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OVERLINE: NEURODEGENERATION 1 

 2 

 3 

One sentence summary: Aβ induces neuronal hyperconnectivity, which promotes tau 4 

spreading from temporal lobe epicenters to connected brain regions in Alzheimer’s disease 5 

 6 

 7 

Editor’s Summary 8 

 9 

ABSTRACT 10 

In Alzheimer’s disease, Ab triggers the aggregation and spreading of tau pathology which 11 

drives neurodegeneration and cognitive decline. However, the pathophysiological link between 12 

Ab and tau remains unclear, which hinders therapeutic efforts to attenuate Ab-related tau 13 

accumulation. Ab has been found to trigger neuronal hyperactivity and hyperconnectivity, and 14 

preclinical research has shown that tau spreads across connected neurons in an activity-15 

dependent manner. Therefore, Ab may induce neuronal hyperactivity and hyperconnectivity 16 

thereby promoting tau spread across connected brain regions. By combining Ab-PET, resting-17 

state fMRI and longitudinal tau-PET in 69 cognitively normal controls devoid of amyloid 18 

pathology and 140 patients with a positive amyloid-PET scan covering the AD spectrum, we 19 

confirmed that Ab induces hyperconnectivity of temporal lobe tau epicenters to posterior brain 20 

regions that are vulnerable to tau accumulation in AD. This was replicated in an independent 21 

sample of 55 controls and 345 individuals with preclinical AD and low cortical tau-PET uptake, 22 

suggesting that the emergence of Ab-related hyperconnectivity precedes neocortical tau 23 

spreading typically observed in clinical stages of AD. Lastly, using longitudinal tau-PET, we 24 

confirmed that Ab-related connectivity increases of tau epicenters to other brain regions 25 

mediated the effect of Ab on faster tau accumulation. Together, these findings suggest that Ab 26 

promotes tau spreading by eliciting neuronal hyperconnectivity and that targeting Ab-related 27 

neuronal hyperconnectivity may attenuate tau spreading in AD. 28 
  29 
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INTRODUCTION 1 

Alzheimer’s disease (AD) is initiated by brain-wide amyloid-b (Ab) accumulation, followed by 2 

the spread of neurofibrillary tau pathology from the temporal lobe across connected brain regions, 3 

ensuing neurodegeneration and cognitive decline.(1-4) This well-established amyloid-cascade 4 

model of AD is strongly supported by genetics and in vivo biomarker studies,(5-7) showing that 5 

mutations in Ab-associated genes APP, PSEN1 and PSEN2(8) but not in tau-associated genes such 6 

as MAPT (9) can cause full AD pathology in humans, including Ab plaque and tau tangle 7 

formation. Furthermore, neuropathological and neuroimaging studies have demonstrated tau 8 

pathology to arise in the medial temporal lobe in regions belonging to Braak stages I and II, in a 9 

large proportion of cognitively normal elderly as well as AD patients (10-12), whereas the 10 

dispersion of tau pathology to temporo-parietal brain regions of Braak stages III and IV is strongly 11 

dependent on concomitant Ab pathology (11, 12). Thus, Ab is assumed to trigger the spreading of 12 

tau from the medial temporal lobe to the neocortex, which constitutes the major driver of 13 

neurodegeneration and cognitive decline in AD(13, 14) and it is therefore of pivotal clinical interest 14 

to understand the link between Ab and tau to therapeutically target the Ab-tau axis.  15 

Preclinical studies have shown that Ab-oligomers can directly trigger tau phosphorylation in 16 

cultured hippocampal neurons(15) and that Ab promotes the local aggregation of soluble tau in 17 

combined Ab and tau transgenic mice.(16) However, post-mortem and PET studies in AD patients 18 

have consistently shown that Ab and tau accumulation patterns are spatially distinct, especially in 19 

early stages of AD, with Ab accumulating rather diffusely in the neocortex,(17-19) whereas tau 20 

typically emerges rather focally in the medial temporal lobe with subsequent spread to connected 21 

neocortical regions.(2, 20, 21) Due to the spatial mismatch between Ab and tau deposition patterns, 22 

it is unlikely that tau accumulation in AD is entirely induced by local Ab. In addition, age-related 23 

medial temporal lobe tau pathology also occurs in the absence of cortical Ab, suggesting that Ab 24 

and tau accumulation can start independently of each other.(22, 23)  25 

Our lead hypothesis that cortical Ab indirectly triggers the spreading of tau pathology(22, 23) from 26 

local epicenters defined as regions with highest tau pathology at a given point in time across 27 

connected brain regions by inducing neuronal hyperactivity and hyperconnectivity offers an 28 

alternative explanation for the link between Ab and tau.(24, 25) This hypothesis is based on in vitro 29 

studies which have shown that tau is actively released from neurons and spreads across synaptic 30 

connections and that the rate of neuronal tau release and trans-synaptic spread is dependent on 31 

neuronal activity.(24, 26, 27) Congruently, PET-assessed tau pathology expands from local 32 

epicenters to regions that are functionally connected and show correlated neuronal activity on MEG 33 
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 4 

and resting-state fMRI.(2, 28-35) Ab has previously been described as a potent trigger of neuronal 1 

hyperexcitability, increased neuronal firing and hypersynchronicity in cell and animal 2 

models,(36-41) explained by increased Glutamate release(42), reduced GABA sensitivity(43), 3 

and increased postsynaptic Ca2+-influx.(44) Further, functional MRI (fMRI) studies have 4 

reported Ab-related functional connectivity increases as measured by higher inter-regional 5 

synchrony of neuronal activity(45) in Ab-transgenic mice and AD patients (46-50). In fact, changes 6 

in functional connectivity in AD patients are considered to occur early in AD when Ab is the 7 

dominant pathology, where a cascading network failure is associated with the progression of AD 8 

pathophysiology (50-54). In addition, patients suffering from autosomal dominant and sporadic 9 

