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Abstract. MRI is a very flexible imaging modality, but with flexibil-
ity comes heterogeneity. MRI sequence choice, acquisition parameters,
and image resolution form an extrinsic source of variability, reducing our
ability to extract the underlying relevant biological signal and causing
difficulties in downstream analyses. We propose a new method that can
create resolution and acquisition-parameter invariant representations by
removing external sources of variability. We use realistic physics mod-
els of image resolution and combine them with a differentiable model of
MRI sequences to create an invariant high-resolution multi-parametric
(MPM) MRI estimate from an arbitrary number of inputs, all trained
via self-supervision. The proposed method allows clinical imaging ses-
sions with sequences acquired at arbitrary resolutions to be transformed
into a single-domain generalisable representation. We demonstrate the
model’s validity by showing improved MPM reconstruction and imputa-
tion quality compared to previous methods and a significantly improved
ability to super-resolve. We also demonstrate domain generalisation ca-
pabilities via a downstream classification model that is more robust to
the choice of input sequences in an out-of-distribution dataset.

1 Introduction

MRI is a versatile imaging modality that excels at providing soft tissue contrast.
The sequence choice highlights different tissue properties depending on the task.
Owing to each MR sequence’s bespoke nature, images acquired in routine clinical
care present widely varying resolutions and contrasts, beholden to the choice of
sequence. The joint processing of images arising from such clinical sources is
fraught with challenges, as algorithms typically favour homogeneity [15].

Variability in resolution can be mitigated via super-resolution (SR); SR meth-
ods strive to increase image resolution by leveraging complementary information
within and across multiple subject images and have been shown to approximate
acquiring images in high-resolution [13].

Quantitative imaging can address the contrast-variability aspect, as values
become individually meaningful, and information can be derived directly rather
than through a qualitative surrogate. However, quantitative maps (multipara-
metric maps, or MPMs) are rare in a clinical setting due to the acquisition’s
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complex and time-consuming nature (requires multi-echo data). Rather than
acquiring optimized data for MPMs, many methods propose to generate these
MPMs from fewer, often arbitrary, data points [10,16,8,1]. In this work, we
build upon Borges et al.’s method (we denote it MPMGen), due to its least
restrictive data needs, purporting to be able to generate MPMs self-supervised
and in the absence of some modalities. Note that while all these handle sequence
variability, no method currently does so while modelling image resolution, nei-
ther implicitly nor explicitly. This is particularly important because MRI images
from different sequences are normally acquired with different resolutions.

We propose SR-MPMGen, significantly building upon MPMGen, by enabling
joint modelling acquisition physics and resolution. SR-MPMGen is, therefore,
capable of addressing the heterogeneity introduced by varying contrast (MPM-
conversion) and resolution (super-resolution), allowing for the creation of a gen-
eralisable and invariant representation of MRI data.

2 Methods

2.1 Building on a foundation of contrast generalisation

The MPMGen model [1] can convert data acquired from standard clinical pipelines
(qualitative data) into an invariant quantitative domain. The work argued that
this would allow one to dispense with post hoc domain adaptation techniques,
as data translated to such an invariant domain would not require them.

MPMGen accepts any number of volumetric images acquired from MPRAGE,
FLAIR, and spin echo (SE) sequences, supporting omissions of up to two of
these. Via the use of a multimodal self-attention mechanism (MMSA) [9] and
cross-attention (to allow the inclusion of image-specific acquisition parameters)
produced a four-dimensional output, meant to contain the quantitative 17, T5,
and PD maps (MPMs) for said subject. The output was encouraged to take this
form because of a crucial physics-based simulation step, where the output was
passed to a series of simplified Bloch equations (one for each sequence) alongside
the acquisition parameters of the original images to reproduce the exact input
images. An L1 loss between these reconstructions and the original images drove
the model’s training, with a lower loss indicating higher reconstruction fidelity
and, therefore, implicitly, higher MPM fidelity. Notably, the model never sees
ground truth MPMs, relying only on commonplace, qualitative images, which
are far more readily available.

However, MPMGen omits a crucial component: resolution. A truly invariant
representation of MR data should be quantitative and consistent in resolution.
Resolution is just as heterogeneous as contrast in clinical MR, as scanning time
is precious and isotropy isn’t crucial for many diagnostic or exploratory tasks.
Therefore, it is common for multi-modal images of any subject to exhibit dis-
tinct resolutions. This work uses the original MPMGen architecture but wraps
it around a novel super-resolution component and a series of modifications in
the training approach to allow the translation of a set of input images into an
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isotropic, high-resolution, quantitative space, regardless of the original resolution
and acquisition parameters. The proposed model is depicted in Fig. 1.
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Fig. 1. Architecture of SR-MPMGen. Multi-modal images are downsampled and re-
sampled to template space, fed to the MPMGen pipeline to produce MPMs, passed to
physics models and resampled to reproduce the original, high-resolution images.

