
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

A Cost-Aware Adaptive Bike Repositioning Agent
Using Deep Reinforcement Learning

Alessandro Staffolani , Victor-Alexandru Darvariu , Paolo Bellavista , Senior Member, IEEE,
and Mirco Musolesi

Abstract— Bike Sharing Systems (BSS) represent a sustainable
and efficient urban transportation solution. A major challenge in
BSS is repositioning bikes to avoid shortage events when users
encounter empty or full bike lockers. Existing algorithms unre-
alistically rely on precise demand forecasts and tend to overlook
substantial operational costs associated with reallocations. This
paper introduces a novel Cost-aware Adaptive Bike Repositioning
Agent (CABRA), which harnesses advanced deep reinforcement
learning techniques in dock-based BSS. By analyzing demand
patterns, CABRA learns adaptive repositioning strategies aimed
at reducing shortages and enhancing truck route planning
efficiency, significantly lowering operational costs. We perform an
extensive experimental evaluation of CABRA utilizing real-world
data from Dublin, London, Paris, and New York. The reported
results show that CABRA achieves operational efficiency that
outperforms or matches very challenging baselines, obtaining a
significant cost reduction. Its performance on the largest city
comprising 1765 docking stations highlights the efficiency and
scalability of the proposed solution even when applied to BSS
with a great number of docking stations.

Index Terms— Dynamic bike repositioning, reinforcement
learning, resource allocation.

I. INTRODUCTION

B IKE Sharing Systems (BSS) have emerged as a pivotal
solution for enhancing the efficiency and environmental

sustainability of urban transportation, effectively addressing
the last mile challenge in cities [1]. As urban popula-
tions swell, the demand for seamless integration of these
systems with existing transportation infrastructures becomes
increasingly vital. BSS, popular for their affordability and eco-
friendliness, offer commuters the convenience of short-term
bike rentals [2], [3], [4]. In recent years, the BSS landscape

Received 26 January 2024; revised 18 November 2024; accepted
14 January 2025. This work was supported by the Consumer Data Research
Centre, an Economic and Social Research Council (ESRC) Data Investment,
under Project CDRC 1316, Project ES/L011840/1, and Project ES/L011891/1.
The Associate Editor for this article was J. Del Ser. (Corresponding author:
Alessandro Staffolani.)

Alessandro Staffolani is with the Department of Computer Science and
Engineering, University of Bologna, 40126 Bologna, Italy, and also with the
National Council of Research Italy, ISTI-CNR, 56127 Pisa, Italy (e-mail:
alessandro.staffolani@unibo.it).

Victor-Alexandru Darvariu is with Oxford Robotics Institute, Department of
Engineering Science, University of Oxford, OX1 3PJ Oxford, U.K. (e-mail:
victord@robots.ox.ac.uk).

Paolo Bellavista is with the Department of Computer Science and
Engineering, University of Bologna, 40126 Bologna, Italy (e-mail:
paolo.bellavista@unibo.it).

Mirco Musolesi is with the Department of Computer Science, University
College London, WC1E 6BT London, U.K., and also with the Department of
Computer Science and Engineering, University of Bologna, 40126 Bologna,
Italy (e-mail: m.musolesi@ucl.ac.uk).

Digital Object Identifier 10.1109/TITS.2025.3535915

Fig. 1. Graphical summary of the CABRA rebalancing pipeline for
dock-based dynamic bike repositioning. Trucks ask for a new repositioning.
The agent observes docking stations and truck status and then provides the
bike repositioning plan, which is applied to the system.

has evolved, with cities adopting both docked and dockless
models to meet diverse urban mobility needs. While docked
systems, common in cities like London, Paris, and New
York, depend on fixed docking stations, dockless models offer
greater flexibility but at increased management costs. However,
both models grapple with the challenge of maintaining optimal
bike availability, particularly reducing shortage events, where
users may encounter empty stations or full lockers [5].