AD show an increased prevalence of subclinical epileptiform neuronal activity and seizures at 10 

early disease stages, together supporting the notion that Ab induces an increase in neuronal 11 

activity and connectivity.(55-59) 12 

We hypothesize that an Ab-related increase in neuronal activity and connectivity is critical for 13 

triggering the trans-neuronal spread of tau, since enhanced neuronal activity amplifies synaptic tau 14 

release(60) and exacerbates trans-synaptic tau spread.(24) Supporting this, recent work in 15 

combined Ab and tau transgenic mice has specifically shown that Ab-associated neuronal 16 

hyperactivity triggers tau spread from the entorhinal cortex to connected regions.(61) However, it 17 

is not known whether Ab-induced increases in neuronal activity and connectivity actively 18 

contribute to the spreading of tau pathology across interconnected brain regions in AD patients. 19 

Establishing this link bears a high potential to therapeutically attenuate tau spreading in AD and 20 

thus halt neurodegeneration and cognitive decline(25).  21 

To address this, we included 209 participants from the Alzheimer’s disease Neuroimaging 22 

Initiative (ADNI), encompassing 69 Ab-negative (Ab–) cognitively normal (CN) controls and 140 23 

Ab-positive (Ab+) patients across the preclinical to dementia spectrum of AD, with available 24 

amyloid-PET and 3T resting-state fMRI to model functional connectivity and Ab-related 25 

connectivity increases, as well as longitudinal [18F]Flortaucipir tau-PET with approximately 2.7 26 

years of follow-up to model the accumulation and spread of tau pathology. In this dataset, we tested 27 

i) whether regional Ab deposition induces connectivity increases to epicenters of earliest tau 28 

deposition, ii) whether stronger connectivity of tau epicenters to a given brain region is linked to 29 

faster tau accumulation in that region and iii) whether accelerated spread of tau across connected 30 

regions is mediated by Ab-associated connectivity increases. Cross-sectional analyses between Ab 31 

and connectivity increases of tau epicenters were replicated using baseline amyloid-PET, tau-PET 32 

hat gelöscht: (i.e.,33 

hat gelöscht: )34 

hat gelöscht: i.e., 35 

hat gelöscht: i.e., 36 

hat gelöscht: over 37 
hat gelöscht: ~38 



 5 

and resting-state fMRI data of 345 preclinical AD patients (cognitively normal, Ab+) and 55 Ab- 1 

controls of the A4 study.  2 

  3 

hat gelöscht: i.e. 4 

hat gelöscht: Lastly, we aimed to support the notion of a 5 
potential role of Ab in triggering neuronal hyperactivity in 6 
AD patients, by exploratorily assessing the proportion of c-7 
Fos (i.e., an established marker of neuronal activity) 8 
expressing neurons in a small AD post-mortem brain tissue 9 
dataset compared to non-demented controls. (62)  10 



 6 

RESULTS 1 

Our primary neuroimaging sample from the ADNI database included 209 subjects, with 69 2 

controls devoid of amyloid pathology (CN-Ab-) and 140 Ab+ subjects across the preclinical 3 

to dementia spectrum of AD (68 CN-Ab+, 47 Mild Cognitive Impairment [MCI]-Ab+, 25 4 

Dementia-Ab+). All ADNI subjects had available baseline Florbetaben (n=71) or Florbetapir 5 

(n=138) amyloid-PET, 3T resting-state fMRI and longitudinal Flortaucipir tau-PET with a 6 

mean follow-up time of 2.74 years. Clinical characteristics and patient demographics are shown 7 

in Table 1. Amyloid and tau-PET SUVRs were parcellated into 200 cortical ROIs using the 8 

Schaefer atlas, excluding typical subcortical sites of Flortaucipir off-target binding.(62, 63) For 9 

amyloid-PET data, regional and global amyloid-PET data were intensity normalized to the 10 

whole cerebellum and transformed to centiloid to harmonize Florbetaben and Florbetapir 11 

amyloid-PET tracers.(64) Longitudinal change rates in tau-PET SUVRs obtained using an the 12 

inferior cerebellar grey reference were computed for each ROI using a previously established 13 

approach, employing linear-mixed effects models controlling for random slope and 14 

intercept.(29) Surface renderings of baseline tau-PET SUVRs are shown Figure 1A, illustrating 15 

increasing tau-PET load across the AD spectrum. Longitudinal tau-PET change rates are shown 16 

in Figure 1B, showing overall faster tau-PET increase in AD spectrum patients vs. CN Ab- 17 

subject. For validation of cross-sectional analyses regarding the association between Ab and 18 

connectivity increases, we included data from 400 CN participants of the A4 study (55 CN-19 

Ab-, 345 CN-Ab+), with available cross-sectional Florbetapir amyloid-PET, Flortaucipir tau-20 

PET and 3T resting-state fMRI (see Table 1 for demographics).  21 

 22 

Amyloid is associated with increased connectivity of tau epicenters to posterior brain regions 23 

Our first aim was to determine whether regional Ab is associated with functional connectivity 24 

increases of tau epicenters. To address this, we first determined subject-specific tau epicenters 25 

in Ab+ subjects, defined as 5% of cortical brain regions with highest baseline tau-PET SUVRs 26 

(Fig. 2A), following our previously established protocols.(2, 31, 65) Subject-specific tau 27 

epicenters were subsequently used as seed regions for assessing subject-level resting-state 28 

functional connectivity to the remaining 95% non-epicenter brain regions (Fig. 2A-D). A 29 

group-average mapping of epicenter location and epicenter connectivity of the ADNI Ab+ 30 

subjects is shown in Figure 2E, illustrating that tau epicenters are typically located in the 31 

inferior temporal lobe and show strong connectivity to posterior brain regions (Fig. 2F). We 32 

then assessed whether Ab is linked to a strengthening of the connectivity between the tau 33 
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 7 

epicenters and target regions. To this end, we determined ROI-wise linear regression models 1 

with functional connectivity between the tau epicenter and the target ROI as the dependent 2 

variable, and Ab load defined as centiloid averaged across the tau epicenter and target ROI to 3 

account for Ab at both ends of the connection as a predictor, controlling for age, sex, ethnicity, 4 

diagnosis, MRI scanner type and average motion during the resting-state fMRI scan as 5 

determined by mean framewise displacement. Supporting our hypothesis, we found that higher 6 