2.2 Super-resolution

Following the self-supervised footsteps of the core methodology, we take a similar
approach for SR. Downsampling can artificially create low— and high-resolution
data. This is not uncommon in super-resolution methods; our approach is in-
spired by SynthSR [7] but adapted to the multi-sequence MPMGen approach.

We begin by finding a set of affine transformations M registering all subject’s
input data to Imm isotropic MNI space [12]. To simulate different resolutions, a
downsampling process is designed to produce realistic low-resolution data: slice
thickness is mimicked via blurring along the desired axis with a modified Gaus-
sian kernel with a standard deviation proportional to the original and target
resolution, given by the following ¢ = 2« log(lo):—z%, where o = U(0.8,1.2),
i.e. drawn from a uniform distribution, r; is the chosen target axis’s new, down-
sampled, voxel size and r, is its original resolution. Downsampling is done on the
high-resolution images in their native space, then resampling to MNI space using
the previously computed transformation M. Our target downsampled resolution
is selected uniformly between two and seven mm.

The downsampled and MNI resampled images are passed to the core MPM-
translation pipeline, producing an MPM-like output. As in the original method,
the generated MPM is used in tandem with static equations and the acquisition
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parameters for each relevant sequence to reconstruct the original modalities.
To allow for direct comparisons, the images are resampled back to their native
spaces, but only after correcting for the system’s point-spread function (PSF).
Applying the PSF is crucial, as resampling to a lower-dimensional grid (such as
moving from the isotropic 1x1x1 high-resolution MNI space to a native space of,
e.g., 1x1x3 image) would introduce aliasing [3]. In its absence, a high-resolution
MPM would be penalised by the loss when presented with an isotropic image
(the network produces blurry MPMs), as the resampled image would not match
the PSF of the original native image.

2.3 Modelling the MR signal via static equations

When applied with MPMGen, the proposed SR method generates high-resolution
MPM maps that can be fed into an MRI simulator to regenerate the original
non-quantitative data. As in the original work, the MR signal is approximated
via a temporally static, computationally efficient model termed static equations,
where an entire MR sequence is summarised by a single equation that depends
only on the voxelwise intrinsic MR properties and the sequence parameters, fit-
ting well into live deep-learning frameworks. Due to its simple, single-equation
formulation, this approach is differentiable, meaning that a simple L1 loss be-
tween the original and reconstructed data can drive the SR-MPMGen model
training. As an example, the following static equation formulation is used to
generate MPRAGE [4], data from the predicted MPMs, for the signal at a single
voxel at location z:

26%
bMpRAGE(x) =G- PD(x) 1-— - —TRrR |
1+ eTi(®)

Here, TR represents repetition time, 7T'I inversion time, and TFE echo time. G
is a dimensionless parameter that models linear scanner gain. The equivalent
equations for FLAIR and T2 spin echo (SE) can be found in [6].

2.4 Pre-processing and Data

We employ data from SABRE (932 subjects) [14] and an internal private dataset
(IPD) for training our main model. The BraTS dataset [11] is employed for
out-of-distribution validation on a downstream task. The inclusion of IPD is
motivated by Borges et al.’s model’s limited performance on T2-SE-related im-
putations. We posit that this was due, in part, to the absence of T2-SE images in
one of their chosen training datasets, UKB. IPD boasts MPRAGE, FLAIR, and
SE images from 837 subjects with great heterogeneity, contrast and resolution-
wise, which should be a boon for an algorithm that relies on aptly generalising
to a wide range of acquisition types. SABRE likewise contains images of all three
sequence types.
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3 Experiments and results

Consistency and imputation: We validate if the translated MPMs suffer
due to the introduction of the proposed SR model when compared to vanilla
MPMGen. As such, we carry out consistency and imputation analyses in much
the same way as the original work. Briefly, consistency analyses aim to verify
the fidelity of modality reconstructions where the model has seen said modality.
E.g.: MPRAGE + FLAIR — MPM — MPRAGE’. Imputation analyses seek to
identify the fidelity of modality reconstructions where the model has not seen
said modality. E.g.: MPRAGE + FLAIR — MPM — T2SE’. As a baseline,
we train vanilla MPMGen, MPMGen (New Data) with the updated datasets.
Table 1 and Table 2 show the consistency and imputation results, respectively.

