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Abstract

The adiabatic theorem presents a clear bottleneck on adiabatic quan-
tum optimisation. Even given access to a coherent quantum system, the
time required to remain adiabatic is typically too long to be reached
when solving a large combinatorial optimisation problem. This necessi-
tates operating the device non-adiabatically. Continuous-time quantum
walks, multi-stage quantum walks, and reverse-quantum annealing all
present attempts to use the same hardware, while dropping the adia-
batic requirement. Since these approaches operate far from adiabaticity,
the adiabatic theorem cannot be used to motivate their use in tackling
combinatorial optimisation problems.

Continuous-time quantum walks have been shown to perform well nu-
merically on some optimisation problems. However, the mechanism
behind quantum walks for optimisation has not been well understood.
By establishing a connection between continuous-time quantum walks
and the eigenstate thermalisation hypothesis, this dissertation explores
the mechanism behind continuous-time quantum walks as well as how
they can be optimised.

By appealing to pure-state statistical physics more generally, it is shown
how a variety of time-dependent approaches, such as multi-stage quan-
tum walks, can be motivated. This is done by using the physically mo-
tivated assumption, termed Planck’s Principle, that work cannot be ex-
tracted from a cyclic process in an isolated system. This is sometimes
referred to as Kelvin’s formulation of the second law of thermodynam-
ics.
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Abstract

This work also explores a different design mantra, away from adiabatic
inspired approaches, based on optimal state transfer. This provides in-
sight on how continuous-time quantum algorithms might be designed
away from conventional approaches. It is shown that the optimal state
transfer approaches can outperform current conventional quantum ap-
proaches.
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Many problems can be framed as finding the maximum or the mini-
mum from a finite number of choices, these are called combinatorial op-
timisation problems. Examples of combinatorial optimisation include:
scheduling deliveries to minimise the distance travelled or buying stocks
to maximise profit. The number of possible choices can be very large,
for example, there are 9 × 10157 possible routes to try for 100 deliveries.
Searching over them all, to find the shortest one is not possible. The
large number of possible solutions makes solving combinatorial opti-
misation problems very hard. Yet combinatorial optimisation problems
are very common and providing effective approaches to solve them will
have a high impact in a range of disciplines.

It has been proposed that quantum technologies might help to solve
combinatorial optimisation problems, by exploiting novel quantum ef-
fects. Designing quantum algorithms is difficult, especially without ma-
ture hardware to test ideas on. Quantum algorithms can be discrete-time
(typically implemented by gates) or continuous-time, where the quan-
tum algorithm is carried out on an analogue quantum system. Many ap-
proaches for solving combinatorial optimisation problems in analogue
quantum systems have relied on the adiabatic theorem. Essentially,
by varying parameters in the quantum system slowly, it is possible to
find the solution to the combinatorial optimisation problem. In prac-
tice, going sufficiently slowly to reach the desired solution is not possi-
ble. Therefore, recent approaches have explored going faster within this
framework. Numerical studies have been performed to establish the
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performance of these approaches, but the motivation and understand-
ing behind them has been largely missing.

The impact of this work is to provide intuition behind these faster
continuous-time quantum approaches for combinatorial optimisation
problems. This is done by establishing links between these approaches
and statistical physics. In the near term, this shows how some
continuous-time quantum optimisation algorithms should be imple-
mented. In the longer term, better understanding should allow for bet-
ter design of continuous-time quantum optimisation approaches. This
dissertation also explores an alternative design framework, far from the
adiabatic theorem, based on optimal state transfer, opening up an alter-
native route for algorithm design.

Outside of quantum algorithm design, this dissertation presents a step
towards understanding the potential impact of quantum algorithms for
optimisation. Given the ubiquity of these problems, any speed up or
increased accuracy may find use within industry.
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Chapter 1

Introduction

Combinatorial optimisation problems have been proposed as a possi-
ble candidate for useful application of a quantum computer [2, 3, 4].
Perhaps the first evidence for this came with Grover’s eponymous al-
gorithm [5]. The problem Grover was attempting to solve was the un-
structured search problem: how to find a marked element in a list of
length N, given an oracle to validate the solution. This is a search prob-
lem, which classically requires on the order N calls to the oracle. Grover
showed that this could be done with order

√
N calls to the oracle on

a quantum computer, a quadratic speed-up. This speed-up has been
shown to be optimal for this problem [6]. Grover’s algorithm can be
adapted to combinatorial optimisation problems [7, 8].

Grover’s algorithm treats the combinatorial optimisation problem as a
black-box oracle that can be queried. Ultimately, constructing this ora-
cle requires knowledge of the combinatorial optimisation problem [9].
Grover’s algorithm sets a lower bound on what might be achieved by a
quantum device, where no information about the combinatorial optimi-
sation problem is being utilised. It was recently questioned if Grover’s
algorithm constitutes quantum speed-up at all [9]. This motivates the
need for other quantum algorithms for combinatorial optimisation prob-
lems.

Kadowaki and Nishimori introduced quantum annealing in [2], the idea
being that the quantum algorithm would have direct access to the cost
function associated with the combinatorial optimisation problem. Quan-
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1. Introduction

tum fluctuations could then be used to search and escape from local
minima in the cost function. The approach was largely framed as a
heuristic approach. Adiabatic quantum optimisation, proposed by Farhi
et al. [10] demonstrated that combinatorial optimisation problems could
be solved exactly through adiabatic evolution. A superpolynomial speed
up using an oracle model with adiabatic quantum computing has been
demonstrated by Hastings [11]. An exponential speed-up has also been
demonstrated on the oracular glued-trees problem [12]. However, this
speed up requires transitions to and from the first excited state. The
exponential speed-up also vanishes if the classical computer can exploit
noise in the system [13].

Both adiabatic quantum optimisation and quantum annealing are de-
signed to be implemented on an analogue quantum system, hence
they are referred to as continuous-time quantum algorithms. Broadly
speaking, quantum annealing is considered an example of a near-term
intermediate-scale quantum (NISQ) algorithm [4]. NISQ generally refers
to quantum algorithms that may provide some form of advantage in the
near-term without the need for full error correction. Quantum anneal-
ing and adiabatic quantum optimisation helped to inspire the gate-based
quantum approximate optimisation algorithm [14]. Further background
material on combinatorial optimisation problems and continuous-time
quantum optimisation algorithms can be found in Chapter 2.

Analogue quantum systems have been engineered in an attempt to
realise quantum annealing, termed quantum annealers [15, 16, 17].
These devices have limited coherence times, and it is well known that
adiabatic quantum optimisation requires exponentially long run times
[18, 19, 20, 21]. Even given the perfect quantum annealer, these run-
times could not be realised. This has warranted further exploration of
continuous-time quantum approaches that involve shorter runtimes on
the quantum device, by trading off short run-times for performance or a
larger sampling cost. These approaches are more amenable for NISQ de-
vices. A candidate continuous-time quantum algorithm that trades off
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shorter individual runtimes for a higher sampling cost is the continuous-
time quantum walk [22]. Continuous-time quantum walks involve a
time-independent Hamiltonian run for a short time and sampled. These
have been shown to scale better than Grover’s algorithm numerically
for certain combinatorial optimisation problems [22]. Continuous-time
quantum walks have a free parameter that needs to be chosen to op-
timise the performance. In Chapter 4 the long-time behaviour of a
continuous-time quantum walk is explored. The work in this chapter
is motivated by the eigenstate thermalisation hypothesis [23, 24] that
attempts to explain how thermalisation occurs in a closed quantum sys-
tem. By assuming thermalisation, it is shown how the free-parameter in
a continuous-time quantum walk can be chosen.

When implementing a continuous-time quantum walk, it is necessary
to choose a sampling time. This is explored in Chapter 5 by looking
at geometrical properties, such as the torsion of the wave function [25].
This is then built on by using an Ansatz for the time evolution. Much of
the work on CTQWs makes use of sensible Ansätze to convert a problem
of large matrices to a problem with continuous variables, parameterised
by a few real numbers.

The natural extension of a continuous-time quantum walk is referred
to as multi-stage quantum walk. The performance of this approach re-
mains largely unexplored, as well as the mechanism behind this ap-
proach. In Chapter 6 pure-state statistical physics, introduced in Chap-
ter 3, is used to provide motivation for this approach, namely, the phys-
ically motivated assumption that work cannot be extracted from a cyclic
process in an isolated system. This is sometimes referred to as Planck’s
Principle [26, 27] or Kelvin’s formulation of the second law of thermody-
namics [1]. Since Planck’s principle is naturally formulated in terms of
cyclic processes, cyclic quantum annealing is also investigated in Chap-
ter 6.

All the approaches so far have some common features. All are arguably
quantum annealing with a specific choice of Ansatz (and maybe a dif-
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ferent initial state). Perhaps a fair criticism of the field is that selecting a
new Ansatz is sufficient to claim a novel approach. This is not a surprise,
as all the approaches stem from quantum annealing and are often moti-
vated in relation to the adiabatic theorem. Designing novel approaches
outside the adiabatic inspired framework is not straightforward, espe-
cially without mature and flexible quantum hardware. In Chapter 7,
an approach inspired by Hamiltonians for optimal state-transfer is pro-
posed. This is compared to conventional quantum approaches with sim-
ilar resources.
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Chapter 2

Combinatorial optimisation and
continuous-time quantum
optimisation approaches

This chapter outlines the background material needed to understand the
quantum algorithms discussed in this dissertation. The first half of this
chapter will give a very brief introduction to combinatorial optimisation
problems, including some relevant examples. The second half will intro-
duce some established continuous-time quantum optimisation (CTQO)
algorithms designed to tackle combinatorial optimisation problems.

2.1 A primer on notation and terminology

This dissertation adopts the standard convention of setting h̄ equal to
one. The Boltzmann constant kB is also set to one throughout this dis-
sertation. The respective Pauli matrices are denoted by X, Y and Z. The
identity is denoted by I. Angular brackets, for example, ⟨A⟩, denote
the expectation value of an observable (in this case, the expectation of
the observable A). The state, for which the expectation value should be
taken with respect to, should be clear from context.

Some of the algorithms discussed in this work do not need to be per-
formed on a (universal) quantum computer. Many CTQO approaches
are currently performed on specialised devices with limited coherence
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optimisation approaches

[15, 16, 28, 29]. To avoid any possible contention, we refer to devices on
which the algorithms are run on as quantum processing units (QPUs)
[15].

The QPUs are assumed to be qubit based. Certain implementations of
CTQO approaches require the addition of extra qubits. Here we refer to
these qubits as auxiliary qubits.

2.2 Combinatorial optimisation

An instance of a combinatorial optimisation problem consists of two
parts: a finite set of feasible solutions F and a cost-function C [30]. The
aim is to find an element x in F that satisfies:

C(x) ≤ C(y) for all y in F . (2.1)

The element x is said to be a global minimum. Here, the optimisation
problem has been framed in terms of finding a minimum. Since maximi-
sation and minimisation are equivalent under a sign-flip of the cost func-
tion (i.e. minimising C is equivalent to maximising −C) maximisation is
accounted for as well in this formulation. Shifting the cost-function by
a constant, or multiplication by a positive number, leaves the ordering
between elements of F the same. A combinatorial optimisation problem
is a collection of instances [30].

Let us consider an example of an instance of a combinatorial optimisa-
tion problem, where an asset manager is looking to select 13 assets from
a possible 25. The set of feasible solutions is all possible combinations
of 13 assets, a grand total of 5,200,300 combinations. The cost function
is the expected loss on a combination of assets. The global optimum is
the combination of assets that makes the smallest loss (or equivalently
the greatest profit). Enumerating 5,200,300 possible combinations from
25 assets is daunting. As the problem size is increased by an order of
magnitude, say to selecting 130 assets from 250, there are now 7.5× 1073
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combinations to try. Trying all possible combinations is definitely not
a viable strategy. It is this scaling and size of the set of feasible solu-
tions that makes combinatorial optimisation problems hard to solve. In
practice the set F will not be all possible configurations since the as-
set manager will have to meet certain constraints – for example the risk
from a combination of stocks should not exceed a given value. Com-
binatorial optimisation problems are very common, with application in
finance [31, 32, 33], logistics [34, 35], machine learning [36, 37], and bi-
ology [38, 39].

2.3 Encoding combinatorial optimisation prob-

lems

Before discussing in depth the encoding of combinatorial optimisation
problems, it is useful to outline the entire workflow:

1. The combinatorial optimisation problem is encoded and passed to
a QPU.

2. The QPU then undergoes a run, of which there might be many.

3. At the end of each run, the qubits are sampled. The result of
sampling the QPU is a string, s, consisting of 1s and 0s.

4. A decoding procedure, D, is then applied to this string to find a
possible solution to the optimisation problem, D(s) = x.

At the end of each run, the cost of x according to the classical cost func-
tion can be calculated by C(x) = C(D(s)). So the composition of C(·)
and D(·) can be considered a cost function on the string s, denoted by
Cs. Typically, it is expected Cs will take the form (up to some irrelevant
constant):

Cs(s) = ∑
i

h′isi + ∑
i,j

J′i,jsisj + ∑
i,j,k

J′i,j,ksisjsk + ∑
i,j,k,l

J′i,j,k,lsisjsksl + . . . , (2.2)
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where si is the value of the ith element in s, corresponding to the ith

qubit. The coefficients h′i, J′i,j, J′i,j,k, J′i,j,k,l . . . are real numbers depending
on the problem instance. The ellipsis in Eq. 2.2 denotes the presence of
higher order terms. In the context of quantum mechanics, the string s is
best understood as a state vector, denoted by |s⟩, where:

Cs(s) = C′
s(|s⟩), (2.3)

up to operations that preserve the ordering on the feasible strings.
Rewriting the cost function in terms of matrix multiplication gives:

C′
s(|s⟩) = ⟨s| Ĉs |s⟩ , (2.4)

where Ĉs is a Hermitian operator. The operator Ĉs can be found by
replacing si in Eq. 2.2 with (I − Zi)/2 where Zi is the Pauli Z operator
acting on the ith qubit. The result is:

Ĉs = ∑
i

hiZi + ∑
i,j

Ji,jZiZj + ∑
i,j,k

Ji,j,kZiZjZk + ∑
i,j,k,l

Ji,j,k,lZiZjZkZl + . . . .

(2.5)
Since Ĉs corresponds to a Hermitian operator acting on the qubits, it is
easily identified as corresponding to a Hamiltonian. In this context, the
optimisation problem becomes finding the ground-state of Ĉs. It is the
coefficients (i.e. hi, Ji,j . . . ) in Ĉs that are typically fed into the QPU.

The original cost-function C(x) = C(D(s)) was defined only on x that
are elements of the feasible subspace. Not all strings s (or equivalently
|s⟩) will correspond to a feasible x. This could be down to constraints
in the combinatorial optimisation problem or limitations of the QPU.
For example, in an analogue quantum system where the Hamiltonian
Ĉs is physically realised, higher order couplings are typically difficult to
engineer [40]. Therefore, auxiliary qubits are typically added such that
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Ĉs is quadratic and takes the form,

ĈIsing = ∑
i

hiZi + ∑
i,j

Ji,jZiZj, (2.6)

this is known as an Ising Hamiltonian. Even then, connectivity between
qubits might be limited, requiring further auxiliary qubits. The intro-
duction of the auxiliary qubits or other constraints from the optimisa-
tion problem will result in strings s that are not in F . The constraints
are enforced by making sure that the quantum algorithm does not, or is
very unlikely to, output a string that does not correspond to an unfea-
sible solution. This is typically done by adding large energy penalties
to the cost function [41], so unfeasible strings are very unfavourable. Or
alternatively, by designing the quantum algorithm so it only searches
feasible solutions [42, 43]. The formulation of the cost function Ĉs, or
more typically ĈIsing, plus imposing constraints, constitutes encoding
the combinatorial optimisation problem. It remains then to determine
what D(·) is. This will depend on the nature of x; for example, if x is a
binary variable [41], an integer [44], or a graph [45].

In this dissertation, the feasible solution space F for the combinatorial
optimisation problems considered is the set of all possible spin config-
urations. The problems considered are naturally formulated as Ising
Hamiltonians, and it is assumed a fully connected architecture is avail-
able. This minimises the encoding and decoding required, so that the
focus is on the quantum algorithm, while maximising their possible im-
plementation in analogue quantum systems without specifying a hard-
ware model. Since the problems have no constraints, only ĈIsing needs
to be formulated. The rest of this section details the encoding of the
combinatorial optimisation problems considered in this dissertation.

The Ising model

The Ising model is the focus of almost all quantum algorithms for com-
binatorial optimisation problems [10, 14]. The feasible set of solutions

9
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for the Ising model is the set of all possible configurations of n spins,
where n is a positive integer. Each spin s can either be spin up, in
which case s = 1, or spin down such that s = −1. There are 2n pos-
sible configurations of spins. Denoting a single spin configuration by
(s0, s1, . . . , sn−1)

T, the cost function is given by

C(S⃗)Ising = ∑
i>j

Ji,jsisj + ∑
i

hisi, (2.7)

where the couplings Ji,j and fields hi are real parameters that need to be
set. The associated Hamiltonian is the Ising Hamiltonian:

H(Ising)
p = ∑

i>j
Ji,jZiZj + ∑

i
hiZi, (2.8)

where the notation has been changed to make clear that this is a Hamil-
tonian. All other combinatorial optimisation problems considered in
this dissertation correspond to specific choices of the hi’s and Ji,j’s in
Eq. 2.8.

Max-cut

Given some graph, G = (V, E) the aim of Max-cut is to find the max-
imum cut. A cut separates the nodes in a graph G into two disjoint
sets. The length of the cut is equal to the number of edges between
the two disjoint sets. The maximum-cut is the cut with the greatest
length. Given a graph with n vertices, there are 2n−1 possible partitions
to try. Hence, the number of possible cuts grows exponentially with
the problem size. For a Max-cut instance, the feasible set of solutions
is all possible bipartitions of the graph. The cost function that is to be
minimised is

−1 × (length of the cut) . (2.9)

Max-cut can easily be expressed in terms of spin variables. A cut splits
a graph into two disjoint sets, here denoted by 0 and 1. Let the spin
variable sk ∈ {−1, 1} denote which set the kth node is in, such that if

10
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sk = 1, the node is contained in the set 0. If sk = −1 then the node is
contained in 1. The length of the cut is the number of edges between the
two sets and is given by

Cmax =
1
2 ∑
(i,j)∈E

1 − sisj, (2.10)

since only anti-aligned spins contribute. Since, we are primarily inter-
ested in minimisation, the cost function is given by

Cmin =
1
2 ∑
(i,j)∈E

sisj − 1. (2.11)

For simplicity, as the ordering between cuts is not changed by a constant
shift or scaling by a positive factor of the cost function, often the cost
function is taken to be:

Csimp = ∑
(i,j)∈E

sisj. (2.12)

Identifying the spin variables with Pauli matrices gives:

H(MC)
p = ∑

(i,j)∈E
ZiZj, (2.13)

again the notation has been changed to make clear that this is a Hamil-
tonian. Max-cut has a trivial representation as an Ising model.

Max-cut is defined on a graph. In this work, we primarily focus on three
types of graph.

1. Two-regular graphs (i.e. a ring). This is sometimes referred to as
an anti-ferromagnetic ring or the ring of disagrees. This is a trivial
problem.

2. Three-regular graphs. A graph where each node is connected to
exactly three others. These graphs are sometimes referred to as
cubic graphs.
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3. Binomial graphs. Binomial graphs are generated by selecting an
edge between any two nodes with probability p. Max-cut under-
goes a computational phase change for random graphs at p = 1/2
(harder problems appear for p > 1/2) [76–78]. We set p = 2/3
for this dissertation (note that this is no guarantee of hardness for
the problem instances considered). These graphs are sometimes
referred to as Erdős-Rényi graphs.

This dissertation focuses on Max-cut. This is a standard choice for ex-
ploring quantum algorithms for combinatorial optimisation [14, 46] due
to its simple form.

Sherrington-Kirkpatrick inspired model

In a Max-cut problem, all the couplers in the graph are set to the same
value. Here we introduce a second problem, the Sherrington-Kirkpatrick
inspired model (SKM) [22, 47], where this is not the case. The problem
is to find the ground-state of

H(SK)
p = ∑

i,j
Ji,jZiZj (2.14)

where the Ji,j’s are randomly selected from a normal distribution with
mean 0 and variance 1 [47]. Each qubit is coupled to every other qubit.

To further distinguish the SKM from the Max-cut problems, a bias term
can be introduced to the Hamiltonian,

H(SKM)
p = ∑

i,j
Ji,jZiZj +

n

∑
i

hiZi, (2.15)

where the hi’s are also randomly selected from a normal distribution
with mean 0 and variance 1. We use the SKM in the Appendices to give
further numerical evidence of the claims in this dissertation away from
Max-cut.
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2.4 Limitations of quantum computing

Given that the set of feasible solutions F is typically too large for prob-
lems of interest to be enumerated, better approaches need to be found.
Before discussing quantum approaches, it is worth understanding what
might be the limitations on the resources required to find the global
minimum of a set F .

Complexity theory is outside the scope of this dissertation. It does how-
ever contain some pertinent lessons to understand the limitations of
quantum computers. The following exposition on complexity theory
is based on [48] and [49]. Complexity theory attempts to sort prob-
lems into classes depending on how hard they are to solve. Informally,
NP consists of decision problems that are hard to solve on a classical
computer but whose solution is easy to verify. A decision problem is
a question whose answer is ‘Yes’ or ‘No’. A computation is hard if it
requires an exponential amount of time to solve. A computation is easy
if the time required in a classical computer is polynomial. Easy decision
problems are said to belong to P. Consider the decision problem, closely
related to Max-cut: does there exist a cut of length d or more for a given
graph? This is a decision problem, that becomes more challenging as
the graph size is increased.

Max-cut is an example of an NP problem. This is a statement about the
worst case; there are however easy Max-cut examples. If a problem is as
least as hard as every problem in NP, then it is NP-hard. This means any
problem in NP can be efficiently converted to a NP-hard problem. If a
problem is NP-hard and in NP, it is said to be NP-complete. In general,
Max-cut is an NP-complete problem [50]. Indeed, finding very good
approximations for Max-cut is a computationally hard problem [51].
Finding the ground-state of an Ising Hamiltonian is an NP-complete
problem as well. From a complexity theory perspective, studying an
NP-complete problem allows for the study of any other NP problem.
It is generally believed that some problems are in NP but not in P, i.e.

13



2. Combinatorial optimisation and continuous-time quantum

optimisation approaches

there exist some hard problems.

The class of problems that can be solved in polynomial time on a quan-
tum computer is called BQP. It is generally believed that not every prob-
lem in NP is in BQP. This means that it is expected that at least some
optimisation problems will require an exponential runtime on a quan-
tum computer. So what advantage might quantum computers present
for classical combinatorial optimisation problems? For certain optimisa-
tion problems, quantum computing might provide an exponential speed
up [12] or a sub-exponential speed-up [11]. In some cases, the speed-
up might come from a prefactor advantage [52] or better scaling in the
exponent [53].

2.5 Choice of metrics

Assessing the performance of an algorithm is challenging. A common
choice is the ground-state probability, Pgs. Calculating the ground-state
probability requires knowing the ground-state, which is not known for
problems of interest, and to warrant the use of a QPU it should be hard
to find the ground-state in the first place. Another choice of metric that
combines both run time and ground state probability is the time to solu-
tion [48, 54]. This makes for fairer comparison for quantum algorithms
with very different runtimes. Again, this relies on knowing the ground-
state probability.

The ground-state probability is a reasonable measure when the only
solutions of interest are global minimums. But, it fails to capture the
performance of an approximate solver (a solver that finds good enough
solutions). A common measure for approximate solvers is the approxi-
mation ratio. The approximation ratio is a measure on the final distribu-
tion produced by the approach. The approximation ratio is ⟨Hp⟩/E(p)

0

where E(p)
0 is the energy of the ground-state solution and, Hp is the prob-

lem Hamiltonian encoding the optimisation problem. The expectation
value is taken with respect to the final state. If the approach finds the
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ground state exactly, then ⟨Hp⟩/E(p)
0 = 1. All the problem Hamiltoni-

ans considered in this dissertation do not consist of terms proportional
to the identity (i.e. Hp is chosen to be traceless). This is to simplify
the analysis, while preserving the ordering between eigenstates of Hp.
The result is that the approximation ratio can be positive or negative.
Random guessing (for traceless Hp) has an approximation ratio of 0.
A negative approximation ratio means that the approach is doing worse
than random guessing on average. This choice is made to achieve consis-
tency across different problems. This is distinct from papers that include
terms proportional to the identity in the Hamiltonian. For example, in
[14] they use terms proportional to the identity, meaning that random
guessing achieves a non-zero approximation-ratio.

The approximation ratio has some major flaws: it requires knowledge
of E(p)

0 which is typically difficult to find, it makes no reference to time,
and it makes no mention of the width of the distribution. A metric
close to time to solution was proposed for approximate solvers in [53],
though again this required detailed knowledge of the combinatorial op-
timisation problem. An alternative metric is ⟨Hp⟩. This preserves the
ordering between approaches and approximation ratio and does not re-
quire knowledge of E(p)

0 , but it is not normalised. Such a quantity would
be verifiable on a quantum computer, but still inherits the other draw-
backs from the approximation ratio. Since ⟨Hp⟩ is not normalised, it is
not straightforward to compare between different problem instances or
problem sizes, given the possible variation in energy scale. This makes
it difficult to extrapolate the performance.

There is unlikely to be a single metric that will capture all the desired
characteristics of a quantum algorithm. In this dissertation, the focus is
on ⟨Hp⟩ as it captures approximate solvers as well as corresponding to a
sum over local observables that could feasibly be measured in a physical
system.
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2.6 Continuous-time quantum optimisation ap-

proaches

This section outlines some popular CTQO algorithms at a high-level.
The aim of CTQO is to find or approximate solutions to a combinato-
rial optimisation problem using a quantum device such as a quantum
computer or a quantum annealer. All the CTQO approaches discussed
in this chapter contain some common features. For each approach, the
combinatorial optimisation problem is encoded as the energy levels of
a Hamiltonian Hp, which is typically an Ising Hamiltonian, with lower
energy eigenstates corresponding to better solutions. There is a second
Hamiltonian, referred to as a driver Hamiltonian, denoted by Hd. The
typical requirements on Hd are that it does not commute with Hp, and
its ground-state is known and easy to prepare. The conventional choice
is the transverse-field Hamiltonian given by

H(TF)
d = −∑

i
Xi, (2.16)

where Xi is the Pauli X matrix acting on the ith qubit. This is the com-
mon choice in CTQO due to its straight-forward implementation. The
ground state of H(TF)

d is denoted by |+⟩. In CTQO the system is evolved
under the Hamiltonian

HCTQO = A(t)Hd + B(t)Hp, (2.17)

or slightly modified versions of this Hamiltonian. The distinction be-
tween many CTQO approaches is in the choice of the initial state, and
the schedules, denoted by A(t) and B(t). The total time of the evolution
is denoted by T. We refer to this set-up as the CTQO framework.

16



2.6. Continuous-time quantum optimisation approaches

2.6.1 Adiabatic quantum optimisation

Adiabatic quantum optimisation (AQO) initialises the system in the
ground state of Hd. The system is evolved for a total time T, with the
boundary conditions A(0) = B(T) = 1 and A(T) = B(0) = 0. The
schedules are chosen such that the evolution is adiabatic, meaning that
the system remains in its instantaneous ground-state at all times. The
result is a quantum algorithm that transfers the system from the known
ground state of Hd to the unknown ground state of Hp, exactly solving
the optimisation problem.

This relies on the system being isolated, resulting in unitary evolu-
tion. The other major requirement is for the system to remain adi-
abatic, or equivalently, that the evolution must be sufficiently slow
such that no transitions to higher energy levels occurs. AQO has been
shown to achieve the same scaling as Grover’s algorithm on the un-
structured search problem [55]. For many problems, the time required
to remain adiabatic is exponentially increasing with the problem size
[18, 19, 20, 21, 48]. Due to this exponentially increasing time, various
other approaches have been proposed, such as: modifying the adiabatic
path (through counter diabatic driving [56, 57, 58, 59, 60]).

2.6.2 Quantum annealing

Quantum annealing (QA) is a heuristic version of AQO. QA shares the
same initial state and boundary conditions on the schedules as AQO.
The schedules are typically monotonic too. The adiabatic requirement is
however typically dropped. QA sometimes includes the incorporation
of open quantum system effects [61, 62]. The explicit choice of causing
excitations in QA is sometimes referred to as diabatic quantum anneal-
ing [12, 63].

QA was first proposed in analogy with simulated annealing [2]. In sim-
ulated annealing, the algorithm mimics thermal fluctuations to search
the solution space and escape local minima. By analogy, QA uses quan-
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tum fluctuations to search the solution space and escape local minima
by quantum tunnelling. Since the probability of quantum tunnelling de-
cays exponentially with the width of the barrier, it has been proposed
that QA should work well in energy landscapes with tall and thin bar-
riers [64].

Max-cut on two-regular graphs is a well studied problem in the context
of QA [10]. The problem Hamiltonian for a two-regular graph is given
by

Hp =
n

∑
i=1

ZiZi+1 (2.18)

with n + 1 = 1, corresponding to periodic boundary conditions. The
Hamiltonian consists of nearest-neighbour terms only. The performance
of QA on this problem has been understood by applying the Jordan-
Wigner transformation to map the problem onto free fermions [10].
They found that AQO could solve Max-cut on two regular graphs in
a time that scales as n3.

Braida et al. [46] have investigated QA on three-regular graphs with
short run times. By treating the algorithm as a local algorithm and
using Lieb-Robinson inspired bounds, they were able to lower-bound
the performance of QA on three regular graphs. This approach does
not necessarily find a tight bound, but it is nonetheless impressive, with
bounds in continuous-time quantum computation a rarity. They showed
that QA finds at least 0.5933 times the best cut. This was later improved
to 0.7020 without monotonic schedules and a tighter bound [65].

A number of hardware platforms have been proposed for realis-
ing CTQO. Two of the leading platforms are superconducting qubits
[16, 28, 53] and Rydberg atoms [17, 66]. Rydberg atoms, due to their
intrinsic physics, are well suited to solving a combinatorial optimisation
called the maximum-independent set. D-Wave, a commercial quantum
technology company, currently manafactures annealers featuring over
5000 superconducting qubits [28] and has demonstrated coherent evo-
lution for times on the order of tens of nanoseconds [16, 28].
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Munoz Bauza and Lidar have claimed to have demonstrated a scaling
advantage over known classical algorithms for approximating a certain
combinatorial optimisation problem on a D-Wave device [53]. This scal-
ing advantage is based off a problem native to the architecture of the
D-Wave and sampling from a specific set of couplings. They made
a comparison to a single classical algorithm, that has previously been
demonstrated to scale better than QA. A polynomial scaling was ob-
served in the quantum and classical case, with the quantum annealer
providing a better scaling, provided the desired level of approximation
was not too high.

2.6.3 Continuous-time quantum walks

Continuous-time quantum walks (CTQWs) for optimisation are a rela-
tively new approach [22]. Just as in QA and AQO, the system is ini-
tialised in the ground state of the driver Hamiltonian. The schedule is
time-independent such that A(t) = 1 and B(t) = γ, where γ is a real
number that needs to be set. The CTQW Hamiltonian is then given by

HCTQW = Hd + γHp. (2.19)

When Hd is the transverse-field Hamiltonian, the CTQW corresponds to
a quantum walk on the Boolean hypercube with each node weighted by
the classical cost-function 1.

The quantities that need to be set are the runtime T of the CTQW and
γ. The performance of CTQWs has been observed not to be strongly
dependent on T for combinatorial optimisation problems, provided T is
sufficiently large [22, 68]. The main challenge in realising CTQWs, from

1Note that in previous works, the parameter γ has been appended to the driver
Hamiltonian [22, 67]. Here it has been appended to the problem Hamiltonian for ease
of analysis. This is because there are two important energy scales in a CTQW: the
energy of the initial state and the energy of the Hamiltonian. By appending γ to the
problem Hamiltonian the energy of the Hamiltonian can be tuned independently of the
energy associated with the initial state. Further to this, later in the dissertation we will
explore ⟨Hp⟩ by varying γ, so the free parameter is appended to Hp for consistency.
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an algorithmic perspective, is setting the free parameter γ to optimise
the performance of the CTQW. If the absolute value of γ is too small, the
system approximately evolves under Hd, resulting in trivial dynamics.
If the absolute value of γ is too large, then the system evolves approx-
imately under γHp, again resulting in trivial dynamics. The optimal γ

must sit within these two limits.

The system is initialised in the ground state of the driver Hamiltonian,
so the energy associated with the driver (i.e. ⟨Hd(t)⟩ can only increase
compared to its initial value. The system is time-independent, so en-
ergy is conserved. Therefore, γ⟨Hp(t)⟩ can only decrease from its initial
value. Provided γ > 0, the energy associated with Hp can only decrease.
The initial-state corresponds to random guessing, so CTQWs can never
do worse than random guessing on average, with γ > 0. If γ < 0 then
the CTQW would never do better than random guessing on average. In
conclusion, γ must be greater than 0 but not so large that the Hamilto-
nian is well approximated by γHp.

CTQWs were first examined in the context of solving SKM instances by
Callison et al. [22]. The choice of γ was selected on the mantra of max-
imising dynamics, achieved by matching the energy scales of the driver
and problem Hamiltonians. They found that the ground-state prob-
ability scaled better than Grover’s for the problems considered. The
mantra of maximising dynamics was further explored in [67] and ex-
tended to other combinatorial optimisation problems. CTQWs have also
been shown to recover the same scaling as Grover’s algorithm for the
unstructured search problem [69].

The physical motivation behind CTQWs for optimisation has been
largely unexplored. In Chapters 4 and 5, we explore the intuition be-
hind this approach and show how this can lead to physically motivated
choices of γ as well as a timescale.
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2.6.4 Multi-stage quantum walks

Multi-stage quantum walks (MSQWs) are an extension of CTQWs with
close analogy to QA. The initial state is the ground-state of the driver
Hamiltonian. The schedule associated with the driver Hamiltonian is
constant in time. The schedule associated with the problem Hamiltonian
a piece-wise constant non-decreasing function. Each interval where the
Hamiltonian is held constant is referred to as a stage. The Hamiltonian
is given by

HMSQW = Hd + Γ(t)Hp, (2.20)

where, the schedule Γ(t) is given by

Γ(t) =



γ1 for 0 ≤ t ≤ t1

γ2 for t1 < t ≤ t2

· · ·
γk for tk−1 < t ≤ tk

· · ·
γl for tl−1 < t,

(2.21)

where γ1 < γ2 < . . . γk < γl and 0 < t1 < t2 . . . tk . . . tl. Fig. 2.1
shows a cartoon of a typical MSQW schedule. It has been numerically
observed that the expectation of Hp decreases (corresponding to better
solutions on average) as Γ(t) is increased [67]. It is insufficient to ap-
peal to the adiabatic theorem to explain the performance, and there are
limited theoretical motivations for this approach. From energy conser-
vation mechanisms, it has been shown that this approach can always do
better than random guessing [67]. As this protocol is piece-wise con-
stant with the time dependence entering through sudden quenches, the
approach is more amenable to analytic investigation. The performance
of MSQWs remains largely unexplored.
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Figure 2.1: A cartoon of a typical MSQW schedule. The ellipsis indicates the possibility
of more (or fewer) stages.

2.6.5 Reverse quantum annealing

Before attempting to solve a combinatorial optimisation problem, it is
reasonable to assume that a classical approach might have been tried
first, resulting in a candidate string or access to a distribution of can-
didate strings that can be sampled. Or that given a previous run of a
quantum annealer, one now has access to a candidate solution. Given
that for a typical problem the quantum annealer might be operating
non-adiabatically, one expects to be sampling numerous times from the
quantum annealer. Each conventional run of a quantum annealer makes
no use of any prior information or candidate solutions that might be
available. Reverse quantum annealing (RQA) [70, 71] is an attempt to
make use of known candidate solutions. RQA can be implemented on
current noisy hardware [72].

RQA is accomplished by operating the schedules cyclically. The sys-
tem is initialised in an eigenstate of the problem Hamiltonian, with the
problem Hamiltonian turned on. This is then turned down, and the
driver Hamiltonian turned on. The driver Hamiltonian is then turned
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off, and the system returns to Hp. The relative strength of the driver
to the problem Hamiltonian controls how locally the system searches
[70, 72]. Then there is a classical update step to decide how the string
should be initialised in the next anneal [70, 71].

Other variants on RQA include biasing the anneal with a third term in
the Hamiltonian. In which case the Hamiltonian is given by

HBQA = A(t)Hd + B(t)Hp + C(t)Hb, (2.22)

where the initial state is an eigenstate of Hp and the ground state of Hb.
Both Hp and Hb are diagonal in the computational basis. The schedule
A(t) is cyclic and satisfies A(0) = A(T) = 0. The initial and final
Hamiltonian can be some combination of Hp and Hb. Since sampling
only occurs in the computational basis and the initial state is diagonal
in the computational basis, the schedules can always be chosen such
that B(0) = B(T) and C(0) = C(T). To distinguish between RQA with
a bias from the version without, we refer to RQA with a bias as biased
quantum annealing (BQA). This distinction is made since the addition of
a bias changes the computational mechanism, as discussed in Sec. 6.4.3.

BQA was explored in [73] in the context of solving spin-glass problems
and implemented on a D-Wave quantum annealer in [74]. It was argued
that the biasing can help drive the system from the spin glass phase, for
improved searching.