Ab was associated with stronger connectivity of tau epicenters to widespread posterior 7 

temporo-parietal brain regions that typically accumulate tau relatively early in the course of 8 

AD ((12, 21, 66) Fig.3A). To illustrate this point further, the average centiloid values vs. tau 9 

epicenter connectivity of significant regions described in Fig. 3A is shown in Fig. 3B, 10 

confirming that higher Ab is related to stronger connectivity. In addition, we determined the 11 

overall distribution of the regression derived beta-values of the association between centiloid 12 

and connectivity (Fig. 3C), showing that beta-values were significantly greater than zero 13 

(95%CI=[0.10;0.14], T=11.693, p<0.001). This result pattern supports our hypothesis that Ab 14 

is linked to an overall connectivity increase of the tau epicenter to the rest of the brain. 15 

Supporting the robustness of these findings, these results were replicated in 345 Ab+ subjects 16 

with preclinical AD of the A4 sample, showing a highly congruent spatial pattern of Ab-related 17 

connectivity increases of tau epicenters to posterior brain regions (Fig. 3D). This result was 18 

also congruent when reclassifying Ab-positivity in A4 subjects at a slightly more restrictive 19 

amyloid-PET SUVR threshold of 1.15 as previously suggested by the A4 imaging core (see 20 

Fig.S1).(67) Similar results were obtained when restricting the ADNI cohort to cognitively 21 

normal Ab+ subjects (n=68) to match the A4 cohort of preclinical AD subjects (Fig.S2), overall 22 

supporting the view that Ab-related connectivity changes occur early in AD. All results were 23 

specific for Ab+ subjects, as no associations between Ab and tau epicenter connectivity were 24 

detected in Ab- subjects of ADNI or A4.  25 

To investigate further if Aβ-related connectivity increases were specific to tau epicenters, we 26 

examined the correlation of the connectivity between two ROIs and their average amyloid-PET 27 

centiloids for each Aβ+ subject. We created a 200x200 amyloid load matrix for each subject, 28 

representing cumulative amyloid levels across ROI pairs, which we then correlated with the 29 

subject-specific functional connectivity matrix. The results showed positive correlations 30 

between amyloid load and connectivity across ROI pairs within Ab+ subjects of ADNI 31 

(T=4.571, p<0.001) and A4 (T=7.793, p<0.001), indicating that ROI pairs with higher amyloid 32 

loads tend to have higher connectivity, regardless of being a tau epicenter or not (see Fig.S3). 33 
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Using an alternative metric of neuronal activity (FDG-PET to measure cortical glucose 1 

consumption intensity normalized to the Pons) that was available in a subset of Ab+ ADNI 2 

patients (n=61) confirmed that higher regional amyloid-PET was related to higher glucose 3 

metabolism (mean/SD subject-level correlation between regional amyloid-PET and FDG-4 

PET=0.33/0.16; 95%CI=[0.29,0.38], T=15.91, p<0.001). Together, these results suggest that 5 

Ab is linked to increased functional connectivity potentially driven by neuronal hyperactivity. 6 

 7 

Regions that are more strongly connected to the tau epicenter show faster tau accumulation 8 

Next, we addressed our second aim whether stronger connectivity of the tau epicenter to other 9 

brain regions is associated with faster tau accumulation in those regions, indicative of faster 10 

tau spread across connections. This analysis was performed using ADNI data only, as no 11 

longitudinal tau-PET data were available in A4. We performed ROI-wise regression models in 12 

Ab+ subjects, assessing whether higher subject-specific connectivity of the tau epicenter to a 13 

given region predicted faster tau-PET change rates in that region, controlling for age, sex, 14 

ethnicity, diagnosis, MRI scanner type and motion during the fMRI scan. We found widespread 15 

associations (p<0.05, FDR-corrected) between tau epicenter connectivity and faster tau 16 

accumulation, predominantly for temporo-parietal, occipital and superior frontal brain regions 17 

(see Fig. 4A) showing wide overlap with regions in which we detected Ab-related connectivity 18 

increases (see black outline in Fig.4A). When assessing the distribution of region-specific 19 

associations between epicenter connectivity and tau-PET increase over time (regression 20 

derived beta-values displayed in Fig. 4A), beta values were greater than zero 21 

(95%CI=[0.16;0.2], T=20.012, p<0.001, Fig. 4B), suggesting that higher epicenter 22 

connectivity is overall related to faster tau accumulation. Importantly these results were 23 

obtained using subject-level connectivity data, showing that patient-specific connectivity 24 

patterns and strength are relevant for tau spreading. Together, these results support the 25 

hypothesis that brain regions that are more strongly connected to the tau epicenters on the 26 

individual level show faster tau accumulation over time, in line with the concept of trans-27 

neuronal tau spreading.  28 

 29 

The association between Ab and tau accumulation is mediated by Ab-related connectivity 30 

increases 31 

For our third aim, we assessed Ab-induced connectivity changes as a putative 32 

pathophysiological link between Ab and tau spreading. Again, this analysis was restricted to 33 
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the ADNI dataset with available longitudinal tau-PET. In the ADNI Ab+ subjects, we 1 

determined ROI-wise bootstrapped mediation models with 1000 iterations, testing whether 2 

higher Ab (centiloids averaged across the tau epicenter and any given target ROI) was linked 3 

to faster tau accumulation in a given target ROI, and whether this effect was mediated by a Ab-4 

related functional connectivity increases between the target ROI and the tau epicenter (concept 5 

illustrated in Fig.4C). All mediation models were controlled for age, sex, ethnicity, diagnosis, 6 