In response to these shortages, BSS operators employ
expensive yet potentially inefficient rebalancing techniques,
which can be broadly categorized into two main groups: user-
based and vehicle-based approaches. User-based approaches
involve providing incentives, often in the form of monetary
rewards, to users who relocate bikes from congested stations
to less congested ones. In contrast, vehicle-based approaches
utilize fleets of trucks that traverse the BSS coverage area,
both picking up bikes from congested stations and dropping
them off at less congested stations. Vehicle-based approaches
can be further classified into two subcategories: static and
dynamic approaches. The former focuses on applying rebal-
ancing policies exclusively during designated cooldown hours,
typically occurring at night. In contrast, dynamic approaches
constantly implement daily rebalancing policies to address
station imbalances effectively.

To further enhance the efficiency of these systems and
ensure their seamless integration into urban transportation

1558-0016 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on February 12,2025 at 12:58:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0886-2548
https://orcid.org/0000-0001-9250-8175
https://orcid.org/0000-0003-0992-7948
https://orcid.org/0000-0001-9712-4090

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

networks, there is a pressing need for more optimized and
proactive solutions [5] and not only static ones [6], [7]. This
involves leveraging real-time data to optimize the redistri-
bution of bikes across docking stations, as performed in an
increasing number of applications of machine learning for
transportation management [8], [9]. Such strategies aim to
proactively alleviate the impact of shortage events by ensuring
an appropriate distribution of bikes throughout the network.
Current rebalancing policies often rely on two aspects: (1)
predictions of future demand based on past data; and (2)
heuristic techniques for deciding reallocations. With respect
to the former, predictions may be inaccurate in cases where
demands diverge from historical trends, meaning bikes may be
reallocated to the wrong stations. Regarding the latter, heuristic
algorithms perform suboptimally, and better algorithms for
deciding a repositioning plan may exist.

Given the shortcomings of prior exact and heuristic meth-
ods, we set out to address this problem using reinforcement
learning, whose potential has been demonstrated recently
for a variety of discrete optimization problems [10]. This
does not require accurate predictions of future demands
and can enable the implicit discovery of heuristic algo-
rithms that are more powerful than existing alternatives
through its reward-driven, trial-and-error mechanism. We opt
for a deep reinforcement learning technique because the
state space quickly increases in larger cities, and function
approximation is required for effective generalization and
scalability.

We term the proposed method Cost-aware Adaptive Bike
Reposition Agent (CABRA). Unlike traditional vehicle-based
approaches, CABRA efficiently learns and adapts reposition-
ing strategies by analyzing real-time demand patterns. The
learned policies allow our approach to mitigate shortages
proactively while being capable of reacting to rapid unseen
changes in demand. In addition, a key novelty of CABRA
is the joint minimization of shortage events and movement
costs, representing a substantially more realistic model for
BSS operators. CABRA employs deep reinforcement learning
complemented by pruning rules, thus achieving scalability to
over a thousand docking nodes, as we demonstrate in the
following parts of this paper.

Our Contributions: The key contributions of this paper can
be summarized as follows:
� Dynamic bike reposition modeling for dock-based

BSS: We present an innovative approach to the bike
repositioning challenge in dock-based BSS, framing it
as a decision-making process. This involves deploying
trucks to rebalance bike availability across urban docking
stations. Our model utilizes an agent that processes both
the current system status and truck locations to formulate
an efficient repositioning plan, as detailed in Figure 1.
The plan specifies the number of bikes to be transported
and the target docking stations. Guided by a numerical
reward signal, the agent’s decisions aim to minimize
bike shortages and optimize truck repositioning times,
thereby enhancing route efficiency and reducing BSS
management costs. We formulate this problem within the

Markov Decision Process (MDP) framework and employ
deep reinforcement learning for its resolution.

� Extensive evaluation with comprehensive datasets:
We conduct a thorough evaluation of our solution using
real-world datasets. It offers an in-depth view of major
BSS operators in Dublin, London, Paris, and New York,
including 10-minute interval observations of docking
station statuses and essential static information such as
station locations and capacities. This evaluation rigor-
ously tests the scalability and generalizability of our
solution across diverse BSS landscapes, providing valu-
able experimental insights and firmly establishing its
applicability in practical scenarios.