2.7 The Quantum Approximate Optimisation

Algorithm

The quantum approximate optimisation algorithm (QAOA) [14] is a
gate-based design philosophy for determining the schedules, A(t) and
B(t). The initial state is the ground state of the driver Hamiltonian.
In QAOA A(t) = 1 − B(t), and B(t) = 0 or B(t) = 1. The switching
parameter, p, controls the number of times the schedules alternate be-
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tween the two parameter settings. The duration between switching is
either determined prior to the evolution by a classical computer or by
using a classical variational outer-loop [14, 75], attempting to minimise
⟨Hp⟩ by varying 2p free-parameters. In short, the quantum computer is
used to prepare the Ansatz:

|ψQAOA⟩ =
p

∏
k=1

e−iHdβk e−iHpγk |+⟩ , (2.23)

where the parameters β1, β2, . . . βp, γ1, γ2, . . . γp have been optimised so
that |ψQAOA⟩ minimises ⟨ψQAOA| Hp |ψQAOA⟩.

QAOA again relies on the adiabatic principle to provide a guarantee of
finding the ground state in the limit of infinite p. However, far from this
limit, the variational method allows QAOA to exploit non-adiabatic evo-
lution [76]. QAOA has also become a popular choice for benchmarking
the performance of quantum hardware [77, 78, 79].

QAOA applied to Max-cut on two-regular graphs can be studied using
the Jordan Wigner transformation [80, 81]. Alternatively, provided p
is sufficiently small, the performance of QAOA can be understood in
terms of locality [14] for two-regular graphs. Due to the structure of
the Ansatz in QAOA (shown in Eq. 2.23), to find the expectation of a
term in Hp, such as ZiZi+1, it is only necessary to consider a subgraph.
This subgraph consists of all nodes connected by no more than p edges
to a node in the support of the expectation value being calculated. For
two regular graphs this is a chain consisting of 2p + 2 nodes. Provided
this subgraph is smaller than the problem graph (i.e. the two-regular
graph has more than 2p + 2 nodes), then QAOA is operating locally.
For a given p, all the subgraphs are identical for a two-regular graph.
Hence, the performance of QAOA for this problem depends only on its
performance on this subgraph. As a direct consequence of the locality,
the approximation ratio of QAOA will not change as the size of the
two-regular graph is scaled. By optimising over this subgraph with a
classical resource, it is therefore possible to find the optimal time and
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approximation ratio of QAOA for this problem.

Max-cut on three-regular graphs was considered in the original QAOA
paper by Farhi et al. [14]. The local-nature of QAOA allowed them to
calculate explicit bounds on the performance of their algorithm. To this
end, the graph was broken down into subgraphs to measure local expec-
tation values (i.e., ⟨ZiZi+1⟩). For QAOA p = 1, there are three distinct
subgraphs. By simulating QAOA for the subgraphs and bounding the
proportion of subgraphs in the problem, they calculated a lower bound
on the performance. The small number of relevant subgraphs for three-
regular graphs makes this approach particularly amenable. They found
that QAOA p = 1 will produce a distribution whose average will cor-
respond to at least 0.6924 times the best cut. This lower-bound is satu-
rated by triangle-free graphs. These graphs consist of a single subgraph.
Therefore, the performance of QAOA p = 1 is largely dependent on the
proportion of edges in this problem that belong to this subgraph.

2.7.1 Separating discrete time quantum algorithms from

continuous-time quantum algorithms

Is QAOA a continuous-time quantum algorithm or a discrete-time quan-
tum algorithm? To better explain the difference between discrete (typ-
ically gate-based) and continuous-time quantum algorithms, consider
the example of making a ZZ-rotation of an angle θ, i.e,

RZZ(θ) = e−
iθ
2 ZZ. (2.24)

In a continuous-time quantum algorithm, a ZZ interaction would be
engineered between the two qubits. The system would then be evolved
for a time T = θ/2 and the correct rotation generated. Importantly,
if the evolution was paused halfway through, the rotation generated
would still be a ZZ rotation.

Conversely, in a gate-based system, there is a set of hardware native
gates which the ZZ-rotation is decomposed into. Consider a native
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Rz(θ)

Figure 2.2: A gate based implementation of a ZZ-rotation.

gate set of single-qubit gates and Controlled-NOT gates, then the ZZ-
rotation might be achieved as shown in Fig. 2.2 [82]. If this evolution
was paused halfway through, then the rotation generated would not be
a ZZ-rotation.

In other words, in a continuous-time quantum algorithm the Hamilto-
nian description is a true description at all times. In a discrete-time
quantum computer, the Hamiltonian description need only be accurate
at the end of each gate, i.e, at a discrete number of time points. Discrete
quantum algorithms can allow for fault-tolerant error correction [82].
There is no fault-tolerant model of error correction for continuous-time
quantum algorithms.

This raises the question of why one should study continuous-time quan-
tum algorithms. Currently, scaleable fault-tolerant quantum computing
has not been achieved [83], leaving scope to explore more near-term
quantum technologies to gain intuition and to search for possible ad-
vantages [4]. Quantum annealing, an example of a CTQO algorithm, has
been proposed as a possible candidate for near-term advantage [4]. The
analogue nature of continuous-time quantum algorithms bring them
closer to experiment, though with some limited programmability. It has
been argued that the analogue nature leads to some CTQO algorithms
having a degree of inbuilt error resilience [84, 85, 86].

Further to the above, CTQO encourages the design of quantum algo-
rithms in terms of Hamiltonians. This can help provide intuition into
quantum algorithms. Indeed, QAOA was inspired by QA/AQO [14],
which are undeniably CTQO algorithms. Ultimately, CTQO approaches
might one day be mapped onto discrete quantum hardware, detaching

26



2.7. The Quantum Approximate Optimisation Algorithm

from the analogue hardware [87].

Finally, we return to the question of whether QAOA is a continuous-
time quantum algorithm. The answer is not clear cut. Consider the
case where the driver Hamiltonian is the transverse field and Hp is
a quadratic Ising Hamiltonian. If the native gate-set of the quantum
computer consists of ZZ-rotations and single qubit rotations, and no
SWAP-gates are required, then QAOA is a continuous-time quantum al-
gorithm. If finite-connectivity results in the need for SWAP gates, then
there are two choices:

1. Like QA, auxiliary qubits are used to modify the cost-function,
so that no SWAP gates are required. In this case QAOA is a
continuous-time quantum algorithm.

2. SWAP gates are used. QAOA is then a discrete-time quantum
algorithm.

Finally, if the native gate set does not include ZZ, then QAOA is not a
continuous-time quantum algorithm.

Divorcing QAOA from native interactions has certain advantages. Aux-
iliary qubits are not required in the case of finite connectivity. Higher-
order cost functions (e.g. ZZZ-rotations) are more straightforward to
implement [88]. More complicated driver Hamiltonians that enforce
certain constraints can be realised without creating new hardware [89].
Using the driver Hamiltonian to enforce constraints is often referred to
as the Quantum Alternating Operator Ansatz [89] (also dubbed QAOA).
In conclusion, QAOA is typically a discrete time quantum algorithm.

Other variants of QAOA have been devised, including warm-starting
the approach [90]. In general, QAOA suffers from challenges in opti-
mising the free parameters in the QAOA state vector [76, 91, 92]. Modi-
fying the cost function [93] and heuristics [76] have been suggested as a
possible way to circumvent this issue [94].

In Chapter 7, QAOA is used as a benchmark and compared to a CTQO
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approach. To do this, the runtime of the CTQO approach is compared
to the runtime of the QAOA approach. This is done by assuming that
QAOA is a CTQO approach, where the runtime of a single instance is
taken to be:

TQAOA =
p

∑
k=1

γk + βk, (2.25)

this excludes the time required to determine suitable choices of γks and
βks, which would be required in conventional QAOA [14].

2.8 Summary

The CTQO approaches fall into two broad classes. Forward approaches
that map from the ground-state of the driver Hamiltonian and cyclic
approaches that start in a state diagonal in the computational basis. The
approaches are summarised in Table 2.1.

Cyclic approaches are less investigated than forward approaches but
present an opportunity to use prior information and to circumvent short
coherence times.

Considering the variety of forward approaches, deciding on the best
one is a challenge. Brady et al. [95, 96, 97] applied optimal control to
investigate what the optimal schedule is for a Hamiltonian of the form:

H = u(t)Hd + (1 − u(t))Hp, (2.26)

where the time T is fixed and ⟨Hp⟩ is minimised at the final time. The
value of u(t) was bounded between 0 and 1. It was assumed that the
minimum of ⟨Hp⟩ could not be reached exactly in the given time. Brady
et al. found that the optimal schedule started with u(0) = 0 and finished
with u(T) = 1. In the middle, the schedule was typically found to be an
annealing like schedule in many cases. This optimal schedule was de-
scribed as a ‘bang-anneal-bang’ schedule. This was later investigated by
Venuti et al. [98] who provided an extension to open quantum systems.

28



2.8. Summary

A
lg

or
it

hm
A

bb
re

v-
ia

ti
on

In
it

ia
l

st
at

e
A
(0
)

A
(T

)
B
(0
)

B
(T

)
A
(t
)

B
(t
)

A
di

ab
at

ic
qu

an
tu

m
op

ti
m

is
at

io
n

A
Q

O
G

ro
un

d
st

at
e

of
H

d
1

0
0

1

A
di

ab
at

ic
,

co
nt

in
uo

us
,

m
on

ot
on

ic
al

ly
de

cr
ea

si
ng

A
di

ab
at

ic
,

co
nt

in
uo

us
,

m
on

ot
on

ic
al

ly
in

cr
ea

si
ng

Q
ua

nt
um

an
ne

al
in

g
Q

A
G

ro
un

d
st

at
e

of
H

d
1

0
0

1
C

on
ti

nu
ou

s,
m

on
ot

on
ic

al
ly

de
cr

ea
si

ng

C
on

ti
nu

ou
s,

m
on

ot
on

ic
al

ly
in

cr
ea

si
ng

C
on

ti
nu

ou
s-

ti
m

e
qu

an
tu

m
w

al
k

C
TQ

W
G

ro
un

d
st

at
e

of
H

d
1

1
γ

γ
C

on
st

an
t

C
on

st
an

t

M
ul

ti
-s

ta
ge

qu
an

tu
m

w
al

k
M

SQ
W

G
ro

un
d

st
at

e
of

H
d

1
1

γ
i

γ
f

C
on

st
an

t
St

ep
w

is
e

in
-

cr
ea

si
ng

R
ev

er
se

qu
an

tu
m

an
ne

al
in

g
R

Q
A

Ei
ge

ns
ta

te
of

H
p

0
0

1
1

C
yc

lic
C

yc
lic

Bi
as

ed
qu

an
tu

m
an

ne
al

in
g*

BQ
A

Ei
ge

ns
ta

te
of

H
p

0
0

1
1

C
yc

lic
C

yc
lic

Q
ua

nt
um

ap
pr

ox
i-

m
at

e
op

ti
m

is
at

io
n

al
go

ri
th

m
Q

A
O

A
G

ro
un

d
st

at
e

of
H

d
0

1
1

0
1
−

B
(t
)

0
or

1

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
C

T
Q

O
ap

pr
oa

ch
es

an
d

Q
A

O
A

.
Th

e
ta

bl
e

su
m

m
ar

is
es

th
e

in
it

ia
l

st
at

e
an

d
th

e
sc

he
du

le
s

A
(t
)

an
d

B
(t
),

in
cl

ud
in

g
th

e
bo

un
da

ry
co

nd
it

io
ns

at
th

e
in

it
ia

lt
im

e
t
=

0
an

d
th

e
fin

al
ti

m
e

t
=

T
.

Th
e

as
te

ri
sk

*
de

no
te

s
th

e
re

qu
ir

ed
ad

di
ti

on
of

a
th

ir
d

te
rm

th
at

bi
as

es
to

w
ar

ds
th

e
in

it
ia

ls
ta

te
.

29



2. Combinatorial optimisation and continuous-time quantum
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Finding the exact optimal schedule is typically numerically challenging
[95].

Work by Gerblich et al. [99] demonstrated that MSQWs were closer to the
optimal protocol, in terms of operator norm, than QAOA. Lin et al. [100]
investigated the optimal schedule for the unstructured search problem
and found it to be very close to a CTQW. For more general combinatorial
optimisation problems, Schulz et al. [101] found that given a fixed short
runtime on a QPU, CTQWs provide a better time-to-solution than QA,
while, given a longer runtime, QA has a better time-to-solution for the
problems considered. In summary, there is no definitive answer over
which CTQO approach is better.

In this dissertation, we focus on CTQWs in Chapters 4 and 5. Chap-
ter 6 focuses on MSQWs and the generalisation to CTQO approaches
more generally, including cyclic approaches. Chapter 7 investigates a
novel approach for tackling combinatorial optimisation problems based
on Hamiltonians for optimal state transfer.

2.9 A note on numerical work and presentation

This work makes use of numerical experiments to establish the perfor-
mance of new approaches. The results are often presented as a box-plot
[102, 103]. The central line shows the median. The top and bottom line
of the central box shows the lower and upper interquartile. Outliers
are determined if they are more than 1.5 times more than the interquar-
tile range (IQR) away from the median and are denoted by circles. The
two caps at the end of the plot show the maximum and minimum data
points, excluding outliers. The box-plot makes no assumption about the
underlying distribution and provides a reasonable representation of the
distribution for easy comparison. An illustrative box-plot is shown in
Fig. 2.3.

The numerical work in this dissertation was completed using the stan-
dard numerical simulation tools in the Python package QuTip [104, 105]
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Figure 2.3: An illustration of a box-plot for a data set, named y. The minimum value
of y is denoted by min(y), the maximum value is denoted by max(y).

and graphs were generated using the Python package NetworkX [106].
Some of the data in Chapter 5 was collected using the Julia package
HOQST [107].
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Chapter 3

Pure-state statistical physics

3.1 Introduction

The aim of CTQO is to use a many-body quantum system to tackle clas-
sical combinatorial optimisation problems. By necessity, exact numerical
diagonalisation of the quantum system must be prohibitively difficult.
Indeed, for a quantum advantage to exist, it must not be possible for
there to be sufficiently good approximate quantum simulators. On the
assumption that numerical simulation is infeasible, there needs to be
alternative approaches to reasoning about the behaviour of CTQO algo-
rithms. The most common approach has been to appeal to the adiabatic
theorem. AQO has its limitations, as discussed in the previous chapter,
and therefore there has been a push to non-adiabatic approaches. In this
regime, the adiabatic theorem provides little intuition. Alternative ap-
proaches to reasoning about CTQO algorithms are therefore required.
In this chapter, we demonstrate that pure-state statistical physics can
allow for reasoning about CTQO.

Statistical physics has historically proved to be a useful approach to
understanding many-body phenomena and making predictions [108].
The framework, at least in the canonical ensemble, involves the iden-
tification of a large bath that can exchange energy with the system of
interest. Statistical physics is then used to make predictions about that
system of interest. Pure-state statistical physics is an attempt to transfer
the insights of statistical mechanics to isolated quantum systems. Given
a sufficiently large closed quantum system, if the observable of interest
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is sufficiently local, can the rest of the system act as its own bath? That
is to say, given a closed quantum system, are local observables indis-
tinguishable from a Gibbs state? This was broached in the affirmative
for a wide class of systems by Srednicki [23] and Deutsch [24], and has
become known as the Eigenstate Thermalisation Hypothesis (ETH). The
rest of this chapter outlines some principles that fall under the umbrella
of pure-state statistical physics. Some are provably true and some are
physically reasonable assumptions based on conceptions of a typical
many-body quantum system.

3.2 Conservation of Energy

Energy in a closed-system is conserved: a banal but foundational state-
ment. At a practical level, given a time-independent Hamiltonian H that
generates unitary evolution, ⟨H⟩ is constant throughout the evolution.
The energy provides a conserved quantity that is typically local, that
places constraints on the evolution of the system. Many CTQO algo-
rithms, discussed in Chapter 2, have time-dependent Hamiltonians, so
energy is not conserved. This means that the systems are not closed,
yet it is assumed that the dynamics are unitary. These systems can be
described as being isolated.

3.3 Eigenstate Thermalisation Hypothesis

Consider the expectation value of some local observable A in a closed
system with an initial density operator ρ and evolved under some lo-
cal time-independent Hamiltonian [1]. The eigenvectors and associated
eigenvalues of the Hamiltonian are denoted by |Ek⟩ and Ek respectively.
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It follows that the expectation of A is given by:

⟨A(t)⟩ = ∑
m,n

ei(Em−En)t ⟨En| ρ |Em⟩ ⟨Em| A |En⟩ (3.1)

= ∑
En=Em

⟨En| ρ |Em⟩ ⟨Em| A |En⟩ (3.2)

+ ∑
En ̸=Em

ei(Em−En)t ⟨En| ρ |Em⟩ ⟨Em| A |En⟩ (3.3)

= ⟨A⟩+ ⟨∆A⟩, (3.4)

where:
⟨A⟩ = ∑

En=Em

⟨En| ρ |Em⟩ ⟨Em| A |En⟩ (3.5)

and
⟨∆A⟩ = ∑

En ̸=Em

ei(Em−En)t ⟨En| ρ |Em⟩ ⟨Em| A |En⟩ . (3.6)

The time independent sum in Eq. 3.5 corresponds to the infinite-time
average of ⟨A(t)⟩, i.e.

⟨A⟩ = lim
T→∞

1
T

∫ T

0
⟨A(t)⟩dt. (3.7)

If ⟨A(t)⟩ approaches a steady state, it will approach its infinite-time av-
erage. For ⟨A(t)⟩ to approach a steady state, ⟨∆A⟩ ≈ 0 up to some small
fluctuations. Eq. 3.6 provides some intuition for how ⟨A(t)⟩ approaches
a steady-state – namely, that the difference in energy gaps between pairs
of eigenstates will cause dispersion. As a consequence ⟨∆A⟩ ≈ 0 up to
some negligible fluctuation for large systems, provided the system has
little degeneracy. This means that the expectation of A will approach
some steady state after some time. This timescale will be problem spe-
cific; details on how it might be estimated can be found in [109, 110].
It has been numerically observed and justified that this timescale will
not necessarily be exponential in the problem size [109, 111]. This is
discussed further for CTQO in Chapter 5. For CTQO the observables
that we are most interested in are the problem Hamiltonian Hp and
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the driver Hamiltonian Hd. The assumption that dispersion leads to a
steady state for local observables is summarised in the two assumptions
below.

Assumption 1 (Stationary value) Under evolution by a time-independent
Hamiltonian, the expectation of a local observable A can be replaced with its
steady state value ⟨A⟩ after some time τd. This includes the expectation values
of Hp and Hd. The time τd is the timescale associated with dispersion in the
energy basis.

Assumption 2 (Diagonal in the energy eigenbasis) Once the system ap-
proaches a steady state, we can approximate the state-vector by a density oper-
ator which is diagonal in the energy eigenbasis [1].

The ETH is an attempt to explain how thermalisation occurs in a closed-
system. Explicit details can be found in [112]. In this dissertation we are
concerned with the consequences of the ETH. Primarily, that for a large
class of observables, the steady-state value of an observable is equal
to averaging over the microcanonical ensemble in the thermodynamic
limit. The fluctuations from this value are exponentially suppressed
with the degrees of freedom in the system [112]. In certain cases, a
single eigenstate is sufficient to carry out the microcanonical averaging
[23].

Not all Hamiltonians exhibit ETH, and not all observables thermalise
[113]. Typically, the Hamiltonian is assumed to be highly non-
degenerate [23, 24, 114] and to provide a locally conserved quantity
[115]. The observables that exhibit thermalisation are typically consid-
ered to be local or few-body operators [23, 114]. For example, consider
the highly non-local operator for a non-trivial system [115]:

Ojk = −i
(∣∣Ej

〉
⟨Ek| − |Ek⟩

〈
Ej
∣∣) , (3.8)

where Ej ̸= Ek. This will clearly not approach a steady state.

The ETH tells us that for large systems the steady state, exhibited by
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local observables, can be well approximated by the microcanonical en-
semble. Though there are known exceptions, this behaviour is thought
to be very common [116, 117]. Note that it is possible for a system to
approach a steady state that is not a thermal state [115].

For ease of computation, throughout this dissertation we make use of
the canonical ensemble, which is equivalent to the microcanonical en-
semble in the thermodynamic limit [114, 118]. That is to say, throughout
this dissertation we assume the pure quantum state is locally well ap-
proximated by a thermal Gibbs state:

ρGibbs =
e−βH

Tr e−βH , (3.9)

with temperature 1/β. The temperature is fixed according to the energy
of the system:

⟨H⟩ = Tr HρGibbs. (3.10)

This leads to our third assumption:

Assumption 3 (ETH) The steady state of a local observable is locally indis-
tinguishable from a Gibbs state. The temperature of ρGibbs is fixed according
to the energy of the system. That is to say, the steady state value ⟨A⟩ can be
well approximated by using the Gibbs state, ⟨A⟩ ≈ Tr (AρGibbs). The inverse
temperature β is fixed by replacing A with the Hamiltonian.

The ETH, as described above, is likely to be a better approximation for
large problem sizes where subextensive corrections and fluctuations can
be ignored [119]. A CTQW is a time-independent Hamiltonian and in
most settings unlikely to be integrable. We might therefore expect it to
exhibit thermalisation for local observables. By exploiting the observa-
tion that the system is well approximated by a thermal state, we make
predictions on the performance of CTQWs in Chapter 4.
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3.4 Spin-flip symmetry and the ETH

This dissertation primarily focuses on Max-cut. A CTQW Hamiltonian,
with a transverse-field driver Hamiltonian has a spin-flip symmetry.
Let HQW be an example Hamiltonian with spin-flip symmetry, then[
HQW , F

]
= 0, where:

F =
n

∏
i=1

Xi. (3.11)

Typically, a CTQW starts in the |+⟩ state, so the evolution is restricted
to the plus one eigenspace of F for the entire evolution.

Despite this restriction, throughout this dissertation, we use the ‘com-
plete’ Hamiltonian as opposed to the Hamiltonian projected onto the
correct symmetry sector to apply the ETH. This is numerically verified
in Sec. 4.3. This choice is justified on the following grounds [115]:

1. F is a global operator and corresponds to a global symmetry.

2. We are interested in calculating the expectation values of local in-
teractions only.

It is well established within the ETH literature that local symmetries
can prevent thermalisation [115]. In contrast, the spin-flip symmetry
is a global symmetry. In general, there are many globally conserved
quantities for evolution under a constant Hamiltonian. If HQW belongs
to a Hilbert Space H with dimension dimH, then there are at least
dimH globally conserved quantities [115]. To see this, let the projector
onto each eigenstate of HQW be denoted by Pk with k = 1, . . . , dimH,
then [115]:

[
HQW , Pk

]
= 0 (3.12)[

Pk, Pj
]
= 0. (3.13)

Hence the ⟨Pk⟩ are globally conserved quantities. Despite the large num-
ber of conserved quantities, we generally do not expect these global
symmetries to have much impact on the dynamics.
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Though the above argument suggests we should be careful when con-
sidering the role of globally conserved quantities, it fails to consider the
specific case of the spin-flip symmetry, which we know restricts dynam-
ics to the positive eigenspace of F for a CTQW. Here we emphasise again
that we are only interested in local quantities. A locally measurable con-
sequence of the spin-flip symmetry is that:

⟨Zi(t)⟩ = ⟨+|U†Zi(t)U |+⟩
= ⟨+| FU†Zi(t)UF |+⟩
= ⟨+|U†FZi(t)FU |+⟩
=− ⟨+|U†Zi(t)U |+⟩
=− ⟨Zi(t)⟩,

where we have used the initial state being an eigenstate of F and [U, F] =
0, consequently ⟨Zi(t)⟩ = 0.

Since ⟨Zi(t)⟩ is a local observable, this should agree with the result if we
were to replace the unitary evolution with a Gibbs distribution:

⟨Zi(t)⟩β ∝ Tr
(

Zie−βHQW
)

. (3.14)

As
[
HQW , F

]
= 0, this is also zero. Thus, the thermal-state recovers the

correct expectation value for any local observable that flips sign under
conjugation by F (i.e., FOLF = −OL).

That is not to say that the spin-flip symmetry has no role in calculating
expectation values. Consider the case where the initial state

|ψi⟩ = cos θ/2 |φ+⟩+ e−iφ sin θ/2 |φ−⟩ , (3.15)

is a linear superposition of two states, where F |φ+⟩ = |φ+⟩ and
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F |φ−⟩ = − |φ−⟩. Then

⟨ψi|U†OLU |ψi⟩ = cos2 θ/2 ⟨φ+|U†OLU |φ+⟩
+ sin2 θ/2 ⟨φ−|U†OLU |φ−⟩+ e−iφ cos θ/2 sin θ/2 ⟨φ+|U†OLU |φ−⟩

+ eiφ cos θ/2 sin θ/2 ⟨φ+|U†OLU |φ−⟩∗ . (3.16)

If OL also commutes with F then (as is the case with Hp) it follows that:

⟨φ+|U†OLU |φ−⟩ =− ⟨φ+| FU†OLUF |φ−⟩ (3.17)

=− ⟨φ+|U†OLU |φ−⟩ , (3.18)

hence ⟨φ+|U†OLU |φ−⟩ = 0 and

⟨ψi|U†OLU |ψi⟩ = cos2 θ/2 ⟨φ+|U†OLU |φ+⟩
+ sin2 θ/2 ⟨φ−|U†OLU |φ−⟩ . (3.19)

However, we have conjectured (and numerically investigated) that each
of the above matrix elements can be represented by replacing each uni-
tary evolution with a thermal state. That is to say,

⟨ψi|U†OLU |ψi⟩ ≈ cos2 θ/2
Tr
{

OLe−β+HQW
}

Tr
{

e−β+HQW
}

+ sin2 θ/2
Tr
{

OLe−β−HQW
}

Tr
{

e−β−HQW
} , (3.20)

therefore the system would need to be assigned two temperatures, one
for each symmetry sector.

Throughout this chapter we are interested in ⟨Hp⟩, which is invariant
under F. Work on spontaneous symmetry breaking and the ETH can be
found in [120, 121].
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3.5 The second-law of thermodynamics in an

isolated-system

So far, the discussion of pure-state statistical physics has been limited to
time-independent Hamiltonians. A well-known maxim is that entropy
can only increase. This familiar refrain is an expression of the second-
law of thermodynamics and places restrictions on the evolution of a
system. In this section, we examine similar ideas for pure-state statistical
physics.

3.5.1 Diagonal Entropy

Entropy plays a central role in classical statistical physics. In quantum
mechanics the von Neumann entropy [82], given by

SvN(ρ) = −Tr ρ log ρ, (3.21)

typically plays this role. Under unitary evolution, the von Neumann
entropy is conserved, it is therefore not a useful measure of entropy in
an isolated quantum system. A possible candidate is the entanglement
entropy. The entanglement entropy is given by tracing out part of a
system and taking the von-Neumann entropy of the reduced density
operator.

An alternative proposed candidate for the role of entropy in an isolated
system has been the diagonal entropy [122]. This is the von Neumann
entropy of the diagonal of the density operator in the energy eigenbasis.
That is to say, given a Hamiltonian H and associated density operator ρ,
the diagonal of ρ is given by

ρdiag = ∑
α

|Eα⟩ ⟨Eα| ρ |Eα⟩ ⟨Eα| , (3.22)

where |Eα⟩ are the eigenstates of H. Then the diagonal entropy of ρ is
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given by:
Sd(ρ) = −Tr ρdiag log ρdiag. (3.23)

The diagonal entropy is conserved in a closed system. This is not nec-
essarily true for isolated systems. From Jensen’s inequality, it is known
that [122]:

Sd(t) ≥ SvN, (3.24)

where t ≥ 0 denotes the time of evolution. If Sd(0) = SvN, meaning
that the initial state is diagonal in the energy eigenbasis, then Eq. 3.24
implies [122]:

Sd(t) ≥ Sd(0). (3.25)

Hence, if the initial state is diagonal in the energy eigenbasis, then the
diagonal entropy can only increase compared to its initial value. This
does not imply Sd(t) is monotonically increasing in time. Further to
this, if the system has approached a steady state (Assumption 2) and
is well approximated by a diagonal state, then it might reasonably be
expected that varying the Hamiltonian will cause the diagonal entropy
to increase. Although the diagonal entropy does not capture the strict
monotonicity desired, it does reasonably approximate this behaviour.
Further to this, in AQO/QA excitations to higher energy states are pri-
marily of interest and captured by the diagonal entropy.

3.5.2 Planck’s Principle

Calculating the diagonal entropy requires knowledge of ρdiag. Typically,
we are interested in observables such as ⟨Hp⟩, while diagonal entropy
does not correspond to an observable. For this reason, a further assump-
tion is introduced that relates schedules to an observable — namely the
energy.

Assumption 4 (Planck’s Principle) For any relevant cyclic process in an
isolated system, no work can be extracted. That is, for any cyclic process rep-
resented by a unitary U, with initial Hamiltonian H and initial state ρ, the
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0 E

Ω(E)

E1 E2

Figure 3.1: The solid black line sketches the typical density-of-states Ω(E), for a large
non-integrable system [1]. The solid blue line shows a possible energy distribution
for the initial state. The red line shows a possible resulting energy distribution as the
result of a cyclic process. The energy distribution has been broadened and has moved
towards the middle of the spectrum.

following holds true:

W = EInitial − EFinal = Tr
[

H
(

ρ − UρU†
)]

≤ 0. (3.26)

This assumption has significant consequences for CTQO. To justify it, we
show its consistency with Assumptions 3 and 2. We also point the reader
to [26] where Goldstein et al. showed that under certain assumptions, in
the isolated system setting, the extractable work is exponentially more
likely to decrease than not. The assumptions include that knowledge of
the initial state (i.e. before the cyclic process) is lost by time-averaging
under evolution by a Hamiltonian — which is the case in an MSQW.
Assumption 4 is sometimes referred to as Kelvin’s statement of the sec-
ond law of thermodynamics [1], or Planck’s principle [26, 27]. See also
[1, 27, 123, 124, 125] for further attempts to mathematically motivate the
second law of thermodynamics in isolated systems from the rules of
quantum mechanics.

It is known that any Gibbs state, with a positive temperature, satisfies
Eq. 3.26 [126]. A very simple derivation is as follows: let the initial state
ρ0 be a Gibbs state at inverse temperature β > 0 with Hamiltonian H.
The state after unitary evolution is denoted by ρ(t). The Gibbs state
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3. Pure-state statistical physics

minimises the free energy:

Tr{Hρ0} −
1
β

SvN(ρ0) ≤ Tr{Hρ(t)} − 1
β

SvN(ρ(t)) (3.27)

where SvN(·) is the von Neumann entropy. Rearranging the above gives:

S(ρ(t))− S(ρ0) ≤ β (Tr{Hρ(t)} − Tr{Hρ0}) . (3.28)

Since the von Neumann entropy is conserved under unitary evolution,

0 ≤ β (Tr{Hρ(t)} − Tr{Hρ0}) . (3.29)

Provided that the temperature is positive,

Tr{Hρ0} ≤ Tr{Hρ(t)}. (3.30)

Hence for any unitary, ⟨H⟩ can only increase for a Gibbs state. This
means that, for a cyclic process, the energy can only increase. This
means that Planck’s principle is provably true for Gibbs states. A Gibbs
state is an example of a passive state. A passive state is a state that is di-
agonal in the energy eigenbasis of a Hamiltonian, with the populations
ordered such that they do not increase with energy [126]. Examples in-
clude ground states and sampling energy eigenstates from a uniform
distribution with only a high-energy cut-off. All passive states provably
satisfy Planck’s principle [127].

If we assume that the ETH (i.e. Assumption 3) holds for the initial state,
then it remains to determine if U†HU is a local observable [1, 119]. If
U†HU, where U corresponds to a cyclic process, is a local observable,
then Assumption 4 follows as a consequence of Assumption 3.

For further evidence of Planck’s principle, away from the ETH, we might
look to the diagonal entropy. Coupled with a reasonable unimodal
model of the density-of-states (especially for non-integrable systems)
[1], as sketched in Fig. 3.1, this implies Assumption 4. We expect this
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to hold for initial Hamiltonians like Hp too (see for example [101]) for a
wide range of problems. Essentially, under a cyclic process, the system
is expected to heat up as there are more states towards the middle of
the spectrum than at the edges. Under continued periodic drive, this
is sometimes referred to as Floquet heating [1, 128]. In order to apply
Assumption 4, it is required that the system is more likely to move up
in energy than down in energy. This is unlikely to be the case given an
initial state that is very high in energy (corresponding to a negative tem-
perature Gibbs state). Typically, the system is expected to move towards
the infinite temperature state as a result of a cyclic process. This places
a restriction on the initial state, |ψi⟩, for Assumption 4 to hold:

⟨ψi| H |ψi⟩ <
1
D Tr H, (3.31)

where D is the dimension of the Hilbert space. Perhaps a more accurate
statement of Assumption 4 is that a cyclic process will move the energy
of the system towards its infinite temperature value [1, 128]. For the
purpose of what is to follow, Assumption 4 as stated originally is suffi-
cient. Although there are specific cases which violate each assumption
we expect them to hold true for a wide variety of problems, drivers and
encodings, especially as the problem size is increased.

Assumptions 2, 3 and 4 all have the effect of imposing an arrow of
time on the evolution. This comes from discarding the coherences in
the energy eigenbasis. In a closed system, this is a result of dispersion
in the energy eigenstates. For an open system, this could come from
being very weakly coupled to a bath. Notably, AQO makes no use of
coherences in the energy eigenbasis. We will show that the performance
of MSQWs does not rely on coherence between energy eigenstates either
— despite being non-adiabatic. It remains an open question, how (or
if) coherences in the energy eigenbasis in CTQO can be (or should be)
reliably exploited.
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3.6 Conclusion

Pure-state statistical physics is largely intuitive. Planck’s principle is
based on the assumption there are more states towards the middle of
the energy spectrum and less at the edge, therefore a cyclic process is
more likely to increase in energy. Given the energy of a system in a
steady-state, a sensible estimator of the state is the one that maximises
the entropy (i.e. the Gibbs state). Pure-state statistical physics is not
without its limitations. In many regimes, the results are hypotheses
as opposed to provable statements. Planck’s principle does not always
hold, nor is the ETH always true.

Given a closed system, there are numerous observables that are con-
served, for example all powers of the Hamiltonian. Therefore, a more
sensible estimator of the state might be a generalised Gibbs ensemble,
with a Lagrange multiplier for each power of H. Each power of H pro-
vides a less local conserved quantity (i.e. operators with larger support).
By taking a Gibbs state, the assertion is that the most local conserved
quantity is the most important and the rest can be neglected. In this
dissertation, it is shown that in many cases the Gibbs state is sufficient
to make predictions. The Gibbs state has the additional benefit of being
a well-studied state. There are current attempts to improve on the ETH
[129, 130, 131, 132, 133].

This dissertation uses the framework laid out in this chapter to gain
intuition about the CTQO algorithms discussed in Chapter 2. This is
often explicitly numerically verified for small problem instances where
exact numerical diagonalisation is achievable. Given that the arguments
rely on the intuition contained in this chapter, it is expected that the
conclusions drawn will hold outside these explicitly verifiable problem
instances.
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Chapter 4

Continuous-time quantum walks
for Max-cut are hot

4.1 Introduction

Continuous-time quantum walks (CTQWs) are a relatively new ap-
proach to tackling combinatorial optimisation problems. This chapter
discusses how to reason about CTQWs where exact numerical diagonal-
isation is prohibitively difficult. To discuss CTQWs, this chapter focuses
on Max-cut due to its simple Ising representation. Max-cut, along with
the graph types considered in this chapter, were introduced in Sec. 2.3.
The driver Hamiltonian is taken to be the standard transverse-field
driver. In a CTQW, the initial state is evolved under a time-independent
Hamiltonian, with some free parameter γ. Sec. 4.2 investigates optimis-
ing γ numerically for small problem instances. As discussed in Chapter
3, it is expected that CTQWs will thermalise. In Sec. 4.3 it is numerically
verified that this is the case. The rest of this chapter focuses on the long-
time behaviour of CTQWs. Discussion of the dynamics is postponed
until Chapter 5. Sec. 4.4 provides two analytically tractable models for
the density-of-states (DOS). The models are then used to make predic-
tions about the steady-state behaviour of CTQWs (Sec. 4.5), including
the optimal choice of γ in Sec. 4.6. In Sec. 4.7 some evidence of the
performance of optimised CTQWs is provided.
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4. Continuous-time quantum walks for Max-cut are hot

4.2 Optimising the free parameter

The CTQW Hamiltonian

HQW = Hd + γHp (4.1)

contains a free parameter γ. Heuristically, this controls the amount of
dynamics present in the evolution. In this section, the free parameter γ

is optimised numerically to give the best time-averaged value of ⟨Hp(t)⟩.
More explicitly, ⟨Hp(t)⟩ is given by

⟨Hp(t)⟩ = ⟨+| eiHQW tHpe−iHQW t |+⟩ (4.2)

and the time-averaged value is given by:

⟨Hp⟩ = lim
T→∞

1
T

∫ T

0
⟨Hp(t)⟩dt. (4.3)

In the rest of this section, by brute force optimisation, the optimal choice
of γ is found for different graph choices. Comparisons to a reasonable
heuristic choice of γ are also made. To begin with, the specific example
of a 12-qubit binomial graph (shown in the inset of Fig. 4.1a) is focussed
on, before looking at statistics gathered from multiple graph instances.