MRI scanner type and motion during the fMRI scan and FDR-corrected for multiple 7 

comparisons (p<0.05). Supporting our hypothesis, we found that faster tau-PET accumulation 8 

in temporo-parietal regions were mediated by Ab-related connectivity increases of these brain 9 

regions to the tau epicenter (Fig. 4C and D). Taken together, these results favor a 10 

pathophysiological disease model in which regional Ab induces stronger functional 11 

connectivity to the tau epicenter, which in turn facilitates the spreading of tau from the 12 

epicenters to connected brain regions.  13 

 14 

 15 
  16 
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DISCUSSION 1 

Ab deposition has been shown to trigger neuronal hyperactivity, hypersynchronicity and 2 

hyperconnectivity in animal and cell models(39-41, 68) and to be associated with epileptiform 3 

brain activity in AD mouse models and AD patients.(37, 56-58) We hypothesized that Ab-4 

induced neuronal hyperactivity manifests in functional connectivity increases (52-54, 69) and 5 

thereby accelerates the activity-dependent spread of tau pathology across connected brain 6 

regions in AD patients.(24, 70) Prior studies have identified functional connectivity increases 7 

in AD patients as one of the earliest pathological findings in AD, which has led to the formation 8 

of the cascading network hypothesis (52-54), which claims a key role of early network 9 

dysfunction in promoting AD pathophysiology. In the current study we aimed to integrate the 10 

insights on early changes of functional connectivity in AD with our previous findings on 11 

connectivity-based tau spreading to test whether Ab-induced hyperconnectivity promotes tau 12 

spreading throughout connected brain regions. 13 

Supporting this model, our first finding was that higher regional Ab was linked to stronger 14 

resting-state fMRI-assessed functional connectivity of posterior temporal, parietal and occipital 15 

brain regions to temporal-lobe tau epicenters in 140 patients across the preclinical to clinical 16 

AD spectrum. Importantly, this result could be replicated in an independent sample of 345 17 

patients with preclinical AD, suggesting that Ab-related connectivity increases are an early 18 

event in AD that precedes brain-wide tau deposition. Second, we could confirm that stronger 19 

patient-level functional connectivity of tau epicenters to tempo-parietal, frontal and occipital 20 

brain regions was associated with faster tau accumulation in these regions, indicative of faster 21 

connectivity-mediated tau spread.(2, 28, 29, 71) Thirdly, we tested an integrative 22 

pathophysiological disease progression model, showing that the association between temporo-23 

parietal Ab deposition and faster tau accumulation in these regions is mediated by Ab-driven 24 

connectivity increases to the tau epicenter. Together, our results suggest that Ab induces 25 

neuronal hyperactivity and functional connectivity increases, in line with previous evidence 26 

from the cascading network failure model, showing Ab-associated connectivity increases as a 27 

key feature of AD pathophysiology.(53) Most importantly, we could show that Ab-associated 28 

connectivity increases facilitate the spreading of tau from epicenters to connected regions in 29 

AD. This finding embeds Ab-associated connectivity increases as a key link between Ab-30 

deposition and tau spreading, thereby rendering Ab-induced changes in neuronal activity and 31 

connectivity as a potential therapeutic target to attenuate tau spreading and subsequent 32 

neurodegeneration and cognitive decline in AD.  33 
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 1 

Our first main finding in patients across the AD spectrum showed that regional Ab deposition 2 

is associated with increased functional connectivity of temporo-parietal and occipital regions 3 

to tau epicenters typically located in the temporal lobe. This result pattern was replicated in an 4 

independent cohort of preclinical AD patients, in which neocortical tau deposition is typically 5 

low,(72) supporting a sequence of events in which Ab-related connectivity increases precede 6 

and potentially accelerate the spread of tau across the neocortex.(25) Similarly, previous 7 

resting-state fMRI studies in Ab-transgenic mice and preclinical AD patients reported Ab-8 

related functional connectivity increases within and between large scale brain networks,(41, 9 

45, 46, 73), as also suggested by the cascading network failure model of AD (52, 53). More 10 

recently, a task-fMRI study in a small cohort of cognitively normal older individuals could 11 

further show Ab-associated hyperconnectivity between the Default Mode Network and the 12 

medial temporal lobe during cognitive demands, suggesting that Ab-related network changes 13 

interfere with neuronal processing very early in the disease process (50). Together, these 14 

findings provide converging evidence that Ab can induce early-stage functional connectivity 15 

increases.  16 

 17 

Consistent across both neuroimaging samples, the Ab-associated connectivity increases were 18 

found primarily between temporal lobe tau epicenters and posterior brain regions which are 19 

also physiologically strongly connected to temporal lobe sites of earliest tau deposition.(2) 20 

Nevertheless, we also found small but brain-wide associations between Ab-deposition and 21 

higher connectivity, as well as an association between higher Ab and higher FDG-PET in a 22 

smaller subset of AD patients, supporting the view that Ab is associated with hyperconnectivity 23 

and neuronal hyperactivity. Congruently, data from rodent models show that Ab induces 24 

existing synapses to become hyperactive, rather than triggering synaptogenesis,(40, 74) 25 

together suggesting that Ab leads to an upregulation and strengthened co-activation of pre-26 

existing connections rather than the formation of new connections. From a mechanistic point 27 

of view, electrophysiological studies in Ab-transgenic mice and AD patients have shown that 28 

Ab-related hyperactivity and therefore connectivity is explained by a loss of inhibition and an 29 

excitatory shift in neuronal activity,(75-77) potentially due to Ab-related alterations in Calcium 30 

clearance, as well as altered neurotransmitter release/sensitivity and synaptic vesicle 31 

release.(42, 43, 75) Since the BOLD signal that is used to determine functional connectivity 32 

has been shown to increase as a function of Calcium-dependent neuronal excitation,(78) the 33 
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Ab-related connectivity increases observed in our study may indeed reflect an excitatory shift 1 

in neuronal activity ensuing stronger inter-regional synchronicity and connectivity. However, 2 

the exact relationships between neuronal activity, Ab and connectivity between brain regions 3 

remain unclear until specifically tested by combining markers of connectivity, 4 

electrophysiological activity, and biomarkers of Ab. Nevertheless, our hypothesis-driven and 5 

translational findings provide robust evidence for Ab to induce increased connectivity of the 6 

tau epicenter to connected brain regions. 7 

For our second main finding, we could show that stronger patient-specific connectivity of large 8 

parts of the temporo-parietal, occipital and frontal cortex to tau epicenters is linked to faster 9 

tau accumulation in these brain regions. This finding strongly supports the concept of trans-10 

neuronal tau spreading(79, 80) and robustly recapitulates our previous results, showing that the 11 

seed-based connectivity pattern of tau epicenters closely aligns with the spatial pattern of tau 12 

accumulation in AD patients.(2, 3, 30) Yet, a key novelty of our study is the combination of 13 

longitudinal tau-PET with subject-specific resting-state fMRI connectomics, compared to the 14 

previous usage of group average connectivity templates derived from healthy controls.(2, 3, 15 