Main Results: Our extensive experiments using real-world
datasets from major bike-sharing providers reveal that CABRA
consistently outperforms traditional methods in terms of
operational efficiency and cost optimization in three out of
four cities. Specifically, CABRA demonstrates a minimum
improvement over the second-best baseline of 27% in Dublin,
24% in London, and an increase of 42% in New York, even
though the latter BSS contains over a thousand stations. How-
ever, in environments with highly irregular demand patterns
such as Paris, our results indicate that greedy solutions emerge
as the only viable alternative to CABRA’s proactive and
adaptive strategy, which nevertheless performs comparably.

II. RELATED WORK

The bike repositioning problem, when viewed in a broader
scope, aligns with the intricate nature of combinatorial
problems, necessitating sophisticated decision-making and
optimization strategies. For a comprehensive understanding
of the role of machine learning in combinatorial opti-
mization, Bengio et al. [10] offer an extensive survey, while
Mazyavkina et al. [11] focus specifically on the application
of reinforcement learning in this area. Furthermore, the com-
plexities of the bike repositioning problem share notable
parallels with the challenges seen in the Travelling Salesman
Problem (TSP) and the Vehicle Routing Problem (VRP), which
also involve devising routes that visit a set of points. The
applicability of reinforcement learning to these problems is
well-documented in studies such as [12], [13], and [14].

Delving specifically into bike repositioning, the primary
distinction lies between static and dynamic approaches. For
example, the authors of [5] formulated the static bicycle
repositioning problem as a VRP, introducing a Mixed Integer
Linear Program that optimizes user shortages and operational
costs. The effectiveness of their model was validated using
real-world data from Washington DC and Paris BSS. Ref-
erence [15] tackled the static bike repositioning problem in
dock-based BSS by framing it as a many-to-many pickup
and delivery problem, using a single truck per district. They
proposed a branch-and-cut algorithm to address the NP-hard
problem, supplemented by a tabu search to obtain an upper
bound for the optimal solution. The approach was evaluated
using synthetic data. Lastly, [16] combined inventory rebal-
ancing with vehicle routing for static BSS, formulating a
Mixed Integer Program that optimizes bike availability and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on February 12,2025 at 12:58:09 UTC from IEEE Xplore. Restrictions apply.

STAFFOLANI et al.: COST-AWARE ADAPTIVE BIKE REPOSITIONING AGENT USING DEEP REINFORCEMENT LEARNING 3

rebalancing routes, demonstrating superior performance over
conventional methods with real-world data.

In contrast, dynamic solutions to the bike repositioning
problem can be classified into different categories based on
the target system, such as dock-based and dockless systems,
as well as the repositioning approach employed, comprising
vehicle-based and user-based approaches. Orthogonally, solu-
tions may be divided into prediction-based methods, which
rely on demand prediction to inform subsequent actions, and
adaptive solutions that leverage deep reinforcement learning
agents. In the remainder of this section, we aim to provide
an overview of the latest related works in the field, exploring
the diverse range of dynamic solutions and highlighting their
strengths and limitations.

Chen et al. [17] proposed a multi-objective and multi-agent
reinforcement learning solution for dynamic dispatching of
bikes in dockless bicycle sharing systems. They utilized a
Gated Graph Neural Network model to predict the layout
of bike stations and dispatching demand. The predictions are
fed to a reinforcement learning agent placed on each truck
that jointly optimizes for dispatching cost, the initial load
of the truck, workload balance among the trucks, and the
balance between the supply and demand of bikes. Moreover,
the authors of [18] proposed an incentive-based rebalancing
solution for dockless BSS. They utilized spatial and temporal
features to develop a hierarchical deep reinforcement learning
agent; their agent outputs monetary rewards to incentivize
users to pick up bikes from congested areas and travel to
non-congested parts of the city. Instead, the hybrid solution
formulated in [19] employs truck fleets for dynamic reposi-
tioning as well as user incentives. Their approach incorporates
a spatio-temporal clustering method to extract bike demand
hotspots, followed by a deep neural network called BikeNet
to forecast bike demand trends. Finally, the authors designed
a reinforcement learning method to divide rebalancing tasks
among users and the operating fleet of trucks in order to reduce
the number of unbalanced docking stations.