We start with a specific choice of γ = 1 for the graph instance shown in
the inset of Fig. 4.1a. The blue line in Fig. 4.1a shows the average value
of Hp for the CTQW on this graph with γ = 1. The dashed pink line
shows the ground state energy of Hp (i.e. E(p)

0 ). For the majority of the
evolution shown ⟨Hp(t)⟩ is fluctuating around the steady-state value,
⟨Hp⟩ (the dashed purple line). The ground state probability is shown
in Fig. 4.1b. The ground state probability shows significant oscillations,
although these oscillations may have benefits in solving the optimisation
problem, the steady-state behaviour of ⟨Hp⟩ makes it easier to optimise
over to find the optimal γ.

Fig. 4.2 shows how ⟨Hp⟩ varies with γ for the same problem instance
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4.2. Optimising the free parameter

(a) A time domain plot of ⟨Hp⟩ (the blue
line). The dashed pink line shows the
minimum energy of Hp. The dashed pur-
ple line is the time-averaged value.

(b) A time domain plot of the ground-
state probability

Figure 4.1: Plots of possible metrics for assessment of CTQWs for the randomly gen-
erated 12-qubit instance, shown in the inset of Fig. 4.1a

Figure 4.2: The time-averaged value ⟨Hp⟩ as γ is changed for the 12 qubit graph shown
in the inset of Fig. 4.1a. The dashed purple line shows the location of γopt and ⟨Hp⟩min.

as Fig. 4.1a. The optimal γ (i.e. γopt) occurs at the minimum value of
⟨Hp⟩ (i.e., ⟨Hp⟩min). For the problem instance considered in Fig. 4.2,
γopt ≈ 0.90 and ⟨Hp⟩min ≈ −7.65.

In previous works, the free parameter in a CTQW has been heuristically
chosen in an attempt to maximise dynamics. One approach to do this
has been to match the energy scales of the driver and problem Hamil-
tonian [22, 134]. For a Max-cut problem, this could be interpreted as
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4. Continuous-time quantum walks for Max-cut are hot

Tr γ2H2
p = Tr H2

d such that:

γ2
heurκ2 = n, (4.4)

where κ2 = |E| is the number of edges in the graph and n is the number
of vertices in the graph and equivalently the number of qubits involved
in the CTQW. Focusing first on the performance of the binomial graph
shown in Fig. 4.2, evaluating Eq. 4.4 gives γheur = 0.5, corresponding to
⟨Hp⟩min ≈ −5.88. This is a significant worsening of the performance of
the CTQW.

Fig. 4.3a shows the optimal γ for one hundred randomly generated
problem instances for binomial graphs with problem sizes ranging be-
tween ten and thirteen qubits. The optimal γ is seen to decrease with
the problem size. The range of optimal values of γ is on the order of
0.1. The dashed red line represents the heuristic in Eq. 4.4 assuming the
number of edges is n(n − 1)/3 as the probability of selecting an edge is
2/3 for the graphs generated. Clearly, Eq. 4.4 is significantly underesti-
mating the optimal γ.

It is expected that the optimal γ will balance Hp and Hd, hence why it is
reasonable to assume γ ∝ n−1/2. This is the same functional dependence
on n as Eq. 4.4. The dashed black line in Fig. 4.3a shows γ ∝ n−1/2 fitted
to the available data. The curve is not inconsistent with the data.

Fig. 4.3b shows how ⟨Hp⟩ changes between γopt and γheur, normalised
by the value of ⟨Hp⟩ at the optimal choice of γ for the same problem
instances as Fig. 4.3a. The difference in performance is around 15-20%.
From the numerical data collected, this difference in performance ap-
pears largely independent of problem size. There is clearly scope for
improvement on the heuristic choice of γ.

Turning to three-regular graphs, Fig. 4.4a shows γopt for different prob-
lem sizes. For regular graphs, the number of edges for a given problem
size is fixed and scales with n. Hence, γheur evaluates to be the same
for all instances of a d-regular graph. This is the red dashed line in the
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(a) The optimal value of γ. The red
dashed line reflects the heuristic from
Eq. 4.4, explicitly γ =

√
3/(n − 1). The

dashed black line corresponds to fitting
the curve γopt = an−1/2 to the medians
of the data, yielding a ≈ 2.93.

(b) The difference in ⟨Hp⟩ for γopt and
γheur, normalised by the absolute value
of ⟨Hp⟩ at the optimal choice of γ.

Figure 4.3: A comparison of the optimised value of γ, i.e., γopt and the heuristic choice
of γ shown in Eq. 4.4 for 100 binomial graphs at each problem size. The number of
qubits n is equal to the number of vertices in the Max-cut graph.

figure. For three-regular graphs γheur also appears to be generally un-
derestimating γopt but less so than in the binomial case. This is reflected
in the change in performance, as shown in Fig. 4.4b.

This section has focused on finding the optimal γ. The closer γ is to
the optimal value, the better the approximation ratio is. To find the
optimal γ brute-force search was utilized. This could be realised for
larger problem sizes by sampling from a device capable of implement-
ing Eq. 4.1, however this approach occurs a sampling overhead. In this
section we have focused on exploring a heuristic choice based on the
mantra of maximising dynamics for selecting γ. The heuristic choice of
γ has elucidated how the optimal choice of γ might scale with n. This
is particularly pertinent to the discussion in Sec. 4.4. Sec. 4.6 shows
how the heuristic choice of γ (i.e. Eq. 4.4) can be recovered assuming
thermalisation and how it might be improved upon. An alternative ap-
proach to estimating the optimal γ could have been to extrapolate from
small problem instances, a similar approach has been explored in the
context of QAOA [135]. The aim of the rest of this chapter is to start to

51



4. Continuous-time quantum walks for Max-cut are hot

(a) The optimal value of γ. The red
dashed line is the heuristic from Eq. 4.4,
explicitly γ =

√
2/3.

(b) The difference in ⟨Hp⟩ for γopt and
γheur, normalised by the absolute value
of ⟨Hp⟩ at the optimal choice of γ.

Figure 4.4: A comparison of the optimised value of γ, i.e., γopt and the heuristic choice
of γ shown in Eq. 4.4 for three-regular graphs. In ascending problem size, there are:
16, 45 problem instances.

understand how to describe CTQWs, with the ultimate aim of setting γ.

4.3 Continuous-time quantum walks are well

modelled by thermal states

As described in Chapter 3, a closed quantum system under evolution
by a constant Hamiltonian can result in a state that is locally indistin-
guishable from a thermal state. In terms of CTQWs, of primary interest
is ⟨Hp⟩, a sum over local observables. Thus, if a CTQW close to the
optimal γ exhibits thermalisation, then ⟨Hp⟩ should correspond to that
of a thermal state. In this section, numerical evidence that CTQWs do
exhibit thermalisation even for small problem sizes is provided.

Since the Hamiltonian is constant during the evolution of a CTQW, en-
ergy is conserved. Hence, the following must hold true for the thermal
state [115]:

Tr
[
HQWρβ

(
HQW

)]
= −n, (4.5)

where ρβ(HQW) denotes a thermal state with Hamiltonian HQW and
inverse temperature β. This equation fixes β, therefore there are no
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(a) A 12-qubit binomial graph. (b) A 12-qubit three-regular graph.

Figure 4.5: The performance of a CTQW with γ optimised to give the best value of
⟨Hp⟩. The dashed purple line shows the thermal state prediction. The temperature is
fixed using Eq. 4.5.

free parameters to fit. Knowing the temperature associated with the
CTQW, provides us with a second route to find the same value of ⟨Hp⟩
by preparing a thermal state, thus side-stepping the need for complete
unitary dynamics.

Fig. 4.5 shows the Schrödinger evolution of ⟨Hp⟩ for a binomial graph
and a three-regular graph and the corresponding prediction for ⟨Hp⟩
from the thermal state. For both problem instances, it appears that ⟨Hp⟩
is fluctuating around a steady state value. Importantly, despite being
far from the thermodynamic limit at only 12 qubits, the thermal state
prediction is capturing the steady-state behaviour well.

Fig. 4.6 shows the solution to Eq. 4.5 for the optimal choice of γ for
multiple instances of binomial and three-regular graphs. For both cases
the inverse temperatures are quite small, with β < 1 for almost all in-
stances. This means that CTQWs correspond to Gibbs states with high
temperatures.

As mentioned in Chapter 3, it is expected that the ETH holds true in the
thermodynamic limit. The system sizes simulated here are of the order
of ten qubits, hence it is expected that there will be finite-size effects,
meaning there will be some error between the Schrödinger equation
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(a) Binomial graphs. (b) Three-regular graphs.

Figure 4.6: The inverse temperature associated with CTQWs (i.e. the solution to
Eq. 4.5). For each problem instance γ is equal to γopt, as shown in Fig. 4.3a and
Fig. 4.4a.

(a) Binomial graphs. (b) Three-regular graphs.

Figure 4.7: The difference between the true value of ⟨Hp⟩ and the thermal prediction
(for the values of β shown in Fig. 4.6) normalised by the magnitude of the true value
of ⟨Hp⟩ for each problem.

and the thermal prediction. This is captured in Fig. 4.7. Generally,
the thermal prediction, ⟨Hp⟩β is overestimating the performance of the
CTQW. As n is increased, it is expected that this error will decrease.
However, even for these very small systems the error is relatively small,
with no significant outliers in this data set.

54



4.4. Modelling the density of states

4.4 Modelling the density of states

In the previous section it was numerically demonstrated that, even for
relatively small systems, ⟨Hp⟩ is well predicted by a thermal state. Nu-
merically solving Eq. 4.5 is however difficult, requiring finding the ex-
ponential of a matrix that increases exponentially with the problem size.
The aim is to find a method for estimating the temperature associated
with a CTQW. To do this, possible models for the DOS of HQW are in-
vestigated in this section.

To better understand the DOS, it is possible to calculate moments of
the distribution. These can be used as fitting parameters for a model
of the DOS. To summarise, the goal is to calculate the moments of the
distribution produced by the eigenenergies of the CTQW Hamiltonian
for the graph G = (V, E):

HQW = Hd + γHp, (4.6)

where:

Hd =−
n

∑
i=1

Xi (4.7)

Hp = ∑
(i,j)∈E

ZiZj, (4.8)

where n = |V| is the number of nodes in the graph. Note that the
Hamiltonian is constructed of Pauli matrices, which are traceless [82].
Denoting the eigenenergies of HQW as Ek, then the mean of the distri-
bution of eigenenergies is given by:

µ =
1
2n ∑

k
Ek =

1
2n Tr HQW . (4.9)

Since the Hamiltonian is traceless, this evaluates to zero. Noting that
only terms that are equal to the identity will contribute to the trace,
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repeating this approach for the variance gives:

σ2 =
1
2n ∑

k
E2

k

=
1
2n Tr H2

QW

=
1
2n Tr

(
H2

d + 2γHdHp + γ2H2
p

)
= n + 0 + γ2κ2,

where κ2 is the number of edges in the graph. The same approach can
be used to find the third moment:

1
2n ∑

k
E3

k =
1
2n Tr H3

QW

=
1
2n Tr

(
γ3H3

p

)
= 6γ3κ3,

where κ3 is the number of triangles in the graph [136]. The fourth mo-
ment also follows from the above logic:

1
2n ∑

k
E4

k =
1
2n Tr H4

QW

=
1
2n Tr

(
H4

d + 4γ2H2
d H2

p + 2γ2HdHpHdHp + γ4H4
p

)
=
(

n2 + 2(n2 − n)
)
+ 4γ2nκ2 + 2γ2(n − 4)κ2

+ γ4 (κ2 + 3κ2(κ2 − 1) + 24κ4) ,

where κ4 is the number of squares in the graph. From here it is straight-
forward to calculate the skewness and kurtosis. In theory, this process of
calculating moments could be continued to higher orders, incorporating
loops of greater lengths. However, as shown above, even by the fourth
order this becomes cumbersome.

To make further progress, it is assumed that the DOS is well modelled
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by a continuous distribution. This assumption is justified because the
eigenstates of HQW are likely to become exponentially close as the sys-
tem size grows. This follows from the largest eigenvalue of HQW being
polynomial in n, and there being exponentially many states. Assum-
ing no (or little) degeneracy, the difference between energy levels must
shrink exponentially with the problem size. We also assume that the
DOS is well modelled by a uni-modal distribution. Intuitively, for large
systems, it is expected that the energy of a randomly chosen eigenstate
will be close to the average energy. The average energy, µ, of HQW is 0.
The variance, σ2 is equal to n + γ2κ2. Therefore, as n goes to infinity,
σ/2n tends to zero. So we expect a tightly peaked distribution for large
n. The assumption of uni-modality will break down if γ is too large or
too small. However, as seen in Sec. 4.2 we expect useful values of γ to
correspond to somewhere between these two limits.

The DOS for thermalising systems has previously been modelled with a
Gaussian distribution [1, 137, 138, 139]. Since the CTQW exhibits ther-
malisation, we adopt this approach. Fig. 4.8 shows a Gaussian fit to the
DOS for a 12-qubit three-regular graph (Fig. 4.8a) and a binomial graph
(Fig. 4.8b) with γ optimised for each problem. Visually, this appears to
be an acceptable approximation for the regular graph, perhaps less so
for the binomial graph. Given the simplicity of this approximation, it is
utilised throughout the chapter to make simple analytic predictions.

To verify the Gaussianity of the DOS, two typical tests of normality, the
skewness, s, of the distribution and the excess kurtosis k, are evaluated.
The skewness is the ratio of the third moment of the distribution to the
cube of the standard deviation. The kurtosis is the ratio of the fourth
moment of the distribution to the variance squared. The excess kurtosis
is the kurtosis minus the expected kurtosis of a Gaussian distribution,
which is equal to 3.
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(a) A 12-qubit three-regular graph with
γ = 1.11.

(b) A 12-qubit binomial graph with γ =
0.78.

Figure 4.8: Histogram for the DOS for two graphs with optimised γ. The energies have
been binned into 100 bins. The DOS has been normalised such that the total density is
equal to one. The dashed black line shows the fitted Gaussian distribution.

Starting with the skewness:

s =
6γ3κ3

(n + γ2κ2)
3/2 . (4.10)

Note that triangle-free graphs have no skewness and that for positive γ,
the skewness is always non-negative.

For a d-regular graph, κ2 = dn/2 and κ3 is bounded by O
(
d2n
)
. So the

skewness, following the heuristic in Eq. 4.4 (provided γ is held constant)
scales approximately as n−1/2. Therefore, it will tend to zero as the
problem size is increased.

Conversely, for binomial graphs, provided γ scales proportional to
1/

√
n, then the skewness will not scale with n. Hence, the Gaussian

approximation will not hold as well for a binomial graph.

Examining now the excess kurtosis gives:

k = −2
n + 4γ2κ2 + γ4(κ2 − 12κ4)

(n + γ2κ2)
2 . (4.11)

Under the same assumptions above for the scaling of the skewness, the
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excess kurtosis will tend to zero as n tends to infinity for regular graphs.
For binomial graphs, the excess kurtosis is unlikely to vanish.

For large regular graphs, the Gaussian approximation looks to hold well.
The same cannot be said to be true for binomial graphs. This is a con-
sequence of regular graphs looking locally tree-like in the infinite-size
limit [140]. Hence, it may be necessary to consider other models for the
DOS for binomial graphs and for regular graphs away from the infinite-
size limit.

Here, we propose using an exponentially modified Gaussian (EMG) dis-
tribution [141, 142] to model the DOS for a CTQW. The EMG is a skewed
unimodal distribution. The skewness can only be positive, as is the case
with the DOS for a CTQW. In the correct limit, it can recover a Gaussian.
It has the following probability density function:

p(x; m, ν, λ)dx =
λ

2
e

λ
2 (2m+λν2−2x)erfc

(
m + λν2 − x√

2ν2

)
dx, (4.12)

where erfc is the complementary error function. The fitting parameters
m, ν and λ can be ascertained from n, σ and s. The EMG distribution is a
convolution of a Gaussian distribution with an exponential distribution
[143]. Denoting the exponential distribution as:

f (x) =

0 for x < 0

λe−λx for x ≥ 0
(4.13)

and the normal distribution as,

g(x) =
1√

2πν2
e−

(x−m)2

2ν2 , (4.14)
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then the exponentially modified Gaussian distribution is given by:

h(x) = f (x) ∗ g(x)

=
∫ ∞

−∞
dy f (y)g(x − y)

=
λ

2
e

λ
2 (2m+λν2−2x)erfc

(
m + λν2 − x√

2ν2

)
. (4.15)

Through application of the convolution theorem [144] it is straightfor-
ward to write down the moment generating function (and hence parti-
tion function) from the moment generating functions of the exponential
and Gaussian distributions. The resulting partition function in terms of
the fitting parameters m, ν2 and λ is:

Z (β) =

(
1 +

β

λ

)−1

e−mβ+ 1
2 ν2β2

(4.16)

To find the fitting parameters we fit the moments of h(x) to the moments
associated with HQW . Utilising the moment generating function to find
the mean (µ), variance (σ2) and skewness (s) of the EMG gives:

µ = m +
1
λ

(4.17)

σ2 = ν2 +
1

λ2 (4.18)

s =
2

ν3λ3

(
1 +

1
ν2λ2

)−3/2

. (4.19)

The above equations can be inverted to find the fitting parameters in
terms of the mean, variance, and skewness associated with HQW . These
properties have already been calculated.

The Gaussian approximation only includes information about the prob-
lem size, and therefore will make the same prediction for numerous
graphs. For instance, all regular graphs with the same degree have the
same DOS under the Gaussian approximation. By incorporating the
skewness into the model, more information about the graph structure
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4.5. Predictions from the density of states

(a) A 12 qubit three-regular graph with
γ = 1.11.

(b) A 12 qubit binomial graph with γ =
0.78.

Figure 4.9: Histogram for the DOS for two graphs with γ optimised. The energies have
been binned into 100 bins. The DOS has been normalised such that the total density
is equal to one. The dashed black line shows the fitted Gaussian distribution. The
dashed red line shows the EMG distribution.

is being incorporated, namely the number of triangles in the problem.
Visually, as shown in Fig. 4.9, it is clear that the EMG distribution (the
dashed red line) provides a better fit than the Gaussian distribution for
the binomial graph. The EMG distribution also still models the DOS for
the regular graph well.

During the rest of this chapter, the DOS is used to make analytic predic-
tions about the behaviour of a CTQW in a closed-system setting.

4.5 Predictions from the density of states

Having provided a model for the DOS for HQW , in this section two
predictions in relation to CTQWs are made, namely the temperature
and the diagonal entropy.

Estimating the temperature

Finding the temperature of the CTQW requires finding the solution to
Eq. 4.5. To find approximate solutions, we use the DOS models to
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4. Continuous-time quantum walks for Max-cut are hot

(a) Binomial graphs (b) Three-regular graphs

Figure 4.10: The error in the predicted inverse temperature assuming a Gaussian DOS
(i.e. Eq. 4.21). For each problem instance γ is equal to γopt, shown in Fig. 4.3a and
Fig. 4.4a.

evaluate the partition function, Z . Eq. 4.5 then becomes [108]:

−n = −∂ lnZ
∂β

. (4.20)

Assuming a Gaussian DOS, then the estimated inverse temperature is
given by:

βest =
n

n + γ2κ2
. (4.21)

This is perhaps what one would estimate as the inverse temperature on
dimensional grounds alone.

Taking the EMG to model the density of states gives:

βEM =
n∆ − σ2 +

√
(n∆ + σ2)

2 − 4n∆3

2∆ (σ2 − ∆2)
, (4.22)

where σ2 = n + γ2κ2 and ∆ = γ(3κ3)
1/3.

Fig. 4.10 shows the error in temperature between βest and β (the nu-
merical solution to Eq. 4.5). The approximate solutions are consistently
underestimating the inverse temperature. The error for binomial graphs
is substantial, with typical errors being between 45% and 50% (Fig.
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4.5. Predictions from the density of states

(a) Binomial graphs (b) Regular graphs

Figure 4.11: The error in the predicted inverse temperature assuming an EMG DOS
(i.e. Eq. 4.22). For each problem instance γ is equal to γopt, shown in Fig. 4.3a and
Fig. 4.4a.

4.10a). For three-regular graphs, this reduces to somewhere around 30%
(Fig. 4.10b). Using the EMG distribution (i.e. Eq. 4.22) provides little im-
provement on the estimate for the three-regular graphs (Fig. 4.11b). This
is unsurprising given how close to Gaussian the DOS is for these prob-
lems. For binomial graphs the improvement is more substantial, with
typical errors being around 20%. As n is increased, we expect that the
DOS will be better modelled by a continuous DOS, hence we would
expect the error in β to be improved.

By assigning the quantum evolution a temperature, the challenge of un-
derstanding a dynamical problem has been mapped to a static problem.
So far in this section, it has been shown how to reasonably estimate the
associated temperature. If the temperature is too high, then the asso-
ciated thermal state can be efficiently classically approximated. Results
by Crosson et al. [145] suggest that for values of β ≤ 0.1 a classical com-
puter could simulate the associated thermal state efficiently for a three-
regular graph, suggesting that for a CTQW to provide an advantage, it
must operate outside this regime.
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4. Continuous-time quantum walks for Max-cut are hot

Estimating the diagonal entropy

Statistical mechanics provides a clear prescription for writing down an
entropy given a partition function. This is given by

SSM = β⟨HQW⟩+ lnZ . (4.23)

Using the modelled DOS, this entropy can be estimated. For the Gaus-
sian distribution, Eq. 4.23 reduces to:

Snorm = n ln 2 − βestn +
σ2β2

est
2

, (4.24)

and for the EMG:

SEMG = n ln 2+ βEM (∆ − n)+
β2

EM
2

(
σ2 − ∆2

)
− ln (1 + βEM∆) . (4.25)

The question is: does this estimated entropy reasonably estimate some
measure of entropy in the system that is of interest? Although the ETH
cannot be straightforwardly applied here, as the entropy is not a local
observable, the ETH, and entanglement entropy have been shown to be
linked in previous works [146, 147, 148]. Another likely candidate is the
diagonal entropy of the system, since it is the on-diagonal behaviour of
the CTQWs that is being captured through the DOS approximation.

Fig. 4.12 shows the diagonal and entanglement entropy averaged over
a hundred 14-qubit binomial graphs as a function of time. The entan-
glement entropy, shown in blue, is calculated by tracing out half of the
qubits, which are randomly selected, and calculating the von Neumann
entropy of the reduced density operator. As is clear from the figure, the
entanglement entropy is approximately constant. The dotted red line
shows SSM/2 assuming a Gibbs state, with the true DOS and the tem-
perature fixed according to the energy. The dashed purple line shows
Snorm/2 and the dashed green line SEMG/2. The dashed pink line shows
the diagonal entropy divided by 2. These have been scaled under the
assumption that entropy is extensive. The prediction using a Gibbs state
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4.6. Estimating ⟨Hp⟩

Figure 4.12: The entanglement entropy averaged over a hundred 14-qubit binomial
instances (solid blue line). The dashed purple line shows Snorm/2, the dashed green
line SEMG/2, and the dotted red line shows SSM/2. The shaded regions show a single
standard deviation.

(red dotted line) overestimates the diagonal entropy (pink dashed line),
this is not surprising as the Gibbs state is the maximum entropy dis-
tribution. The models for the DOS, particularly the EMG, provides a
good estimate of SSM. This is further evidence that the EMG is a good
model for the DOS. The prediction from a Gibbs state overestimates the
entanglement entropy too, but appears to provide a reasonable estimate.

As mentioned in Chapter 2, the ideal final state will be a low-
entanglement state. CTQWs lack any mechanism to dissipate entan-
glement, as shown by Fig. 4.12.

4.6 Estimating ⟨Hp⟩

In Sec. 4.5 it was shown how the temperatures associated with a CTQW
could be found. By assuming the system is well modelled by a Gibbs
distribution, it follows that

⟨Hp⟩ = − 1
β

∂ lnZ
∂γ

, (4.26)
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holds true. Using Eq. 4.26 removes the need for matrix exponentiation.
The derivation of this equation starts by considering the function

Ω(β) = eβHQW ∂γe−βHQW , (4.27)

which can be differentiated with respect to β, to get:

∂βΩ = eβHQW HQW∂γe−βHQW − eβHQW ∂γ

(
HQWe−βHQW

)
= −eβHQW ∂γ

(
HQW

)
e−βHQW

= −eβHQW Hpe−βHQW . (4.28)

Now through successive differentiation or by simply applying the well-
known result for writing the right-hand-side in terms of nested commu-
tators [149] it follows that:

Ω = −βHp −
β2

2
[
HQW , Hp

]
− β3

3!
[
HQW ,

[
HQW , Hp

]]
+ . . . (4.29)

where [·, ·] denotes the commutator. Tidying this expression up using
the notation:

[H(k)
QW , Hp] =


Hp if k = 0

[HQW , · · · [HQW , [HQW︸ ︷︷ ︸
k times

, Hp]] · · · ] otherwise.

gives:

Ω = −
∞

∑
k=1

βk

k!

[
H(k−1)

QW , Hp

]
. (4.30)

Acting on both sides with e−βHQW and taking the trace gives:

Tr
{

∂γe−βHQW
}
= −

∞

∑
k=1

βk

k!
Tr
{[

H(k−1)
QW , Hp

]
e−βHQW

}
. (4.31)
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Evaluating the terms in the sum for which k > 1:

Tr
{[

H(k−1)
QW , Hp

]
e−βHQW

}
= ∑

j

〈
Ej
∣∣ [H(k−1)

QW , Hp

]
e−βHQW

∣∣Ej
〉

= ∑
j

〈
Ej
∣∣ [HQW ,

[
H(k−2)

QW , Hp

]] ∣∣Ej
〉

e−βEj

= ∑
j

Ej
〈

Ej
∣∣ ([H(k−2)

QW , Hp

]
−
[

H(k−2)
QW , Hp

]) ∣∣Ej
〉

e−βEj

= 0,

where
∣∣Ej
〉

denotes the eigenvectors of HQW . Therefore, once it is as-
sumed that the state is well modelled by a Gibbs distribution, it follows
that:

Tr
{

∂γe−βHQW
}
= −β Tr

{
Hpe−βHQW

}
. (4.32)

Commuting through the trace with the partial derivative and dividing
both sides by the partition function gives Eq. 4.26.

For the Gaussian approximation, Eq. 4.26 gives:

⟨Hp⟩est = − γnκ2

n + γ2κ2
, (4.33)

which is optimised by

γ
opt
est =

√
n
κ2

. (4.34)

Note that this is the same result as the heuristic of maximising the dy-
namics (i.e. Eq. 4.4). The same approach can be taken for the EMG
model to give:

⟨Hp⟩EM =
(3κ3)

1/3

1 + βEM∆
− (3κ3)

1/3 −
(

κ2 − (3κ3)
2/3
)

βEMγ. (4.35)

Fig. 4.13 compares ⟨Hp⟩ to the predictions from the Gaussian and EMG
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4. Continuous-time quantum walks for Max-cut are hot

Figure 4.13: The solid blue line shows ⟨Hp⟩ for a single instance of a 12-qubit binomial
graph. The dashed purple (pink) line shows the prediction from Eq. 4.26 assuming a
Gaussian (EMG) DOS.

predictions for a single 12-qubit binomial graph. Though both overesti-
mate the performance of the CTQW, both provide reasonable estimates
on the optimal γ. The EMG clearly provides a better model for ⟨Hp⟩
than the Gaussian model. Indeed, it is remarkably close to the direct
numerical calculation of ⟨Hp⟩. Note that although the thermal model
appears to provide good estimates for ⟨Hp⟩ for large and small γ, in
this regime ⟨Hp(t)⟩ will not necessarily display steady-state behaviour.
However, this regime is unlikely to be of practical interest to CTQWs.

For the performance of γ
opt
est the reader is referred to Sec. 4.2. For the

EMG distribution, there are two important quantities to examine:

• How much does the performance of ⟨Hp⟩ change between the op-
timal γ and the γ predicted by the EMG DOS?

• What is the difference between the prediction of ⟨Hp⟩ and the true
value?

The first of these is addressed for small problem sizes in Fig. 4.14. The
performance is improved over γheur from simply balancing the drive
and problem Hamiltonians, especially for binomial graphs. Hence, a
good heuristic method for finding γ for CTQWs applied to Max-cut has
been found.

Fig. 4.15 shows the error in the performance between the true value of
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(a) Binomial graphs (b) Three-regular graphs

Figure 4.14: The difference in ⟨Hp⟩ between the optimal choice of γ and the prediction
from the EMG DOS (γEM), normalised by the absolute value of ⟨Hp⟩.

Figure 4.15: The difference between the prediction of ⟨Hp⟩ with an EMG DOS using
Eq. 4.26 (i.e. ⟨Hp⟩EM) and the true value. For each instance, the value of γ has been
chosen such that ⟨Hp⟩EM is minimised. Each bar shows one hundred binomial graph
instances.

⟨Hp⟩ and the predicted value from the EMG approximation, for the γ

predicted to give the best possible performance from the EMG DOS.
The error is relatively small for these small problem sizes. Given the
tractability of Eq. 4.26, and evidence of small errors, it is possible to
estimate the performance for larger problem sizes. This is shown in
Fig. 4.16.

By treating closed-system CTQWs as thermalising systems, it has been
possible to provide useful heuristic choices for optimising γ and to make
practical predictions for ⟨Hp⟩.
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4. Continuous-time quantum walks for Max-cut are hot

Figure 4.16: Estimated scaling of the CTQW for binomial graphs, assuming thermal-
isation and an EMG DOS. Each data point shows the median performance of one
hundred binomial graph instances.

4.7 The performance of CTQWs for Max-cut

In this section, the value of ⟨Hp⟩ is numerically evaluated at the γ

predicted by the EMG DOS, for the problem instances considered in
Sec. 4.2. This is then mapped to a time-averaged mean cut-value
i.e. (κ2 − ⟨Hp⟩)/2. This is then compared to the maximum cut, i.e.
(κ2 − E(P)

0 )/2. This choice is to make easier comparison to existing lit-
erature. For example, it is known that QAOA p = 1 lower bounds
r = (κ2 − ⟨Hp⟩)/(κ2 − ⟨Hp⟩) by 0.692 on three-regular graphs [14].
While QAOA p = 2 lower bounds r by 0.7559 on three-regular graphs
[150]. The classical Goemans-Williamson algorithm [151] lower bounds
r by 0.8786, and by 0.9326 on three-regular graphs [152]. The results for
the CTQW can be seen in Fig. 4.17. For the small problem sizes consid-
ered, the performance seems largely independent of system size. This
perhaps is unsurprising for a high temperature Gibbs state with a local
Hamiltonian [153, 154]. Since both ⟨Hp⟩ and E(P)

0 are extensive, this is
to be expected. The CTQW appears to give better results for binomial
graphs, this may be that the EMG is better capturing the frustration in
the problem. If the frustration is entering the problem through loops
with length greater than three, this is not captured by the ansatz.

The scaling of r being approximately independent of n does not mean
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(a) Binomial graphs (b) Three-regular graphs

Figure 4.17: The normalised performance in terms of the time averaged mean cut
value (i.e., (κ2 − ⟨Hp⟩)/2) of the CTQW for the optimal γ predicted by the EMG DOS

compared to the maximum cut (i.e. (κ2 − E(p)
0 )/2 on the graph

that the ground-state probability is constant with problem-size. Given
that Max-cut is a hard problem, as discussed in Sec. 2.4, it is reasonable
to suspect that the ground-state probability is decreasing exponentially.
The exponential decrease in ground-state probability has been seen in
other problems that CTQWs have been applied [22].

In practice, one is perhaps less interested in how the average of the en-
ergy distribution of ⟨Hp⟩ compares with the absolute minimum, particu-
larly if considering CTQWs as an exact solver. In such a case, one might
be more interested in the ground-state probability or time-to-solution.

4.8 Conclusion

Throughout this chapter, we have attempted to understand the per-
formance of CTQWs outside what is classically simulable for non-
integrable models. For the steady-state, it was conjectured that the sys-
tem thermalises. This means that, despite the state-vector consisting of
2n complex amplitudes, for a given γ the value of ⟨Hp⟩ will depend on
one real number, the energy. This provides insight into the computa-
tional mechanisms involved in CTQWs.
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4. Continuous-time quantum walks for Max-cut are hot

Assuming thermalisation, classical statistical physics provides an alter-
native route to understanding CTQWs for Max-cut on a broad range of
graphs within a closed-system setting. By associating the unitary dy-
namics with a temperature, it provides an alternative route to achieve
the same value of ⟨Hp⟩ , either through dissipative dynamics or clas-
sical simulation. Here we have introduced an EMG distribution to ac-
count for some frustration in the model to make analytic predictions.
This model provides an estimate of the energy distribution HQW but
says nothing about the strings involved (including the ground-state so-
lution) or the energy distribution associated with just Hp. By exploiting
this model, it was possible to find reasonable estimates for the optimal
choice of γ, that utilised properties of the underlying graph. Impor-
tantly, predictions far away from what it is easy to directly simulate
were made.
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Chapter 5

Thermalisation timescales

5.1 Introduction

Understanding only the long-time behaviour of CTQWs is insufficient.
If, for example, the time taken to thermalise grows exponentially, then
the long-time behaviour is of no practical interest for optimisation. This
section investigates the timescale associated with CTQWs, again focus-
ing on Max-cut with a transverse-field driver Hamiltonian. Sec. 5.2 takes
a geometrical approach, evaluating the curvature to give a timescale.
Sec. 5.3 analytically investigates the very short-time limit of CTQWs for
Max-cut. Sec. 5.4 explores a simple Ansatz for the time evolution of
CTQWs in order to extract a timescale.

5.2 A geometrical description of the dynamics

Classically, a one-dimensional curve in Euclidean space can be described
in terms of geometrical properties — such as curvature and torsion.
Laba et al. [25] extended these ideas to Schrödinger evolution under a
time-independent Hamiltonian. Curvature measures how far the evolu-
tion of a state-vector deviates from a geodesic. If the curvature is zero,
then the evolution is completely described by a great circle on a Bloch
sphere. The curvature for a time-independent Hamiltonian H is given
by:

C = ⟨∆H4⟩ − ⟨∆H2⟩2, (5.1)
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where ∆H = H − ⟨H⟩. Since it depends on only expectation values
of powers of the Hamiltonian, it is conserved over the evolution. The
curvature can be seen as a measure of inefficiency. The torsion is given
by:

T = C − ⟨∆H3⟩2

⟨∆H2⟩ . (5.2)

The torsion measures how much the wave-function deviates from a two-
dimensional space in a time ∆t. The error from deviating from the two-
dimensional subspace in this time is given by [136]:

ε2D = T ∆t4. (5.3)

with ε2D = 0 corresponding to remaining in the two-dimensional sub-
space and ε2D = 1 corresponding to departing the subspace. If ε2D ≪ 1,
then the two-dimensional approximation holds well. That is, for times
t ≪ T −1/4, the evolution can be approximated by a two-level system.
Therefore, T −1/4 sets a timescale for CTQWs.

Gnatenko et al. proposed using a quantum computer to measure torsion
and curvature to calculate certain graph properties. This section inverts
these ideas to analytically calculate the curvature and torsion of CTQWs
for Max-cut. Calculating the torsion and curvature reduces to evaluating
⟨∆H j

QW⟩, for j = 2, 3, 4. Since these are all conserved quantities, the
expectation value can be taken with respect to the initial state, |+⟩. The
first step is to find ⟨HQW⟩:

⟨HQW⟩ = ⟨+| Hd + γHp |+⟩
= −n,

since each ZiZj in Hp will flip qubits i and j to the minus state. Conse-
quently, only Hd contributes to this expectation value.

Consider now, ⟨∆H2
QW⟩ = ⟨H2

QW⟩ − ⟨HQW⟩2:
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⟨∆H2
QW⟩ = ⟨H2

d⟩+ γ2⟨H2
p⟩+ γ⟨HpHd + HdHp⟩ − ⟨H⟩2

= n2 + γ2κ2 + 0 + 0 − n2

= γ2κ2,

where κ2 = |E| is the number of edges in the graph. It was pointed out
by Gnatenko et al. [136], that ⟨H2

p⟩ is equal to the number of edges in the
graph. Writing out this term explicitly gives:

⟨H2
p⟩ = ∑

i1,j1,i2,j2

⟨+| Zi1 Zj1 Zi2 Zj2 |+⟩ ,

where the sum is over the ordered pairs (ik, jk), for k = 1, 2. The only
possible way a term in the sum can be non-zero is if i1 = i2 and j1 = j2.
Therefore, the number of non-zero terms corresponds to the number of
edges in the graph. The rest of the terms in ⟨∆H2⟩ are relatively trivial
to calculate.

Extending the above logic, Gnatenko et al. [136] demonstrated that:

⟨H3
p⟩ = 6κ3 (5.4)

where κ3 is the number of triangles in the graph, and

⟨H4
p⟩ = κ2 + 3κ2 (κ2 − 1) + 24κ4, (5.5)

where κ4 is the number of squares in the graph.