30) More specifically, our findings suggest that Ab-associated changes of the patient-specific 16 

connectome influence the rate of tau spreading in AD.(81) This is closely in line with the results 17 

of a previous study in cognitively normal older adults, showing that Ab-associated 18 

hyperconnectivity between the default mode network and the medial temporal lobe during 19 

cognitive demands is predictive of faster medial temporal lobe tau accumulation in these early 20 

tau vulnerable brain regions (50). Thus, the inter-individual heterogeneity in tau spreading 21 

patterns observed in AD and its clinical variants(2, 34, 82) is potentially not only determined 22 

by spatial heterogeneous locations of tau epicenters,(2, 29, 82) but also by inter-individual 23 

differences in the strength of functional connectivity and in particular by Ab-induced 24 

connectivity changes.(25, 50, 83) Therefore, factors that have been related to altered functional 25 

brain network architecture and connectivity strength such as vascular health or  26 

neuroinflammation (84, 85) may also alter tau trajectories in AD. 27 

Our third finding was that the influence of Ab on faster tau accumulation is mediated by an 28 

Ab-related functional connectivity increase of the tau epicenter to other brain regions. 29 

Importantly, this mediation effect was detected for typical tau vulnerable regions in the 30 

temporo-parietal cortex,(20, 21) suggesting that the spreading of tau pathology from epicenters 31 

to regions predominantly belonging to Braak stage regions III/IV is specifically facilitated by 32 

Ab-related connectivity increases. From a biological point of view, Ab-related neuronal 33 
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hyperactivity may trigger a stronger activity-dependent secretion of seeding-competent tau 1 

species from tau harboring neurons,(24, 79) thereby increasing the likelihood that secreted and 2 

misfolded tau seeds taken up by a synaptically connected neuron where they induce template-3 

based tau misfolding and aggregation. Supporting this, we have previously reported that 4 

elevated p-tau species that are newly synthesized and actively secreted into the CSF(86) drive 5 

the spreading of tau across connected brain regions.(30) This interpretation is also supported 6 

by previous studies in tau transgenic mice and cell models, showing that i) tau spreads 7 

specifically across synaptic connections and that ii) higher neuronal activity (triggered by opto-8 

genetic stimulation of neuronal activity) induces faster neuronal tau secretion and trans-9 

synaptic tau spreading.(24, 79) Overall, these results support a disease model, in which Ab-10 

related changes in neuronal activity and connectivity may play a key role in initiating the Ab-11 

related spread of tau across connected brain regions. Previous work has further suggested that 12 

the initial and relatively slow spreading of tau from the medial temporal lobe to the temporal 13 

cortex may be triggered by remote effects of Ab in regions connected to initial medial temporal 14 

lobe tau epicenters (“pull-effect”), whereas the local convergence of Ab and tau in the inferior 15 

temporal lobe leads to an acceleration of tau spread from the Ab-tau convergence zones to 16 

connected brain regions (“push-effect”).(69) It is possible that remote Ab in regions not 17 

harboring any tau pathology triggers hyperactivity and hyperconnectivity to tau epicenters (50), 18 

thereby initiating the spread of local tau seeds from the medial temporal lobe to Ab-harboring 19 

connected brain regions. Second, the regional convergence of Ab and pathological tau seeds 20 

may foster local interactions between both pathologies, promoting stronger tau 21 

hyperphosphorylation and the generation of tau seeds, which may then lead to an acceleration 22 

of tau spreading (87). Therefore, disentangling potential remote and local interactions between 23 

Ab and tau in the context of connectivity-associated tau spread and neuronal 24 

hyperactivity/connectivity will be an important field for future investigation, to better 25 

characterize the acceleration phase of Ab-dependent tau accumulation and spread. 26 

 27 

When interpreting the results of our study, several limitations should be considered. First, we 28 

used resting-state fMRI, which is based on the BOLD signal and therefore an indirect proxy 29 

measure of neuronal activity. Connectivity is based on the quantification of co-fluctuations of 30 

the BOLD signal, hence our neuroimaging results do not directly provide evidence for Ab-31 

associated neuronal hyperactivity in AD patients but rather emphasize an increase of 32 

synchronicity between two regions harboring Aβ. However, since preclinical studies have 33 
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shown concomitant Aβ-associated neuronal hyperactivity and hyper-synchronicity which is 1 

equivalent to the definition of functional connectivity, we deemed resting-state fMRI an 2 

adequate measure to assess these changes by proxy.(40) In addition, we preformed exploratory 3 

sub-analyses in the ADNI cohort, showing that higher amyloid-PET are associated with higher 4 

regional glucose consumption in a subsample of Ab+ subjects with available FDG-PET data 5 

(n=61), suggesting that higher amyloid pathology is indeed linked to higher neuronal activity. 6 

In addition, it will be a key next step to combine our current analysis framework with 7 

electrophysiological measures of neuronal activity such as EEG or MEG that allow a more 8 

direct quantification of the neuronal excitatory/inhibitory balance, as well as additional markers 9 

of neuronal activity or synaptic density. In addition, we employed resting-state fMRI to 10 

determine the existence of a connection between any set of brain regions, whereas it remains 11 

unclear whether a “functional” connection is enabled by a direct underlying “structural” axonal 12 

connection along which tau spreads.(81, 88) Rather, a functional connection may reflect both 13 

direct and indirect “multi-synaptic” connections.(89) Addressing this limitation by including 14 

individual structural connectomes would have required high-quality diffusion MRI to 15 

determine subject-level structural connectivity which would have drastically limited the sample 16 

size. Thus, we refrained from additionally including structural connectivity to constrain 17 

functional connections in the current study. Lastly, the cross validation in the A4 sample was 18 

restricted to cross-sectional analyses on Ab vs. connectivity changes, since longitudinal tau-19 

PET data are not yet available in this dataset. Therefore, the longitudinal associations between 20 