Wang et al. [20] and Chen et al. [21] developed solu-
tions for predicting the next levels of demand, subsequently
applying heuristic approaches to rebalance the system. More
specifically, [20] implemented a data-driven approach to pre-
dict a safe rebalancing range for each station, which is then
utilized to rebalance bikes among full and empty docking
stations while minimizing the rebalancing cost. Reference [21]
instead proposed a dynamic cluster-based framework for over-
demand prediction in order to compute a weighted correlation
among docking stations and to group those with similar
demand patterns. Subsequently, they utilized their model to
estimate the number of rented and returned bikes in each
cluster; finally, Monte Carlo simulation was adopted to predict
the probability that cluster demand will exceed available
resources.

Our solution aims at rebalancing bikes in the context of
dynamic repositioning for dock-based bike sharing systems.
Differently from [20], [21], our approach employs a reinforce-
ment learning agent in order to learn the long-term dynamics
of the demand for bikes. In addition, CABRA takes into
account and optimizes the time (i.e., the dispatching cost)

required for the repositioning of each truck. To the best of
our knowledge, this is the first attempt to address dynamic
bike repositioning for dock-based bike sharing systems with
such joint optimization of repositioning cost, which is also
evaluated on a large scale.

In fact, Li et al. [22] proposed a similar approach to ours,
in which they first created clusters of docking stations, and
then used a deep reinforcement learning agent with pruning
rules for finding a repositioning policy that minimizes cus-
tomer loss over the long term. However, their method lacks the
concept of repositioning cost, which is an important concern
for operators. Furthermore, this model does not account for
repositioning time, unrealistically assuming that they happen
instantly. Instead, our work captures the fact that trucks that
are performing repositioning operations will be unavailable
while carrying out these movements. Finally, their evaluation is
performed on a substantially smaller scale, using data for only
one city (New York) and approximately 400 stations placed in
the city center.

III. BACKGROUND AND PROBLEM DEFINITION

In this section, we provide the reader with the neces-
sary background and discuss the fundamental reinforcement
learning concepts underlying CABRA. Then, we propose our
mathematical formulation of the dynamic bike repositioning
problem, which we aim to solve in the following sections.

A. RL Background

Reinforcement Learning (RL) is a decision-making frame-
work in which problems are represented mathematically as
Markov Decision Processes (MDP) [23]. Typically, an agent
interacts with the environment (in our case the bike-sharing
system) at discrete time steps t D 0; 1; 2; : : : ; T . At every
time step t , the environment provides the agent with a repre-
sentation of its current status (termed state) St 2 S, based on
which the agent selects an action At 2 A.St /. S represents
the set of possible states, while A.St / represents the set of
possible actions available in state St . Subsequently, as a result
of the chosen action, the agent receives a reward (RtC1) and
transitions to a new state (StC1).

The primary objective of the agent is to determine a policy
�.At jSt /, representing a probability distribution over actions
for a given state, with the goal of maximizing the return
(discounted sum of rewards):

G t D
TX

kD0

 k RtCkC1 (1)

where RtCkC1 is the reward at time t C k C 1 and is a
discount factor with 0 � � 1 that weighs the impact
of immediate rewards and that of future ones differently.
Furthermore, given policy � , we introduce the state-value
function, V � .s/ D E� TG t jSt D sU, which represents the
expected return when following the policy � from a specific
state s onwards. We also define the action-value function as
Q� .s; a/ D E� TG t jSt D s; At D aU, i.e., the expected return
when taking action a in state s then following the policy � .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on February 12,2025 at 12:58:09 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

In deep reinforcement learning, one approach for learning
the policy � is by parameterizing it using a deep neural
network with parameters � and optimizing it through the
policy gradient theorem [24], which provides a gradient-based
approach to maximize the expected return. The policy gradient
theorem states that the gradient of the expected return with
respect to the policy parameters can be expressed asV

r� J .�/ D E��

"
X

a

Q�� .s; a/r��� .ajs/

#

(2)

where r��� .ajs/ denotes the partial derivatives of the policy
with respect to each of the parameters in � .