Using the above results, ⟨∆H3
QW⟩ and ⟨∆H4

QW⟩ can be calculated. Start-
ing with ⟨∆H3

QW⟩:

⟨∆H3
QW⟩ = ⟨H3

QW⟩ − 3⟨H2
QW⟩⟨HQW⟩+ 2⟨HQW⟩3. (5.6)
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Calculating ⟨H3
QW⟩ gives:

⟨H3
QW⟩ = ⟨

(
Hd + γHp

)3⟩
= ⟨H3

d + γ2HdH2
p + γ2H2

pHd + γ3H3
p + γ2HpHdHp⟩

= −n3 − 2nγ2κ2 + 6γ3κ3 + γ2⟨HpHdHp⟩,

where terms that are trivially zero have been neglected and Eq. 5.4 has
been applied. To find ⟨∆H3

QW⟩ it just remains to calculate ⟨HpHdHp⟩:

⟨HpHdHp⟩ = − ∑
i1,j1,i2,j2,k

⟨+| Zi1 Zj2 XkZi2 Zj2 |+⟩ . (5.7)

The Xk in each term of the sum is not going to change which terms are
non-zero. It will only introduce a minus sign if k is equal to i2 or j2.
Hence, ⟨HpHdHp⟩ is equal to:

= − ∑
i2,j2,k

⟨+| Zi2 Zj2 XkZi2 Zj2 |+⟩

= − ∑
i2,j2

k ̸=i2,j2

⟨+| Zi2 Zj2 Zi2 Zj2 |+⟩+ ∑
j2

⟨+| ZkZj2 ZkZj2 |+⟩

+ ∑
i2

⟨+| Zi2 ZkZi2 Zk |+⟩

= −(n − 2)κ2 + κ2 + κ2

= −(n − 4)κ2.

Alternatively, arguing as follows: in the absence of the Xk term, Eq. 5.7
would give −nκ2. Accounting for the edge cases where k = i2 or k = j2
gives:

⟨HpHdHp⟩ = −(n − 4)κ2. (5.8)

Combining all of the above, the result is:

⟨∆H3
QW⟩ = 2γ2 (2κ2 + 3γκ3) . (5.9)
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To find C and T , it remains to find ⟨∆H4
QW⟩.

⟨∆H4
QW⟩ = ⟨H4

QW⟩ − 4⟨HQW⟩⟨H3
QW⟩+ 6⟨HQW⟩2⟨H2

QW⟩
− 4⟨HQW⟩3⟨HQW⟩+ ⟨HQW⟩4

Evaluating ⟨H4
QW⟩ gives:

⟨H4
QW⟩ = ⟨H4

d + γ2
(

H2
d H2

p + HdHpHdHp + HdH2
pHd + HpH2

d Hp

+HpHdHpHd + H2
pH2

d

)
+ γ3

(
HdH3

p + H2
pHdHp + H3

pHd + HpHdH2
p

)
+ γ4H4

p⟩,

where the terms that evaluate to zero have been neglected. Most of the
terms in this expansion have already been evaluated, or are simple to
evaluate. This leaves ⟨HpH2

d Hp⟩, ⟨HpHdH2
p⟩, ⟨H2

pHdHp⟩, and ⟨H4
p⟩, the

last of which can be evaluated with Eq. 5.5. Turning now to ⟨HpH2
d Hp⟩:

⟨HpH2
d Hp⟩ = ∑

i1,j1,i2,j2,k1,k2

⟨+| Zi1 Zj1 Xk1 Xk2 Zi2 Zj2 |+⟩ .

Again, the presence of X’s in the sum will not change which terms
evaluate to be non-zero. Fixing the edge (i2, j2), if either one of the
X terms coincides with this edge and the other X term does not, it
contributes −1 to the sum; there are 4(n − 2) ways of this happening. If
both X terms do not coincide with this edge, then the term contributes 1;
there are (n− 2)2 ways of this happening. Finally, if both edges coincide,
this edge contributes 1; there are four ways of this happening. The result
is:

⟨HpH2
d Hp⟩ = (n − 4)2κ2.

Thus, it remains to evaluate ⟨HpHdH2
p⟩ and ⟨H2

pHdHp⟩. Note that:

⟨HpHdH2
p⟩∗ = ⟨H2

pHdHp⟩.
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To evaluate ⟨HpHdH2
p⟩, consider ⟨H3

p⟩. As before, the introduction of
Hd is not going to change which terms in the sum are non-zero, if we
were to write out a similar sum for this term, as in Eq. 5.7. Therefore,
⟨HpHdH2

p⟩ is going to depend on the number of triangles in the graph.
The introduction of Hd is going to result in sign flips to some terms. The
result is

⟨HpHdH2
p⟩ = −6κ3(n − 4). (5.10)

Finally, assembling all the expectation values gives

⟨∆H4
QW⟩ = γ2

[
−2κ2(γ

2 − 8) + 3γ2κ2
2 + 24γ(2κ3 + γκ4)

]
. (5.11)

The resulting expression for the curvature is:

C = 2γ2
[
−κ2

(
γ2 − 8

)
+ γ2κ2

2 + 12γ (2κ3 + γκ4)
]

. (5.12)

and for the torsion:

T = 2γ4

[
κ2 (κ2 − 1)−

18κ2
3

κ2
+ 12κ4

]
. (5.13)

Note that the torsion is zero for a two-qubit system, with one edge, as
expected from the spin-flip symmetry in the problem. The torsion is
also zero for a ring of three qubits. It is clear that the torsion is reduced
by the number of triangles in the graph. This suggests that the CTQW
explores the solution space slower for graphs with many triangles.
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5.3 The very short-time limit

In the previous section, the torsion of CTQWs for Max-cut was calcu-
lated. As mentioned, in the time interval δt ≪ T −1/4, the evolution of a
CTQW can be approximated by a two-level system. The initial-state of
a CTQW is known, therefore it is possible to analytically calculate the
exact evolution of a CTQW in the interval t ≪ T −1/4. The rest of this
section carries out this calculation.

At t = 0 the state of the system is |ψ (t = 0)⟩ = |+⟩. Integrating
the system forward some infinitesimal time δt, gives |ψ (t = δt)⟩ =(

I − iHQWδt
)
|+⟩. Applying the Gram-Schmidt procedure to the two

vectors, |ψ (t = 0)⟩ and |ψ (t = δt)⟩, gives the orthonormal basis for the
subspace:

|e0⟩ = |+⟩ (5.14)

|e1⟩ = ∆HQW |+⟩ /
√
⟨∆H2

QW⟩, (5.15)

where the expectation is with respect to the |+⟩ state. Writing out H in
this subspace is:

H(2D)
QW =

 ⟨HQW⟩ ⟨HQW ∆HQW⟩√
⟨∆H2

QW⟩
⟨∆HQW HQW⟩√

⟨∆H2
QW⟩

⟨∆HQW HQW ∆HQW⟩
⟨∆H2

QW⟩

 , (5.16)

which evaluates to

H(2D)
QW =

(
−n

√
γ2κ2√

γ2κ2 2
(

2 + 3γκ3
κ2

)
− n

)
(5.17)

(5.18)

which equals, up to terms proportional to the identity,

H(2D)
QW =

√
γ2κ2X −

(
2 +

3γκ3

κ2

)
Z. (5.19)
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The problem Hamiltonian, within the same space is:

H(2D)
p =

 ⟨Hp⟩
⟨Hp∆H⟩√
⟨∆H2⟩

⟨∆HHp⟩√
⟨∆H2⟩

⟨∆HHp∆H⟩
⟨∆H2⟩

 , (5.20)

evaluating this gives:

H(2D)
p =

(
0 sgn (γ)

√
κ2

sgn (γ)
√

κ2
6κ3
κ2

)
, (5.21)

where sgn (γ) denotes the sign of γ. Having now explicitly evaluated
the relevant operators in this subspace, it remains to calculate the expec-
tation of the problem Hamiltonian, which is:

⟨H(2D)
p (t)⟩ = −4γκ2

sin2 ωt
ω2 , (5.22)

where

ω2 = γ2κ2 +
(2κ2 + 3γκ3)

2

κ2
2

. (5.23)

As we can see, for very short times, ⟨Hp⟩ depends very little on the
properties of the underlying Max-cut graph, depending primarily on
the number of edges in the graph. The frequency term ω does depend
on the number of triangles but for large problem sizes it is reasonable
to expect ω2 ≈ γ2κ2. Physically it is reasonable that, at short times, the
CTQW only sees triangles and edges. Longer evolution would result in
the approach seeing larger loops in the graph.

From a computational point of view this suggests that any useful short-
time sampling must not be on a timescale much smaller than T − 1

4 since
you would like the CTQW to see the whole graph. A rough estimate for
a CTQW to see the whole structure of the graph might be lT − 1

4 , where
l is the length of the largest loop in the problem graph. This is bounded
from above by nT − 1

4 .
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5.3. The very short-time limit

(a) γ = 0.05 (b) γ = 1

Figure 5.1: The performance of a CTQW on two different 12-qubit binomial graphs
with different values of γ. The blue line shows the result of direct integration of the
Schrödinger equation. The pink line shows the result of the two-dimensional approx-
imation (i.e, Eq. 5.22) The dashed purple line shows the location of T − 1

4 . The dashed
green line in (5.1b) shows the location of nT − 1

4 , with n = 12. The values of γ have
been chosen to illustrate different behaviour and do not correspond to the optimal γ
for the graph.

In Fig. 5.1a, ⟨H(2D)
p (t)⟩ (i.e. Eq. 5.22) is compared to numerical simula-

tion with a 12-qubit binomial graph with γ = 0.05. The dashed purple
line shows the location of T − 1

4 . For short times, there is good quantita-
tive agreement between the numerical simulation (the blue line) and the
two-level prediction (the pink line). At longer times, there is reasonable
qualitative agreement, with the two-dimensional approximation captur-
ing the oscillatory nature.

Examining a different 12-qubit binomial graph with γ = 1 gives
Fig. 5.1b. Again, we can see good agreement between the numerical
simulation (the blue line) and the two-level prediction (the pink line)
for short times. The dashed purple line corresponds to T − 1

4 with the
dashed green line corresponding to nT − 1

4 . Here, the two-level approx-
imation provides poor qualitative insight into the CTQW outside the
short-time limit, with the CTQW approaching an approximate steady
state. Noticeably, by nT − 1

4 , the system has settled into the steady state.
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5. Thermalisation timescales

5.4 An Ansatz for the Schrödinger Evolution

In Chapter 3 it was discussed that thermalisation in a closed-system is
as a result of dephasing. In this section, inspired by the off-diagonal el-
ements of Hp, we take a Gaussian Ansatz for the Schrödinger evolution.
Using this, it is possible to extract a timescale that better captures the
thermalisation timescale.

The difference between ⟨Hp(t)⟩ and ⟨Hp⟩ is given by

⟨∆Hp(t)⟩ = ⟨Hp(t)⟩ − ⟨Hp⟩ (5.24)

= ∑
Em ̸=En

e−i(Em−En)t ⟨Em| A |En⟩ ⟨En| ρ0 |Em⟩ , (5.25)

where |En⟩ is an eigenstate of HQW with eigenvalue En and initial-state
ρ0. Let ωm,n = Em − En and νm,n = ⟨Em| Hp |En⟩ ⟨En| ρ0 |Em⟩, then:

⟨∆Hp (t)⟩ = ∑
ωm,n

e−iωm,ntνm,n (5.26)

≈
∫ ∞

−∞
e−iωtν(ω)Ω(ω)dω. (5.27)

The above approximates the sum in Eq. 5.26 as an integral in Eq. 5.27,
where ν(ω) is the coarse-grained version of νm,n and Ω(ω) the density
of gaps. From Eq. 5.27 it is clear that ⟨∆Hp (t)⟩ is associated with the
Fourier transform of the off-diagonal elements of Hp in the energy eigen-
basis. It follows that the more spread the off-diagonal matrix elements
are, the faster the thermalisation.

Fig. 5.2 shows the distribution of νm,n = ⟨Em| Hp |En⟩ ⟨En| ρ0 |Em⟩ for a
CTQW Hamiltonian based on an 11-qubit binomial graph. The matrix
values are peaked around 0. Approximately modelling the matrix val-
ues as a Gaussian (i.e. taking ν(ω)Ω(ω) to be a Gaussian) gives the
following Ansatz:

⟨∆Hp(t)⟩ = Be−t2/τ2
, (5.28)

where τ and B are parameters that need to be set. Expanding this equa-
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5.4. An Ansatz for the Schrödinger Evolution

Figure 5.2: The values of νm,n for an 11-qubit binomial graph with γ = 1

tion to second order in time gives:

⟨∆Hp(t)⟩ = B
(

1 − t2/τ2 + . . .
)

. (5.29)

From the Schrödinger dynamics,

⟨∆Hp(t)⟩ = ⟨+| Hp |+⟩ − it ⟨+|
[
HQW , Hp

]
|+⟩

− t2

2
⟨+|

[
HQW ,

[
HQW , Hp

]]
|+⟩+ · · · − ⟨Hp⟩. (5.30)

Simplifying the above gives

⟨∆Hp(t)⟩ = −⟨Hp⟩ −
γt2

2
⟨+|

[
Hp,

[
Hd, Hp

]]
|+⟩+ . . . . (5.31)

Matching terms gives:

B =− ⟨Hp⟩ (5.32)

1
τ2 =−

γ ⟨+|
[
Hp,

[
Hd, Hp

]]
|+⟩

2⟨Hp⟩
. (5.33)

Evaluating the matrix element gives:

1
τ2 = − 4γκ2

⟨Hp⟩
. (5.34)
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Figure 5.3: An example of a CTQW on a 12-qubit binomial graph. The solid blue line
shows the Schrödinger evolution of ⟨Hp(t)⟩. The solid red line shows Eq. 5.35 with τ
given by Eq. 5.34. The dashed green line shows the location of τ. The dotted purple
line shows the location of τ extracted numerically from the Schrödinger evolution
(i.e. Eq. 5.36).

where κ2 is the number of edges in the Max-cut graph. Typically, γ⟨Hp⟩
will be proportional to n. For an optimised CTQW, γ will scale to bal-
ance the energy between Hd and Hp, so scales as approximately n−1/2.
Since κ2 scales as n2, 1

τ2 is expected to be largely independent of n.

Fig. 5.3 shows ⟨Hp(t)⟩ for a 12-qubit CTQW in blue. In this example
γ = 1. The red line shows the prediction from Eq. 5.31, i.e,

⟨Hp⟩Gauss = ⟨Hp⟩
(

1 − e−
t2

τ2

)
. (5.35)

The timescale τ is also marked on the graph by the dashed green line.
The dashed purple line shows τnum extracted from the Schrödinger evo-
lution and is defined by

⟨Hp(τ
num)⟩ = ⟨Hp⟩

(
1 − e−1

)
. (5.36)

Visually there is good agreement between the Schrödinger evolution and
Eq. 5.35. For this instance τ ≈ 0.21 and τnum ≈ 0.22.

Fig. 5.4a shows τnum for many instances. Fig 5.4b shows the error be-
tween τ and τnum for the same instances. In each instance γ =

√
n/κ2.

In all the cases considered the timescale τ appears largely independent
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(a) τnum (b) τnum − τ

Figure 5.4: The thermalisation timescale for a closed-system CTQW on n qubits. For
each instance, 100 examples are considered.

of the problem size as expected and has good agreement with τnum.

So far, only small-scale numerics have been explored. To try to validate
the Gaussian Ansatz (i.e, Eq. 5.35) outside this limit, we might try and
see how well it predicts higher order terms in Eq. 5.30. For a CTQW,
consisting of a real Hamiltonian, νm,n is real and νm,n = νn,m. Therefore,
the coefficients of all the odd powers of t vanish. This is correctly pre-
dicted by the Gaussian Ansatz (or any real, even Ansatz). Therefore, the
first correction in the limit of small time δt is given by:

⟨Hp(δt)⟩ − ⟨Hp(δt)⟩Gauss

=

(
1
4!

⟨+|
[
HQW ,

[
HQW

[
HQW ,

[
HQW , Hp

]]]]
|+⟩

+
(4γκ2)

2

2⟨Hp⟩

)
δt4 +O

(
δt6
)

(5.37)

The matrix element in the above equation is given by:

⟨+|
[
HQW ,

[
HQW

[
HQW ,

[
HQW , Hp

]]]]
|+⟩

= 32γ
[
3γ (4κ3 + γκ2,2) + κ2

(
4 + γ2

)]
, (5.38)

where κ3 is the number of triangles in the Max-cut graph and κ2,2 counts
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the number of edges that share a node:

κ2,2 =
1
2 ∑
(i,j)∈E

(deg(i) + deg(j)− 2) (5.39)

where deg(i) is the degree of the ith node.

To try to understand how important the error is in Eq. 5.37, to leading
order the error is:

εGauss(δt) =
⟨Hp(δt)⟩ − ⟨Hp(δt)⟩Gauss

⟨Hp(δt)⟩ (5.40)

≈
4γ
3

[
3γ (4κ3 + γκ2,2) + κ2

(
4 + γ2)]+ (4γκ2)

2

2⟨Hp⟩

−4γκ2
δt2 +O

(
δt4
)

, (5.41)

for an appropriately chosen δt. The choice of δt needs to be small
enough that expanding the Schrödinger equation up to fourth order in
δt is a good approximation, but an expansion up to δt2 is not sufficient.
A rough estimate of this time is captured by the torsion of the wave-
function, i.e. δt = T −1/4. This was calculated analytically in Sec. 5.2.

The only term that cannot be straightforwardly analytically calculated in
Eq. 5.41 is ⟨Hp⟩. To estimate this, the EMG Ansatz for the DOS is used.
This means that the resulting data is a test of both the EMG Ansatz for
the DOS and the Gaussian Ansatz for the time evolution.

In Fig. 5.5 εGauss
(
T −1/4) (i.e. Eq. 5.41) is plotted for various problem

sizes. For each instance γ =
√

n/κ2. The error is relatively small at
about 2% for the problem instances considered up to 256 qubits. The
error appears to be tending to zero for larger problem sizes.

In summary, Eq. 5.35 appears to be a good model for the time evolu-
tion of a CTQW for Max-cut, with the associated timescale given by
Eq. 5.34. In Chapter 4 it was shown how ⟨Hp⟩ might be reasonably es-
timated, hence how τ might be estimated for a CTQW. This concludes
how CTQWs for Max-cut should be set up. An Ansatz, say an EMG, is
chosen for the DOS which is used to select the optimal γ. The optimised
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5.5. A thermal start

Figure 5.5: The error between the Gaussian Ansatz and the Schrödinger equation (i.e.
Eq. 5.41) at t = T −1/4. At each problem size, 100 instances at Max-cut on binomial
graphs are considered with γ =

√
n/κ2. The value of ⟨Hp⟩ has been estimated using

an EMG Ansatz for the DOS.

Figure 5.6: An example of a CTQW on a 10-qubit binomial graph with γ1 = 0.705. The
solid blue line shows the Schrödinger evolution of ⟨Hp(t)⟩. The solid red line shows
Eq. 5.44 with τ given by Eq. 5.46. The dashed green line shows the location of τ. The
dotted purple line shows the location of τ extracted numerically from the Schrödinger
evolution (i.e. Eq. 5.36). The initial state is a Gibbs state with β = 0.5 and γ0 = 0.440.

Hamiltonian is then prepared on the quantum device, which is allowed
to run for t ≫ τ, say t ≈ 3τ, with τ estimated from the DOS too. After
this time, the state is sampled. Although this work has focused on Max-
cut, the process laid out is transferrable to any other Ising Hamiltonian.
Given that the physics, such as thermalisation, is expected to hold for a
wide range of Hamiltonians, the process should be widely applicable.
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5.5 A thermal start

To extend the conclusions of the previous section, we consider the case
where the initial state ρ0 is a thermal state with inverse temperature β

and Hamiltonian H0 = Hd + γ0Hp, such that:

ρ0 =
e−βH0

Tr e−βH0
. (5.42)

This has connections to multi-stage quantum walks, which will be ex-
plored in Chapter 6. The CTQW Hamiltonian in this case is given by

H′
QW = H0 + γ1Hp. (5.43)

Again, making use of a Gaussian Ansatz for ⟨Hp(t)⟩,

⟨Hp(t)⟩Gauss = ⟨Hp⟩+
(
⟨Hp(0)⟩ − ⟨Hp⟩

)
e−t2/τ2

, (5.44)

where

⟨Hp(0)⟩ = Tr
(

Hpρ0
)

(5.45)

1
τ2 =

(γ1 − γ0)Tr
([

Hp,
[
Hd, Hp

]]
ρ0
)

2
(
⟨Hp(0)⟩ − ⟨Hp⟩

) . (5.46)

This is shown in Fig. 5.6 for a 10-qubit graph with γ0 = 0.440, γ1 =

0.705, and β = 0.5. The blue line shows ⟨Hp(t)⟩ according to the
Schrödinger equation. The red line shows the Gaussian Ansatz, shown
in Eq. 5.44, with τ marked by the dashed green line on the plot. Even
though the system has been initialised in a Gibbs state, the Gaussian
Ansatz still provides a good model. The dashed purple line in the fig-
ure shows τnum from solving

⟨Hp(τ
num)⟩ = ⟨Hp⟩+

(
⟨Hp(0)⟩ − ⟨Hp⟩

)
e−1. (5.47)

In Fig. 5.7a the value of τnum is calculated numerically for various prob-
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(a) τnum (b) τnum − τ

Figure 5.7: The thermalisation timescale for a closed-system CTQW on n qubits. For
each instance, 100 examples are considered. The initial state is a Gibbs state with
β = 0.5 and γ0 = (3/4)

√
(n/κ2). For each instance γ1 = (6/5)

√
(n/κ2).

lem instances and compared to Eq. 5.46 in Fig. 5.7b. For each problem
instance γ0 = (3/4)

√
(n/κ2), γ1 = (6/5)

√
(n/κ2) and β = 0.5. The

results are very similar to the case where the initial state was given by
|+⟩, shown in Fig. 5.4.

5.6 Conclusion

In this chapter, we have established that a reasonable approximation to
the timescale associated with thermalisation of ⟨Hp⟩ in a closed quan-
tum system is given by:

1
τ2 =

Tr
([

HQW ,
[
HQW , Hp

]]
ρ0
)

2
(
⟨Hp(0)⟩ − ⟨Hp⟩

) . (5.48)

Importantly, this is an observable specific timescale. The physical intu-
ition behind this timescale can be seen by identifying:

Tr
([

HQW ,
[
HQW , Hp

]]
ρ0
)
= ∑

ωm,n

ω2
m,nνm,n, (5.49)
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as a measure of how spread the νm,n are in energy. The denominator can
be identified with (

⟨Hp(0)⟩ − ⟨Hp⟩
)
= ∑

ωm,n

νm,n, (5.50)

how far the initial distribution is from equilibrium. On dimensional
grounds alone it follows that

τ ∼
√

∑ωm,n νm,n

∑ωm,n ω2
m,nνm,n

. (5.51)

That is to say τ is a rough measure of the square root of the height, to
the width of the distribution of νm,n (see Fig. 5.2 for an example distri-
bution). Therefore, we believe that this timescale will be a reasonable
approximation in a wide range of circumstances and is easily adaptable
to local other observables. To capture the dynamics of the CTQW a sim-
ple Ansatz has been chosen; there is scope for improving this Ansatz.

In this dissertation, the timescale associated with thermalisation is con-
sidered separately to the performance associated with the steady-state.
It might be the case that sampling before the thermalisation occurs re-
sults in a better time-to-solution. From the discussion in this chapter, it
is expected that the thermalisation timescale does not scale strongly with
n. The time-to-solution is then mainly dependent on the ground-state
probability, which we expect to be better once the system is thermalised
(since this corresponds to a lower ⟨Hp⟩).

This chapter concludes the discussion of CTQWs, an example of a CTQO
algorithm in a closed quantum system. As discussed in Chapter 2 there
are other CTQO algorithms, which are time-dependent, and therefore
do not correspond to a closed quantum system. The next chapter in-
vestigates these CTQO algorithms in an isolated quantum system, using
CTQWs as a building block.
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Chapter 6

Statistical-mechanics applied to
continuous-time quantum

optimisation

6.1 Introduction

In Chapter 4 pure-state statistical physics was applied to CTQWs to
make predictions. In this chapter, statistical physics is applied to a range
of time-dependent quantum algorithms for optimisation that were de-
scribed in Chapter 2. The algorithms are split into two broad classes:
forward and cyclic approaches. Multi-stage quantum walks are an ex-
ample of a forward quantum algorithm, where the system transitions
from some initial Hamiltonian to a distinct final Hamiltonian. The step-
like nature of MSQWs make them amenable for analysis by statistical
physics, therefore MSQWs will be the focus of Sec. 6.2 as an example
of a forward quantum algorithm. The continuum-limit of MSQWs is
explored in Sec. 6.3. Cyclic approaches, such as Reverse Quantum An-
nealing (RQA), start and finish with the system experiencing the prob-
lem Hamiltonian. In Sec. 6.4 the limitations of cyclic approaches and
computational mechanisms of cyclic approaches are explored. Central
to the analysis in this section is Planck’s principle, described in detail
in Sec. 3.5.2. In short, an isolated quantum system can only increase in
energy (i.e. no work can be extracted) as the result of a cyclic process.
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0 t

Γ(t)

γ1

γ2

t1 t2

Figure 6.1: The cyclic schedule used to demonstrate the performance of MSQWs.

6.2 Multi-stage quantum walks

An MSQW is given by the following Hamiltonian:

HMS = Hd + Γ(t)Hp, (6.1)

where the schedule Γ(t) is a monotonically increasing, piece-wise con-
stant function. By applying Planck’s principle (from Sec. 3.5.2), Sec. 6.2
shows how multi-stage quantum walks can be motivated. The thermal
model introduced in Chapter 4 for CTQWs is then applied to the MSQW
regime. Sec. 6.2.3 discusses what happens as more stages are added to
an MSQW. Special attention is paid to passive states, which were intro-
duced in Sec. 3.5.2. In Sec. 6.2.4 it is proven that passive states satisfy
⟨Hp(t)⟩ ≤ ⟨Hp(t = 0)⟩. Finally, in Sec. 6.2.5 a bath is introduced.

6.2.1 Motivating multi-stage quantum walks

This section demonstrates that ⟨Hp⟩ for an MSQW can only decrease
as γ is increased, under Planck’s principle. This motivates the choice
of schedule Γ(t) for MSQWs. To see this, consider the following cyclic
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process with Hamiltonian HMS and schedule:

Γ(t) =


γ1 for 0 ≤ t ≤ t1

γ2 for t1 < t ≤ t2

γ1 for t2 < t

(6.2)

with γ2 − γ1 = ∆γ > 0. The schedule is sketched out in Fig. 6.1. The
energy at each stage is given by:

⟨HMS(t)⟩ =


⟨HMS(0)⟩ for 0 ≤ t ≤ t1

⟨HMS(0)⟩+ ∆γ⟨Hp(t1)⟩ for t1 < t ≤ t2

⟨HMS(0)⟩+ ∆γ
(
⟨Hp(t1)⟩ − ⟨Hp(t2)⟩

)
for t2 < t.

The extractable work from the cyclic process, given by the initial energy
minus the final energy, is:

W = ∆γ
(
⟨Hp(t2)⟩ − ⟨Hp(t1)⟩

)
. (6.3)

If work cannot be extracted from the system, then W ≤ 0 and

⟨Hp(t2)⟩ ≤ ⟨Hp(t1)⟩. (6.4)

Hence, if at each stage completing the cyclic process to return Γ(t) to
its value at the previous stage results in no extractable work, then ⟨Hp⟩
must be non-increasing between stages. Since at each stage the system
approaches an equilibrium, characterised by Assumption 2, discussed
in Sec. 3.3, this is expected to hold. During each stage, fluctuations
will cause ⟨Hp⟩ to fluctuate in time around the stationary value (but
not greater than the pre-quench value). If the initial stage corresponded
to random guessing, as is the case in conventional MSQWs, this has
as the corollary that one can always do better than random guessing.
In summary, the expectation of Hp should be non-increasing with each
stage.
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Given significant dynamics, it is reasonable to expect W < 0 and ⟨Hp⟩ to
decrease at each stage. But ⟨Hp⟩ is bounded, so cannot decrease forever.
As Γ(t) becomes very large, HMS can be reasonably approximated as
Γ(t)Hp, no longer driving transitions between eigenstates of Hp. Further
to this, from Assumption 2 (Sec. 3.3), Sd increases with each stage. This
means that Sd = 0 (corresponding to an eigenstate of Hp in the large
Γ(t) limit) becomes entropically forbidden if the system thermalises to
any state with non-zero diagonal entropy.

From pure-state statistical physics, we have been able to reason about a
typical system without resorting to numeric diagonalisation or recourse
to adiabaticity. Assuming only that work cannot be extracted from a
cyclic process, MSQWs have been motivated. As long as this always
holds true, ⟨Hp⟩ can only decrease. At no point was the magnitude
of the quenches specified, allowing for extension to QA-like schedules.
This motivates monotonic schedules in QA.

6.2.2 A thermal model for multi-stage quantum walks

In Chapter 4 the tools for making predictions about CTQWs were de-
veloped. In this section, these tools are applied to the MSQW. Only the
EMG distribution is used to model the DOS in this section, since this
also captures the Gaussian model. For each stage, while γ is held con-
stant, energy is conserved. Therefore, the temperature at each stage is
fixed by:

Tr
[

H(k)
QWρβ

(
H(k)

QW

)]
= ⟨ψ (tk−1)| H(k)

QW |ψ (tk−1)⟩ , (6.5)

where H(k)
QW is the Hamiltonian during the kth stage of the quantum

walk (i.e. with γk) and |ψ (t)⟩ is the state vector associated with the
MSQW. The term ρβ

(
H(k)

QW

)
denotes a Gibbs state with inverse tem-

perature β and Hamiltonian H(k)
QW . Fig. 6.2 shows a five-stage MSQW

for an instance of a 12-qubit binomial graph. Each stage increases γ

by 0.5, starting with 0.5. Each stage has a duration of twenty units of
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Figure 6.2: A five-stage CTQW on a 12-qubit binomial graph. The purple line is the
numerical prediction, assuming that the MSQW is well modelled by a CTQW. The pink
line shows the prediction from Eq. 4.26 and modelling the DOS as an EMG distribution.

time. With each successive stage, ⟨Hp⟩ (the solid blue line) improves and
quickly tends to an approximate steady-state. Solving Eq. 6.5 to find the
temperature and associated performance gives the purple line in the
figure. For this instance, there is good qualitative and reasonable quan-
titive agreement between the thermal prediction and the Schrödinger
equation. During the first stage of the MSQW, the thermal prediction
is quite far from the prediction of the Schrödinger equation, suggest-
ing that the state is far from thermal. This is to be expected, as γ is
small and the driver Hamiltonian dominates, breaking the assumption
that the DOS is continuous. Despite this, as γ is increased, the system
thermalises. Perhaps most interestingly, as γ is further increased, the
state remains thermal despite the problem Hamiltonian becoming more
dominant. The inverse temperatures associated with this MSQW are
β = 1.21, 0.72, 0.53, 0.41, 0.32. This corresponds to heating the system,
suggesting that despite the final stage providing the best performance, it
might be the distribution easiest to simulate classically [145]. This raises
a question over where the advantage might be with this approach. It
might be that the advantage can be found in the athermal behaviour not
captured by approximating the pure state as a thermal state. Or that the
MSQWs can prepare the thermal state faster than classical approaches
by evolving through states that might not be classically simulable, re-
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Figure 6.3: The difference between the stationary state calculated from the Schrödinger
equation and a thermal state for five-stage CTQW on 100 12-qubit binomial graphs.
“EMG DOS” refers to the prediction with the energy fixed by Eq. 6.6. The numerical
approach gives the prediction from using the numerically determined energy, numer-
ically fixing the temperature and calculating ⟨Hp⟩.

sulting in some less than exponential speed up. Given the thermal be-
haviour, it might be reasonable to assume that the techniques developed
earlier in this dissertation for CTQWs can be applied to MSQWs.

To make analytic predictions, Eq. 6.5 needs to be approximated to find
β. Since finding |ψ(t)⟩ is likely to be numerically intractable for large
systems, Eq. 6.5 can be approximated by:

⟨ψ (tk−1)|H
(k)
QW |ψ (tk−1)⟩

= ⟨ψ (tk−1)|Hd + γkHp |ψ (tk−1)⟩
= ⟨ψ (tk−1)|Hd + γk−1Hp |ψ (tk−1)⟩

+ (γk − γk−1) ⟨ψ (tk−1)| Hp |ψ (tk−1)⟩

≈ ⟨H(k−1)
QW ⟩(k−1) + (γk − γk−1) ⟨Hp⟩(k−1), (6.6)

where ⟨·⟩k−1 denotes the expectation during the (k − 1)th stage. There-
fore, Eq. 6.5 can be estimated by recursively evaluating Eq. 6.6 using
Eq. 4.26 to calculate ⟨Hp⟩(k−1). In Fig. 6.2 the solid pink line shows the
prediction, using Eq. 6.6, to good agreement.

In Fig. 6.3 the final value of ⟨Hp⟩ for a hundred five-stage CTQW on
12-qubit binomial graphs is compared to the analytical prediction (i.e.
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0 t

Γ(t) Γ(1)(t)

Γ(2)(t)

γ1

γ2

γ3

t1 t2

Figure 6.4: The monotonic schedules used to demonstrate that the use of more stages
results in a lower final energy.

Eq. 6.6) and the numerical prediction assuming thermalisation. The
schedule is the same as the schedule used in Fig. 6.2. Consider first
the numerical prediction. Assuming thermalisation, the correct final
steady state for all the problem instances is predicted within an error of
5%. In contrast, the EMG DOS model only achieves this error bound for
approximately 50% of the instances. This approach suffers from cumu-
lative errors in ⟨Hp⟩ at each stage of the MSQW (e.g. Eq. 6.6), which can
result in large errors in the prediction.

This section has presented numerical evidence for MSQW exhibiting
thermalisation. The EMG DOS model struggles to capture the perfor-
mance for all instances, as well as the time-independent case. This is
due to the difficulty in determining the energy of the system. To im-
prove this approach, a better model for the DOS or prediction of ⟨Hp⟩
needs to be developed, especially for the small γ case.

6.2.3 How many stages?

Sec. 6.2.1 demonstrated that, under Planck’s Principle (i.e. Assumption
4 detailed in Sec. 3.5.2) increasing from one value of γ to a larger value
of γ decreases the value of ⟨Hp⟩. Sec. 6.2.2 demonstrated how the per-
formance at each stage of the MSQW can be estimated. In this section,
the potential benefit of adding an intermediate value of γ is discussed.
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First, consider the schedule:

Γ(1)(t) =

γ1 for 0 ≤ t ≤ t1

γ3 for t1 < t
(6.7)

The associated energy for this schedule is:

⟨H(1)
MS(t)⟩ =

⟨HMS(0)⟩ for 0 ≤ t ≤ t1

⟨HMS(0)⟩+ (γ3 − γ1)⟨Hp(t1)⟩ for t1 < t.
(6.8)

Consider a second schedule with an intermediate stage:

Γ(2)(t) =


γ1 for 0 ≤ t ≤ t1

γ2 for t1 < t ≤ t2

γ3 for t2 < t

(6.9)

where γ1 < γ2 < γ3 and t1 < t2. Both schedules are shown in Fig. 6.4.
The initial state for both schedules is assumed to be the same. A su-
perscript (1) is used to distinguish quantities associated with the first
schedule from quantities associated with the second schedule, super-
scripted by (2). If the quantity is the same for both schedules, the su-
perscript is dropped. The second schedule has an associated energy:

⟨H(2)
MS(t)⟩ = ⟨HMS(0)⟩+

0 for 0 ≤ t ≤ t1

(γ2 − γ1)⟨Hp(t1)⟩ for t1 ≤ t ≤ t2

(γ3 − γ2)⟨H(2)
p (t2)⟩+ (γ2 − γ1)⟨Hp(t1)⟩ for t2 < t.

(6.10)

It follows that for t > t2 the difference in energy between the two sched-
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Figure 6.5: The schedules used to demonstrate that more stages result in a lower value
of ⟨Hp⟩.

ules is:

⟨H(2)
MS(t > t2)⟩ − ⟨H(1)

MS(t > t2)⟩ =

(γ3 − γ2)
(
⟨H(2)

p (t2)⟩ − ⟨Hp(t1)⟩
)

, (6.11)

since γ3 > γ2 by construction and ⟨H(2)
p (t2)⟩ ≤ ⟨Hp(t1)⟩ (as argued in

the previous section):

⟨H(2)
MS(t > t2)⟩ ≤ ⟨H(1)

MS(t > t2)⟩. (6.12)

Therefore, the energy of the system can only be decreased by the intro-
duction of an intermediate stage.

Intuitively, a lower energy at the same value of Γ is likely to result in a
smaller value of ⟨Hp⟩. The rest of this section attempts to substantiate
this intuition. To do this, a criterion based on the energy of the schedules
is set up, that if satisfied implies that a lower energy at the same Γ
corresponds to a lower ⟨Hp⟩. Then from the density-of-states it is argued
that this criterion is likely satisfied. For the schedules Γ(1)(t) and Γ(2)(t)
consider an additional quench from γ3 to γ f at time t3, with γ f < γ3.
The schedule is shown in Fig 6.5.
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The change in energy for the modified Γ(1) schedule is

⟨(H(1)
MS(t f )⟩ − ⟨(H(1)

MS(0)⟩ =

(γ3 − γ1) ⟨Hp(t1)⟩ −
(
γ3 − γ f

)
⟨H(1)

p (t3)⟩. (6.13)

The change in energy for the modified Γ(2) schedule is

⟨(H(2)
MS(t f )⟩ − ⟨(H(2)

MS(0)⟩ = (γ3 − γ2) ⟨H(2)
p (t2)⟩

+ (γ2 − γ1) ⟨Hp(t1)⟩ −
(
γ3 − γ f

)
⟨H(2)

p (t3)⟩ (6.14)

The difference in the final energy between the two schedules is:

⟨H(2)
MS(t f )⟩ − ⟨H(1)

MS(t f )⟩ =

(γ3 − γ2)
(
⟨H(2)

p (t2)⟩ − ⟨Hp(t1)⟩
)

−
(
γ3 − γ f

) (
⟨H(2)

p (t3)⟩ − ⟨H(1)
p (t3)⟩

)
. (6.15)

Compare this with Eq. 6.11, the energy difference before the final
quench. If the final quench has the effect of closing the energy gap
between the two schedules, i.e.