The original paper’s MPMGen model boasted higher consistency values (>
0.99 MS-SSIM) while at the same time presenting several imputation failures
(MS-SSIM < 0.55), especially where T2-SE reconstructions were involved. MP-

Table 1. Consistency: Mean MSE and MS-SSIM, for all combinations of MRI modali-
ties, including at least the reconstructed modality on the SABRE dataset. o: Modality
present, o: Modality absent. MSE is scaled by 10%.

Regenerated Input modalities MPMGen (New Data)| SR-MPMGen

modality FLAIR|MPRAGE|T2-SE| MSE MS-SSIM MSE | MS-SSIM
7.6214.37| 0.8780.0021 |3.368.06]|0.89530.0512
2.480.68 | 0.89110.0336 |2.620.85|0.88570.0348
2.420.68 | 0.89350.0335 |2.590.84|0.88790.0345
4.972.32 | 0.86240.0512 [4.922.32|0.86880.0509
4.181.84 | 0.87580.0560 [4.962.30(0.86600.0500
4.331.77 | 0.86590.0518 [5.102.26|0.86030.0453
4.471 83 | 0.86110.0484 |5.112.27|0.85940.0452
2.570.61 | 0.88940.0302 |2.140.67|0.88980.0315
2.410.54 | 0.89230.0200 |2.130.57|0.88990.0315
2.460.58 | 0.89440.0288 |2.130.57|0.89150.0325
2.400.55 | 0.89340.0289 |2.140.56|0.89090.0312

FLAIR

MPRAGE

T2-SE
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Table 2. Imputation: Mean MSE and MS-SSIM, for all combinations of MRI modalities
that do not feature reconstructed modality on the SABRE dataset. o: Modality present,
o: Modality absent. MSE has been multiplied by 10°.

Input modalities MPMGen (New Data) SR-MPMGen

FLAIR|MPRAGE|T2-SE| MSE MS-SSIM MSE MS-SSIM

o o [3.330.65| 0.86840.0339 |3.390.85|0.863220.03521
3.350.80| 0.86640.0361 |3.320.81|0.867930.03633
2.930.67| 0.88200.0335 |3.000.81|0.877520.03353
6.031.89| 0.79350.0556 |6.772.50|0.798160.05167
4.150.69| 0.86620.0272 |3.670.87|0.870670.02849
2.930.57| 0.89310.0283 |2.700.55]|0.892710.02666

Regenerated modality

FLAIR

MPRAGE

T2-SE

e O e/ ® O ¢/ O O
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Low resolution Unires Our method High resolution reference

Fig. 2. Left-to-right: Three randomly downsampled input modalities, super-resolved
images using Unires, super-resolved MPM-derived reconstructions with the proposed
method, and the high-resolution reference. Coronal, axial, and sagittal views are shown.

MGen (New Data) exhibits lower consistency results across the board alongside
more consistent imputation results (No failures). This suggests that the original
MPMGen was overfitting to specific modalities given the disparity between re-
sults and failure cases, while the similarity between SR-MPMGen’s consistency
and imputation metrics indicates the opposite, greater robustness and ability
to generalise. This behaviour is partially attributed to introducing the highly
heterogeneous IPD dataset, which replaced the highly homogeneous Biobank
dataset, affording the model a far more diverse set of multi-sequence and pa-
rameter images to learn from. Crucially, we observe that SR-MPMGen performs
comparably to MPMGen (New Data), indicating that the SR components are
not deleterious for MPM translation.

Super-resolution: To evaluate the super-resolving abilities of our algorithm, we
carry out the downsampling procedure on our data, pass them to our model, and
assess the similarity of the physics-reconstructed output to the original, higher-
resolution image. The downsampling process is as follows: an axis is selected (at
random, for isotropic images, or the lowest resolution axis, for anisotropic cases),
a target, downsampled resolution between two (or whichever resolution the most
anisotropic axis boasts) and seven mm is selected. The downsampling process is
ultimately carried out via resampling to a new downsampled grid, followed by
Gaussian smoothing, to mimic real slice spacing and thickness.

As a suitable baseline, we select UniRes [2], a registration-based multi-modal
SR technique. UniRes offers pre-trained models on its open-source GitHub repos-
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Table 3. Mean PSNR for the SR experiment, for all combinations of MRI modalities,
including at least the reconstructed modality on the SABRE dataset. e: Modality
present, o: Modality absent. Bold values represent statistically best performances via
signed-rank Wilcoxon test.