B. Decision-Making Algorithm

In CABRA, we employed the Proximal Policy Optimization
(PPO) [25] method to effectively learn a policy. PPO is
a state-of-the-art policy optimization method that strikes a
balance between stable policy updates and policy performance
improvement. It achieves this by constraining the update step
to be within a trusted region to prevent drastic policy changes.
At its core, PPO leverages the policy gradient theorem. The
objective of PPO is to maximize the clipped surrogate objec-
tive, which can be defined asV

LPPO.�/ D E��old

h
min

�
rt .�/ OAt ; clipPPO OAt

�i
(3)

where clipPPO D clip .rt .�/; 1� �; 1C �/, while rt .�/ rep-
resents the probability ratio between the updated policy ��
and the old policy ��old . The advantage estimate OAt measures
the relative value of each action taken at time step t . The
clipping term within the surrogate objective ensures that the
policy update does not deviate excessively from the previous
policy, limiting the potential instability. By optimizing this
objective using stochastic gradient ascent, PPO has achieved
significant performance gains in a wide range of reinforcement
learning tasks such as games [25], [26] and multi-agent
settings [27].

C. Problem Formulation

Formally, we are given a set of docking stations (also
referred to as nodes) D D fn1; : : : ; nK g of size K , a set of
trucks W D fw1; : : : ; wM g of size M , with K � M , and
the system is equipped with H total bikes that may be hired.
Each node ni is described by its position pni D hxni ; yni i in
a spherical coordinate system (latitude and longitude), and by
two positive integer scalars: the capacity cni and the current
available bikes bt

ni
, with 0 � bt

ni
� cni . Each truck w j is also

described by its position pt
w j
D hx t

w j
; yt
w j
i at time t and two

positive integer scalars: the capacity �w j and the current load
l t
w j

(the number of bikes in the truck), with 0 � l t
w j
� �w j .

Finally, we denote the total number of bikes that are currently
loaned out by users at time t as �t .

Every time step t , each node observes the quantity ot
ni

indicating the difference in the number of users willing to
start and those wishing to end a trip, corresponding to the user

demand. At each node, a number of shortage events eni 2 N
may occur if one of the following conditions is metV

et
ni
D

8
>>>>>><

>>>>>>:

ot
ni
� bt

ni
if bt

ni
< ot

ni
and ot

ni
> 0;

jot
ni
j � .cni � bt

ni
/ if cni � bt

ni
< jot

ni
j

and oni < 0;
0 otherwise;

(4)

where ot
ni
> 0 if in the time interval the number of started trips

is greater than the number of ended trips, and ot
ni
< 0 if it is

lower. In other words, this clause corresponds to the shortage
event that occurs when the number of trips that are ending
at a given time step is larger than the number of available
slots (i.e., some users cannot drop off the bike at the desired
station).

During a time step, idle trucks are allowed to move among
the nodes and perform repositioning plans. A repositioning
plan mt

w j
for truck w j is defined by the tuple hnt

target; q t
w j
i,

with nt
target representing the target node where the truck will

move, and q t
w j

the quantity to be repositioned by the truck.
The quantity is either negative if the truck needs to drop
q t
w j

bikes or positive if the truck needs to collect them. The
feasibility of the repositioning is subject to constraints: for
a collect repositioning, the station must have sufficient bikes
currently docked and the truck must have the corresponding
spare capacity available; while, for a drop repositioning, the
station must not exceed capacity if the bikes currently in the
truck are unloaded.