⟨H(2)
MS(t > t f )⟩ − ⟨H(1)

MS(t > t f )⟩

−
(
⟨H(2)

MS(t f > t > t2)⟩ − ⟨H(1)
MS(t f > t > t2)⟩

)
≥ 0 (6.16)

then:
⟨H(2)

p (t3)⟩ ≤ ⟨H(1)
p (t3)⟩. (6.17)

This sets the criterion for determining if a lower energy at the same Γ
corresponds to a lower ⟨Hp⟩. Now we will argue that this criterion is
likely to be satisfied. From the Hamiltonian (Eq. 6.1) we might reason-
ably suspect that increasing Γ(t) increases the spread of energy eigen-
states, and conversely decreasing Γ(t) decreases the spread. The vari-
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ance in the energy of the eigenstates of HMS is given by:

σ2 =
1
D

∑
k

E2
k −

1
D

(
∑
k

Ek

)2
 (6.18)

=
1
D

(
Tr
(

H2
QW

)
− 1

D Tr
(

HQW
)2
)

, (6.19)

where D is the dimension of the underlying Hilbert-space. For brevity,
let the normalised trace be denoted by Tr′ = 1/D Tr, and the scaled
operators H̃p = Hp − Tr′ Hp and H̃d = Hd − Tr′ Hd. Then,

σ2 = Tr′ H̃2
p

(
Γ +

Tr′ H̃dH̃p

Tr′ H̃2
p

)2

+
Tr′ H̃2

d Tr′ H̃2
p −

(
Tr′ H̃d Tr′ H̃p

)2

Tr′ H̃2
p

. (6.20)

Therefore, provided

Γ > −
Tr′ H̃dH̃p

Tr′ H̃2
p

(6.21)

holds true, decreasing Γ decreases σ2. For many typical cases, such
as Hp consisting of Pauli Z terms and Hd consisting of Pauli X terms,
Tr′ H̃dH̃p = 0. In this case, Eq. 6.21 reduces to Γ > 0.

Given that γ f can be arbitrarily close to γ3, a very small decrease in Γ
will bring the energy eigenstates closer together without significantly
affecting the populations of each state. This will likely decrease the
energy gap between the two schedules, implying Eq. 6.17.

This presents a trade-off between anneal-time and performance. More
stages will result in a longer anneal time, given the requirement to ther-
malise at each stage, but an improved performance as demonstrated by
a lower value of ⟨Hp⟩ with each stage.

6.2.4 Consequences of passivity

In the previous sections, Planck’s principle was used as a physically
reasonable assumption to discuss CTQO, specifically MSQWs. As men-
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Figure 6.6: The solid blue line sketches a possible γ(t), which in this case is mono-
tonically increasing. The purple line shows the piece-wise constant function used to
approximate γ(t). The dashed pink line shows the cyclic process used to demonstrate
⟨Hp(t)⟩ ≤ ⟨Hp(0)⟩.

tioned in Sec. 3.5.2, Planck’s principle is provably true for arbitrary cyclic
unitaries and passive states. The aim of this section is to make clear a
provable statement that follows from passivity (introduced in Sec. 3.5.2).
This section allows for the initial state to be a mixed state, but the system
is otherwise isolated. The Hamiltonian under consideration is

H(t) = Hd + γ(t)Hp, (6.22)

with, t varying from t = t0 to t = t f . The initial state is any passive
state with Hamiltonian H(t0). The schedule γ(t) is approximated with
a step-wise constant function, akin to an MSQW, shown in Fig. 6.6. The
change in energy as a result of the piece-wise constant function is

⟨H(t f )⟩ =
f−1

∑
k=0

[γ(tk+1)− γ(tk)] ⟨Hp(tk)⟩. (6.23)

At the end of the anneal a fictitious quench is introduced to return the
Hamiltonian to H(t0). The extractable work from this process is

W = −
f−1

∑
k=0

[γ(tk+1)− γ(tk)] ⟨Hp(tk)⟩+
[
γ(t f )− γ(t0)

]
⟨Hp(t f )⟩. (6.24)
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Since the initial state is passive, i.e. W ≤ 0, it follows that

⟨Hp(t f )⟩ ≤
f−1

∑
k=0

[
γ(tk+1)− γ(tk)

γ(t f )− γ(t0)

]
⟨Hp(tk)⟩. (6.25)

That is to say, ⟨Hp(t f )⟩ is bounded by a weighted average over the previ-
ous stages. Consider now a monotonically increasing schedule for γ(t),
such that γk+1 > γk. For k = 0, and introducing a fictitious quench at t1

to create a cyclic process, it follows that:

W10 = [γ(t1)− γ(t0)]
(
⟨Hp(t1)⟩ − ⟨Hp(t0)⟩

)
≤ 0, (6.26)

hence
⟨Hp(t1)⟩ ≤ ⟨Hp(t0)⟩. (6.27)

Assuming that
⟨Hp(tk)⟩ ≤ ⟨Hp(t0)⟩ (6.28)

is true for all k ≤ m, it remains to show that it is true for k = m + 1.
Again a fictitious quench is introduced at tm+1 to create a cyclic process:

Wm+1,0 = −
m

∑
k=0

[γ(tk+1)− γ(tk)] ⟨Hp(tk)⟩

+ [γ(tm+1)− γ(t0)] ⟨Hp(tm+1)⟩. (6.29)

Again, due to passivity, Wm+1,0 ≤ 0. Therefore:

⟨Hp(tm+1)⟩ ≤
m

∑
k=0

[
γ(tk+1)− γ(tk)

γ(tm+1)− γ(t0)

]
⟨Hp(tk)⟩, (6.30)

from the assumption stated in Eq. 6.28

⟨Hp(tm+1)⟩ ≤ ⟨Hp(t0)⟩
m

∑
k=0

[
γ(tk+1)− γ(tk)

γ(tm+1)− γ(t0)

]
︸ ︷︷ ︸

=1

. (6.31)
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By induction
⟨Hp(tk)⟩ ≤ ⟨Hp(t0)⟩ (6.32)

for all k ≥ 0 given a monotonically increasing γ(tk). Making the time-
step arbitrarily small and returning to the continuous limit gives:

⟨Hp(t)⟩ ≤ ⟨Hp(t0)⟩ (6.33)

for all t ≥ t0 given a monotonically increasing γ(t). This has previously
been shown for the case where the initial state is the ground state of Hd

[67]. Here it has been extended to any passive state, including ground
states and Gibbs states with Hamiltonian Hd + γ(t0)Hp that have a non-
trivial value of ⟨Hp(t0)⟩. This suggests that passive states might have a
significant role to play in QA. Further to assurances considered so far,
given any initial mixed state, the final state that minimises Hp varying
over all possible unitaries must be passive with respect to Hp. If the final
state is not passive, there exists a unitary that lowers the energy.

6.2.5 Introduction of a bath

To explore some consequences of open quantum system effects, a time-
independent bath is added to the Hamiltonian with time-independent
couplings to the quantum system. The resulting Hamiltonian is given
by:

Htotal = HS(t) + HSB + HB, (6.34)

where HB acts on the bath, HS(t) on the system and HSB is the system-
bath interaction. For simplicity, all the operators are taken to be trace-
class and the joint system to be isolated.

Consider the case where HS(t) is time-independent and given by
HS(t) = Hd + γHp. After some time, under the ETH (Assumption 3),
the total system will be locally indistinguishable from a Gibbs state,
with Hamiltonian Htotal. The system’s state, given by tracing out the
bath, need not be a Gibbs state at all.
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The temperature is fixed by the initial conditions:

⟨Htotal⟩ = −∂ logZtotal

∂β
, (6.35)

where
Ztotal = Tr

(
e−βHtotal

)
. (6.36)

As the system becomes small compared to the bath, the system can be
neglected in Eq. 6.35. At this point β becomes a property of the bath
and independent of γ.

The expectation value of ⟨Hp⟩ is given by

⟨Htotal⟩ = − 1
β

∂ logZtotal

∂γ
. (6.37)

On the assumption β is fixed such that it is independent of γ, under the
Peierls-Bogoliubov inequality the free-energy is concave [155], i.e.,

− 1
β

∂2 lnZtotal

∂γ2 ≤ 0. (6.38)

It follows that:
∂⟨Hp⟩

∂γ
≤ 0, (6.39)

so ⟨Hp⟩ is a monotonically decreasing function of γ for a fixed temper-
ature Gibbs state. It follows that the optimal choice of γ is as large as
possible. Beyond a certain point, the assumption that β is independent
of γ breaks down. Note that this argument only made use of the fact that
the joint system is locally indistinguishable from a Gibbs state, making
no assumptions about the form of the terms beyond being Hermitian. In
summary, optimising Gibbs states with fixed temperature is straightfor-
ward and is problem-instance independent. This simplicity is in stark
contrast to the bath-free case [22]. Utilising a bath to solve optimisation
problems has previously been explored by Imparato et al. [156]. They
used auxiliary qubits as a bath to tune the effective temperature of the
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joint-system. The explicit measurement of temperature is, however, not
touched upon.

Further to this, once the joint system has approached thermal equilib-
rium, if the system is then quenched such that γ(t) is increased at t = 0,
it follows from the passivity of the Gibbs state that ⟨Hp(t)⟩ ≤ ⟨Hp(0)⟩.
This suggests some inbuilt error resistance to CTQO. The inbuilt resis-
tance to errors in QA has been explored in [84, 85, 86].

6.3 Pure State Thermal Quantum Annealing

In this section, the continuum limit of an MSQW is considered, such
that the rate at which Γ(t) changes is sufficiently slow compared to the
dephasing timescale of the system. By applying the ETH (Assumption
3), the system is then modelled as a Gibbs state at all times. The coeffi-
cient in front of the driver Hamiltonian is allowed to change too, under
the same assumptions. The Hamiltonian is given by:

HTQA = A(t)Hd + B(t)Hp, (6.40)

where A(t) and B(t) are changed slowly compared to the dephasing
timescale. Intuition into this timescale can be found in [109, 110, 111],
where it is argued that this timescale is unlikely to be exponential. De-
tailed numerical studies focusing on the systems considered in this dis-
sertation, including the role of the initial state, have not been carried out
yet. However, provided that the state (including the initial state) con-
sists of an exponential number of energy eigenstates we expect that the
dephasing timescale will be less than exponential, independent of the
state. This is consistent with the result for CTQWs discussed in Chapter
5. That is not to say that the dephasing time is independent of the state,
as we saw in Chapter 5, the dephasing timescale depended on the dif-
ference between the initial value of the observable (corresponding to the
initial state) and the infinite time-averaged value. In contrast, adiabatic
quantum optimisation has overlap with a single energy eigenstate and
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an exponentially scaling runtime.

We refer to this limit as pure state thermal quantum annealing (PSTQA).
Since the system is isolated:

d⟨HTQA(t)⟩
dt

= ⟨
∂HTQA

∂t
⟩ (6.41)

= Ȧ(t)⟨Hd⟩+ Ḃ(t)⟨Hp⟩, (6.42)

where the dot denotes a time derivative. Denoting the time-dependent
partition function of the system as Z(t):

⟨HTQA(t)⟩ =− ∂ lnZ(t)
∂β

(6.43)

⟨Hd(t)⟩ =− 1
β(t)

∂ lnZ(t)
∂A

(6.44)

⟨Hp(t)⟩ =− 1
β(t)

∂ lnZ(t)
∂B

, (6.45)

where β is the inverse temperature. The rest of this section investigates
the consequences of these equations.

6.3.1 Pure state thermal quantum annealing is path-

independent

Returning to Eq. 6.42, the equation can be rewritten into normalised
time with the substitution s = t/t f , where t f is the anneal time,

d⟨HTQA(s)⟩
ds

= ⟨Hd⟩
dA(s)

ds
+ ⟨Hp⟩

dB(s)
ds

. (6.46)

The above equation depends only on the normalised time and the ex-
pectation values depend only on A, B and β and not their derivatives.
This implies ⟨Hp⟩ in the thermal model is independent of scaling by t f ,
although obviously too small a t f will cause the thermal predictions to
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break down. Further rewriting Eq. 6.46 gives:

⟨HTQA(1)⟩ =
∫ A(1),B(1)

A(0),B(0)

(
⟨Hd⟩
⟨Hp⟩

)
·
(

dA
dB

)
, (6.47)

hence Eq. 6.46 can be viewed as a path integral under the “force”

D⃗ = −
(
⟨Hd⟩
⟨Hp⟩

)
= −∇⃗F, (6.48)

where F is the Helmholtz free energy, F = − ln (Z) /β and ∇⃗ =

(∂A, ∂B)
T. Since each of ⟨Hd⟩ and ⟨Hp⟩ depend only on A and B and

not their derivatives and the force can be written as the gradient of a
scalar field, ⟨HTQA⟩ is path independent. It follows that ⟨Hp⟩ will also
be path-independent.

6.3.2 Diagonal entropy is conserved

The diagonal entropy, assuming a Gibbs state, is given by

Sd(β, E, A, B) = lnZ(β, A, B) + βE, (6.49)

where E = ⟨HTQA(t)⟩. Taking the time derivative of Sd gives

dSd
dt

=
∂ lnZ

∂A
dA
dt

+
∂ lnZ

∂B
dB
dt

+

(
∂ lnZ

∂β
+ E

)
dβ

dt
+ β

dE
dt

, (6.50)

substituting in Eq. 6.43 gives:

dSd
dt

=
∂ lnZ

∂A
dA
dt

+
∂ lnZ

∂B
dB
dt

+ β
dE
dt

, (6.51)

Using Eqs. 6.44, 6.45 and Eq. 6.42:

dSd
dt

= 0. (6.52)
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Figure 6.7: The 10-qubit Max-cut example.

In conclusion, PSTQA is the adiabatic limit of an MSQW, with Assump-
tion 3. The standard quantum adiabatic theorem would imply that the
relevant timescale would be associated with the minimum spectral gap,
hence a timescale that grows exponentially with the number of qubits.
But to reach PSTQA the relevant timescale invoked was the dephasing
timescale. To make Assumption 3, it was assumed that non-extensive
corrections to the observables could be neglected. Since Sd is an ex-
tensive quantity, it is perhaps more reasonable to say that PSTQA is
adiabatic up to non-extensive corrections.

6.3.3 Numerical evidence of PSTQA

To illustrate PSTQA this section numerically examines a specific exam-
ple. The example is a single instance of Max-cut on a randomly gener-
ated graph with 10 qubits, with Hd being the transverse-field Hamilto-
nian. Each edge in the Max-cut graph has been selected with probability
2/3. The Max-cut graph is shown in Fig. 6.7. The schedule is shown in
Fig. 6.8, where B(0) ̸= 0 and A(t f ) ̸= 0 breaking integrability and the
conventional assumption in AQO.

Fig. 6.9 shows ⟨Hp(t)⟩ for the Max-cut example. The blue line shows
the Schrödinger equation. The pink line shows the prediction from di-
rectly solving the PSTQA equations (i.e. Eqs. 6.42-6.45). There is very
good agreement throughout the evolution. Fig. 6.10 shows the diago-
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Figure 6.8: The schedule used for the 10-qubit Max-cut instance. The pink line shows
A(t)and the blue line shows B(t).

Figure 6.9: A comparison of ⟨Hp(t)⟩ calculated from the Schrödinger equation (blue)
and the PSTQA equations (pink) for the 10 qubit example. The dashed purple line
shows the ground-state energy, E(p)

0 , of the problem Hamiltonian.

Figure 6.10: The diagonal entropy calculated from the Schrödinger equation for the 10
qubit Max-cut example.
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Figure 6.11: The inverse temperature calculated from the PSTQA equations for the 10
qubit Max-cut example.

nal entropy for the same evolution, according to the Schrödinger evo-
lution. The change is relatively small, however non-zero. This is ev-
idence of diabatic transitions between energy eigenstates. Indeed, at
the end of the evolution, there is a net increase in diagonal entropy.
The inverse temperature calculated from Eq. 6.43 is shown in Fig. 6.11.
Generally, the temperature is seen to be decreasing, except at around
t ≈ 11 where the system heats. The peak in diagonal entropy (accord-
ing to the Schrödinger equation) and inverse temperature (according
to the PSTQA equations) appears to roughly coincide. These are not
directly linked, recall that the PSTQA equations predict no change in
diagonal entropy. However, halfway through the anneal the variance
in energy eigenstates is minimised, providing a possible explanation of
why numerous transitions occur resulting in rapid change in the di-
agonal entropy. Given an approximate Gaussian density of states for
the evolution, see the next chapter and Appendix A.2) we expect that a
maximum in the inverse temperature occurs when the variance is min-
imised. In Appendix A.1 more numerical evidence of PSTQA is pro-
vided, including a second combinatorial optimisation problem to show
that this phenomenon is not restricted to Max-cut.
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Figure 6.12: PSTQA for the 10-qubit Max-cut graph shown in Fig. 6.7. The blue line
shows the Schrödinger evolution. The green line shows the prediction from the PSTQA
equations when an exponentially modified Gaussian ansatz is made for the density-
of-states.

6.3.4 Ansatz based approach

Directly numerically solving the PSTQA equations (i.e. Eqs. 6.42-6.45)
is difficult, requiring repeated matrix exponentiation to find β. How-
ever, since the PSTQA equations depend only on the partition function,
the equations can be tackled by making a good choice of ansatz for Z .
Ansätze for the partition function based on models of the density-of-
states for Max-cut were explored in Chapter 4 for the time-independent
setting. Fig. 6.12 shows the EMG ansatz for the density-of-states, for the
time-dependent setting. The green line in Fig. 6.12 shows the ansatz-
based approach, and the pink line again shows the Schrödinger evo-
lution of ⟨Hp(t)⟩ for the 10-qubit instance considered in the previous
section. Although the agreement is not as good as exactly solving the
PSTQA equations, this approach removes the need for matrix exponen-
tiation and still provides a good approximation. The details of the cal-
culation can be found in Appendix A.2, along with further numerical
examples.
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6.4 Cyclic approaches

Cyclic processes present a natural formulation for incorporating prior
classical information about the optimisation problem into the quantum
algorithm. Instead of starting in a pure state, the system is initialised
in a classical ensemble, diagonal in the computational basis. This use
of prior information is sometimes known as warm-starting. Planck’s
principle is naturally formulated in terms of a cyclic process. Here,
we investigate what this means for CTQO. Sec. 6.4.1 considers warm-
started CTQWs. Sec. 6.4.2 considers reverse quantum annealing (RQA)
more broadly. In Sec. 6.4.3 considers biased quantum annealing (BQA),
focusing on the computational mechanism.

6.4.1 Warm starting continuous-time quantum walks does

not work (on average)

From previous runs, or from some prior knowledge of the problem, a
reasonable non-optimal solution to the combinatorial optimisation prob-
lem might be known. The case of a CTQW, where instead of starting in
an eigenstate of Hd it is initialised in an eigenstate of Hp, is studied in
this section. In order to apply Assumption 4, it is required that the ini-
tial state |z∗⟩ is better than average (see Sec. 3.5.2 for further discussion):

⟨z∗| Hp |z∗⟩ <
1
2n Tr Hp. (6.53)

Consider the Hamiltonian:

HWS = G(t)Hd + Hp, (6.54)

where

G(t) =


0 for t ≤ 0

g for 0 < t ≤ t1

0 for t1 ≤ t.

(6.55)
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Note that the time-dependent schedule is now appended to Hd, not
Hp. This cyclic process is indistinguishable from a warm-started CTQW
period with a duration of t1. Again, Planck’s Principle (Assumption 4)
is applied. The extractable work is:

W = g (⟨Hd(t1)⟩ − ⟨Hd(0)⟩) ≤ 0. (6.56)

We conclude that if g > 0, ⟨Hd(t1)⟩ ≤ ⟨Hd(0)⟩. Else if g < 0, ⟨Hd(t1)⟩ ≥
⟨Hd(0)⟩. By conservation of energy

⟨Hp(0)⟩+ g⟨Hd(0)⟩ = ⟨Hp(t1)⟩+ g⟨Hd(t1)⟩. (6.57)

Combining the above statements:

⟨Hp(0)⟩ − ⟨Hp(t1)⟩ = g (⟨Hd(t1)⟩ − ⟨Hd(0)⟩) ≤ 0. (6.58)

Hence,
⟨Hp(0)⟩ ≤ ⟨Hp(t1)⟩, (6.59)

under Assumption 4. Since ⟨Hp(0)⟩ corresponds to the initial guess, the
CTQW gives on average worse-quality solutions than the initial guess.
Therefore, CTQWs cannot be on average warm-started by simply driv-
ing from a low energy eigenstate of Hp. Numerical evidence of the
performance of warm-started CTQWs can be found in Appendix A.3.

6.4.2 Reverse quantum annealing

In this section, reverse quantum annealing (RQA) is understood to be
a cyclic protocol that maps a classical probability density function of
computational basis states to another probability density function. A
warm-started CTQW can be considered an example of RQA. Under As-
sumption 4, the total energy of the system has to rise as a result of a
cyclic process. This rules out cooling Hp cyclically to find good quality
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solutions given a Hamiltonian of the form

Hcyc(t) = Hp + G(t)Hd, (6.60)

where 0 ≤ t ≤ tcyc and G(t) corresponds to a cyclic process (i.e. G(t =
0) = G(t = tcyc) = 0). This is at odds with approaches such as RQA.
Further to this, the following is provably true:

1. The entropy of the resulting distribution is greater than or equal to
the entropy of the original distribution. The cyclic process causes
the distribution to become more spread (see Chapter 3).

2. If the initial state is passive, for example a thermal state of Hp, then
the mean of the resulting distribution can only increase. That is to
say, if the initial state is passive, then there exists no unitary cyclic
process that will reduce ⟨Hp⟩ averaged over the distribution.

Beyond ⟨Hp⟩, it is also possible to draw some conclusions about the
ground-state probability for RQA. The initial state for RQA is the en-
semble

ρ0 = ∑
s

p(s) |s⟩ ⟨s| , (6.61)

where |s⟩ is an eigenstate of Hp with eigenvalue s. Denoting the unitary
associated with one RQA cycle to be Ucyc, then the transition probability
between states |s⟩ and |j⟩ is given by

p(j|s) =
∣∣⟨j|Ucyc |s⟩

∣∣2. (6.62)

Note that the elements p(j|s) constitute a doubly-stochastic matrix, P [1].
From Birkhoff’s theorem [1, 157], P can be written as a convex sum of
permutation matrices Πα, such that the resulting state ρ1 can be written
as:

ρ1 =Pρ0 (6.63)

ρ1 =∑
α

qαΠαρ0 (6.64)
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where 0 ≤ qα ≤ 1 and ∑α qα = 1. Here ρi, i = 0, 1 can be viewed
as the diagonal part of the density operator in the computational basis.
Interpreting qα as a probability, RQA can then be viewed as applying a
permutation Πα with probability qα. The distribution of qα is determined
by the schedule of the RQA protocol. This is likely to consist of some
local and global moves, with locality being driver dependent.

The doubly-stochastic evolution places restrictions on the resulting dis-
tribution ρ1. As mentioned previously, if ρ0 is passive, then P can only
reduce the average quality of solution. Further to this, looking at the
change in ground-state probability ∆p(0) with initial ground-state prob-
ability p(0):

∆p(0) =∑
m

p(0|m)p(m)− p(m|0)p(0) (6.65)

∆p(0) =∑
m

p(0|m) (p(m)− p(0)) (6.66)

(6.67)

where p(0|m) = p(m|0) has been used. Bounding ∆p(0) gives:

min
m

(p(m)− p(0))∑
m

p(0|m) ≤ ∆p(0) ≤ max
m

(p(m)− p(0))∑
m

p(0|m).

(6.68)
Since P is doubly-stochastic,

min
m

(p(m)− p(0)) ≤ ∆p(0) ≤ max
m

(p(m)− p(0)) . (6.69)

This means if the ground state is already the most-likely state (even if it
is exponentially small) P can only reduce the probability of finding the
ground state. If the ground state is the least likely state, then RQA can
only improve the ground-state probability. More generally, the ground-
state probability is bounded by maxm p(m), which if exponentially small
restricts finding the ground state to being exponentially unlikely. If p(m)

is sampled from a system with an extensive amount of entropy, then this
is likely the case.
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After each stage, there is some selection criterion to determine if a string
is kept or if the RQA cycle is repeated with the initial string. The selec-
tion criterion could be the Metropolis-Hastings update rule [158] or a
more complicated update [70, 71]. At its core, the quantum part of
RQA is a method of generating qα and implementing the corresponding
permutation. It remains to be shown that this is better than classically
generating a distribution of qα and corresponding permutation, say for
example with cluster Monte Carlo [159].

Note that an average increase in ⟨Hp⟩ does not rule out finding states
with a lower value of ⟨Hp⟩ - this is simply not the average case. Since
in RQA the system starts in an energy eigenstate, the uncertainty can
only increase as a result of the cyclic process. Provided the shift in
average energy is less than the increased uncertainty in energy, RQA
has a chance of doing better than its initial guess.

6.4.3 Biased quantum annealing

In the previous section, it was shown that RQA is restricted in terms
of which states it can reach. Since the energy of the system tends to
increase a third term needs to be added to invalidate Planck’s principle
(this is discussed in detail later in this chapter),

Hcyc(t) = Hp + Hb + G(t)Hd. (6.70)

Provided that the increase in energy associated with the bias Hamilto-
nian (Hb) is greater than the energy increase as a result of the cyclic
process, the energy associated with Hp will decrease. To remove ambi-
guity, we refer to RQA with a bias as biased quantum annealing (BQA).

The following protocol is inspired by works such as [73] and [74]. In
these works, the many-body localised phase transition in spin glasses is
used to cyclically cool the system. We argue that this approach is likely
to hold for a broad range of settings. Initialising in an eigenstate of Hp,
denoted by |z∗⟩ and Hb = −α |z∗⟩ ⟨z∗| with α > 0, lowers the energy of

117



6. Statistical-mechanics applied to continuous-time quantum

optimisation

Energy
Hp

α

Hp + Hb

Figure 6.13: The effect on the problem Hamiltonian of introducing Hb. The initial state
is highlighted in purple. States lower in energy are coloured blue, while states higher
in energy are coloured pink. As long as |∆W| < α, the expectation value of ⟨Hp⟩ will
decrease.

the initial state, while all other eigenstates of Hp remain unchanged. As
long as the energy increase ∆W from the cyclic process is smaller than
the energy shift from the bias, ⟨Hp⟩ will be reduced. This is sketched
out in Fig. 6.13. Note that for this choice of biasing Planck’s principle no
longer holds as a map between classical probability distributions, this is
discussed in Sec. 6.4.3. However, we will assume that the net result of
a typical cyclic process with sufficient dynamics is to move towards the
bulk of the spectrum, increasing the energy. For the process to work,
non-trivial dynamics need to take place. Given some starting state, the
process could work as follows:

1. Run the cyclic process

2. If the resulting string corresponds to a better solution, update the
initial state to be this state.

3. Otherwise, keep the initial starting state but increase α.

In practice, achieving a bias like Hb = −α |z∗⟩ ⟨z∗| will be infeasible.
Such a bias would involve all-to-all interactions. A much more feasible
driver is

H(l)
b = −α

n

∑
i=1

(−1)z∗[i]Zi, (6.71)
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where z∗[i] is the ith bit in the n-bit string z∗, and Zi is the Pauli Z
matrix acting on the ith qubit. This Hamiltonian has the ground state
|z∗⟩ with energy −nα, and consists of one-local terms. However, this
Hamiltonian will alter the energy of all the problem states. In the worst
case, the energy gap opened up by H(l)

b becomes primarily occupied by
high energy states of Hp and no cooling of ⟨Hp⟩ occurs.

If however, assuming that the ordering of energy eigenstates is uncor-
related between H(l)

b and Hp, then the average energy shift from H(l)
b is

0 with standard deviation α
√

n. So the typical energy shift of the prob-
lem eigenstates is

√
n times smaller than the shift on the initial state.

Therefore, for large n in the typical case, we would expect this local bias
to mimic − |z∗⟩ ⟨z∗|. For this approach, if α is too big H(l)

b will domi-
nate and the approach will not involve any information from Hp. The
performance of this approach is numerically explored in Appendix A.4.

Does BQA violate the second law of thermodynamics?

We have discussed that if the system is likely to increase in energy, then
the introduction of a bias can help improve ⟨Hp⟩. This section out-
lines how BQA can appear to violate the second-law of thermodynamics
while elucidating the resources used in BQA.

Let’s consider a cyclic process where the initial state

ρ0 = ∑
z

pz |z⟩ ⟨z| (6.72)

is diagonal in the computational basis. For each run, the state |z⟩ is fed
into the quantum annealer with probability pz. The initial Hamiltonian
is Hp. The system interpolates between Hp and H(l)

b such that the sys-
tem reaches the ground-state of H(l)

b . The system is then adiabatically
evolved to the ground-state of Hd (which by assumption commutes with
neither Hp nor H(l)

b ). From here, the system is adiabatically evolved to
the ground-state of Hp. The result of this cyclic process is to take ρ0 and
map it to the ground-state of the problem Hamiltonian. Hence, a cyclic

119



6. Statistical-mechanics applied to continuous-time quantum

optimisation

process that leads to extractable work and a decrease in entropy has
been constructed, violating the second law of thermodynamics. This
is true even for passive states. This process is typically referred to as
adiabatic reverse quantum annealing [160, 161].

The apparent violation arises because the evolution is not unitary (hence
not isolated), evidenced by the change in von Neumann entropy. The
choice of cyclic process is predicated on the initial state loaded into the
quantum annealer. To make the system isolated, consider the introduc-
tion of a second register of qubits. The first register Q contains the qubits
used in the BQA process and contains n qubits. The second register C
contains the same number of bits as Q, and each qubit in the second
register is prepared in |0⟩. The joint initial state is now:

ρ
(Q/C)
0 = ∑

z
pz |z⟩ ⟨z|Q

n−1⊗
i=0

|0⟩ ⟨0|i,C . (6.73)

Each qubit in Q is paired with a qubit in C. A controlled-NOT gate is
applied between each pair of qubits such that the resulting state is:

ρ
(Q/C)
1 = ∑

z
pz |z⟩ ⟨z|Q ⊗ |z⟩ ⟨z|C . (6.74)

The unitary,
Ut = ∑

z
Uz ⊗ |z⟩ ⟨z| , (6.75)

where Uz is a unitary dependent on the string z, is applied to ρ
(Q/C)
1 . In

the context of the previous section, this could be the unitary generated
by Eq. 6.70 with Hb = −α |z⟩ ⟨z| or H(l)

b with ground state |z⟩. The
resulting state after application of Ut is

ρ
(Q/C)
2 = ∑

z
pzUz |z⟩ ⟨z|Q U†

z ⊗ |z⟩ ⟨z|C . (6.76)

This process is now unitary and therefore isolated. The diagonal entropy
of the initial state is S0. At the end of the process, the diagonal entropy
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cannot decrease as a result. The diagonal entropy of the C register (i.e.
the diagonal entropy of TrQ

(
ρ
(Q/C)
2

)
) is exactly S0. Hence, the diagonal

entropy of the Q register must be greater than or equal to zero. For the
adiabatic cycle discussed in the beginning of the section, the second law
of thermodynamics is not violated, since all the entropy has been moved
from Q to C. Only by neglecting C does it appear that the entropy of
the system is decreasing. BQA is making use of a bath of classical bits C
prepared in a low entropy configuration to hopefully reduce the entropy
of Q. Any statement that relies on the system being isolated requires the
inclusion of C.

6.5 Conclusion

Planck’s principle is a physically reasonable assumption in a broad
range of circumstances. In this work, we have used it to motivate
continuous-time quantum optimisation (CTQO) without appealing to
the adiabatic theorem. Pure state statistical physics provides a novel
way of investigating CTQO without appealing to the minutiae of the
energy spectrum that would typically be inaccessible for large quantum
systems. Statistical physics also provides new ways of discussing and
reasoning about CTQO, by invoking (for example) temperature.

Planck’s principle motivates forward quantum annealing (QA) with
monotonic schedules, but raises questions over cyclic processes (such as
reverse quantum annealing). We demonstrated that ⟨Hp⟩ can only im-
prove under monotonic quenching, and that the addition of more stages
will lower the energy and is likely to result in a better performance. Ap-
plying the eigenstate thermalisation hypothesis to the continuum limit
opens up the possibility of analysing a new set of equations. These
equations are particularly amenable when an ansatz for the partition
function is made. There is scope to extend these equations to capture
transitions (or equivalently heating).

With improved knowledge of how systems behave away from the adia-
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batic limit, it may be possible to design better heuristic continuous-time
quantum algorithms for optimisation. Studying CTQO is to understand
the limitations of Planck’s principle, or equivalently Kelvin’s statement
of the second law of thermodynamics, within the quantum regime.
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Chapter 7

Rapid Hamiltonians for
combinatorial optimisation

problems

In the absence of mature hardware, CTQO has relied on the adiabatic
theorem as a guiding design principle. Throughout this dissertation, we
have used pure-state statistical physics to understand these quantum al-
gorithms as they move away from the adiabatic limit. In this chapter,
we explore a novel design tenet, inspired by Hamiltonians for optimal
state-transfer. These are Hamiltonians that transfer the system from
the initial state to the final state in the shortest possible time. In this
chapter, we use these Hamiltonians as our underlying design principle.
Such Hamiltonians typically require knowledge of the final state (i.e.,
the solution to the optimisation problem). In the absence of this infor-
mation, we therefore focus on how the behaviour of these Hamiltonians
might be approximated to find approximate solutions to optimisation
problems. The result is a rapid continuous-time approach, with a single
variational parameter. The next section details Hamiltonians for op-
timal state transfer and the approximated Hamiltonians considered in
the rest of the chapter. Throughout this chapter, we work within the
QA-framework, where the aim is to transfer from the ground state of
Hd to low energy eigenstates of Hp.
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7.1 Hamiltonian design

7.1.1 The optimal Hamiltonian

The aim of optimal state-transfer is to find a Hamiltonian that transfers
the system from an initial state (i.e., |ψi⟩) to a known final state (i.e.,∣∣ψ f
〉
) in the shortest possible time. We shall refer to this Hamiltonian as

the optimal Hamiltonian (although it is by no means unique).

One notable approach to finding the optimal Hamiltonian comes from
Nielsen et al. [162, 163, 164] who investigated the use of differen-
tial geometry, at the level of unitaries, to find geodesics connecting
the identity to the desired unitary. The length of the geodesic was
linked to the computational complexity of the problem [163]. A sec-
ond approach comes from Carnali et al. Inspired by the brachistochrone
problem, they developed a variational approach at both the level of
state-vectors [165] and unitaries [166]. The quantum brachistochrone
problem has generated a considerable amount of literature and interest
[167, 168, 169, 170, 171, 172].

Both approaches allow for constraints to be imposed on the Hamilto-
nian. Both concluded that if the only constraint is on the total energy of
the Hamiltonian, the optimal Hamiltonian is constant in time. In the rest
of this section, we outline the geometric argument put forward by Brody
et al. [173] to find the optimal Hamiltonian in this case. The reader is
invited to refer to the original work for the explicit details.

The optimal Hamiltonian will generate evolution in a straight line in
the (complex-projective) space in which the states live. Intuitively, a
line in this space between |ψi⟩ and

∣∣ψ f
〉

consists of superpositions of
the two states. Hence, the line in the complex-projective space can be
represented on the Bloch sphere.

If, without loss of generality, |ψi⟩ and
∣∣ψ f
〉

are placed in the traditional
z − x plane of the Bloch sphere, it is clear that the optimal Hamilto-
nian generates rotations in this plane. The optimal Hamiltonian is then
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(reminiscent of the cross-product):

Hopt = −i
(
|ψi⟩

〈
ψ f
∣∣− ∣∣ψ f

〉
⟨ψi|

)
. (7.1)

This can be scaled to meet the condition on the energy of the Hamil-
tonian. If

∣∣ψ f
〉

and |ψi⟩ are not chosen to lie on the z − x plane of the
Bloch sphere, i.e. Im

(〈
ψ f
∣∣ψi
〉)

̸= 0 the Eq. 7.1 becomes:

Hopt = −i
(

e−iφ |ψi⟩
〈
ψ f
∣∣− eiφ ∣∣ψ f

〉
⟨ψi|

)
, (7.2)

where φ = arg
(〈

ψ f
∣∣ψi
〉)

. Note that Tr Hopt = 0. Throughout this chap-
ter it is assumed that φ = 0, or equivalently that e−iφ has been absorbed
into |ψi⟩.

