between dementia and community assets included the effects of
distance to parks, GP waiting times, distance to sports or leisure facilities, air pollution,
personal crime, and absolute poverty and was calculated using ANOVA (Table 8).

Table 8. ANOVA results for the optimal model for dementia. The nonsignificant effects of personal
crime cannot be eliminated based on the AIC and, thus, remained in the final model after model
selection. Variables with p-values < 0.001 are indicated with ***, variables with p-values < 0.01 with **,
and variables with p-values < 0.05 with *. Final model AIC = 224,933, dAIC = 0.918.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 238,579
Dist_parks 1 510 1840 238,069 0.042 *

Acceptable_GP_appointments 1 8635.5 1839 229,434 <0.001 ***
Dist_sports_or_leisure_facilities 1 2118 1838 227,316 <0.001 ***

Air_pollution 1 1055.5 1837 226,260 0.003 **
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Table 8. Cont.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

Personal_crime 1 154.8 1836 226,105 0.261
Child_poverty 1 844.4 1835 225,261 0.009 **

The optimal model between kidney and liver disease and community assets included
the effects of distance to parks, private outdoor space, GP waiting times, air pollution,
absolute poverty, and rough sleeping and was calculated using ANOVA (Table 9).

Table 9. ANOVA results for the optimal model for kidney and liver disease. Variables with
p-values < 0.001 are indicated with ***, variables with p-values < 0.01 with **, and variables with
p-values < 0.05 with *. Final model AIC = 13,295, dAIC = 0.965.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 181,197
Dist_parks 1 5603.3 1840 175,594 <0.001 ***

Private_outdoor_space 1 1263.9 1839 174,330 <0.001 ***
Acceptable_GP_appointments 1 25,666 1838 148,664 <0.001 ***

Air_pollution 1 475.5 1837 148,188 0.014 *
Child_poverty 1 1875.5 1836 146,313 <0.001 ***

Rough_sleeping 1 789.2 1835 145,524 0.002 **

The optimal model between musculoskeletal conditions and community assets in-
cluded the effects of distance to parks, private outdoor space, distance to GP services, GP
waiting times, air pollution, household overcrowding, absolute poverty, and rough sleeping
and was calculated using ANOVA (Table 10).

Table 10. ANOVA results for the optimal model for musculoskeletal conditions. Variables with
p-values < 0.001 are indicated with ***, and variables with p-values < 0.01 with **. Final model
AIC = 12,719, dAIC = 0.54.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 187,722
Dist_parks 1 2486 1840 185,236 <0.001 ***

Private_outdoor_space 1 18,777 1839 166,459 <0.001 ***
Dist_GP_services 1 4203 1838 162,256 <0.001 ***

Acceptable_GP_appointments 1 48,142 1837 114,113 <0.001 ***
Air_pollution 1 3297 1836 110,816 <0.001 ***

Household_overcrowding 1 1995 1835 108,821 <0.001 ***
Child_poverty 1 463 1834 108,359 0.005 **

Rough_sleeping 1 2051 1833 106,307 <0.001 ***

The optimal model between respiratory conditions and community assets included
the effects of distance to parks, distance to GP services, GP waiting times, air pollution,
household overcrowding, personal crime, and rough sleeping and was calculated using
ANOVA (Table 11).
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Table 11. ANOVA results for the optimal model for respiratory conditions. The marginally significant
effects of distance to parks cannot be eliminated based on the AIC and, thus, remained in the final
model after model selection. Variables with p-values < 0.001 are indicated with ***, and variables
with p-values < 0.01 with **. Final model AIC = 12,921, dAIC = 1.65.

Degrees of
Freedom (df) Deviance Residual df Residual

Deviance Pr(>Chi) Sig.

NULL 1841 178,215
Dist_parks 1 219 1840 177,995 0.066

Dist_GP_services 1 6442 1839 171,553 <0.001 ***
Acceptable_GP_appointments 1 41,035 1838 130,518 <0.001 ***

Air_pollution 1 7741 1837 122,777 <0.001 ***
Household_overcrowding 1 469 1836 122,308 0.007 **

Personal_crime 1 613 1835 121,695 0.002 **
Rough_sleeping 1 3008 1834 118,687 <0.001 ***

3.3. Diversity of Community Assets and Health Conditions

Among health conditions, mental health, and diabetes were the most complex, each
meriting nine community asset predictor variables (Figure 3a). Cancer, cardiovascular,
and musculoskeletal conditions were best explained by eight community asset variables
(Figure 3a). High blood pressure, obesity, and respiratory conditions were best explained
by seven community asset variables (Figure 3a). Dementia and kidney and liver disease
were best explained by six community asset variables (Figure 3a).
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Figure 3. (a) Number of community assets included in the final model between a health condition
(i.e., dependent variable) and the ten community asset explanatory variables investigated. The final
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model refers to the community assets included in the model after model selection eliminating the
least informative ones. (b) Number of times that a community asset was included in the final model
for a health condition.