Every time a truck performs a repositioning plan mt
w j

, it will
be busy for � t

w j
number of time steps, also referred to as

repositioning time, which is given byV

� t
w j
D

d.pt
w j
; pt

ntarget
/

vmove
C q t

w j
1loading (5)

where d.pt
w j
; pt

ntarget
/ is the spherical distance between the

position of the truck and the target docking station, while
vmove � N .�move; �move/ is the speed of movement of the
truck and 1loading � N .�loading; �loading/ is the time duration
required for loading or unloading one bike to and from the
truck. Therefore, given a time horizon T , the objective isV

min
TX

tD0

0

@
KX

iD1

et
ni
C

MX

jD1

� t
w j

1

A (6)

s.t. 0 � bt
ni
� cni 8i 2 D; (7)

0 � l t
w j
� �w j 8 j 2W; (8)

KX

iD1

bt
ni
C

MX

jD1

l t
w j
C �t D H 8t 2 T0; T U: (9)

Intuitively, over a time horizon of T steps, we need to
minimize the number of shortages observed on all the nodes
(first term of the sum) and the repositioning time, i.e., the cost
to apply the repositioning (second term of the sum), while
ensuring that the number of bikes at each node and the load
of each truck stay within their respective capacities. Finally,
the last constraint ensures that the total number of bikes in the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on February 12,2025 at 12:58:09 UTC from IEEE Xplore. Restrictions apply.

STAFFOLANI et al.: COST-AWARE ADAPTIVE BIKE REPOSITIONING AGENT USING DEEP REINFORCEMENT LEARNING 5

system (that are either available at stations, being repositioned
by the trucks, or currently loaned out to users) stays constant.
In order to simplify the presentation, without loss of generality,
we henceforth suppose that all trucks have the same capacity
� and set the time step size to 10 minutes.

IV. METHODOLOGY

This section covers the key design aspects of the CABRA
approach. Subsequently, we will provide the mathematical
formulation of the MDP that is used by our agent to learn
repositioning strategies for dock-based BSS.

A. Proposed Approach

The settings in which bike-sharing systems operate are typ-
ically large-scale. Usually, up to thousands of docking stations
are deployed in an urban area. Therefore, it is challenging to
approach the problem of repositioning bikes for the complete
set of docking stations at once. Moreover, a repositioning must
also consider the distance to the target node to avoid long
repositioning times, and thus high costs for the operators.

Our method involves deploying trucks across the city.
At each operational cycle, idle trucks participate in a structured
repositioning process, as depicted in Figure 1. This process
consists of four sequential steps: first, a truck signals the need
for a repositioning plan, actively engaging with the centralized
control system. Second, the control agent, armed with real-
time data, analyzes the current landscape – the status of
docking stations and the positioning of other trucks. Third,
using the gathered system information, the agent formulates
a repositioning plan, specifying the target node and bike
quantities to collect or drop. Finally, the truck commences the
repositioning task. It is worth pointing out that, depending on
the repositioning time, there might occur time steps in which
all trucks are busy and hence no actions are performed. In the
following subsection, we will discuss how the truck status is
reflected in the definition of the Markov Decision Process,
in particular in terms of state space.1

B. RL Settings

We now introduce the formalization of the repositioning
problem within CABRA as an MDP. This includes detailed
descriptions of the action and state spaces, the reward struc-
ture, and the proposed pruning rules for effectively reducing
the size of the action space.

State Space: The state space in CABRA encompasses com-
prehensive system-level information and granular details about
individual docking stations. At each timestep, it aggregates
data regarding the fleet of trucks W (specifically, their load and
position) and the availability of bikes at all docking stations
D. The state St is characterized by the following features:
� Status of nodes: is a one-dimensional vector concatenat-

ing two elements for each node - bike availability bt
ni

and
position pni .

� Current truck: is the one-hot encoded vector representing
the truck w j whose repositioning is being decided.

1The implementation of CABRA is available under the MIT License at
https://github.com/AlessandroStaffolani/cabra-paper.

� Status of trucks: is a 4M-dimensional vector, where each
truck w j is represented by three attributes: current load
l t
w j

, position pt
w j

, and a busy flag that is set to 1 if the
truck is occupied in repositioning activities during the
current timestep, and 0 otherwise.

� Current time: is the one-hot encoding of the current hour,
day of the week, and month. This feature captures tem-
poral patterns in demand, reflecting seasonal variations.