It then remains to calculate the time required to transfer between the
two states. This will depend on how far apart the states are and how
fast the evolution is. This is encapsulated in the Anandan-Aharonov
relationship [174]:

ds
dt

= 2δE(t). (7.3)

The left-hand-side denotes the speed of the state, |ψ(t)⟩, where ds is
the infinitesimal distance between |ψ (t + dt)⟩ and |ψ (t)⟩ 1. Under evo-
lution by the Schrödinger equation, with Hamiltonian H, the instanta-
neous speed of the evolution is given by the uncertainty in the energy,
δE2(t) = ⟨ψ(t)| H2(t) |ψ(t)⟩ − ⟨ψ(t)| H(t) |ψ(t)⟩2.

Since the optimal Hamiltonian is constant in time, δE can be evaluated
using the initial state. Therefore, the time of evolution is:

T =
arccos

∣∣〈ψ f
∣∣ψi
〉∣∣√

1 −
∣∣〈ψ f

∣∣ψi
〉∣∣2 . (7.4)

In standard QA, the time-varying Hamiltonian interpolates between Hd
1The distance is measured by the Fubini-study metric, ds2 =

4
(

1 − |⟨ψ (t)|ψ (t + dt)⟩|2
)

, on the complex-projective space.
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and an Ising Hamiltonian Hp, to evolve from the ground-state of Hd to
the ground-state of Hp. Hence, in the rest of this chapter, we identify
|ψi⟩ with the ground state of Hd and

∣∣ψ f
〉

with the ground-state of Hp.
Consider the overlap of Hd with Eq. 7.1:

Tr
{

HdHopt
}
=− i Tr

{
Hd
(
|ψi⟩

〈
ψ f
∣∣− ∣∣ψ f

〉
⟨ψi|

)}
=E(0)

d Tr
{

Hopt
}

=0,

where E(0)
d is the ground-state energy of Hd. Similarly,

Tr
{

HpHopt
}
= 0.

Eq. 7.1 has no overlap with any of the Hamiltonians typically used in
QA. More generally, if M is any operator whose eigenstates include |ψi⟩
or
∣∣ψ f
〉
, then

Tr
{

MHopt
}
= 0.

This means Eq. 7.1 has no overlap with other Hamiltonians, such as
Hamiltonians consisting of only XX terms. Any Pauli operator that
commutes with Hd or Hp has zero overlap with Hopt. As a final example,
consider the optimal Hamiltonian for Max-cut on a two-regular graph
with four qubits, starting in the plus state. The Hamiltonian (up to some
scaling factor):

H4 = Z1Y2 + Y1Z2 + Z2Y3 + Y2Z3 + Z3Y4 + Y3Z4 + Z1Y4 + Y1Z4

− Z1Y3 − Y1Z3 − Z2Y4 − Y2Z4 − Y1Z2Z3Z4 − Z1Y2Z3Z4 − Z1Z2Y3Z4

− Z1Z2Z3Y4 + X1Y2Z3 + Y1X2Z4 − Y1X2Z3 − X1Y2Z4 + Y1Z2X3

+ X1Z2Y3 + X1Y3Z4 + Y1X3Z4 + Y1Z2X4 + X1Z3Y4 − Y1Z3X4

− X1Z2Y4 + Z1Y2X3 + X2Y3Z4 − Z1X2Y3 − Y2X3Z4 + Z1Y2X4

+ Y2Z3X4 + X2Z3Y4 + Z1X2Y4 + Z2Y3X4 + Z1X3Y4 − Z1Y3X4

− Z2X3Y4 + X1X2Y3Z4 + Y1X2X3Z4 − X1Y2X3Z4 + Y1Y2Y3Z4
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+ X1Y2Z3X4 + X1X2Z3Y4 − Y1X2Z3X4 + Y1Y2Z3Y4 + Y1Z2X3X4

+ X1Z2Y3X4 − X1Z2X3Y4 + Y1Z2Y3Y4 + Z1Y2X3X4 + Z1X2X3Y4

− Z1X2Y3X4 + Z1Y2Y3Y4, (7.5)

solves the problem in the shortest possible time. This Hamiltonian has
a huge number of terms, yet none of them are the ones typically used in
QA. Note that every term involves a Y Pauli. Although Eq. 7.5 is clearly
not implementable, it raises questions over whether QA uses the correct
terms in the Hamiltonian to achieve practical speed-up, especially in
NISQ devices.

7.1.2 Adapting the optimal Hamiltonian

In summary, e−iHoptT |ψi⟩ generates the state
∣∣ψ f
〉
. The goal of the rest of

this chapter is to harness some of the physics behind this expression for
computation. To this end, we primarily focus on Hamiltonians which
are constant in time. In the style of a variational quantum eigensolver
(VQE) [75, 175], we allow T to be a variational parameter that needs to
be optimised in our new approach. In this chapter, we select the T that
minimises the final value of ⟨Hp⟩. This is done numerically by brute
force grid search for the Hamiltonians proposed in this chapter. The
grid search corresponds to dividing the time-interval [0, 2π] into 1000
equally spaced intervals. For QAOA p = 1, the grid was 100 by 100 in
the interval β ∈ [0, π] and γ ∈ [0, 2π]. By using brute force search, we
minimise the effect of the classical optimiser on the quantum algorithm.
There is scope to explore other metrics besides ⟨Hp⟩ [176, 177]. As T is
a variational parameter, the Hamiltonian is only important up to some
constant factor. Rewriting Eq. 7.1 up to some constant gives:

Hopt ∝
1
2i
[
|ψi⟩ ⟨ψi| ,

∣∣ψ f
〉 〈

ψ f
∣∣] , (7.6)

assuming |ψi⟩ and
∣∣ψ f
〉

have a non-zero overlap (this is a given in the
standard QA framework). This equation (Eq. 7.6) provides the starting
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point for all the Hamiltonians considered in this chapter.

The optimal Hamiltonian (i.e., Eq. 7.6) requires knowledge of the final
state. In practice, when attempting to solve an optimisation problem,
one doesn’t have direct access to

∣∣ψ f
〉
. Instead, one has easy access to Hd

and Hp. Therefore, we make the pragmatic substitutions |ψi⟩ ⟨ψi| → Hd

and
∣∣ψ f
〉 〈

ψ f
∣∣→ Hp into Eq. 7.6

Hopt ∝
1
2i
[
|ψi⟩ ⟨ψi| ,

∣∣ψ f
〉 〈

ψ f
∣∣]

↓ ↓

H1 =
1
2i
[

Hd , Hp
]

. (7.7)

This Hamiltonian is the most amenable to NISQ implementation of all
the Hamiltonians considered in this chapter, therefore the bulk of the
chapter is devoted to demonstrating its performance. The results can be
seen in Sec. 7.2.

The substitutions |ψi⟩ ⟨ψi| → Hd and
∣∣ψ f
〉 〈

ψ f
∣∣ → Hp introduce errors,

such that the evolution under H1 no longer closely follows the evolution
under Hopt. In Sec. 7.3 we try to correct for this error by adding a new
term to the Hamiltonian,

H1,improved = H1 + HQZ. (7.8)

The proposed form of HQZ is motivated by the quantum Zermelo prob-
lem [178, 179, 180, 181].

Finally, in Sec. 7.4 we exploit our knowledge of the initial state and
propose the substitution

∣∣ψ f
〉 〈

ψ f
∣∣ → f (Hp), where f (·) is some real

function:
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Hopt ∝
1
2i
[
|ψi⟩ ⟨ψi| ,

∣∣ψ f
〉 〈

ψ f
∣∣]

↓

Hψi =
1
2i
[
|ψi⟩ ⟨ψi| , f

(
Hp
) ]

. (7.9)

7.2 Taking the commutator between the initial

and final Hamiltonian

In Sec. 7.1. we motivated the Hamiltonian

H1 =
1
2i
[
Hd, Hp

]
(7.10)

by substituting out the projectors in Eq. 7.6 for easily accessible Hamilto-
nians. In this section, we explore the effectiveness of these substitutions.
We begin by demonstrating that Eq. 7.10 generates the optimal rotation
for a single qubit (Sec. 7.2.1). In Sec. 7.2.2 we show that H1 has the po-
tential to outperform random guessing within the QA-framework. The
rest of the section analyses the performance of H1 on Max-cut on regular
and binomial graphs.

7.2.1 The optimal approach for a single qubit

Here we outline a simple geometric argument which shows that H1 gen-
erates the optimal rotation for a single qubit (hence the name H1). The
eigenstates of Hd and Hp can be represented as points on the surface of
the Bloch sphere, see Fig. 7.1. Since these points lie in a plane, the aim
is to write down a Hamiltonian that generates rotation in this plane. To
simplify the calculations, we make use of index notation and the Ein-
stein summation notation convention. For this reason, in this section the
kth Pauli matrix is denoted by σk, with σ0 being the identity.

The first step is to construct traceless Hamiltonians with a trace-norm of
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θ
m̂ n̂

k̂ = m̂ × n̂

Figure 7.1: The geometric intuition behind finding the Hamiltonian for optimally
transferring between the ground-states of Hd and Hp on the Bloch sphere. The vectors
±m̂ (±n̂) are the eigenvectors of Hd (Hp). The aim is to generate a rotation of θ around
k̂ to map ±m̂ to ±n̂. The handedness of the cross-product takes into account the di-
rection.

one.
H̃d =

Hd − 1/2 Tr (Hd) σ0√
1
2 Tr

[
(Hd − 1/2 Tr (Hd) σ0)

2
] , (7.11)

and

H̃p =
Hp − 1/2 Tr

(
Hp
)

σ0

1
2

√
Tr
[(

Hp − 1/2 Tr
(

Hp
)

σ0
)2
] . (7.12)

The Hamiltonians, H̃d and H̃p, have both the same eigenvectors, and
ordering in terms of energy, as Hd and Hp. Expanding H̃d and H̃p in
terms of Pauli matrices gives: H̃d = m̂ · σ⃗ and H̃p = n̂ · σ⃗, where σ⃗ =

(σx, σy, σz) and, m̂ and n̂ are real vectors with Euclidean norm of one.

The eigenvectors of H̃d and H̃p correspond to ±m̂ and ±n̂ in the Bloch
sphere representation. Ignoring the trivial case, when m̂ and n̂ are paral-
lel, the two vectors define a plane. The vector k̂ = m̂× n̂ is perpendicular
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to the plane and k̂ · σ⃗ generates rotations in the m̂, n̂ plane. Note that:

1
2i
[
H̃d, H̃p

]
=

1
2i
[
miσi, njσj

]
=

1
2i

minj
[
σi, σj

]
= minjεijkσk

= εkijminjσk

= (m̂ × n̂) · σ⃗,

where εijk is the Levi-Civita tensor [182].

It is clear that
[
H̃d, H̃p

]
/2i generates a rotation in the plane spanned by

m̂ and n̂. This result also follows trivially from Eq. 7.1 for the single
qubit case. The second step is to calculate the angle, θ, between the
respective ground states (which is the same as the angle between the
excited states). This can be deduced from the overlap between H̃d and
H̃p:

1
2

Tr
(

H̃dH̃p
)
=

1
2

Tr
(
minjσiσj

)
=

1
2

minj Tr
(
δij I + iεijkσk

)
= mini

= cos(θ).

Relating this angle to a time can be done by using the Anandan-
Aharonov relation:

dθ

dt
= 2δE(t), (7.13)

where δE(t) =
√
⟨ψ(t)| H(t)2 |ψ(t)⟩ − ⟨ψ(t)| H(t) |ψ(t)⟩2. The Hamilto-

nian being considered is constant in time. Thus, δE(t) can be calculated
using the initial state (i.e., δE(0) := δE). Hence, we can deduce the time
of evolution as:

T =
arccos

[
Tr
(

H̃dH̃p
)

/2
]

2δE
. (7.14)
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Finally, the Hamiltonians, H0 and H1, can be replaced by the original
Hamiltonians. The time-optimal Hamiltonian for a single-qubit is:

H1 =
1
2i
[
Hd, Hp

]
. (7.15)

The corresponding time is:

T =
arccos

[
1
2 Tr

(
H̃dH̃p

)]
2δE

, (7.16)

where δE is the uncertainty in energy corresponding to H1, and H̃d, H̃p

are as defined earlier in this section.

It remains an open question as to how much of this geometric intuition
in three dimensions can be mapped onto higher dimensional problems.
Promisingly, the final operations (commutator, trace) are well-defined
outside three dimensions. Having established H1 as the optimal Hamil-
tonian for a single qubit, the next section investigates its performance
on larger problems.

7.2.2 Application to larger problems

Outperforming random guessing for short times

In this section, we demonstrate that H1 can always do better than
random guessing within the QA-framework. Starting with the time-
dependent Schrödinger equation:

|ψ̇(t)⟩ = −iH1 |ψ(t)⟩ ,

we expand |ψ(t)⟩ in terms of the eigenbasis of Hp, so |ψ(t)⟩ =

∑k ck(t) |k⟩ where |k⟩ are the eigenvectors of Hp with associated eigen-
value Ek. The eigenvalues are ordered such that E0 ≤ E1 ≤ E2 . . . .
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Substituting this into the Schrödinger equation gives:

∑
k

ċk(t) |k⟩ = − i
2i ∑

k
ck(t)

(
HdHp − HpHd

)
|k⟩

= −1
2 ∑

k
ck(t)Ek

(
Hd − HpHd

)
|k⟩

Acting with ⟨j| on each side, to find ċj(t), gives:

ċj(t) = −1
2 ∑

k
ck(t)

(
Ek − Ej

)︸ ︷︷ ︸
”Velocity”

How the basis
states of Hp

are connected︷ ︸︸ ︷
⟨j| Hd |k⟩ . (7.17)

In the standard QA-framework Hd = −∑n
k Xk, ck(0) = 1/

√
2n, for all

k, and the basis states (e.g. |k⟩), correspond to computational basis
states. Accordingly, H1 connects computational basis states which are a
Hamming-distance of one away.

The difference in energy of the computational basis states intuitively
provides something akin to a velocity, with greater rates of change be-
tween states which are further apart in energy.

Focusing on the derivative of the ground-state amplitude at t = 0 we
have:

ċ0(0) = −1
2 ∑

k
ck(0)︸ ︷︷ ︸
>0

(Ek − E0)︸ ︷︷ ︸
≥0

⟨0| − ∑
j

Xj |k⟩︸ ︷︷ ︸
=0 or −1

. (7.18)

Hence ċ0(0) ≥ 0, with equality if all states in a Hamming distance of one
have the same energy as |0⟩. In this case, the above logic can be repeated
for these states. Hence, at t = 0, the ground state amplitude is increas-
ing, meaning that H1 can do better than random guessing by measuring
on short times. This is evidence that H1 is capturing something of the
optimal Hamiltonian for short times. Indeed, for short times, all the
amplitudes flow from higher energy states to lower energy states.
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The above logic can be extended to the case where Hd is any stoquas-
tic Hamiltonian in the computational basis [48, 183] and |ψi⟩ the corre-
sponding ground state. That is to say, we require Hd to have non-positive
off-diagonal elements in the computational basis (i.e. be stoquastic) and
as a consequence we can write the ground-state of Hd with real non-
negative amplitudes [48]. Consequently, for any stoquastic choice of Hd

the ground-state amplitude is increasing at t = 0 and can do better than
the initial value of c0 at short times.

We could also take a generalised version of H1:

H1,gen =
1
2i
[

f (Hd) , g
(

Hp
)]

, (7.19)

where f and g are real functions. Eq. 7.17 becomes:

ċj(t) = −1
2 ∑

k
ck(t)

(
g (Ek)− g

(
Ej
))

⟨j| f (Hd) |k⟩ . (7.20)

The function acting on Hd (i.e., f (·)) controls how the computational ba-
sis states are connected, while the function acting on Hp (i.e., g(·)) con-
trols the velocity between computational basis states. If f (·) is the iden-
tity and Hd stoquastic, then any monotonic function for g(·) (e.g., H3

p,
H5

p, exp
{

Hp
}

,. . . ) will do better than c0(0) for short t. Taking Hd to be
the transverse-field Hamiltonian, that is better than random-guessing.

The above analysis demonstrates that H1 has potential for tackling
generic problems within the QA-framework. The next sections apply
H1 to specific examples in an attempt to quantify the success of this ap-
proach. For the rest of this chapter, we take Hd to be the transverse-field
Hamiltonian.
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Max-cut on two-regular graphs

Here we study the performance of H1 on Max-cut with two-regular
graphs. The explicit form of H1 is:

H1 =
n

∑
j=1

(
YjZj+1 + ZjYj+1

)
. (7.21)

This can be solved analytically by mapping the problem onto free
fermions via the Jordan-Wigner transformation. The end goal is to
map H1 = ∑j YjZj+1 + ZjYj+1, Hd = −∑j Xj, and Hp = ∑j ZjZj+1 onto
fermionic operators. Applying a Fourier Transform then decouples the
Hamiltonians into pseudo-spins that can be easily studied. The notation
and method closely follow the calculation presented in [80].

The first step is to introduce spin-raising and -lowering operators:

S+
j =

1
2
(
Yj + iZj

)
, (7.22)

S−
j =

1
2
(
Yj − iZj

)
. (7.23)

In terms of these new operators:

Hd =∑
j

I − 2S+
j S−

j , (7.24)

Hp =∑
j

S+
j S−

j+1 + S−
j S+

j+1 − S+
j S+

j+1 − S−
j S−

j+1, (7.25)

H1 =2i ∑
j

S−
j S−

j+1 − S+
j S+

j+1. (7.26)

The Jordan-Wigner transformation can now be applied to map these
spin operators onto fermionic operators, aj and a†

j , where:

aj = S−
j e−iφj , (7.27)

a†
j = S+

j eiφj , (7.28)
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and φj = π ∑j′<j a†
j′aj′ . The fermionic operators obey the standard anti-

commutation relationship for fermionic operators (i.e., {a†
j , ak} = δj,k).

In terms of the fermionic operators, the Hamiltonians are:

Hd =
n

∑
j=1

I − 2a†
j aj, (7.29)

Hp =
n−1

∑
j=1

a†
j aj+1 − aja†

j+1 − a†
j a†

j+1 + ajaj+1

+ G
(
−a†

na1 + ana†
1 + a†

na†
1 − ana1

)
, (7.30)

and

H1 = −2i
n−1

∑
j=1

a†
j a†

j+1 + ajaj+1 + 2iG
(

a†
na†

1 + ana1

)
, (7.31)

where G = eiπ ∑n
j=1 a†

j aj . For even n, G = 1 (anti-periodic boundary con-
ditions — ABC) and for odd n, G = −1 (periodic boundary conditions
— PBC).

We now apply a Fourier Transform with appropriate p, such that eipn =

1 for PBC and eipn = −1 for ABC, such that

cp =
1√
n ∑

j
eipjaj. (7.32)

The Hamiltonians in this new basis are:

Hd =
n−1

∑
k=0

I − 2c†
kck (7.33)

Hp = 2
⌊ n−1

2 ⌋

∑
k=0

cos θk

(
c†

kck + c†
−kc−k

)
+ i sin θk

(
ckc−k + c†

kc†
−k

)
+ H f ,0

(7.34)
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and

H1 = 4
⌊ n−1

2 ⌋

∑
k=0

sin θk

(
c†

kc†
−k − ckc−k

)
, (7.35)

where for odd n:

θk =
2πk

n
H f ,0 = −2c†

0c0

c−k = cn−k,

and for even n:

θk =
(2k + 1)π

n
H f ,0 = 0

c−k = cn−1−k.

These Hamiltonians couple the vacuum state, |∅⟩, with doubly-excited
states with opposite momentum, e.g., c†

kc†
−k |∅⟩. Therefore, we can ex-

press the Hamiltonians as pseudo-spins,

H∗ =
⌊ n−1

2 ⌋

∑
k=0

H∗,k, (7.36)

with ∗ = i, f , 1 and:

Hi,k = −2Z (7.37)

H f ,k = 2 cos θkZ − 2 sin θkY (7.38)

H1,k = 4 sin θkX, (7.39)

except for H∗,0 for ∗ = i, f , for odd n, which is half of the above ex-
pressions. The observation that H1,k generates rotations in the plane
spanned by the eigenvectors of H f ,k and Hi,k provides further evidence
that H1 is capturing some of Hopt.
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The initial state for each pseudo-spin is the ground-state of −Z. Calcu-
lating the evolution for each pseudo-spin gives:

⟨Hp⟩ =
⌊ n−1

2 ⌋

∑
k=0

Fk, (7.40)

with F0 = 1 for odd n, otherwise:

Fk = 2 cos θk cos (8 sin θkt)− 2 sin θk sin (8 sin θkt). (7.41)

The ground state probability is given by:

Pgs =
⌊ n−1

2 ⌋

∏
k=0

Gk. (7.42)

Again G0 = 1 for odd n, otherwise:

Gk =
1
2
(1 − cos θk cos (8 sin θkt) + sin θk sin (8 sin θkt)) . (7.43)

This completes the analytical work used to analyse the performance of
H1 for Max-cut on two-regular graphs. It remains to find the optimal
time to minimise ⟨Hp⟩ – this was done numerically.

A time-domain plot for the approximation ratio and ground-state prob-
ability is shown in Fig. 7.2 for 400 qubits. The peak in approximation
ratio corresponds to the optimal time. As expected from the previous
section (Sec. 7.2.2) the approximation ratio is increasing at t = 0. There is
a clear peak in ground-state probability at a time of t ≈ 0.275. This peak
in ground-state probability remains present for larger problem sizes too.
The peak also occurs at a later time than the peak in approximation ra-
tio. Further insight into this phenomenon may be found in Sec. 7.4.

The key result of this section is shown in Fig. 7.3a, showing the optimal
approximation ratio versus problem size for even numbers of qubits
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Figure 7.2: A time-domain plot of the ground-state probability (in pink, corresponding
to the right-hand side y-axis) and approximation ratio (in blue, corresponding to the
left-hand side y-axis) for H1 applied to Max-cut on a 2-regular graph with 400 qubits.
Random guessing corresponds to a ground-state probability of 2−399 ≈ 10−120. The
dashed purple line shows the location of the optimal time, corresponding to the max-
imum in approximation ratio.

(a) The approximation ratio for H1 ap-
plied to Max-cut on two-regular graphs
(blue dots). The dashed lines show the
performance of QAOA for this problem
when p < n/2 [14, 81]. The corre-
sponding optimal times can be found in
Fig. 7.4. The approximation ratio for H1
freezes out at 0.5819, with a correspond-
ing time of 0.2301.

(b) The ground-state probability for dif-
ferent problem sizes under the evolution
of H1. The blue line shows the ground-
state probability for times that max-
imise the approximation ratio. The opti-
mised ground-state probability is shown
in pink. The dashed purple line shows
the probability of randomly guessing the
ground-state.

Figure 7.3: Performance of H1 on Max-cut with 2-regular graphs. Only even numbers
of qubits are plotted.
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Figure 7.4: The optimal times for Max-cut on two-regular graphs. The blue (pink) line
shows the time that optimises the approximation ratio (ground state probability). Even
qubit numbers only.

(a) The approximation ratio for H1 on
Max-cut with two-regular graphs, com-
pared to the performance of QAOA. The
approximation ratio freezes out at 0.5830
— marginally higher than the even case
(see Fig. 7.3a). The time also freezes out
at 0.2301 (not shown).

(b) The ground-state probability for dif-
ferent problem sizes under the evolu-
tion of H1. The system is measured
at times that maximises the approxima-
tion ratio. Like the even qubit number
case (Fig. 7.3b), the ground-state prob-
ability scales exponentially. Fitting to
the data, the ground-state probability
scales as 1.64 × 2−0.33n when ⟨Hp⟩ is op-
timised. The ground-state probability
scales as 1.61 × 2−0.32n when the ground-
state probability is optimised.

Figure 7.5: The performance of H1 on Max-cut with two-regular graphs on an odd
number of qubits
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only. The corresponding plot for odd numbers of qubits can be found in
Fig. 7.5a. Notably, the approximation ratio saturates for large problem
sizes, achieving an approximation ratio of 0.5819 for even qubit num-
bers, compared to 0.5 for QAOA p = 1 for even qubit numbers. This is
despite QAOA p = 1 having two variational parameters, compared to
the single variational parameter for H1. This behaviour is suggestive of
H1 optimising locally, since its approximation ratio is largely indepen-
dent of problem size.

Despite Max-cut on two-regular graphs being an easy problem, the
ground-state probability scales exponentially with problem size (Fig. 7.3b
for even qubit numbers and Fig. 7.5b for odd qubit numbers). This is
not necessarily a problem, as we present H1 as an approximate approach
only. The ground-state probability scaling is also better than Grover-like
scaling [5]. Optimising the performance to give the best ground-state
probability provides a small gain in performance but does not change
the overall exponential scaling, shown for even qubit numbers only. The
optimal times for both approximation ratio and ground-state probability
can be found in Fig. 7.4 for even qubit numbers. Both times freeze out
at constant values for problem sizes greater than 10 qubits.

We have demonstrated with Max-cut on two-regular graphs, at large
problem sizes, that H1 can provide a better approximation ratio than
QAOA p = 1. We explore this comparison with QAOA p = 1 further in
Sec. 7.2.3.

Performance on Max-cut problems with three-regular graphs

By exploiting locality in QA with short run-times, Braida et al. [46, 65]
were able to prove a lower bound on QA on Max-cut with three-regular
graphs. Here we apply this approach to H1. We find that that H1 finds at
least 0.6003 times the best cut. Hence, H1 has a marginally better worst-
case than QA (which is 0.5933 times the best cut [46]), when this method
is applied. For details of the method the reader is referred to [46], the
rest of this section provides the explicit details of this computation.
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First, we demonstrate how the bound was derived in [46]. The goal of
this approach is to estimate the expectation value of a local observable
OL by simulating part of the system. For this to be a useful estimate it
is necessary to quantify the error in doing do, that is to calculate:

ε =
∣∣∣⟨ψi|U†(t)OLU(t) |ψi⟩ − ⟨ψi|U†

L(t)OLUL(t) |ψi⟩
∣∣∣, (7.44)

where |ψi⟩ is the initial state of the system, U(t) is the global unitary
evolution of the system and UL(t) the local unitary we wish to simulate.
The error is bounded by,

ε ≤ ∥U†(t)OLU(t)− U†
L(t)OLUL(t)∥, (7.45)

where ∥ · ∥ is the matrix-norm. Adapting the proof from [46] for the case
of evolution under a global time-independent Hamiltonian H and local
time-independent Hamiltonian HL gives:∥∥∥U†(t)OLU(t)− U†

L(t)OLUL(t)
∥∥∥

=

∥∥∥∥∫ t

0
ds

d
ds

(
U†(s)UL(s)U†

L(t)OLUL(t)U†
L(s)U(s)

)∥∥∥∥
Substitute in the Schrödinger equation for the time derivatives to get:∥∥∥U†(t)OLU(t)− U†

L(t)OLUL(t)
∥∥∥

=

∥∥∥∥∫ t

0
ds U†(s) (H − HL)UL(s)ÕL(t)U†

L(s)U(s)

+U†(s)UL(s)ÕL(t)U†
L(s) (HL − H)U(s)

∥∥∥ ,

where ÕL(t) = U†
L(t)OLUL(t). Tidying this up with ∆H = H − HL gives:∥∥∥U†(t)OLU(t)− U†

L(t)OLUL(t)
∥∥∥

=

∥∥∥∥∫ t

0
ds U†(s)

[
∆H, UL(s)ÕLU(s)

]
U(s)

∥∥∥∥ (7.46)
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j − 1 j j + 1 j + 2j − 2 j + 3j − 3 j + 4

Figure 7.6: A cartoon for calculating the Lieb-Robinson Bound (LRB) on Max-cut with
two-regular graphs. Each node represents a qubit, and each edge the interactions be-
tween them. To estimate a local expectation value, say ZjZj+1, the local subgraph in
pink is simulated. Bounding the error requires ∆H, corresponding to all the interac-
tions leaving the subgraph. In this case, this corresponds to all the interactions which
connect the blue qubits to the pink ones.

Using the triangle inequality,

ε ≤
∫ t

0
ds
∥∥[∆H, UL(s)ÕLU(s)

]∥∥
This is essentially the expression (and proof) given in [46]. For Hamil-
tonians constant in time, this can further be tidied up to:

ε ≤
∫ t

0
du
∥∥∥[∆H, eiHLuOLe−iHLu

]∥∥∥ (7.47)

The right-hand-side term in the commutator is a local operator depend-
ing only on the local system which we wish to simulate, while ∆H only
includes terms in H but not HL. Therefore, in the context of simulating
qubits, the only terms in ∆H that do not commute through are the ones
that couple qubits from the local system to qubits outside the system
being simulated.

At this point, it is useful to examine a simple system. Take Max-cut
on two-regular graphs with H1. We wish to estimate ⟨ZjZj+1⟩, so we
estimate the value by simulating the evolution under H1 for the interac-
tions between the pink qubits shown in Fig. 7.6. Choosing a larger sub-
graph should make the computation more accurate but will also result
in a more difficult computation. Then using Eq. 7.47 we can calculate a
bound on the error. Here, ∆H corresponds to the interactions between
the pink qubits and the blue qubits. Calculating the local estimate with
Lieb-Robinson Bound (LRB) gives Fig. 7.7. The figure also shows the
result for the Max-cut for a two-regular graph with 400 qubits.
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Figure 7.7: LRB applied to Max-cut on two-regular graphs. The dashed blue line
shows the local estimate of ⟨ZjZj+1⟩ and the shaded violet region the allowed region
from the LRB. The red line shows the actual value for 400 qubits. The dynamics of H1
closely resembles the local simulation.

The simulation shows that the bound is not very tight and, except at
very short times, is not meaningful. It also demonstrates that H1 be-
haves locally, with the full simulation (through the Jordan-Wigner trans-
formation) closely matching the estimate from the local simulation. The
LRB on the performance of H1 for this problem would be the lowest, as
a function of time, upper-bound shown in Fig. 7.7.

Having established the idea behind the LRB, we now apply it to find the
performance of H1 on three-regular graphs. To do this, we use

Hp = ∑
(i,j)∈E

ZiZj (7.48)

for the graph (or subgraph) G = (V, E) being considered. The mini-
mum value of ⟨Hp⟩ is then mapped onto the length of the cut for easier
comparison with QAOA and QA.

The performance of H1 was determined by looking at the three local
sub-graphs that can be found in [14, 46]. The error was calculated, tak-
ing the worst-case scenario, where each sub-graph has the maximum
number of interactions exiting the sub-graph. Using the relative ratios
of the sub-graphs [14], the worst-case performance can be calculated.
The numerical details can be found in Table 7.1.
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Subgraph 1 Subgraph 2 Subgraph 3

i j
∗

∗
i j

∗

∗ ∗
i j

∗

∗

∗

∗
Local estimate of ZiZj -0.2056 -0.2676 -0.3377

Upper estimate from LRB -0.1333 -0.1652 -0.2007
Cut value 0.5666 0.5826 0.6003

Table 7.1: Numerical details for the LRB applied to H1 on Max-cut with three-regular
graphs. Each column shows, from top to bottom, the local subgraph being simulated;
the local estimate of ZiZj to be minimised; the corresponding worst case from the LRB;
and the corresponding cut value for this worst case. All of these values are taken at
the optimised time of 0.093.

Figure 7.8: The Lieb-Robinson inspired bound for subgraph 3 in Table 7.1. This sub-
graph dominates the worst-case bound. The LRB has a minimum at around a time of
0.1 while the locally estimated value has a minimum at around a time of 0.2.

Similarly to QAOA and QA [46], the LRB approach suggests that H1

struggles the most with triangle-free graphs. The LRB, with local esti-
mate, for the triangle-free subgraph can be seen in Fig. 7.8.

The LRB is taken at a time of 0.093, while the minimum for the local
estimate occurs at around 0.2. Hence, the LRB is sampling far from
what is optimal for the local graph. Since we know the bound is not
very tight, it is reasonable to assume that the worst-case performance
of H1 is actually better than the LRB and occurs at a later time (around
0.2). The bound is not necessarily (and unlikely to be) tight. Resorting to
numerical simulation gives Fig. 7.9a. Here we can see, for the random
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(a) The y-axis shows the average cut-
value from sampling H1. The final time
has been numerically optimised to give
the best approximation ratio.

(b) The optimal time for the three-regular
Max-cut instances considered in Fig. 7.9a.
The optimal time was found by dividing
the interval [0, 2π] into 1000 time steps.

Figure 7.9: The performance of H1 on randomly generated instances of three-regular
graphs. For each problem size, 100 instances were generated. After accounting for
graph isomorphisms, the number of samples in order of ascending problem size were
[15, 46, 87, 97]. Disconnected graphs were allowed.

instances considered, that H1 never does worse than the QAOA p =

1 worst bound. Fig. 7.9a also shows that the approximation ratio of
H1 on three-regular graphs has little dependence on the problem size,
again suggesting that it is optimising locally. Directly comparing H1 and
QAOA p = 1 gives Fig. 7.10 for three-regular graphs. For all instances
H1 provides a better approximation ratio and in the vast majority of
instances in a shorter optimal time. Details on the outliers can be found
in Appendix B.2.
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(a) Approximation ratio (b) Optimal time comparison for Max-cut

Figure 7.10: Comparison of H1 (y-axis on the above plots) with QAOA p = 1 (x-axis
on the above plots) for three-regular graphs. The dashed purple line shows QAOA
and H1 performing the same.

Numerical simulations on random instances of Max-cut

In the previous two sections, we established the performance of H1 on
problems with a high degree of structure, allowing for more analytical
investigation. In this section, we explore the performance of H1 numeri-
cally on Max-cut with binomial graphs. Consequently, we are restricted
to exploring problem sizes that can be simulated classically.

For each problem size, we consider 100 randomly-generated instances.
The results can be seen in Fig. 7.11. For each instance, the time has
been numerically optimised to maximise the approximation ratio within
the interval [0, 2π). From Fig. 7.11 we draw some conclusions from
the simulations, with the caveat that either much larger sizes need to
be simulated and/or analytic work is required to fully substantiate the
claims. On all the problems considered, H1 performed better than ran-
dom guessing (which results in an approximation ratio of 0).

We focus first on Fig. 7.11a. There appears to be some evidence that the
distribution of approximation ratios is becoming smaller as the prob-
lem size is increased. In addition, the approximation ratio tends to a
constant value, independent of the problem size. From analysing the
regular graphs, it is reasonable to assume that H1 is optimising locally.
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(a) Approximation ratio
for randomly generated
Max-cut.

(b) Ground-state proba-
bility for randomly gener-
ated Max-cut.

(c) Optimal times for
Max-cut on randomly
generated graphs. The
optimal time was found
by dividing the interval
[0, 2π] into 1000 time
steps.

Figure 7.11: Performance of H1 on 100 randomly-generated instances of Max-cut.

Therefore, we would expect the performance of H1 to depend on the
subgraphs in the problem. If the performance is limited by one sub-
graph, or a certain combination of subgraphs, then that would explain
the constant approximation ratio. As the problem size is increased, the
chance of having an atypical combination of subgraphs is likely to de-
crease, resulting in a smaller distribution.

The ground-state probability shows a clear exponential dependence on
problem size (Fig. 7.11b).

Estimating the optimal time

Presenting the application of H1 as a variational approach begs the ques-
tion of how to find good initial guesses for the time, T, at which to mea-
sure the system. As previously noted, the optimal time corresponds to
the maximum approximation-ratio.

For our method, we are not interested in finding the true maximum in
approximation ratio. Sampling from a local maximum, close to t = 0 is
more achievable and reduces the time the system needs to be coherent.
From Sec. 7.2.2 we expect the first turning point in approximation ratio
after t = 0 to be a local maximum. This is shown by Eq. 7.17, with all
amplitudes flowing from higher energy states to lower energy states a
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0 1 2 3

(a) A subgraph of two-regular graphs

0

1

2 3

4

5
(b) A small subgraph contained in three-
regular graphs which is prevalent in
graphs that H1 performs worse on.

Figure 7.12: Example subgraphs

Hamming distance of one away at t = 0. Further to this, throughout
the work so far we have seen evidence of H1 behaving locally. This local
behaviour allows us to motivate good initial guesses for H1. As H1 is
optimising locally, its performance does not depend on the graph as a
whole, but only on subgraphs.

The optimal time for Max-cut on two-regular graphs was T = 0.23. Un-
der the assumption that H1 is behaving locally, we can estimate the opti-
mal times by considering a smaller subgraph. The subgraph in question
is shown in Fig. 7.12a. By numerically optimising ⟨Z1Z2⟩ for this sub-
graph with Hp = Z0Z1 + Z1Z2 + Z2Z3, we can find good estimates for
the optimal T. Optimising this subgraph, within the interval T ∈ [0, 1),
gives T = 0.22. This estimate matches the optimal time well. Choosing
a larger subgraph will give a better estimate on the time.

Fig. 7.9b shows the optimal time for the larger instances of three-regular
graphs considered in Fig. 7.9a. The range of optimal times varied very
little between problem instances and problem sizes, centred around T =

0.176. As with the two-regular case, we can examine subgraphs. In this
case, we consider the subgraph shown in Fig. 7.12b. This is the subgraph
that saturates the Lieb-Robinson bound. Numerically optimising ⟨Z2Z3⟩
for this subgraph with Hp = Z0Z2 + Z1Z2 + Z2Z3 + Z3Z4 + Z3Z5 gives
a time of T = 0.19. This again is a good estimate of the optimal time.

For problems with well understood local structure, such as regular
graphs, we have shown that we can exploit this knowledge to provide
reasonable estimates of the optimal times. These subgraphs are also of
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the same size used in finding the optimal time in QAOA p = 1 [14].