3.4. Community Asset Significance Frequency

Among community assets, GP waiting times and distance to parks were always signif-
icant predictors for all health conditions (Figure 3b). Private outdoor space, rough sleeping,
and absolute poverty were significant in eight out of ten health conditions (Figure 3b). Dis-
tance to GP services and air pollution were significant predictors of seven health conditions
(Figure 3b). Household overcrowding and personal crime were significant predictors of six,
whilst distance to sports or leisure facilities were of five health conditions (Figure 3b).

3.5. Variance Explained per Community Asset

In terms of unique variance explained by each community asset for each health
condition, GP waiting time was the best explanatory covariate for nine out of ten health
conditions explaining >50% of unique variance in each health condition (Figure 4a). GP
waiting times explained 77% of the variance of diabetes, 86.9% of kidney and liver disease,
77.6% of high blood pressure, 75.4% of musculoskeletal, and 67% of respiratory conditions
(Figure 4a). Absolute poverty explained 48.3% and private outdoor space 33.5% of unique
variance for obesity, the only health condition that GP waiting times did not explain the
highest percentage of variance (Figure 3a). Air pollution explained 21.4% of variance
regarding mental health conditions, 14.3% of cardiovascular conditions, and 5.7% of cancer
(Figure 4a). Private outdoor space explained 33.5% of the variance for obesity and 13.8%
for cardiovascular conditions (Figure 4a). Distance to GP services explained 10.8% of
the variance for cancer whilst distance to sport or leisure facilities 15.3% of variance for
dementia (Figure 4a). Distance to parks explained 8.7% of the unique variance for mental
health, 7.5% of dementia, 5.3% of high blood pressure, and 5.1% of obesity (Figure 4a).
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In terms of unique variance explained cumulatively per community asset across all
ten health conditions, GP waiting times explained 62.15%, absolute poverty 7.95%, air
pollution 7%, private outdoor space 6.21%, distance to GP services 4.9%, distance to parks
4.6%, rough sleeping 3.2%, distance to sport facilities 1.55%, household overcrowding 1.4%,
and personal crime 0.99% (Figure 4b).

In terms of unique variance explained per health condition, the best explained health
condition variance was for high blood pressure (69.84%), followed by respiratory conditions
(65.87%), obesity (60.98%), kidney and liver disease (47.10%), cardiovascular conditions
(46.74%), musculoskeletal conditions (46.52%), cancer (44.84%), and diabetes (39.89%)
(Figure 4c). Health conditions with a low percentage of variance explained included mental
health (31.62%) and dementia (30.95%) (Figure 4c).
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4. Discussion

The major contribution of the data analytic approach performed here indicates that
communities with high diversity and richness of assets [19,58] are able to perform better in
terms of addressing major health conditions. A novel finding from the research was that
mental health and diabetes required all ten community assets examined here, whilst cancer,
cardiovascular and musculoskeletal conditions required nine community assets, indicating
that complex health conditions require a large number of assets [59–63]. The community
assets used here exhibited high significance across health conditions and explained the high
levels of unique variance for each health condition. Mental health, dementia, and diabetes
were the least explained health conditions in terms of total variance by the community
assets included, indicating that additional variables regarding behavioural aspects and
quality of life may increase the explanatory power of these health conditions [64–66].
Whilst all community assets may be important for building an asset-diverse community,
a further contribution of the research was the finding that GP waiting times and distance
to public green space and parks were always significant predictors for all of the health
conditions examined. Thus, these factors should be immediate priority in terms of assets
and interventions, and their mapping and improvement may result in the amelioration of
major health conditions [67,68].

GP waiting times explained the vast majority of variance, both cumulatively and
individually, across health conditions. GP appointments are the key entry point into the
health system, and early access is key to an early diagnosis and prevention. Overall, when
a major condition is identified early, the outcome is much better and the impact on a
person’s life much reduced [3]. Long GP waiting times present a significant barrier to
healthcare access for a range of health services [34]. There is also evidence that waiting time
is unequally distributed against those of lower socioeconomic status [34,69]. Improving GP
waiting times should be a priority for the government in the UK, as the results indicate that
decreasing waiting times will have a vast impact across health conditions. Furthermore,
this improvement is highly likely to act on relatively short time scales. Other studies have
noted the importance of GP waiting times and suggest interventions for improvement [70].

The significance of public green space in terms of distance to parks was recorded across
all health conditions examined. In particular, public green space was very important in
terms of the variance explained for mental health conditions, one of the most complex and
least predictable health conditions in terms of the number of assets required, in addition
to the total variance explained by community assets for this health condition. Distance
to parks was also important for explaining the variance of respiratory conditions [71,72],
cardiovascular conditions [73,74], and dementia [75,76], as well as health conditions in
general, as reported in other studies [77–79]. Private green space was clustered with
household overcrowding, indicating few privileged people having access to it in high
population density areas.