Regenerated Input modalities PSNR
modality FLAIR|MPRAGE|T2-SE UniRes Ours
° o o 24.630 (2.773) | 29.561 (2.854)
° . o 25.217 (3.055) | 28.980 (2.614)
FLAIR . o o | 25.326 (2.920) | 29.201 (2.672)
° . . 24.883 (2.785) | 28.809 (2.748)
o . o 25.778 (2.980) | 31.742 (2.324)
. . o 27.381 (3.528) | 31.856 (2.057)
MPRAGE o ° . 27.361 (3.780) | 31.624 (2.164)
. . ° 26.947 (3.213) 32.129 (2.206)
o o . 25.986 (2.597) | 31.407 (2.430)
T9.SE ° o . 27.217 (3.278) | 31.927 (2.119)
o . o | 26443 (3.011) | 31.695 (2.041)
. . . 26.676 (3.126) | 32.318 (1.733)

itory, which we use for our analyses. Since both methods are multimodal, we test
every combination of input modalities for both validations.

Figure 2 shows an example set of high-resolution same-subject multi-modality
images, their downsampled counterparts, and the SR-MPMGen and baselines
super-resolved outputs. SR-MPMGen is adept at leveraging complementary high-
resolution information across modalities, resulting in a reconstruction that does
not exhibit the oft-present hallucinatory signs of most SR techniques. Image
quality is quantitatively assessed using the peak signal-to-noise ratio (PSNR),
a commonplace image reconstruction metric. Results are found in Table PSNR.
Across all modalities and input combinations, SR-MPMGen significantly out-
performs UniRes, backing up the aforementioned qualitative findings.
Assessing domain generalisation via a classification downstream: The
work is largely motivated by the fact that the models we train are suscepti-
ble to domain shifts and that being able to transition to invariant, quantitative
data would alleviate this issue by being domain generalisable. Note the impor-
tant distinction between domain adaptation and domain generalisation. Domain
adaptation techniques adapt to the target domain, necessitating target domain
data by definition. Conversely, a domain-generalisation technique should be in-
nately compatible with unseen data, making it more versatile and not requiring
further processing or training using domain samples.

We illustrate this point via a classification experiment. We train a 2D model
using FLAIR images from the BraTS dataset (denoted Qual-FLAIR) to identify
the presence of a tumour (>10 pixels) and assess performance on different test
modalities. In tandem, we train a model using MPMs derived from only FLAIR
images from the BraT$S dataset (denoted MPM-FLAIR) and test the model on
MPMs derived using different individual modalities, likewise assessing perfor-
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Table 4. Classification results for tumour detection for Qual-FLAIR and Qual-MPM,
evaluated on FLAIR (IoD), MPRAGE (OoD), and SE (OoD) on the BraTs dataset.

Input modalities ROC-AUC
Qual-FLAIR MPM-FLAIR
FLAIR 0.933 0.928
SE 0.723 0.786
MPRAGE 0.692 0.753

SABRE MPRAGE+FLAIR+T2SE BRATS MPRAGE+FLAIR+T2SE
(original, after skull- Reconstruction (original) RECO_HSTI‘HCUOH
stripping) (Ours) (Ours)

&L
MSE: ©.0009, MSE: ©.0011
MS-SSIM: @.9591 MS-SSIM: @.9458

Fig. 3. Qualitative showcase of SR-MPMGen reconstructions on OoD skull-stripped
data. Arrows denote tumours.

mance. The latter model should be less susceptible to modality sequestration,
as it is meant to be invariant. Our architecture is a DenseNet (for details, see
supplementary materials). The results of this experiment are shown in Table 4.

Statistical significance between ROC-AUCs of the two models is ascertained
via DeLong tests [5]. While both models have diminished performance on MPRAGE
and SE validations, MPM-FLAIR is statistically more robust to domain shift,
supporting our conjecture that translating images into the isotropic MPM do-
main leads to stronger domain generalisation. Note that the model has been
applied on 1) severely pathological (the model was trained on largely tumour-
absent data), 2) skull-stripped (the model was trained on non-skull-stripped
data), and 3) sequence-parameter absent data (knowledge of parameters con-
strains the MPM-translation process, incorrect values will incorrectly skew val-
ues, and these had to be estimated for BraTS); the proposed results therefore
likely represent a performance floor. Figure 3 compares skull-stripped SABRE
T2SE and skull-stripped BraTS T2SE reconstructions using our model. While
there are some clear contrast mismatches for BraTS, the MSE and MS-SSIM are
not dissimilar from SABRE, affirming the model’s versatility.

4 Discussion and Conclusion

We present a method for translating various standard MR images into an isotropic,
quantitative domain that trains fully self-supervised. We show that adding super-
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resolution to the original quantitative translation method does not impair its
original functionality but only enhances it. Our downstream classification task
evinces our principal motivation is justifiable, namely that versatility is gained
from training models using data translated into an invariant domain rather than
relying on models whose performance is inextricably tied to its training data.
While the current formulation is not compatible with other modalities, it lends
itself to expansion by adding further modality-specific branches, something we
will seek to explore.
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