Ab-related connectivity changes and faster tau spreading remain to be independently replicated 21 

once these data become available. Beyond the limitations, our study features several clear 22 

strengths, as we employed a fully hypothesis-driven approach to determine the role of 23 

connectivity changes in cross-linking Ab accumulation and tau spreading. In addition, the 24 

study design included an independent replication sample illustrated the robustness of the 25 

association between Ab and connectivity increases.  26 

 27 

In conclusion, our findings provide evidence that Ab-associated neuronal activity and 28 

connectivity changes may be a key missing link between the accumulation of Ab and the 29 

subsequent spreading of tau pathology in AD. These findings are of high clinical importance, 30 

since modulating neuronal activity may be a promising target for attenuating Ab-related tau 31 

accumulation and spreading. Previous trials repurposing anti-epileptic drugs to lower neuronal 32 

hyperexcitability and hyperactivity in AD patients have been tested, yet over relatively short 33 
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timespans of several weeks, focusing on clinical endpoints (56, 58, 90). However, we reason 1 

that surrogate biomarker endpoints should be considered, such as the activity-dependent 2 

secretion of phosphorylated tau species detectable in CSF or plasma (86), or the long-term 3 

spreading and accumulation of tau pathology, which would require longer intervention periods 4 

in subjects at the early phase of Ab-induced tauopathy. Such a treatment approach may be 5 

particularly promising in early-stage AD patients in addition to targeting Ab, to target fibrillar 6 

Ab deposition directly, as well as its consequences on tau spreading, to therefore maximize the 7 

likelihood to attenuate tau-related neurodegeneration and cognitive decline.(13, 14, 91) 8 

Together, our results should encourage others to further investigate neuronal activity and 9 

connectivity as key links between Ab and tau, to help specifically target the Ab-tau axis in AD. 10 

 11 

12 
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Material and METHODS 1 

Study design 2 

The overall objective of this observational study was to determine whether amyloid deposition 3 

induces neuronal hyperconnectivity and hyperactivity, thereby driving tau spreading across 4 

interconnected brain regions. To this end, we used observational neuroimaging and biomarker 5 

data from the ADNI and A4 study for independent replication. No treatments or interventions 6 

were administered for the included individuals and data and no randomization was performed. 7 

We included the largest possible sample size that matched the inclusion criteria specified 8 

below, hence no a priori study sized calculations were performed. The authors were not blinded 9 

to the diagnosis or biomarker status of the included individuals.  10 

 11 

ADNI Participants 12 

209 Subjects were included from the Alzheimer’s disease Neuroimaging Initiative (ADNI) 13 

database, based on availability of clinical data, baseline 18F-Florbetapir/Florbetaben amyloid-14 

PET, 3T resting-state fMRI and longitudinal 18F-Flortaucipir tau-PET data. All baseline data 15 

had to be obtained within a timeframe of 6 months. Participants diagnostic status was 16 

determined by ADNI as cognitively normal (CN; Mini Mental State Examination [MMSE]≥24, 17 

Clinical Dementia Rating [CDR]=0, non-depressed), mildly cognitively impaired (MCI; 18 

MMSE≥24, CDR=0.5, objective memory-impairment on education-adjusted Wechsler 19 

Memory Scale II, preserved activities of daily living) and demented (MMSE=20–26, 20 

CDR>0.5, National Institute of Neurological and Communicative Disorders and 21 

Stroke/Alzheimer's Disease and Related Disorders Association criteria for probable AD). 22 

Amyloid status was determined on global amyloid-PET SUVRs using tracer-specific cut-offs 23 

at 1.11/1.08 for Florbetapir/Florbetaben, as previously established in the ADNI cohort.(92, 93) 24 

All study procedures were conducted in accordance with the declaration of Helsinki, ethical 25 

approval was obtained by ADNI investigators. All study participants provided written informed 26 

consent. 27 

 28 

A4 participants 29 

For replication of cross-sectional analyses, we included baseline data from 400 participants of 30 

the A4 study, based on availability of clinical data, 18F-Florbetapir amyloid-PET, resting-state 31 

fMRI and [18F-Flortaucipir tau-PET obtained at the baseline study visit. All subjects were 32 

classified as CN (MMSE>25, CDR=0, Wechsler Logical Memory score of 6 to 18), as defined 33 
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by the inclusion criteria of the A4 trial (https://clinicaltrials.gov/study/NCT02008357). 1 

Amyloid status was determined using global amyloid-PET SUVRs and the 1.11 global SUVR 2 

cut-off defined in the ADNI cohort. All study procedures were conducted in accordance with 3 

the declaration of Helsinki, ethical approval was obtained by A4 investigators. All study 4 

participants provided written informed consent. 5 

 6 

Neuroimaging acquisition 7 

Structural and functional MRI were acquired using 3T Siemens, GE and Philips scanners. T1-8 

weighted structural scans were collected using an MPRAGE sequence (TR=2300ms; Voxel 9 

size=1x1x1mm; for parameter details see: https://adni.loni.usc.edu/wp-10 

content/uploads/2017/07/ADNI3-MRI-protocols.pdf). Resting-state-fMRI was obtained using 11 

a 3D echo-planar imaging (EPI) sequence with 200 fMRI volumes per subject 12 

(TR/TE=3000/30ms; flip angle=90°; Voxel size=3.4x3.4x3.4mm).  13 

PET data was assessed post intravenous injection of 18F-labeled tracers (Flortaucipir: 6x5min 14 

time-frames, 75-105min post-injection; Florbetapir: 4x5min time-frames, 50-70min post-15 

injection; Florbetaben: 4x5min time-frames, 90-110min post-injection; for more information 16 

see http://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/). In a subset of ADNI 17 

participants, we also included FDG-PET data, recorded 6x5min frames 30-60min post-18 

injection. A4 and ADNI imaging data were recorded using congruent imaging protocols. 19 

 20 

Image processing 21 

All images were screened for artifacts before preprocessing, and processing was conducted 22 

independently for the ADNI and A4 sample. T1-weighted structural MRI scans were bias-23 

corrected, segmented, and non-linearly warped to Montreal Neurological Institute (MNI) space 24 

using the CAT12 toolbox (https://neuro-jena.github.io/cat12-help/). Dynamically acquired 25 