All state features are normalized to fall within T0; 1U.
Action Space: The agent, a logically centralized entity

with a complete overview of the system, selects repositioning
parameters hnt

target; q t
w j
i, designating the target node and the

quantity to be picked up or dropped off. Thus, the action space
A.St / is split into two components: the first comprises all
nodes, amounting to K possible choices in total; the second
represents a range of integers from T��; �U, where negative
values denote drop actions and positive values indicate pick
actions, and zero represents no action. In the output layer, our
policy architecture reserves K units for deciding the target
node and 2� C 1 units for determining the bike quantity,
constructing a separate discrete probability distribution for
each of the two components. Thus, a single policy param-
eterization is used for determining both action components,
which is advantageous in terms of stability and inference speed
compared to separate parameterizations, the alternative design
that appears in some of the other RL works.

Reward Function: The reward function distinguishes
between beneficial and detrimental actions. Its optimization
targets the quantity in Equation 6 while adhering to con-
straints 7 and 8. Recall the notion of a shortage event
introduced in Section III, which occurs when users cannot
pick up or drop off their bike at a given station. CABRA
differentiates between two types of shortages. The first, which
we call agent-caused shortages, arise as a result of the
allocation strategy of the agent being suboptimal. They are
attributable to the agent (i.e., if it moves bikes away from
a station where a demand surge occurs at the next step, or,
conversely, fills all slots of a node where bikes are about to
be dropped off). The second type of shortages, environment
deficits, occur without them being attributable to the explicit
intervention of the agent. Distinguishing between the two types
of shortages helps isolate a signal for the agent regarding the
influence of the decisions it made and reduce the noise in the
feedback.

After each action, the system progresses to the subsequent
timestep, evaluates new demands, and records the occur-
rences of agent-caused shortages et

ni
on every docking station,

environment deficits et
env, and repositioning time � t

w j
. The

aggregate reward for actions related to truck w j is computed
asV

Rt .w j / D !shortages

KX

iD1

et
ni
C !envet

env C !repositioning� t
w j

(10)

where !shortages, !env, and !repositioning are three scalars that
are used to weigh the three reward components. We note
that providing individual rewards for each truck, as opposed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on February 12,2025 at 12:58:09 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 2. Distribution of docking stations across the four cities, where varying color intensities reflect the capacity of each station.

to aggregating them for the entire system, better indicates
the effectiveness of each action and alleviates the credit
assignment problem. Furthermore, we note that the cost � t

w j
is also normalized to be in T0; 1U.

Pruning Rules: BSS operate on a vast scale, present-
ing significant scalability challenges when applying machine
learning techniques. To mitigate these challenges, we have
implemented specific pruning rules aimed at reducing the
action space, thereby simplifying the problem. While pruning
the action space may in principle exclude the consideration of
optimal actions, our empirical findings underscore the effec-
tiveness of this strategy, particularly in handling large-scale
instances of the problem. Specifically, we introduce a capacity
threshold, �, to define nodes as being in a critical state for a
given time step t ifV

nt
critical D

(
1; if bt

ni
< � or cni � bt

ni
< �;

0; otherwise.
(11)

Intuitively, a node enters a critical state when the number
of available bikes or empty slots dips below this threshold,
indicating a high risk of imminent shortages. Our pruning
approach focuses on retaining only those nodes in a critical
state as potential targets for action. In cases where no nodes
meet this critical state criterion, the system compels the
agent to select the wait action. Notably, the computational
complexity of this pruning rule is linear in the number of
nodes K , and therefore it is inexpensive to compute. This
is in contrast with the more expensive pruning rule used
in [22], which relies on a neural-network based prediction of
future demand that is applied each time a decision is taken.
Additionally, we incorporate a policy that mandates alternating
pick and drop actions within the same truck. This alternating
action pattern is designed to optimize bike redistribution,
allowing trucks first to collect bikes from nodes with excess
supply and subsequently deliver them to nodes experiencing
a deficit. This method enhances the operational efficiency of
the redistribution process.