Community assets, as well as health conditions, were correlated, as exemplified by the
cluster analysis. Improvements in community assets are likely to be more pronounced in
health conditions in which their variance was best explained, such as high blood pressure,
respiratory conditions, and obesity. Distance to parks was strongly clustered with personal
crime, and, therefore, LTLAs with a long distance to the nearest park have high levels of
personal crime. In addition, GP waiting times were also clustered with the cluster distance
to parks and personal crime with a high similarity indicating that GP waiting times are
higher at LTLAs without nearby green space and high levels of personal crime. Apart from
the effect that personal crime has on a person’s health and wellbeing per se, it also acts as a
barrier to accessing green space and health services [80]. Thus, improvement in GP waiting
times and access to public green space should be combined with safety improvements.

Regarding other health conditions, there is a four-way cluster between high blood
pressure and musculoskeletal conditions clustered with cardiovascular conditions clustered
with cancer. This cluster is linked with a second strong clustering between mental health
and respiratory conditions. In England, people with two or more conditions account
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for 50% of hospital admissions and primary care visits, and >50% of NHS costs [3]. In
addition, 92% of people with cardiovascular conditions, and 70% of those with mental
health issues have at least one other condition [3,81]. Therefore, focusing on these clusters
will benefit multiple health conditions. Apart from GP waiting times and access to green
space, cardiovascular and respiratory conditions are explained by air pollution and, thus,
cleaner air would facilitate their improvement [82,83]. In terms of costs, diabetes accounts
for 10% of the annual NHS budget [81]. A large fraction of the diabetes prevalence is
explained by absolute poverty, and, to that end, more supportive financial assistance to
poor families or for healthy meals would reduce the burden on the health system [84]. In
addition, mental health and respiratory conditions have a high similarity. Other studies
have reported that a person may be more likely to experience poor mental wellbeing
or a mental health condition if living with a respiratory condition [85], possibly due to
difficulties in carrying out activities compared with previously, breathing anxiety, or the
frustration of needing regular medical treatment [86].

Limitations and Future Research

The effect of public green space, as quantified here, is likely to be underestimated in
terms of the variance explained as the introduction of new parks, and, thus, changes in
the distance to the nearest park across the spatial resolution, typically takes longer than
the six years examined here. Thus, there is low differentiation of the distance to parks
over time, and the effect of public green space is quantified by the spatial differentiation
among locations, but the temporal differentiation within the same location is low and
may result in an underestimation of the variance explained [87]. Another limitation is
the appropriate size of a community for this type of study; whilst health and geoportal
statistics can be obtained for any size of area, it does not mean that the same conclusions
can necessarily be applied to other geographic locations of varying sizes. Furthermore,
inaccuracies due to loss of information can arise in modelling, as it cannot be assumed that
data typically collected at different levels of spatial aggregation can be applied to arbitrary
sizes of area. This study focused on community assets and used GP waiting times [88,89]
and distance to GP services [90–92] as indices of healthcare system. However, there are
several other healthcare system performance indicators [93,94] not investigated here. The
analysis did not include genetic factors that are also explanatory covariates of major health
conditions [9] and which could be considered in future research. The multiple health
conditions examined here refer to the characteristics of individuals of the primary care unit
area examined (LTLA) and not of individuals per se. Some variables, like personal crime
and child poverty, are significant predictors for many health outcomes, such as high blood
pressure. It is likely that rather than showing a direct cause and effect relationship, these
variables have a correlational relationship where other, possibly unobserved, factors may
contribute to the association with the health outcomes. The community assets deployed
here as explanatory variables of major health conditions may, for example, act as indirect
covariates for socioeconomic status, not accounted for here.

5. Conclusions

Public health outcomes can depend on a wide range of health determinants includ-
ing community assets. It is imperative to understand the role of localised services in
relieving some of the pressures of multiple comorbid conditions on health systems. The
quantification of the effect of community assets on major health conditions outlined within
this paper highlights the importance of such localised amenities and services to multiple
comorbidities. Environments such as green space, pollution, poverty, the urban environ-
ment, safety, and sport and leisure facilities were related to high blood pressure, obesity,
dementia, diabetes, mental health, cardiovascular conditions, musculoskeletal conditions,
respiratory conditions, kidney and liver disease, and cancer. Both major health conditions
and community assets were often clustered, with the results suggesting that the diversity
and richness of community assets are key to major health condition outcomes.
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The analysis of the broader determinants of health quantified here indicated that most
were accounted for by healthcare system performance and distance to public green space,
whilst socioeconomic factors were also important. Emphasising community approaches,
quantifying significant relationships, and understanding asset strengths and deficits are
needed to address these broader determinants followed by targeted interventions [95].
Whilst the performance of the public health system remains of key importance, emphasis
should be sought to strengthen different assets and services locally [96]. Data analytic
approaches such as the one performed here can handle large data sets, including large
numbers of individuals, incidents, health conditions, locations, temporal replication, and
their complex relationships. Data analytic approaches to analysing these factors can,
thereby, help determine the unique variance explained by each community asset in order
to understand the bigger picture, though they may need to be combined with finer-scale
studies and qualitative surveys to examine the effects of specific geographic locations,
genetic factors, and socioeconomic status. Emphases on community approaches, significant
relationships, and asset strengths and deficits are needed alongside targeted interventions.
Whilst the performance of the public health system remains of key importance, community
assets and local infrastructure remain paramount to the broader determinants of health.
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