PET images were realigned and averaged to obtain single Flortaucipir/Florbetapir images 26 

which were rigidly registered to the T1-weighted MRI scan. As reference regions, we used the 27 

inferior cerebellar grey for Flortaucipir, the whole cerebellum for Florbetapir/Florbetaben, and 28 

the Pons for FDG-PET.(94, 95) Reference regions and the cortical Schaefer atlas including 200 29 

regions of interest (ROIs) were warped from MNI to T1-native space using the CAT12-derived 30 

non-linear normalization parameters, masked with subject-specific grey matter and applied to 31 

PET data to determine standardized uptake value ratios (SUVRs) for each region of the 32 

Schaefer 200 atlas.(62) Global and regional Florbetapir/Florbetaben SUVRs were converted to 33 

centiloid using equations provided by ADNI. To determine longitudinal tau-PET change, we 34 
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employed linear mixed models controlling for random slope and intercept as described 1 

previously.(2, 3)  2 

Resting-state fMRI images were slice-time corrected and realigned to the first volume for 3 

motion correction, followed by co-registration to the respective T1-weighted images. Using 4 

rigid-transformation parameters, T1-derived grey-matter, eroded white matter and eroded 5 

cerebrospinal fluid (CSF) segments were transformed to EPI space. To denoise EPI images, 6 

we regressed out nuisance covariates, including the timeseries of the eroded white matter and 7 

eroded CSF plus six motion parameters as well as their time and dispersion derivatives, 8 

followed by detrending and band-pass filtering (0.01-0.08Hz) in native space. To further reduce 9 

movement artifacts which may compromise connectivity assessment, (96) we performed 10 

motion scrubbing in which volumes exceeding a 0.5mm frame-wise displacement threshold 11 

were removed, as well as one prior and two subsequent volumes. All included subjects had at 12 

least five minutes of resting-state fMRI remaining after scrubbing (97). Spatial smoothing was 13 

not carried out to avoid artificially enhancing functional connectivity caused by signal spilling 14 

between adjacent brain regions. Pre-processed resting-state-fMRI images were subsequently 15 

warped to MNI space using the CAT12-derived spatial normalization parameters. 16 

 17 

Assessment of tau epicenters and functional connectivity 18 

Tau epicenters were determined for each subject as 5% of the 200 cortical Schaefer ROIs with 19 

highest baseline tau-PET SUVRs which is equivalent to 10 ROIs per individual. Subject-20 

specific functional connectivity matrices were determined across the 200 ROIs of the Schaefer 21 

atlas as Fisher-z-transformed Pearson moment correlations between ROI-specific time-series. 22 

Negative correlations were eliminated, and autocorrelations were set to zero. Subject-specific 23 

tau epicenter masks were applied to the subject-specific functional connectivity matrices to 24 

determine average seed-based connectivity patterns of the tau epicenter to the rest of the brain. 25 

The tau epicenter to ROI connectivity per subject can be found in supplementary data files 26 

S1&S2 for ADNI and A4. 27 

 28 

Statistics  29 

Sample demographics for ADNI and A4 were compared using ANOVAs for continuous 30 

variables and Chi-squared tests for categorical variables. To determine the effect of Ab on 31 

seed-based connectivity of the tau epicenter, we used linear regressions to determine the effect 32 

of regional Ab (defined as the average centiloid across the tau epicenter and the target ROI) on 33 
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epicenter connectivity, controlling for age, sex, ethnicity, MRI scanner type, diagnosis and 1 

framewise displacement. This analysis was conducted for ADNI and A4. ROI-wise p-values 2 

were FDR-corrected for multiple comparisons. In ADNI, we also applied a t-test against zero 3 

on the overall distribution of beta values, to determine whether there is a global association 4 

between Ab and increased epicenter connectivity. 5 

Next, we tested whether higher epicenter connectivity is linked to faster tau accumulation in 6 

the ADNI dataset with available longitudinal tau-PET data. To this end, we performed linear 7 

regression per ROI, testing the effect of tau epicenter connectivity at baseline on longitudinal 8 

tau-PET change rates, controlling for age, sex, ethnicity, diagnosis, MRI scanner type and 9 

average motion during the resting-state fMRI scan defined as the mean framewise 10 

displacement. ROI-wise p-values were FDR-corrected for multiple comparisons. Again, we 11 

applied a one-sample t-test to the beta-values to determine the global pattern of associations. 12 

Lastly, we employed bootstrapped mediation analyses with 1000 iterations per ROI, to assess 13 

whether the effect of Ab on tau accumulation rates was mediated by stronger connectivity to 14 

the tau epicenter. Mediation models were again controlled for age, sex, ethnicity, diagnosis, 15 

MRI scanner type and average motion during the resting-state fMRI scan. All analyses were 16 

conducted for epicenter connectivity to all cortical ROIs and resulting beta and p-values were 17 

FDR-corrected for multiple comparisons. All statistical analyses were conducted using R 18 

statistical software (Version 4.0.4.). All plots have been created using ggplot2. Error bars in 19 

scatterplots indicate 95% confidence intervals of regression lines. In boxplots, the boxes 20 

indicate median±interquartile range, whiskers extend to values ±2.5 of the interquartile range 21 

from the median. 22 
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Table 1: Neuroimaging sample characteristics 3 
ADNI (n=209) CN Ab-  

(n=69) 
CN Ab+ 
(n=68) 

MCI Ab+ 
(n=47) 

Dementia Ab+ 
(n=25) 

p-value 

Age 71.7±6.164 73.6±6.22 74.4±6.12 75.8±8.021 0.027 
Sex (f/m) 38/31 46/22 21/26 7/18 0.004 

MMSE 29.0±1.083,4 29.1±1.303,4 27.4±1.911,2,4 23.4±3.491,2,3 0.001 
ADAS13 total 7.67±4.363,4 8.25±4.733,4 16.7±6.491,2,4 27.8±8.631,2,3 0.001 

Centiloid 7.94±7.372,3,4 64.3±35.31,4 77.4±32.51,4 96.0±30.11,2,3 0.001 
Amyloid tracer 