For the Max-cut problems in Sec. 7.2.2, the optimal times can be found
in Fig. 7.11c. It appears that the optimal time tends to a constant value
(or a small range of values), with T < 1. The optimal times are clustered
together, suggesting good optimal times might be transferable between
problem instances. This approach is common within the QAOA litera-
ture [184].

So far, we have explored the performance of H1. We have demonstrated
that H1 can provide a better approximation ratio for Max-cut on two-
regular graphs. The intuition gained by studying QAOA p = 1 has
been transferable to the understanding of H1. In the final part of this
section, we make some direct comparisons between QAOA p = 1 and
H1.

7.2.3 Direct numerical comparisons to QAOA p = 1

We have established in the previous sections that H1 operates locally.
Calculating the optimal time for sub-graphs the same size as those in-
volved in QAOA p = 1 gave good estimates for the optimal time for
larger problem sizes. Therefore, it is reasonable to assume that H1 sees
a similar proportion of the graph as QAOA p = 1. Both approaches are
variational with short run-times too. Since both approaches are using
comparable resources, in this section we attempt to compare the two.
To make a fair comparison between the two approaches with different
problem sizes, we fix the energy of the Hamiltonians in Sec. 7.2.3 to be:

1
2n Tr

{
H2
∗

}
= n, (7.49)

for ∗ = d, p, 1, where n is the number of qubits.

For two-regular graphs, the optimal time for QAOA p = 1 is 2.4 times
longer than the optimal time for H1 for large problem sizes 2, despite

2The optimal time for QAOA is found by optimising the subgraph shown in
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providing a poorer approximation ratio.

(a) Approximation ratio comparison for
Max-cut on binomial graphs.

(b) Optimal time comparison for Max-cut
on binomial graphs.

Figure 7.13: Comparison of H1 (y-axis on the above plots) with QAOA p = 1 (x-
axis on the above plots) for the problem instances considered in Sec. 7.2.2. Fig. 7.13a
compares approximation ratios. Fig. 7.13b compares the optimal times (i.e. the time
that maximises the approximation ratios) of the two approaches. The dashed purple
line corresponds to equal performance.

The results comparing H1 and QAOA p = 1, for all the problem in-
stances considered in Sec. 7.2.2, are shown in Fig. 7.13.

The approximation ratios for each approach are largely correlated, sug-
gesting in general that harder problems for QAOA p = 1 corresponded
to harder problems for H1.For all instances considered, H1 gave a
greater than or equal to approximation ratio compared to QAOA p = 1
(Fig. 7.13a).

Turning now to the optimal time, H1 had in the majority of cases the
shorter optimal time (Fig. 7.13b). This is shown by the majority of points
being below the purple line in Fig. 7.13b, with times less than one. In
Appendix B.2 we elaborate further on the exceptions, that is the Max-cut
problems that have longer run-times than QAOA p=1.

This section has numerically demonstrated that H1 provides a better
approximation ratio than QAOA p = 1 in a significantly shorter time

Fig. 7.12a.
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for the majority of instances considered, justifying our description of
this approach as rapid, which is crucial for NISQ implementation [4].
Given that H1 tends to provide a better approximation ratio, in a shorter
time, with fewer variational parameters, it raises the question — does
QAOA p = 1, the foundation of any QAOA circuit, make effective use of
its afforded resources? Since the run-time for each individual instance,
for both shallow-depth QAOA and the H1 is fixed, it does not determine
the scaling of the time to solution. The scaling of the time to solution
is determined by the probability of finding the solution (or a desired
sufficiently low energy eigenstate).

7.3 An improvement inspired by the Quantum

Zermelo problem

7.3.1 The approach

With QAOA it is clear how to get better approximation ratios, that is
by increasing p. It is less clear how to do this with H1. One sugges-
tion might be to append this Hamiltonian to a QAOA circuit. How-
ever, the aim of this chapter is to explore how Hamiltonians for optimal
state-transfer can provide a guiding design principle. Therefore, in this
section we explore adding another term, motivated by this new design
principle, in order to H1 to improve the approximation ratio.

In Sec. 7.1 we motivated H1 from the optimal Hamiltonian by making
the pragmatic substitutions |ψi⟩ ⟨ψi| → Hd and

∣∣ψ f
〉 〈

ψ f
∣∣ → Hp. Subse-

quently, we demonstrated that H1 provides a reasonable performance.
However, H1 no longer closely followed the evolution under the optimal
Hamiltonian. To partially correct for this error, we add another term to
the Hamiltonian:

H1,improved = H1 + HQZ. (7.50)

Again, we make use of Hamiltonians for optimal state-transfer to moti-

152



7.3. An improvement inspired by the Quantum Zermelo problem

|ψi⟩

∣∣ψ f
〉

eiHQW T
∣∣ψ f
〉

e−iHt |ψi⟩

Figure 7.14: A cartoon of the evolution of states in the QZ problem for constant HQW .
In the interaction picture, with background Hamiltonian HQW , it appears the final state
is moving under the influence of this Hamiltonian. In this frame, Eq. 7.1 can then be
applied. It then remains to move out of the interaction picture to get Eq. 7.52.

vate the form of HQZ. Finding the optimal Hamiltonian in the presence
of an uncontrollable term in the Hamiltonian is known as the quantum
Zermelo (QZ) problem [178, 179, 180, 181].

In the rest of this section, we expand on the details of the QZ prob-
lem. From the exact form of the optimal correction, Hcor, we then apply
a series of approximations so that Hcor is time-independent and does
not rely on knowledge of

∣∣ψ f
〉
. This final Hamiltonian will be HQZ in

Eq. 7.50.

The QZ problem, like the quantum brachistochrone problem, asks what
is the Hamiltonian that transfers the system from |ψi⟩ to the final state∣∣ψ f
〉

in the shortest possible time. Unlike the quantum brachistochrone
problem, part of the Hamiltonian is uncontrollable. In the case of a
constant uncontrollable term, the total Hamiltonian can be written as:

Hopt|QW = HQW + Hcor(t), (7.51)

where HQW is the constant ‘quantum wind’ that cannot be changed and
Hcor(t) is the Hamiltonian we are free to vary. Typically, HQW is under-
stood as a noise term [185, 186]. Instead, here we will take HQW to be
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H1 to provide a favourable quantum wind that Hcor(t) can provide an
improvement on.

The optimal form of Hcor(t) is (up to some factor) [179]:

Hcor(t) = −ie−iH1t
(
|ψi⟩

〈
ψ f
∣∣ e−iH1T − eiH1T ∣∣ψ f

〉
⟨ψi|

)
eiH1t, (7.52)

where t is the time and T is the final time. The motivation for this equa-
tion can be found in Fig. 7.14. This Hamiltonian requires knowledge
of the final state, so we introduce a series of approximations to make
Hcor(t) more amenable for implementation.

Since we know that the optimum evolution under H1 tends to be short,
we make the assumption that the total time T is small. Therefore, we
approximate the optimal correction Hcor(t) with

Hcor(0) = −i
(
|ψi⟩

〈
ψ f
∣∣ e−iH1T − eiH1T ∣∣ψ f

〉
⟨ψi|

)
. (7.53)

Introducing the commutator structure (Sec. 7.1) with the same prag-
matic substitutions as before for H1 gives:

HQZ = −i
[

Hd, eiH1T Hpe−iH1T
]

, (7.54)

where we have introduced the subscript QZ to distinguish this Hamilto-
nian from Hcor(0) prior to the substitutions. Expanding this expression
in T gives:

HQZ = −i
[
Hd, Hp + iT

[
H1, Hp

]
−T2 [H1,

[
H1, Hp

]]
/2 +O

(
T3
)]

. (7.55)

From the QZ problem, we have motivated the form of the correction
HQZ in Eq. 7.50. In spite of this, we have no guarantee on its perfor-
mance — to this end we carry out numerical simulations.

A clear downside to HQZ is the increased complexity, compared to say
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(a) Numerically optimised performance
of Eq. 7.55. Each point has been opti-
mised in the time interval [0,0.3] by con-
sidering 3000 divisions.

(b) The corresponding optimal times for
Fig. 7.15a. The norm of each Hamil-
tonian, for each problem size, has been
fixed so Eq. 7.49 is true, to make compar-
isons fair.

Figure 7.15: The performance of Eq. 7.55 on two-regular graphs. The legend shows
the order of T, with ‘exp’ referring to Eq. 7.54. The dashed lines show the asymptotic
performance of QAOA.

QAOA. However, if HQZ is decomposed into a QAOA-style circuit, the
single free parameter in HQZ might translate to fewer free parameters in
the QAOA circuit, allowing for easier optimisation.

7.3.2 Numerical simulations

Max-cut on two-regular graphs

Here we focus on applying Eq. 7.55 up to various orders in T to Max-cut
on two-regular graphs with an even number of qubits. We focus on this
problem as it is trivial to scale and the performance of QAOA and H1

on this problem is well understood.

The results for Max-cut with two-regular graphs can be seen in
Fig. 7.15a. Increasing the expansion in T appears to improve the ap-
proximation ratio. But the improvement is capped, shown by the data
labelled ‘exp’. Notably, this approach with a single variational parame-
ter at order T2 is performing better than QAOA p = 3 (with 6 variational
parameters) for 10 qubits.
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The optimal T for the QZ-inspired Hamiltonians can be seen in
Fig. 7.15b. Again, the optimal time for each order in T appears to be
tending to a constant value, suggesting this approach is still acting in a
local fashion. This is consistent with the approximation ratio plateau-
ing. As we can see, the QZ-inspired approach is still operating in a rapid
fashion.

Max-cut on binomial graphs

To complete this section, we examine the performance of the QZ-
inspired approach (Eq. 7.55) to the randomly generated instances of
Max-cut.

The results for different orders in T for the approximation ratio can be
seen in Fig. 7.16a. All the QZ-inspired approaches provide an improve-
ment on the original H1 Hamiltonian, indexed by 0 in the figures. How-
ever, the performance is not monotonically increasing with the order of
the expansion. This is not unusual for a Taylor series of an oscillatory
function. Consequently, achieving better approximation ratios is not as
simple as increasing the order of T. At the same time, this means that it
is not necessary to go to high orders in T, with very non-local terms, to
achieve a significant gain in performance. For example, in going to first
order achieves a substantial improvement.

The optimal times for the QZ-inspired approach can be found in
Fig. 7.16b. For clarity, we only show the optimal times for the larger
problem instances. As with H1 the optimal times are clustered for a
given order. The lack of dependence on problem size for optimal times
and approximation ratios suggests that the QZ-inspired approach is still
optimising locally. Compared to the H1 case, the operators have a larger
support. Despite optimising locally, they are optimising less locally than
H1, hence the increased performance.

Here we have numerically demonstrated that the QZ-inspired approach
can provide an improvement over H1, suggesting how this new design
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(a) The approximation ratio. (b) The optimal times for the problem in-
stances seen in Fig.7.16a. The norm of
each Hamiltonian, for each problem size
has been fixed, according to Eq. 7.49, en-
suring a fair comparison.

Figure 7.16: The performance of the QZ-inspired approach on 100 random Max-cut
instances. The x-axis label refers to the order of T in the expansion of Eq. 7.55, with 0
being H1 and e referring to the full exponential (i.e. Eq. 7.54)

philosophy might be extended. The numerics also suggest that going to
first order may provide the best possible advantage.

7.4 Using knowledge of the initial state

As introduced in Sec. 7.1, in this section, we exploit our knowledge of
the initial state and evaluate the performance of

Hψi = −i
[
|ψi⟩ ⟨ψi| , f (Hp)

]
(7.56)

within the QA-framework. We take f (·) to be a real function such that:

f (Hp) = ∑
k

f (Ek) |Ek⟩ ⟨Ek| , (7.57)

where |Ek⟩ and Ek are the eigenvectors and associated eigenvalues of
Hp.

Evolution under Hψi can be calculated analytically. By evolving, |ψi⟩ the
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state:
|ω⟩ = 1√

Tr f 2(Hp)
∑
k

f (Ek) |Ek⟩ , (7.58)

can be reached. Indeed, Hψi will generate linear superpositions of |ω⟩
and |ψi⟩ only. To see this, first rewrite Hψi in terms of the eigenstates
|Ek⟩ of Hp, with associated eigenenergies Ek:

Hψi = −i
[
|ψi⟩ ⟨ψi| , f (Hp)

]
= −i

[
|ψi⟩ ⟨ψi| , ∑

k
f (Ek) |Ek⟩ ⟨Ek|

]

= −i

(
|ψi⟩∑

k
f (Ek) ⟨ψi|Ek⟩ ⟨Ek| − ∑

k
f (Ek) ⟨Ek|ψi⟩ |Ek⟩ ⟨ψi|

)
.

Let
|ω⟩ = ∑k f (Ek) ⟨Ek|ψi⟩ |Ek⟩√

∑k f 2(Ek)|⟨Ek|ψi⟩|2
. (7.59)

Apply the Gram-Schmidt procedure to generate an orthonormal basis
{|ψi⟩ ,

∣∣ω⊥〉}, spanning the same space as {|ψi⟩ , |ω⟩}.∣∣∣ω⊥
〉

∝ |ω⟩ − ⟨ψi|ω⟩ |ψi⟩

Rearranging for |ω⟩ gives:

|ω⟩ =
√

1 − |⟨ψi|ω⟩|2
∣∣∣ω⊥

〉
+ ⟨ψi|ω⟩ |ψi⟩ , (7.60)

substituting this into Hψi gives:

Hψi = −iη
{
|ψi⟩

(〈
ω⊥
∣∣∣+ ⟨ω|ψi⟩ ⟨ψi|

)
−
(∣∣∣ω⊥

〉
+ ⟨ψi|ω⟩ |ψi⟩

)
⟨ψi|

}
,

(7.61)
where

η =

√√√√(1 − |⟨ψi|ω⟩|2
)(

∑
k

f 2(Ek)|⟨Ek|ψi⟩|2
)

. (7.62)
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Using the freedom in the global-phase of the wave-function, choose
⟨ω|ψi⟩ to be real, giving:

Hψi = −iη
(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
. (7.63)

From Eq. 7.63 it is clear that Hψi evolves |ψi⟩ to linear superpositions of
|ψi⟩ and

∣∣ω⊥〉. Again, by using the Anandan-Aharonov relation, we can
determine the time to generate |ω⟩ and

∣∣ω⊥〉. Calculating δE:

⟨Hψi⟩ = −iη ⟨ψi|
(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
|ψi⟩

= 0

⟨H2
ψi
⟩ = η2 ⟨ψi| G2 |ψi⟩

= η2

δE =
√
⟨H2

lp⟩ − ⟨Hlp⟩2

= η.

The distance between |ψi⟩ and
∣∣ω⊥〉 is

θω⊥ = 2 arccos
〈

ψi

∣∣∣ω⊥
〉

= π.

The distance between |ψi⟩ and |ω⟩ is

θω = 2 arccos |⟨ω|ψi⟩|.

The time then to evolve |ψi⟩ to
∣∣ω⊥〉 is tω⊥ = π/2η and the time to

evolve to |ω⟩ is tω = arccos |⟨ω|ψi⟩|/η. We can explicitly verify this by
exponentiating Hψi . Focusing on G = −i

(
|ψi⟩

〈
ω⊥∣∣− ∣∣ω⊥〉 ⟨ψi|

)
, then

G2 = −
(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

) (
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
=
(
|ψi⟩ ⟨ψi|+

∣∣∣ω⊥
〉 〈

ω⊥
∣∣∣) .
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This is a projector. Calculating G3 gives:

G3 = −i
(
|ψi⟩ ⟨ψi|+

∣∣∣ω⊥
〉 〈

ω⊥
∣∣∣) (|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
= −i

(
|ψi⟩

〈
ω⊥
∣∣∣− ∣∣∣ω⊥

〉
⟨ψi|

)
= G.

Let H be a Hamiltonian, where H2 = P, P being a projector. Then
substituting H into the power-series for the exponential gives:

e−iHt =
∞

∑
k=0

(−iHt)k

k!

=
∞

∑
even k

(−iHt)k

k!
+

∞

∑
odd k

(−iHt)k

k!

=
∞

∑
k=0

(−iHt)2k

(2k)!
+

∞

∑
k=0

(−iHt)2k+1

(2k + 1)!

= I +
∞

∑
k=1

(−1)k t2k

(2k)!
P − i

∞

∑
k=0

(−1)k t2k+1

(2k + 1)!
PH

= I + (cos(t)− 1) P − i sin(t)PH

Therefore,

e−iHlpt = I + (cos(ηt)− 1) G2 − i sin (ηt) G (7.64)

and |ψ(t)⟩ = e−iHlpt |ψi⟩,

|ψ(t)⟩ = cos(ηt) |ψi⟩+ sin (ηt)
∣∣∣ω⊥

〉
. (7.65)

Checking the times from the Anandan-Aharonov relationship gives:

|ψ(π/2η)⟩ = cos(π/2) |ψi⟩+ sin (π/2)
∣∣∣ω⊥

〉
=
∣∣∣ω⊥

〉
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and

|ψ(arccos |⟨ψi|ω⟩|/η)⟩

= |⟨ψi|ω⟩| |ψi⟩+
√

1 − |⟨ψi|ω⟩|2
∣∣∣ω⊥

〉
= |ω⟩ .

Up to now, we have kept the conversation in this section fairly general.
Now we apply Hlp to the QA-framework with |ψi⟩ = |+⟩ and the |Ek⟩s
corresponding to computational basis states, so ⟨+|Ek⟩ = 1/

√
2n. Sim-

plifying |ω⟩ gives:

|ω⟩ = 1√
∑k f 2(Ek)|⟨Ek|+⟩|2

∑
k

f (Ek) ⟨Ek|+⟩ |Ek⟩

=
1√

∑k f 2(Ek)
∑
k

f (Ek) |Ek⟩

=
1√

Tr
{

f 2(Hp)
} ∑

k
f (Ek) |Ek⟩

and the overlap with the initial state is:

⟨+|ω⟩ =
√

2n√
∑k f 2(Ek)

∑
k

1√
2n

f (Ek) ⟨+|Ek⟩

=
1√

∑k f 2(Ek)
∑
k

1√
2n

f (Ek)

=
1√
2n

Tr
{

f (Hp)
}√

Tr
{

f 2(Hp)
} .

To summarise, the Hamiltonian Hlp = −i[|+⟩ ⟨+| , f (Hp)] evolves |+⟩
to

|ω⟩ = 1√
Tr f 2(Hp)

∑
k

f (Ek) |Ek⟩ , (7.66)
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in a time

T =

√
2n arccos |⟨+|ω⟩|√

Tr
{

f 2(Hp)
} (

1 − |⟨+|ω⟩|2
) , (7.67)

where

⟨+|ω⟩ = 1√
2n

Tr
{

f (Hp)
}√

Tr
{

f 2(Hp)
} . (7.68)

Assuming that the state |ω⟩ is prepared, then the probability of finding
the ground-state is

Pgs =
g f 2(Egs)

Tr f 2(Hp)
, (7.69)

where g is the ground-state degeneracy and Egs the associated energy.
If f (·) is the identity, then Tr Hp scales approximately as 2n and Egs

might scale with n. Hence, the ground state probability will scale as
∼ n2/2n. Indeed, if f (Hp) = Hm

p , where m is some positive integer,
then the ground state probability might scale as ∼ n2m/2n. This does
not include the computational cost of calculating Hm

p , which will be on
the order of nm. This is still an improvement over random guessing,
but still with exponential scaling. This exponential scaling is worse than
Grover’s algorithm [5], or other approaches that provide a better expo-
nential scaling, for example continuous-time quantum walks [22]. This
may be of some practical benefit, depending on the computational cost
of calculating f (Hp). If f (·) is the projector onto the ground-state, then
Pgs = 1 (as expected).

Calculating the expectation of Hp for |ω⟩ gives:

⟨Hp⟩ =
1

Tr f 2(Hp)
∑
k

Ek f 2(Ek). (7.70)

Here we can see that ⟨Hp⟩ will be dominated by states for which f 2(Ek)

is large. If f (·) is the identity this most likely means low energy states
and high energy states. Hence, we do not expect a good approxima-
tion ratio. This provides some insight into Sec. 7.2.2 where the observed
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peak in ground-state probability did not coincide with the optimal ap-
proximation ratio.

This approach has the potential to provide a modest practical speed-
up with a polynomial prefactor on the hardest problems. However, the
success of this approach depends on the (unlikely) feasibility of imple-
menting Hψi and f (Hp). It does however provide further evidence of the
power of commutators for designing algorithms to tackle optimisation
problems.

7.5 Conclusion

Designing quantum algorithms to tackle combinatorial optimisation
problems, especially within the NISQ framework, remains a challenge.
Many algorithms have used AQO in their inspiration, such as in the
choice of Hamiltonians. In this chapter, we have explored using optimal
Hamiltonians as a guiding design principle.

With H1, the commutator between Hd and Hp, we demonstrated that
we can outperform QAOA p=1, with fewer resources. The short run-
times which do not appear to scale with problem size suggest that this
approach is acting locally. An effective Lieb-Robinson bound prevents
the information about the problem propagating instantaneously [187,
188]. This helps provide some insights into the performance of H1:

• In the local regime, the effective local Hilbert space is smaller than
the global Hilbert space, consequently H1 will be a better approx-
imation of the optimal Hamiltonian. This accounts for why we
might expect H1 to work better on short run-times.

• A local algorithm is unlikely to be able to solve an optimisation
problem, as it cannot see the whole graph. It follows that such an
approach would have poor scaling of the ground-state probability.

Due to the local nature of H1 we were able to utilise some analytical
tricks to assist the numerical assessment of its performance, allowing for
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some guarantee of the performance of the approach on large problem
sizes. The techniques used had already been developed or deployed
by the continuous-time quantum computing community in the context
of QA/QAOA, indicative of the wide applicability of the tools being
developed to assess these algorithms.

Local approaches have clear advantages in NISQ-era computations. The
short run-times put fewer demands on the coherence times of the device.
The local nature can also help mitigate some errors. If, for example,
there is a control misspecification in one part of the Hamiltonian this
is unlikely to propagate through the whole system and affect the entire
computation.

Buoyed by the relative success of utilizing Hamiltonians for optimal
state-transfer, we turned to the quantum Zermelo problem to help find
improvements. These Hamiltonians comprise a single variational pa-
rameter and short run-times, for increased complexity in the Hamil-
tonian. Again, the saturation of the optimal time suggests that these
approaches are still operating locally.

The success of this approach, within the NISQ era, will depend on the
feasibility of implementing these Hamiltonians. This might be achieved
through decomposition into a product formula [189] for gate based ap-
proaches, resulting in a QAOA like circuit. Alternatively, one could
attempt to explicitly engineer the interactions involved. Indeed, for
exponentially scaling problems, implementing these Hamiltonians for
short times could be less challenging than maintaining coherence for
exponentially increasing times.

Although the results of this chapter are not fully conclusive, it has
shown that by considering Hamiltonians for optimal state-transfer we
can develop promising new algorithms. We hope the results presented
in this chapter will encourage further work into the success of these
Hamiltonians. There is scope for taking this work further. This could
include changing the choice of Hd, exploiting our observation that any
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stoquastic Hamiltonian can lead to an increase in ground state proba-
bility. For Hp we have only explored problems with trivial Ising encod-
ings. There is scope to explore new encodings such as LHZ [190] or
Domain-wall [44] encodings. Such encodings will result in different H1

and presumably distinct dynamics.
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Chapter 8

Conclusion

8.1 Summary

This dissertation has explored a range of established continuous-time
quantum optimisation approaches through the lens of pure-state statisti-
cal physics. It has also explored Hamiltonians for optimal state-transfer
as an inspiration for tackling combinatorial optimisation problems.

Chapter 4, motivated by the eigenstate thermalisation hypothesis, used
Ansätze for the density of states to optimise continuous-time quantum
walks. The free parameters in the Ansätze were extracted from the com-
binatorial optimisation problem. This allowed for the optimisation of
a many-body quantum system where exact numerical diagonalisation
could not be achieved. The optimisation of any free parameters in a
quantum algorithm needs to be realised in a time efficient manner. In
this work we have presented a possible way to do this. Future work
might look to extend this to other continuous-time algorithms, as well
as better Ansätze.

Having investigated the long-time behaviour of continuous-time quan-
tum walks, Chapter 5 investigated the timescale associated with the dy-
namics. This was first done by analytically calculating the torsion of
the wave function. Combined with an Ansatz for the time evolution, it
was found that the timescale associated with continuous-time quantum
walks does not scale strongly with the problem size. In practice, the
quench might not be instantaneous, with the speed of a ramp limited by

167



8. Conclusion

the hardware controls. Understanding the effect of non-instantaneous
quenching is important for practical realisations.

Building on the inspiration gained from the eigenstate thermalisation
hypothesis, pure-state statistical physics was used to analyse a range of
continuous-time quantum optimisation approaches in Chapter 6. Ques-
tions were raised over cyclic processes, and it was shown that passive
states obey ⟨Hp(0)⟩ ≥ ⟨Hp(t)⟩ for monotonically increasing schedules.
This provided a heuristic understanding of multi-stage quantum walks.
This work can be extended by making the theory more rigorous by bet-
ter understanding the limitations and exceptions.

To try to push beyond the conventional adiabatic inspired approaches,
Chapter 7 explored using Hamiltonians for optimal state transfer to mo-
tivate quantum optimisation approaches. The results were mixed, but
it was shown that it could outperform QAOA p = 1 with similar re-
sources. Incorporating other techniques from optimal control might
help improve on the current proposal. Hopefully, this work will help
encourage investigating alternative approaches away from adiabatic in-
spired approaches.

8.2 Outlook on continuous-time quantum opti-

misation

Continuous-time quantum optimisation (CTQO) has historically been
framed in terms of adiabatic quantum optimisation (AQO) [191, 192].
The aim in AQO is to find the ground state of Hp; this can be achieved
by evolving the system adiabatically from a known ground state. The
timescale to remain adiabatic is inversely proportional to a power of the
minimum spectral-gap (i.e. the minimum difference in energy between
the ground and first excited state over the anneal) [10, 191]. For many
problems, this gap is found to close exponentially (also referred to as
a vanishing spectral gap), implying an exponentially long runtime [10,
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191]. The study of AQO therefore typically involves the study of the
spectral gap, converting a dynamical problem to a static problem. An
exponentially closing gap is then used to imply a failure of AQO, while
a polynomially closing gap implies a success for AQO [48].

Unless one is willing to accept that all hard optimisation problems can
be solved efficiently on a quantum computer, then exponentially clos-
ing gaps are not necessarily a failure but an expression that there exist
hard problems. This is not to say, that a vanishing gap implies hardness,
rather that its absence implies that the problem is easy to solve. There-
fore, an exponentially vanishing spectral gap is to be expected in some
cases, 1 and should not necessarily be used to dismiss AQO.

Despite this, AQO in its current form is unlikely to play a role in prac-
tical quantum optimisation. Consider first the case where the gap is
exponentially closing. Exponentially increasing runtimes are not feasi-
ble, and hence the algorithm will not terminate in a realisable timescale.
A decision must be made to terminate the process, resulting in non-
adiabatic effects. Alternatively, if the gap is polynomially closing, then
AQO can solve the problem efficiently. However, determining the gap
for non-trivial problems is typically challenging, with the brute force
approach requiring exact diagonalisation throughout the anneal. This
means that, in practice, any potential speed-up might be lost, because:

• Verifying that any solution obtained is the ground-state is a com-
putational challenge.

• In the absence of knowledge about the spectral gap, the user might
assume that the required runtime is much longer than is required
by the adiabatic theorem.

In short, AQO has no role to play in practical CTQO, without connecting
the anneal time to accessible quantities that can be obtained prior to the

1Through a suitably engineered driver Hamiltonian, it is possible to remove the
vanishing gap altogether [56]. However, in this case the cost of finding and imple-
menting this driver Hamiltonian should be included in the runtime of the quantum
algorithm.

169



8. Conclusion

anneal. Even then, this only makes AQO amenable to problems without
an exponentially vanishing spectral gap.

AQO focuses on determining the time required to remain adiabatic,
despite practical realisations placing restrictions on what times can be
achieved. A more sensible question, especially given the finite coher-
ence times achieved in analogue quantum systems, is determining what
might be achieved with a finite anneal time T. This time is likely to
be much shorter than the anneal-time required to be adiabatic. This is
likely to require three major shifts:

1. Accepting and exploiting dynamics.

2. Incorporating more information about the combinatorial optimisa-
tion problem.

3. Shifting the focus away from ground-state probabilities.

The rest of this outlook will consider each of these in turn, making links
to the content of the dissertation where appropriate.

8.2.1 Accepting and exploiting dynamics

Quantum Annealing (QA) is sometimes conflated with AQO [192],
therefore even QA is discussed in terms of vanishing spectral gaps. An
exponentially vanishing spectral gap means that the adiabatic path be-
tween ground states cannot be practically realised. This does not neces-
sitate a failure of QA or any other CTQO approach. By placing focus
on the static problem of the vanishing gap, the role of dynamics is ne-
glected. As discussed, any practical realisation of CTQO will not be
adiabatic for at least some problems and therefore dynamics will take
place. Theoretically and numerically, studying the dynamics of these
strongly interacting spin systems is difficult, but there has been progress
[46, 65, 95, 96]. It is not clear yet what insight extensive studies on spec-
tral gaps and AQO will be in this dynamical regime. Ultimately, the
spectral gap is being used as a proxy for finding the ground-state of
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Hp, despite it being no easier to calculate and only being equivalent
in the adiabatic limit. In summary CTQO, including QA, should be
accepted as a dynamical algorithm. Given that dynamics is unavoid-
able, it is important that the role of dynamics is better understood and
exploited. Continuous-time quantum walks for optimisation present a
step forwards in investigating the role of dynamics in CTQO but more
is required to understand the limitations of these approaches.

Given that, as discussed in Chapter 6, multi-stage quantum walks
(MSQWs) are approximating thermal states on average, the use of
MSQWs as a dynamical approach will depend on a number of factors:

• Can an MSQW approximate a thermal state faster than other clas-
sical or quantum methods?

• MSQWs are not perfect Gibbs states. Does the presence of any
athermal behaviour provide any advantage?

• Is the effective temperature reached by an MSQW of any practical
use?

The first two of these will require understanding of fluctuations and
moving away from the standard canonical formulation of statistical me-
chanics. The work presented in this dissertation used a semi-classical
analysis to describe the steady-state behaviour of MSQWs, ignoring the
role of coherence in the evolution. The last bullet point in the above
list is a question about comparing to conventional approaches, which
has not yet been studied in the literature. Despite these challenges, it is
clear that statistical mechanics presents a practically useful method of
discussing the behaviour of strongly interacting spin systems.

8.2.2 Incorporating more information

Given that each anneal is likely to be very short, compared to the time
required to remain adiabatic, it is important that each anneal is suffi-
ciently optimised. Cyclic approaches are an attempt to use information
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from prior anneals [70, 71, 73, 74]. There are also forward approaches to
bias the evolution towards known states [67, 193, 194]. The limitations
and successes of these approaches are not well understood – is biasing
towards what is likely to be a local optimum a sensible idea? Beyond in-
dividual strings, other approaches to incorporate information about the
problem comes in the form of variational approaches [40] such as QAOA
[14]. In this case previous information is used to calculate observables
which are then used to update variational parameters to search for bet-
ter solutions. As discussed in Chapter 2, these variational approaches
are not without their limitations.

In Chapter 4 it was shown how a graph property, specifically the num-
ber of triangles in the graph, calculated classically, could be incorpo-
rated into a quantum algorithm. This approach did not involve any
learning phase. Working out how to incorporate graph properties is no
doubt a challenge but a necessary one for CTQO to solve. Consider that
superconducting qubits have a fixed topology [195, 196] and Rydberg
atoms are typically arranged in a King’s graph [17], and yet there is
no prescriptive difference in how the CTQO algorithm should be imple-
mented. This is despite the existence of classical algorithms that cleverly
exploit this fixed structure [197, 198]. A reasonable starting point might
be how to optimise the performance, based on proposals to embed every
Ising problem into three-regular graphs [199] or a planar lattice [190].

8.2.3 Shifting the focus away from ground-state proba-

bilities

Finally, finding the ground state for large optimisation problems is likely
to be unachievable and unverifiable. The focus needs to move towards
verifiable statements, such as expectation values of local observables.
Measuring the quality of solution achieved, as opposed to the small-
system scaling of the vanishingly small chance of finding the ground-
state, is of more practical interest.
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The overall success of CTQO remains undetermined. Too much algo-
rithmic development has focused on adiabaticity, as opposed to what
might be realised even on a superficially idealised quantum annealer.

Combinatorial optimisation problems occur frequently and are likely to
remain hard to solve. Any advantage or speed-up when it comes to
solving them is likely to be beneficial. Quantum algorithms may one
day be part of the arsenal of approaches used to tackle these problems.
This dissertation has presented a novel approach to understanding cur-
rent continuous-time approaches, as well as exploring an alternative
approach. This presents a positive step forward in understanding the
future role of continuous-time quantum algorithms.
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Appendix A

Further numerical work on
CTQO

A.1 Numerical validation of PSTQA

In Sec. 6.3 it was shown, for a specific Max-cut instance, that the PSTQA
equations (Eqs. 6.42-6.45) hold well for that example. Here, we con-
sider other 10-qubit Max-cut instances with different annealing times.
The schedule in each case is linear with A(0) = B(t f ) = 1.3 and
A(t f ) = B(0) = 0.3. First, we consider a single 10-qubit example with
t f = 12. Focusing on ⟨Hp(t)⟩, shown in Fig. A.1, the blue line shows the
Schrödinger equation and the pink line the PSTQA equations. There is a
gap between the two curves at the beginning of the evolution, as the co-

Figure A.1: The time evolution of ⟨Hp(t)⟩ for a Max-cut instance on a 10-qubit bino-
mial graph. The schedule is a linear ramp, with a minimum value of 0.3 and maximum
value 1.3. The blue line shows the Schrödinger evolution. The pink line shows the so-
lution of the PSTQA equations for this instance.
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Figure A.2: The inverse temperature for the Max-cut instance considered in Fig. A.1
from the PSTQA equations.

Figure A.3: The diagonal entropy for the Max-cut instance considered in Fig. A.1 from
the Schrödinger equations.

Figure A.4: A box-plot showing (⟨Hp(t f )⟩ − ⟨Hp(t f )⟩TQA)/⟨Hp(t f )⟩ for Max-cut on
10 qubit binomial graphs. The final value of the Schrödinger evolution is denoted by
⟨Hp(t f )⟩. The value predicted by the PSTQA equations is denoted by ⟨Hp(t f )⟩TQA. In
each case, a linear schedule is used with A(0) = B(t f ) = 1.3 and A(t f ) = B(0) = 0.3.
At each value of t f , 90 instances are considered.
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Figure A.5: A box-plot showing the change in diagonal entropy for Max-cut on 10
qubit binomial graphs for the instances shown in Fig. A.4.

herences in the Schrödinger evolution hide the thermal state. At the end
of the evolution, the PSTQA equations overestimate the performance of
the evolution. The inverse temperature (shown in Fig. A.2) tells a dif-
ferent story to the Max-cut example in Sec. 6.3. In this example, the
temperature cools for approximately half the interval before heating up
again. The diagonal entropy for this example is shown in Fig. A.3. The
evolution is not strictly adiabatic, evidenced by the varying diagonal
entropy.

Fig. A.4 shows the error between the error between ⟨Hp(t f )⟩ according
to the Schrödinger equation and the prediction from the PSTQA equa-
tions (⟨Hp(t f )⟩TQA) for 90 instances as t f is changed. Each graph is a
10-qubit binomial graph. The error is typically within a few percent
and decreasing on average as the run-time increases. Note that in all in-
stances, the PSTQA equations predict a lower value of ⟨Hp(t f )⟩ than the
true value. This is reflected in Fig. A.5 where there is a net increase in
diagonal entropy for each instance which is not captured by the PSTQA
equations. Despite this, we still see relatively good agreement.

To show that PSTQA is not limited to Max-cut, we consider the
Sherrington-Kirkpatrick inspired model (SKM), introduced in Sec. 2.3.
For the driver Hamiltonian we take the transverse-field. The schedule
under consideration is shown in Fig. A.6. Fig. A.7 compares the value of
⟨Hp(t)⟩ according to the Schrödinger equation (blue line) to the PSTQA
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Figure A.6: The schedule used for the 10-qubit SKM instance

Figure A.7: A comparison of ⟨Hp(t)⟩ calculated from the Schrödinger equation (the
solid blue line) and the PSTQA equations (the solid pink line) for the 10 qubit SKM
instance. The schedule is shown in Fig. A.6

equations (pink line) for a 10 qubit example. There is remarkably good
agreement. As in the Max-cut case, Fig. A.8 shows that the diagonal
entropy is changing, so the system has not reached the adiabatic limit.
Fig. A.9 shows the inverse temperature, which is non-monotonic with
time.

Again, we consider 90 instances of the SKM model at various t f . A
similar trend for the error in ⟨Hp(t f )⟩ as the Max-cut instances can be
found in Fig. A.10. The change in diagonal entropy can be found in
Fig. A.11, which decreases as the run time increases.
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Figure A.8: The diagonal entropy calculated from the Schrödinger equation for the 10
qubit SKM example (Fig. A.7).

Figure A.9: The inverse temperature calculated from the PSTQA equations for the 10
qubit SKM example (Fig. A.7).