V. EXPERIMENTAL SETUP

A. Datasets

We conduct our evaluation of CABRA on extensive datasets
gathered from four major BSS in key European and American
cities: Dublin, London, Paris, and New York. These datasets
include detailed information about the locations and capacities

TABLE I
DATASET SUMMARY FOR EACH OF THE EVALUATED CITIES

TABLE II
SUMMARY OF TRAINING SPLITS AND EVALUATION PROCEDURE

of docking stations, as well as continuous observations of
the number of bicycles and available spaces at each station
within these urban bike-sharing systems. These observations
are collected at intervals of approximately 10 minutes, with
our evaluation focusing on the large set of real-world data
from September 2021 to October 2022.

We filter out docking stations with capacities of less than
three bikes, as these are identified as test stations in the
raw data. Then, we have constructed the demand data by
aggregating the number of trips starting and ending at each
docking station. In addition, we calculate the percentage of
bikes in relation to the total number of docking stations in
each BSS: using this ratio, we set the initial number of bikes
for each station proportionally to its capacity and the calcu-
lated percentage. Figure 2 visually illustrates the distribution
and capacities of docking stations in the four cities under
evaluation. Additionally, Table I presents high-level summary
statistics concerning these BSS.

B. Training and Evaluation Procedure

We now discuss the experimental procedure that was fol-
lowed, which is summarized in Table II. In our approach,
we temporally divide the datasets from the four cities into
training, validation, and evaluation sets. The training set
encompasses the first 11 months of data, while the validation
and evaluation sets both contain 1 month of data each. During
the training phase, our agent actively cycles through the data
in the training set, generating a series of rollouts. After each
rollout, we immediately execute a learning step, marking the
completion of a training iteration.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on February 12,2025 at 12:58:09 UTC from IEEE Xplore. Restrictions apply.

STAFFOLANI et al.: COST-AWARE ADAPTIVE BIKE REPOSITIONING AGENT USING DEEP REINFORCEMENT LEARNING 7

Fig. 3. Cumulative reward over the evaluation set for the four cities (the higher, the better).

TABLE III
CABRA AGENT HYPERPARAMETERS (TOP) AND ENVIRONMENT PARAMETERS (BOTTOM). Fixed MEANS THAT THE PARAMETER VALUE IS UNIFORM

ACROSS ALL CITIES, WHILE THE OTHER PARAMETERS ARE SPECIFIC TO EACH CITY

To periodically check the performance of our model,
we conduct a validation run on the validation set after every
ten training iterations. If the model achieves a new best score
during these validations, we save its configuration. Lastly, the
best model is run on the evaluation set in order to assess
its final performance on an unseen subset. To ensure the
robustness and statistical validity of our results, we perform
10 distinct runs. Each run starts with a different random
initialization of the agent’s initial state. This strategy not only
tests the effectiveness of our model under varied conditions,
but also strengthens the reliability of our findings.

C. Agent and Environment Setup

In our PPO implementation, we opt for a shared network
architecture with several fully connected layers, each activated
by a hyperbolic tangent function. We then use two distinct
heads: one leads to the policy network, and the other to the
value network. This allows each network to specialize in its
respective function while benefiting from the shared founda-
tional processing. Furthermore, we fine-tune the hyperparame-
ters of our agent for each of the four cities under study. Please
refer to Table III for the obtained hyperparameter values.

We configure a range of truck parameters such as fleet
size, movement speed, repositioning speed, and capacity. For
the specific values we use in these configurations, please
refer to Table III. During our experiments across the four
cities, we maintain consistency in all environment settings
except for the fleet size, which is set proportionally to
the number of nodes to contain a truck per approximately
40 stations.

It is worth discussing how this parameter might impact
performance. For very low values on the spectrum of possible
fleet sizes, we expect that all repositioning methods would
perform very poorly, as the fluctuations in demand would
simply be too high for an agent to “catch up” through its
reallocations. On the other hand, high values would make
the problem very easy to solve, as we would have sufficient
redundancy to reallocate capacity even with a simple strategy.
The results we present in the next section show that the
differences between the reallocation strategies are significant,
positioning them away from either extreme. This suggests that
an effective repositioning strategy can have a practical impact.
We expect that similar comparative performance would be
observed for other middle ground values.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University College London. Downloaded on February 12,2025 at 12:58:09 UTC from IEEE Xplore. Restrictions apply.