(FBB/FMM) 
52/17 45/23 29/18 12/13 0.873 

Tau-PET global 
SUVR 

1.06±0.0803,4 1.09±0.0773,4 1.19±0.2121,2,4 1.35±0.3991,2,3 0.001 

Tau-PET 
follow-up years 

3.42±1.122,3,4 2.80±1.211,3,4 2.21±1.021,2 1.68±0.601,2 0.001 

Number of tau-
PET visits 

2.39±0.65 2.68±0.74 2.66±0.67 2.40±0.50 0.034 

Mean 
Framewise 

Displacement 
in resting-state 

fMRI 

0.099±0.059 0.128±0.074 0.117±0.082 0.137±0.068 0.043 

A4 (n=400) CN Ab-  
(n=55) 

CN Ab+ 
(n=345) 

  p-value 

Age 70.0±4.15 72.2±4.91   <0.001 
Sex (m/f) 28/27 150/195   0.377 
Centiloid 11.1±7.82 69.5±31.4   <0.001 

Global tau-PET 
SUVR 

1.06±0.076 1.10±0.08   <0.001 

MMSE 28.8±1.25 28.6±1.13   0.204 
Mean 

Framewise 
Displacement 

in resting-state 
fMRI 

0.106±0.067 0.110±0.066   0.666 

Post-Hoc Tukey Test: 1p<0.05 vs. CN Ab-, 2p<0.05 vs. CN Ab+, 3p<0.05 vs. MCI Ab+, 4p<0.05 vs. Dementia 4 
Ab+. Means plus/minus standard deviations are displayed for continuous measures. Absolute numbers are 5 
displayed for categorical measures. 6 
 7 
 8 

9 
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 2 
 3 
Figure legends: 4 

 5 
Figure 1: (A) Baseline tau-PET SUVRs values stratified by diagnostic group and Ab status, showing 6 
increasing tau load across the AD spectrum. SUVRs surpassing an abnormal cut-off of 1.3 are outlined 7 
in white. (B) Annual tau-PET SUVR change rates, as calculated using ROI-wise linear mixed models, 8 
stratified by amyloid status, illustrating faster tau accumulation in Ab+ subjects, particularly in 9 
temporoparietal brain regions.  10 
  11 
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 1 

 2 
Figure 2: (A) For each participant, 5% of brain regions with the highest baseline tau-PET SUVRs were 3 
defined as tau epicenters. (B) Epicenter masks were applied to (C) subject-specific connectivity 4 
matrices to (D) extract epicenter connectivity patterns. (E) Mapping of group-average epicenter 5 
probability and (F) epicenter connectivity. 6 
  7 
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 2 
Figure 3: (A) Association between Ab and epicenter connectivity in ADNI. (B) Average association 3 

between Ab and connectivity for significant ROIs (p<0.05, FDR-corrected) displayed in panel (A). 4 
(C) Unthresholded distribution of beta values displayed in panel (A) showing that beta-values are 5 
overall significantly larger than zero (p<0.001). (D) Validation of the association between Ab and 6 
epicenter connectivity in A4. Regression-based associations were corrected for age, sex, ethnicity, 7 
scanner type, diagnosis and motion during the fMRI scan.   8 
  9 
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 1 

 2 
Figure 4: (A) Association between stronger epicenter connectivity and faster tau accumulation in 3 
ADNI, including (B) the unthresholded distribution of beta-values, showing an overall positive 4 
association between epicenter connectivity and faster tau accumulation. (C) Conceptual model of Ab-5 

related tau spreading and (D) bootstrapped mediation showing that effects of Ab on tau accumulation 6 
are mediated by increased epicenter connectivity. Regression-based associations and mediations were 7 
corrected for age, sex, ethnicity, scanner type, diagnosis and motion during the fMRI scan. 8 
 9 

hat gelöscht: Figure 4: Post-mortem analyses of AD vs. 10 
control (CTRL) brains. (A) Overview of an example tissue 11 
staining. The red rectangle on the brain surface rendering 12 
highlights the anatomical location of the extracted probe in 13 
the primary visual cortex. The red rectangle on the 14 
microscopic image illustrates the location of the zoom-in 15 
images displayed in panel B. (B) Merged images of Dapi, 16 
NeuN, Ab and c-Fos in an example control and AD subject. 17 
Group differences in (C) Ab -plaque area, (D) neuron count 18 
(i.e. NeuN), and (E) the proportion of neurons with c-Fos 19 
positive signal.¶20 ... [5]
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Supplementary Figures 
Fig. S1: 
 

 
Exploratory sub-analysis showing the association between Ab and epicenter connectivity in cognitively 
unimpaired Ab+ subjects of the A4 cohort, reclassified as Ab+ at a global amyloid-PET SUVR threshold 
of 1.15 (n=322) as recommended by the A4 imaging core. The surface rendering shows the spatial 
pattern of significant (p<0.05, FDR-corrected) associations between amyloid-PET levels in the tau 
epicenter and target ROI and the connectivity between the epicenter and the target ROI.  
  



 
Fig. S2: 

 
Exploratory sub-analysis showing the association between Ab and epicenter connectivity in cognitively 
unimpaired Ab+ subjects of the ADNI cohort (n=68). The surface rendering shows the spatial pattern 
of significant (p<0.05) associations between amyloid-PET levels in the tau epicenter and target ROI 
and the connectivity between the epicenter and the target ROI. The beeswarm plot shows that the overall 
distribution of beta values is significantly greater than zero as shown by a one sample t-test, with 95% 
Confidence intervals not overlapping with zero. Yellow dots in the beeswarm plot reflect significant ROIs 
projected on the brain surface. 



Fig. S3: 

  
Beeswarm plots, illustrating the distribution of subject-level correlation coefficients between amyloid-
PET summarized across any given ROI pair and subject-level functional connectivity matrices for Ab+ 
subjects of ADNI and A4. Results show an overall positive distribution of correlation coefficients as 
indicated by a significant t-test against zero, and 95% confidence intervals of the distributions not 
including zero. These data suggest that ROI pairs with a combined high amyloid load tend to have 
higher functional connectivity within individuals. 