Figure A.10: A box-plot showing (⟨Hp(t f )⟩ − ⟨Hp(t f )⟩TQA)/⟨Hp(t f )⟩ for 10 qubit
SKM instances. The final value of the Schrödinger evolution is denoted by ⟨Hp(t f )⟩.
The value predicted by the PSTQA equations is denoted by ⟨Hp(t f )⟩TQA. In each case
a linear schedule is used with A(0) = B(t f ) = 1.1 and A(t f ) = B(0) = 0.1. At each
value of t f 90 instances are considered.
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Figure A.11: A box-plot showing the change in diagonal entropy of the 10-qubit SKM
instances shown in Fig. A.4.

A.2 Ansatz approaches towards PSTQA

In this section, we show how the PSTQA equations (Eqs. 6.42-6.45) can
be tackled through a suitable choice of ansatz. We consider two simple
models for the density-of-states. The two models are a Gaussian and an
exponentially modified Gaussian. We expect these models to be suitable
when the state-vector has significant overlap with energy eigenstates in
the middle of the spectrum. These models have no energy cut-off, so
become less suitable at low (or high) energies. However, they do allow
for some analytic analysis.

A.2.1 The Gaussian model

First, we assume that the density-of-states associated with the Hamilto-
nian in Eq. 6.40 can be well modelled by a Gaussian distribution:

Ω(ε, t)dε =
1√

2πσ2(t)
e
−(ε−µ(t))2

2σ2(t) dε, (A.1)

where µ(t) is the mean and σ2(t) the variance of the density-of-states. A
Gaussian density-of-states has been observed to be a good approxima-
tion for the density-of-states in the non-integrable setting for a number
of models [137, 138, 139]. The moments of the density-of-states can
be calculated directly from the eigenvalues of HTQA(t), denoted be Ek.
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Again, let D be the dimension of the state space. And Tr′ = 1/D Tr be
the normalised Trace, with the scaled operators H̃p = Hp − Tr′ Hp and
H̃d = Hd − Tr′ Hd. The mean and variance of the density-of-states are
then

µ(t) =
1
D ∑

k
Ek(t)

= Tr′ HTQA(t)

= A(t)Tr′ Hd + B(t)Tr′ Hd (A.2)

σ2(t) =
1
D ∑

k
E2

k(t)

=
1
D

Tr H2
TQA(t)− µ(t)2

= A2(t)Tr′ H̃2
d + B2(t)Tr′ H̃2

p

+ 2A(t)B(t)Tr′ H̃dH̃p. (A.3)

Evaluating the partition function gives:

Z(t) =
∫ ∞

−∞
e−β(t)εΩ(ε, t)dε

=
1√

2πσ2(t)

∫ ∞

−∞
e−β(t)εe

−(ε−µ(t))2

2σ2(t) dε

= e−β(t)µ(t)+ β(t)2σ2(t)
2 . (A.4)

Evaluating ⟨HTQA(t)⟩ gives:

⟨HTQA(t)⟩ = −∂ lnZ(t)
∂β

= µ(t)− βσ2(t) (A.5)

Hence:

β(t) =
µ(t)− ⟨HTQA(t)⟩

σ2 . (A.6)
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Evaluating ⟨Hd(t)⟩ and ⟨Hp(t)⟩ gives:

⟨Hd(t)⟩ =− 1
β(t)

∂ lnZ(t)
∂A

= Tr′ Hd − β(t)
(

A(t)Tr′ H̃2
d + B(t)Tr′ H̃dH̃p

)
(A.7)

⟨Hp(t)⟩ =− 1
β(t)

∂ lnZ(t)
∂B

= Tr′ Hp − β(t)
(

B(t)Tr′ H̃2
p + A(t)Tr′ H̃dH̃p

)
. (A.8)

Substituting β(t), ⟨Hd(t)⟩ and ⟨Hp(t)⟩ into Eq. 6.42 gives:

d⟨HTQA(t)⟩
dt

= Ȧ(t)⟨Hd(t)⟩+ Ḃ(t)⟨Hp(t)⟩

=
dµ

dt
−

µ − ⟨HTQA(t)⟩
2σ2

dσ2

dt
(A.9)

Integrating the above expression gives:

⟨HTQA(t)⟩ = µ(t) + cσ(t), (A.10)

where c is the constant of integration, which can be fixed using the
boundary condition ⟨HTQA(0)⟩ = A(0) ⟨ψi| Hd |ψi⟩ + B(0) ⟨ψi| Hp |ψi⟩,
where |ψi⟩ is the initial state. Therefore:

c =
⟨HTQA(0)⟩ − µ(0)

σ(0)
. (A.11)

With an expression for ⟨HTQA(t)⟩, evaluating β(t) and ⟨Hp(t)⟩ becomes
trivial:

β(t) =
−c

σ(t)
(A.12)

and

⟨Hp⟩ = Tr′ Hp +
c

σ(t)

(
B(t)Tr′ H̃2

p + A(t)Tr′ H̃dH̃p

)
(A.13)
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A.2.2 The Gaussian model applied to Max-cut

The simple structure of the Max-cut problem and the transverse field
allow for further simplification. Evaluating the moments gives:

µ(t) = 0

σ2(t) = A2(t)n + B2(t)κ2,

where κ2 is the number of edges in the Max-cut graph and n is the
number of nodes. Hence:

β =
nA(0)√

A2(0)n + B2(0)κ2
√

A2(t)n + B2(t)κ2

⟨HTQA(t)⟩ =
−nA(0)

√
A2(t)n + B2(t)κ2√

A2(0)n + B2(0)κ2

⟨Hp⟩ =
−nA(0)B(t)κ2√

A2(0)n + B2(0)κ2
√

A2(t)n + B2(t)κ2
.

The Gaussian case is primarily of interest as it can be handled analyti-
cally. It does not take into account any frustration in the system. In the
next section, we explore a model that begins to take this into account.

A.2.3 The exponentially modified Gaussian model

The above can be repeated for an exponentially modified Gaussian
density-of-states. This model incorporates skewness into the density-of-
states model, but is less tractable. The partition function for this model
is given by:

Z(t) =
(

1 +
β(t)
λ(t)

)−1

e−ν(t)β(t)+ 1
2 β(t)2s2

, (A.14)
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where ν(t), s(t) and λ(t) are fitting parameters related to the mean
(µ(t)), variance (σ2(t)) and skewness γ(t) of the distribution:

ν(t) = µ(t)− σ(t)
(

γ(t)
2

) 1
3

= µ(t)− ∆(t), (A.15)

s2(t) = σ2

(
1 −

(
γ(t)

2

) 2
3
)

= σ2(t)− ∆2(t), (A.16)

λ(t) =
1

σ(t)

(
γ(t)

2

)− 1
3

=
1

∆(t)
, (A.17)

where:

µ(t) = Tr′ HTQA (A.18)

σ2(t) = Tr′
(

HTQA − Tr′ HTQA
)2 , (A.19)

∆(t) =
1
2

(
Tr′
(

HTQA − Tr′ HTQA
)3
)1/3

. (A.20)

From the partition function, it is straight forward to estimate the relevant
expectation values:

⟨HTQA(t)⟩ =
β2∆3(t)

1 + β(t)∆(t)
+ µ(t)− β(t)σ2(t). (A.21)

Inverting this equation gives:

β(t) =
−σ2 − ∆

(
⟨HTQA(t)⟩ − µ

)
+ ω

2∆(t) (σ2(t)− ∆2(t))
, (A.22)

where

ω =

{[
σ2(t) + ∆(t)

(
⟨HTQA(t)⟩ − µ(t)

)]2

+ 4∆
(
⟨HTQA(t)⟩ − µ(t)

) (
∆2(t)− σ2(t)

)}1/2

. (A.23)
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Figure A.12: The evolution of ⟨Hp(t)⟩ for a Max-cut instance on 13 qubit binomial
graph. The schedule is linear with A(0) = B(t f = 10) = 1.1 and A(t f = 10) = B(0) =
0.1. The blue line shows the Schrödinger evolution, and the pink line the prediction
using an exponentially modified Gaussian ansatz for the density-of-states.

Calculating ⟨Hp⟩ gives:

⟨Hp(t)⟩ = ∂Bµ − ∆(t)β(t)
1 + ∆β(t)

∂B∆

− β(t) (σ(t)∂Bσ(t)− ∆(t)∂B∆(t)) . (A.24)

The expression for ⟨Hd(t)⟩ is the same but with B swapped for A. Com-
bining the above expressions, the energy of the system (Eq. 6.46) can be
found using numerical integration, without resorting to full numerical
integration of the state-vector.

A.2.4 The exponentially modified Gaussian model ap-

plied to Max-cut

For Max-cut with a transverse field (and no terms proportional to the
identity):

µ = 0 (A.25)

σ2(t) = A2(t)n + B2(t)κ2 (A.26)

∆3(t) = (3κ3)B3(t). (A.27)
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Figure A.13: The error between ⟨Hp(t f )⟩ from the Schrödinger equation and the ex-
ponentially modified Gaussian model, ⟨Hp(t f )⟩EMG. The figure shows 100 Max-cut
instances on 13 qubit binomial graphs. The schedule is linear with A(0) = B(t f =
10) = 1.1 and A(t f = 10) = B(0) = 0.1. The prediction from the exponentially modi-
fied Gaussian is denoted by ⟨Hp(t f )⟩EMG, and the true value by ⟨Hp(t f )⟩. The x-axis
shows Ep

(0), the ground state energy of Hp.

Here κ2 is the number of edges and κ3 is the number of triangles in
the Max-cut graph. Fig. A.12 shows the Schrödinger evolution (blue
line) and the prediction from using an exponentially modified Gaus-
sian ansatz (pink line). The instance considered is a 13-qubit bino-
mial graph with a linear schedule with A(0) = B(t f = 10) = 1.1 and
A(t f = 10) = B(0) = 0.1. There is good agreement, especially at the
end of the evolution. Fig. A.13 shows the error between the true value
of ⟨Hp(t f )⟩ and the prediction from the ansatz ⟨Hp(t f )⟩EMG for 100 13
qubit instances. The schedule is the same as before. The x-axis shows
the ground state energy of the problem Hamiltonian, which is correlated
with the error.

A.3 Warm-starting CTQWs

In order to provide numerical evidence of the challenges of warm-
starting CTQWs, again we focus on Max-cut and the SKM. For both
cases, we take Hd to be the transverse-field driver.

In this section, we focus on 12-qubit examples. Fig. A.14a shows a Max-
cut instance and Fig. A.14b an SKM instance of a warm-started CTQW.
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(a) Max-cut (b) SKM

Figure A.14: The time-evolution of ⟨Hp⟩ for a 12 qubit instance. The dashed purple
line shows the infinite time average, ⟨Hp⟩.

(a) Max-cut (b) SKM

Figure A.15: The time-averaged distribution of ⟨Hp⟩ for the problem instances shown
in Fig. A.14. The dashed purple line shows the original value of ⟨Hp⟩. The dashed
pink line shows the average of the distribution.

In both cases g = 1, where g is the coefficient in front of Hd. The evolu-
tion after some time approaches a steady state, as expected for a time-
independent Hamiltonian. The dashed purple line shows the infinite
time average of ⟨Hp⟩, denoted by ⟨Hp⟩. As predicted by Assumption 4,
⟨Hp⟩ is always greater than its initial value.

Since the initial state is an energy eigenstate, the uncertainty can only in-
crease, giving the warm-stared CTQW a chance to find better solutions.
To see this for the warm-started CTQWs, we look at the probability dis-
tribution of observing a given value of ⟨Hp⟩ for the infinite time aver-
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(a) Max-cut (b) SKM

Figure A.16: The time-averaged value of ⟨Hp⟩ as g is varied for the Max-cut instance
considered in Fig. A.14.

Figure A.17: The initial value of ⟨Hp⟩ for a warm-started CTQW compared to the
infinite time averaged value. For each instance g = 0.5. The blue circles show 100
Max-cut instances. The pink diamonds show 100 SKM instances. The number of
qubits is 12 in all cases. The initial state is randomly selected given that it satisfies
Eq. 6.53. The dashed purple line is the ”y = x” line for ease of visual comparison.

aged density operator. We consider the same examples as Fig. A.14. The
distribution of ⟨Hp⟩ for the Max-cut instance can be found in Fig. A.15a
and the SKM instance in Fig. A.15b. In both cases, despite the average
value of ⟨Hp⟩ having increased, there is significant overlap with states
with a lower value of ⟨Hp⟩ than the initial state.

To demonstrate that the average increase in ⟨Hp⟩ is not specific to the
choice of g for these instances, Fig. A.16a and Fig. A.16b show how ⟨Hp⟩
varies with g. The instances are the same as Fig. A.14. Both demonstrate
clear heating, as for any value of g the value of ⟨Hp⟩ increases or stays
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Figure A.18: The initial value of ⟨Hp⟩ for a warm-started CTQW compared to the
infinite time averaged value. For each instance g = 0.5. The blue circles show 100
Max-cut instances. The pink diamonds show 100 SKM instances. The number of
qubits is 12 in all cases. The initial state is given by Eq. A.28.

the same compared to its initial value. The initial value of ⟨Hp⟩ corre-
sponds to g = 0. So for the cyclic process set out in Sec. 6.4.1 there is an
increase in energy, this corresponds to heating.

Fig. A.17 shows how ⟨Hp⟩ compares with the initial value of ⟨Hp(t = 0)⟩
for 100 instances of the Max-cut problem and 100 instances of the SKM
problem. In each instance g = 0.5. The dashed purple line marks no
change in ⟨Hp⟩. For a few initial states, there is a minor cooling effect
from the CTQW. This is perhaps reflective of the problem having more
structure than the bell shape sketched in Fig. 3.1.

In each instance so far we have shown what has happened when the
system is initialised randomly in an eigenstate of Hp, that satisfies the
condition ⟨s| Hp |s⟩ < 0 where |s⟩ is the initial-state. For a few instances
in Fig. A.17 we have seen ⟨Hp⟩ decrease — does this imply cooling and
contradict the work in the main section? Firstly, we have taken Planck’s
principle to be a physically motivated principle and broadly true. Sec-
ondly, this cooling effect disappears once the system is averaged over
the full ensemble, taking into account all possible starting states. The
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full ensemble can be taken into account by using the density operator:

ρ0 =
1
N ∑

s:⟨s|Hp|s⟩<Tr′ Hp

|s⟩ ⟨s| , (A.28)

where |s⟩ is an eigenstate of Hp with eigenvalue s. The normalisation N
of the initial state is

N = ∑
s:⟨s|Hp|s⟩<0

1. (A.29)

Repeating Fig. A.17 with Eq. A.28 gives Fig. A.18. Note that ρ0 is a pas-
sive state. From Fig. A.18 it is clear that by averaging over the ensemble
given by Eq. A.28 there is no exception.

A.4 Numerically observing cyclic cooling

Sec. 6.4 made two predictions:

1. Cyclic processes lead to heating, so RQA should lead to a greater
value of ⟨Hp⟩.

2. A cyclic process might achieve cooling of ⟨Hp⟩ with the introduc-
tion of a third term in the Hamiltonian.

In this section, we numerically investigate this for the Max-cut problem
and the SKM.

To start, we consider the first prediction, that RQA without any bias-
ing term leads to heating. Before investigating heating, we outline our
model of RQA in more detail. The initial state is the ensemble

ρ0 = ∑
s

p(s) |s⟩ ⟨s| , (A.30)

where |s⟩ is an eigenstate of Hp with eigenvalue s. Denoting the unitary
associated with one RQA cycle to be Ucyc, then the transition probability
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between states |s⟩ and |j⟩ is given by

p(j|s) =
∣∣⟨j|Ucyc |s⟩

∣∣2. (A.31)

After each stage, there is some selection criterion to determine if a string
is kept or if the RQA cycle is repeated with the initial string. In this
work, we only keep states that lower the energy.

The state after k iterations and measurement but before post-selection is
given by

ρk =
1
Nk

∑
sk

∑
sk−1<···<s1<s0

p(sk|sk−1)p(sk−1|sk−2)

. . . p(s1|s0)p(s0) |sk⟩ ⟨sk| , (A.32)

where Nk normalises the state. The probability of finding a lower state
from this ensemble is

psuc(k) =
1
Nk

∑
sk<sk−1<···<s1<s0

p(sk|sk−1)p(sk−1|sk−2)

. . . p(s1|s0)p(s0). (A.33)

This sets a rough estimate for the number of iterations to lower the
energy. If 1/psuc(k) becomes greater than some cut-off, we terminate
the RQA process. If the approach is not terminated, the state that is fed
into the next cyclic iteration is,

ρ
(ps)
k =

1
N ′

k
∑

sk<sk−1<···<s1<s0

p(sk|sk−1)p(sk−1|sk−2)

. . . p(s1|s0)p(s0) |sk⟩ ⟨sk| . (A.34)

This completes our model of RQA.

To illustrate the above analysis, we consider a single 10-vertex Max-
cut instance, take p(s) to be a uniform distribution on the interval s <
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Figure A.19: The schedule G(t) appended to the driver Hamiltonian, used for the
cyclic processes described in Appendix A.4.

Figure A.20: RQA for a 10 node Max-cut graph. The pink dots show ⟨Hp⟩ for the post-
selected distribution. The blue diamonds show ⟨Hp⟩ as sampled from application of
Ucyc.

Figure A.21: The diagonal entropy Sd for RQA applied to a 10-node Max-cut graph.
The pink dots show Sd for the post-selected distribution. The blue diamonds show
Sd as sampled after application of Ucyc. The logarithm used to calculate the diagonal
entropy is taken to be base 2.
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Figure A.22: The inverse probability (Eq. A.33) for each stage of RQA on a 10-vertex
Max-cut graph.

Tr′ Hp. The driver Hamiltonian is taken to be HTF. The schedule for the
drive G(t) is taken to be a square Gaussian, shown in Fig. A.19. For this
instance ⟨Hp⟩ can be seen in Fig. A.20. The pink circles show ⟨Hp⟩ for
the state after post-selection. The blue diamonds show ⟨Hp⟩ sampled
after each single application of Ucyc. At each stage ⟨Hp⟩ after the cyclic
quantum process is greater than the post-selected state, therefore the
cyclic quantum process is producing on average worse quality states.
This is numeric evidence of heating at each stage. For this instance,
RQA reaches the ground-state.

The diagonal entropy for the same process is shown in Fig. A.21. Again,
the blue diamonds show the diagonal entropy sampling directly after an
application of Ucyc. The pink dots show the diagonal entropy of the post
selected state. As is clear at each RQA leads to an increase of diagonal
entropy corresponding to a broadening of the distribution.

Finally, Fig. A.22 shows, 1/psuc which gives a sense of the average num-
ber of shots required at each stage. The randomness Ucyc introduces
allows RQA to find the ground state with fewer classical evaluations of
Hp. This is in spite of the fact, that Ucyc results in a larger value of ⟨Hp⟩,
as we have argued.

Having explored RQA without a bias, we now introduce biased quan-
tum annealing (BQA). Simulating the full ensemble at each stage is com-
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(a) Max-cut (b) SKM

Figure A.23: The performance of QA (purple circles), RQA (blue diamonds) and BQA
(pink crosses) for a 12 qubit example.

(a) Max-cut (b) SKM

Figure A.24: The extractable work, W, for the 12-qubit instances considered in
Fig. A.23. The blue diamonds correspond to RQA. The pink crosses BQA. The purple
circles show W for BQA neglecting the change in energy of H(l)

b , i.e, the change in
⟨Hp⟩.
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(a) Max-cut (b) SKM

Figure A.25: The average approximation ratio for the 12 qubit instances at each shot
number. Since the approaches terminate at different shot numbers, the number of
instances decreases. The pink crosses show the average approximation ratio for BQA.
The blue diamonds show the average approximation ratio for RQA. The lines show
one standard deviation. The dashed purple line shows an approximation ratio of 1.
The final decrease in approximation ratio in BQA reflects more difficult problems for
BQA, since it has not terminated after many shots.

(a) Max-cut (b) SKM

Figure A.26: The extractable work for the 12 qubit instances at each shot number. Since
the approaches terminate at different shot numbers, the number of instances decreases.
The pink crosses show the average extractable work for the BQA protocol. The blue
diamonds show the average extractable work for RQA. The lines show one standard
deviation. The purple circles show the change in ⟨Hp⟩ for BQA.
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putationally more expensive than a single state-vector, so from here on
the simulations use sampling as if the approach was being evaluated
on an actual quantum device. The problems considered consist of 12
qubits. For each instance, up to kmax shots are taken. The initial state
is chosen by randomly selecting states until condition Eq. 6.53 is met.
If the result of a run produces a better quality solution than the initial
state, the initial state is updated to be this state. If the initial state is not
updated after k runs, the algorithm is assumed to have converged. For
the numerics, we take kmax = 100 and k = 10. The schedule for the drive
G(t) is taken to be a square Gaussian, shown in Fig. A.19.

For BQA the biasing term is taken to be H(l)
b (i.e. Eq. 6.71). The initial

value of α is taken to be α0 =

√
Tr′
(

H2
p

)
. This is assumed to be typically

an overshoot, so α is decreased with each shot if ⟨Hp⟩ does not decrease.
We take α to decrease linearly by α0/k each time.

With an annealing time of ta = 10 the problems are typically easy for
QA. We consider 100 instances of Max-cut and SK. QA found the ground
state with 100 shots or fewer for 99 of the Max-cut instances and all
the SKM instances. RQA found the ground state for 22 of the Max-cut
instances and 12 of the SKM instances. BQA found the ground state for
78 of the Max-cut instances and 48 of the SKM instances.

Fig. A.23 shows a specific Max-cut and SKM instance. The purple cir-
cles show the result from QA. Though clearly not adiabatic, it finds the
ground state in both cases. The blue diamonds show the initial value of
⟨Hp⟩ for RQA. In both cases, the termination condition is reached before
the algorithm finds the ground state. The pink crosses show BQA. BQA
managed to find the ground state in both cases. BQA rapidly converges
towards the ground state compared to RQA and terminates within 20
shots.

The above shows that BQA and RQA can tackle combinatorial optimi-
sation problems. The aim of this section is to discuss heating. Fig. A.24
shows the extractable work for each shot for the instances considered
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in Fig. A.23. The RQA examples generally show a negative value of
extractable work, meaning that ⟨Hp⟩ decreases — the blue diamonds
in Fig. A.24. BQA also shows heating (i.e, W < 0), the pink crosses in
Fig. A.24. There are some instances of cooling in the Max-cut instance
for BQA for two shots. The purple circles show the change in ⟨Hp⟩ for
the BQA protocol. We see ⟨Hp⟩ is decreasing as a result of BQA, i.e.
cooling of ⟨Hp⟩.

Finally, we consider the numerics for all the 100 Max-cut instances and
100 SKM instances. Fig. A.25 shows the approximation ration averaged
over all instances. The approximation ratio is defined as ⟨Hp⟩ divided
by the ground state energy of Hp. If the approach finds the ground state,
the approximation ratio is 1 (and cannot exceed 1). In both cases, BQA
converges much faster than RQA.

Fig. A.26 shows the extractable work averaged over all the instances.
We observe heating for both protocols as predicted by Assumption 4.
However, at least for the first few shots, BQA is able to achieve cooling
of ⟨Hp⟩.

We have numerically demonstrated, with this set-up, that RQA leads
to heating. This does not rule out RQA finding better solutions, as
evidenced by Fig. A.25. It does suggest there is scope for improvement
and cooling ⟨Hp⟩ by the addition of a third term.
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Appendix B

Further numerical work on rapid
Hamiltonians for optimisation

This chapter provides further numerical evidence of the optimal state-
transfer inspired approaches outlined in Chapter 7. This appendix fo-
cuses on Sherrington-Kirkpatrick inspired models (SKMs), introduced
in Sec. 2.3, as well as further discussion of where QAOA p = 1 outper-
formed H1.

B.1 A further numerical study on a Sherrington-

Kirkpatrick inspired model

To provide further evidence of the applicability of the approaches intro-
duced in Chapter 7, in this appendix we repeat the numerical experi-
ments performed on Max-cut for SKMs.

Starting with assessing the performance of H1, Fig. B.1 shows the per-
formance of H1 on 100 randomly generated instances of the SKM. The
approximation ratio appears to have little dependence on the problem
size for more than 7 qubits, an indicator that the dynamics under H1 is
approximately local for these times. The ground-state probability also
appears to decline exponentially (Fig. B.1b). The optimal times can be
found in Fig. B.1c. It appears that the optimal time tends to a constant
value (or a small range of values), with T < 1.
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(a) Approximation ratio
for the SKM.

(b) Ground-state proba-
bility for the SKM.

(c) Optimal times for the
SKM. The optimal time
was found by dividing
the interval [0, 2π] into
1000 time steps.

Figure B.1: Performance of H1 on 100 randomly-generated instances of SKM.

(a) Randomly generated SKM instances. (b) Randomly generated Max-cut in-
stances.

Figure B.2: Width of the final distribution, σ for randomly generated instances of Max-
cut and SKM.

Knowing the width of the distribution associated with the approxima-
tion ratio can also be useful. This is shown for SKM as well as the Max-
cut instances on randomly generated graphs in Fig. B.2. The width, σ is
non-zero, suggesting the final state is not a computational basis state.

In Fig. B.3 the performance of H1 is directly compared to QAOA p = 1
on 100 instances. For a handful of problems with the SKM, QAOA
p = 1 outperformed H1, but for the vast majority of problem instances
H1 performed better for both approximation ratio and optimal time. In
Appendix B.2 we elaborate further on the exceptions.
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(a) Approximation ratio comparison for
the SKM.

(b) Optimal time comparison for the
SKM.

Figure B.3: Comparison of H1 (y-axis on the above plots) with QAOA p = 1 (x-axis on
the above plots). The dashed purple line corresponds to equal performance.

(a) The approximation ratio for the QZ-
inspired approach on 100 instances of
SKM.

(b) The optimal time for the QZ-inspired
approach on 100 instances of the SKM.
The norm of each Hamiltonian, for each
problem size has been fixed, according to
Eq. 7.49, ensuring a fair comparison.

Figure B.4: Performance on the QZ-inspired approach on 100 instances of the SKM.
The x-axis label refers to the order of T in the expansion of Eq. 7.55, with 0 being H1
and e referring to the full exponential (i.e. Eq. 7.54).
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Finally, in Fig. B.4 we assess the performance of the Quantum-Zermelo
inspired approach for 100 SKM instances. Again, all the QZ-inspired
approaches provide an improvement on the original H1 Hamiltonian,
indexed by 0 in the figures. Going to first order achieves a substantial
improvement as with the Max-cut instances. The optimal times for the
QZ-inspired approach can be found in Fig. B.4b for the SKM.

In this section, we have demonstrated that the approaches inspired by
Hamiltonians for optimal state-transfer operate qualitatively similar on
SKM as they do on Max-cut.

B.2 Instances for which QAOA p = 1 outper-

forms H1

The aim of this section is to explore the instances where QAOA p = 1
has a shorter run-time than H1 and/or provides a better approximation
ratio, as shown in Fig. 7.11. The first thing to note is that these tend to
be the exception, rather than the rule.

Looking first at the Max-cut instances for three-regular graphs, H1 al-
ways provided a better approximation ratio than QAOA p = 1, typically
in a much shorter time. There are four instances (two with the same ap-
proximation ratio) where QAOA has a similar or shorter run-time as
highlighted in Fig. B.5. The corresponding graphs are shown in Table
B.1. The first thing to note is that these problems are small, the largest

Graph 1 Graph 2 Graph 3 Graph 4

Table B.1: The exceptions for the three-regular graphs.
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B.2. Instances for which QAOA p = 1 outperforms H1

(a) Approximation ratio (b) Optimal time.

Figure B.5: The performance of H1 compared to QAOA p = 1 on Max-cut with three-
regular graphs. The instances with atypical run-times for H1 are highlighted in pink.
The rest of the data has been faded for clarity and to show how the remaining data is
clustered, with darker regions corresponding to more data points. The dashed purple
line shows both approaches performing the same.

being 8 qubits, despite problem sizes up to 12 qubits being considered.
Graph 1 is a complete graph with four nodes, and Graph 4 is two copies
of this graph. Both Graph 2 and 3 (a cube) consist of numerous small
loops. Due to the relatively high degree of connectivity in these prob-
lems, it is likely H1 is no longer operating in the local regime, as with the
rest of the three-regular problems. In Fig. B.6 we investigate operating
H1 suboptimally, optimising only over run-times shorter than QAOA
p = 1 for these four problems. The result is a negligible decrease in
performance. Hence, even for these instances for which H1 has atypical
optimal times, it is possible for H1 to provide a better approximation
ratio in a shorter time than QAOA p = 1.

As with the three-regular graphs, H1 always gave a better approxima-
tion ratio than QAOA p = 1 on Max-cut with the randomly generated
graphs (highlighted in Fig. B.7). Similarly, we can look at the instances
with atypical optimal times for H1. The story is similar to before, with
only 116 out of 900 instances having run-times longer than QAOA. None
of these problem instances consisted of more than 7 qubits (despite sim-
ulations going up to 12 qubits). Again, we conclude that these atypical
optimal times are likely a small problem-setting phenomenon. We can
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B. Further numerical work on rapid Hamiltonians for optimisation

(a) Approximation ratio (b) Optimal time.

Figure B.6: The performance of H1 compared to QAOA p = 1 on Max-cut with three-
regular graphs. The highlighted pink dots show the instances with atypical H1 run-
times, optimised to give the best possible approximation ratio with shorter run-times
than QAOA p = 1. The new run-times are shown in the lower plot, with the updated
approximation ratio plotted in the upper plot. The dashed purple line shows both
approaches performing the same.

also look for run-times of H1 that provide a better approximation ratio
in a shorter time than QAOA p = 1 for these problems. The results are
shown in Fig. B.8 which shows the performance and new run-times of
H1 compared to QAOA p = 1. For all problem instances, it is possi-
ble to operate H1 with a shorter run-time than QAOA p = 1 and pro-
vide a better approximation ratio. Unlike the previous discussion with
three-regular graphs, the change in approximation ratio with these new
run-times is not negligible for some of the problem instances.

Finally, we turn to the SKM instances, where QAOA p = 1 was able to
provide a better approximation ratio than H1 for 7 problem instances
(out of 900). Five of these instances are 4-qubit problems, the remaining
two are 5-qubit problems. In Fig. B.9 we have plotted the SKM data,
including only those instances with problem sizes between 6 and 12
qubits. As we can see by ignoring small problem sizes from the data set,
the behaviour is more predictable, with both the approximation ratio
and the optimal time more clustered, largely independent of problem
size.

In summary, we have demonstrated numerically that QAOA p = 1
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B.2. Instances for which QAOA p = 1 outperforms H1

(a) Approximation ratio (b) Optimal time.

Figure B.7: The performance of H1 compared to QAOA p = 1 on Max-cut with ran-
domly generated graphs. The instances with atypical run-times for H1 are highlighted
in blue. The rest of the data has been faded for clarity and to show how the remaining
data is clustered, with darker regions corresponding to more data points. The dashed
purple line shows both approaches performing the same.

(a) Approximation ratio (b) Optimal time.

Figure B.8: The performance of H1 compared to QAOA p = 1 on Max-cut with ran-
domly generated graphs. The instances with atypical run-times for H1 are highlighted
in blue, these have been optimised to give the best possible approximation ratio with
a corresponding run-time smaller than the QAOA p = 1 optimal time. The new run-
times are shown in the lower plot, with the updated approximation ratio plotted in
the upper plot. The rest of the data has been faded for clarity. The dashed purple line
shows both approaches performing the same.
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B. Further numerical work on rapid Hamiltonians for optimisation

(a) Approximation ratio (b) Optimal time.

Figure B.9: The performance of H1 compared to QAOA p = 1 on the SKM. Here we
neglect smaller problem instances, plotting problem sizes between 6 and 12 qubits.

might have some advantages over H1 on small, highly connected prob-
lems. In general, these problems are unlikely to be of any practical
interest. Indeed, for the Max-cut instances, it was possible to operate H1

suboptimally so that it still outperformed QAOA p = 1 with a shorter
run-time.
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Wells-Pestell, G. Pelegrí, C. J. Picken, G. P. A. Malcolm, A. J.
Daley, J. Bass, and J. D. Pritchard, Demonstration of weighted
graph optimization on a Rydberg atom array using local light-shifts,
arXiv, (2024), doi:10.48550/arXiv.2404.02658.

[67] A. Callison, M. Festenstein, J. Chen, L. Nita, V. Kendon,
and N. Chancellor, Energetic perspective on rapid quenches
in quantum annealing, PRX Quantum, 2 (2021), p. 010338,
doi:10.1103/PRXQuantum.2.010338.

[68] A. Callison, Continuous-time Quantum Computing, PhD thesis,
Imperial College London, 2021, doi:10.25560/91503.

[69] A. M. Childs and J. Goldstone, Spatial search by
quantum walk, Phys. Rev. A, 70 (2004), p. 022314,
doi:10.1103/PhysRevA.70.022314.

[70] N. Chancellor, Modernizing quantum annealing using local
searches, New Journal of Physics, 19 (2017), p. 023024,
doi:10.1088/1367-2630/aa59c4.

[71] N. Chancellor, Modernizing quantum annealing ii: genetic algo-
rithms with the inference primitive formalism, Natural Computing, 22
(2023), pp. 737–752, doi:10.1007/s11047-022-09905-2.

214

http://dx.doi.org/10.1103/physrevx.5.031026
http://dx.doi.org/10.1038/s41534-024-00832-x
http://dx.doi.org/10.48550/arXiv.2404.02658
http://dx.doi.org/10.1103/PRXQuantum.2.010338
http://dx.doi.org/10.25560/91503
http://dx.doi.org/10.1103/PhysRevA.70.022314
http://dx.doi.org/10.1088/1367-2630/aa59c4
http://dx.doi.org/10.1007/s11047-022-09905-2


Bibliography

[72] N. Chancellor and V. Kendon, Experimental test of search
range in quantum annealing, Phys. Rev. A, 104 (2021), p. 012604,
doi:10.1103/PhysRevA.104.012604.

[73] H. Wang, H.-C. Yeh, and A. Kamenev, Many-body localization en-
ables iterative quantum optimization, Nature Communications, 13
(2022), p. 5503, doi:10.1038/s41467-022-33179-y.

[74] H. Zhang, K. Boothby, and A. Kamenev, Cyclic quantum anneal-
ing: Searching for deep low-energy states in 5000-qubit spin glass, arXiv,
(2024), doi:10.48550/arXiv.2403.01034.

[75] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A variational eigen-
value solver on a photonic quantum processor, Nature Communica-
tions, 5 (2014), p. 4213, doi:10.1038/ncomms5213.

[76] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin,
Quantum approximate optimization algorithm: Performance, mecha-
nism, and implementation on near-term devices, Phys. Rev. X, 10
(2020), p. 021067, doi:10.1103/PhysRevX.10.021067.

[77] M. P. Harrigan, K. J. Sung, M. Neeley, and K. J. Satzinger et

al., Quantum approximate optimization of non-planar graph problems
on a planar superconducting processor, Nature Physics, 17 (2021),
pp. 332–336, doi:10.1038/s41567-020-01105-y.

[78] T. M. Graham, Y. Song, and J. Scott et al., Multi-qubit entan-
glement and algorithms on a neutral-atom quantum computer, Nature,
604 (2022), pp. 457–462, doi:10.1038/s41586-022-04603-6.

[79] J. S. Otterbach, R. Manenti, and N. Alidoust et al., Unsuper-
vised machine learning on a hybrid quantum computer, arXiv, (2017),
doi:10.48550/ARXIV.1712.05771.

215

http://dx.doi.org/10.1103/PhysRevA.104.012604
http://dx.doi.org/10.1038/s41467-022-33179-y
http://dx.doi.org/10.48550/arXiv.2403.01034
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1103/PhysRevX.10.021067
http://dx.doi.org/10.1038/s41567-020-01105-y
http://dx.doi.org/10.1038/s41586-022-04603-6
http://dx.doi.org/10.48550/ARXIV.1712.05771


Bibliography

[80] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, Quantum ap-
proximate optimization algorithm for MaxCut: A fermionic view, Phys-
ical Review A, 97 (2018), doi:10.1103/physreva.97.022304.

[81] G. B. Mbeng, R. Fazio, and G. Santoro, Quantum annealing: a
journey through digitalization, control, and hybrid quantum variational
schemes, arXiv, (2019), doi:10.48550/ARXIV.1906.08948.

[82] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quan-
tum Information: 10th Anniversary Edition, Cambridge University
Press, 2010.

[83] R. Acharya, I. Aleiner, and R. Allen et al., Suppressing quan-
tum errors by scaling a surface code logical qubit, Nature, 614 (2023),
pp. 676–681, doi:10.1038/s41586-022-05434-1.

[84] B. F. Schiffer, A. F. Rubio, R. Trivedi, and J. I. Cirac, The quan-
tum adiabatic algorithm suppresses the proliferation of errors, arXiv,
(2024), doi:10.48550/arXiv.2404.15397.

[85] R. Trivedi, A. Franco Rubio, and J. I. Cirac, Quantum advantage
and stability to errors in analogue quantum simulators, Nature Com-
munications, 15 (2024), p. 6507, doi:10.1038/s41467-024-50750-x.

[86] A. M. Childs, E. Farhi, and J. Preskill, Robustness of
adiabatic quantum computation, Physical Review A, 65 (2001),
doi:10.1103/physreva.65.012322.

[87] J. Gonzalez-Conde, Z. Morrell, M. Vuffray, T. Albash, and

C. Coffrin, The cost of emulating a small quantum annealing problem
in the circuit-model, arXiv, (2024), doi:10.48550/arXiv.2402.17667.
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