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Abstract 

Background & Aims: We aimed to develop and validate an artificial intelligence score 

(GEMA-AI) to predict liver transplant (LT) waiting list outcomes using the same input 

variables contained in existing models. 

Methods: Cohort study including adult LT candidates enlisted in the United Kingdom (2010-

2020) for model training and internal validation, and in Australia (1998-2020) for external 

validation. GEMA-AI combined international normalized ratio, bilirubin, sodium, and the 

Royal Free Glomerular Filtration Rate in an explainable Artificial Neural Network. GEMA-

AI was compared with GEMA-Na, MELD 3.0, and MELD-Na for waiting list prioritization. 

Results: The study included 9,320 patients: training cohort n=5,762, internal validation 

cohort n=1,920, and external validation cohort n=1,638. The prevalence of 90-days mortality 

or delisting for sickness ranged 5.3%-6% across different cohorts. GEMA-AI showed better 

discrimination than GEMA-Na, MELD-Na and MELD 3.0 in the internal and external 

validation cohorts, with a more pronounced benefit in women and in patients showing at least 

one extreme analytical value. Accounting for identical input variables, the transition from a 

linear to a non-linear score (from GEMA-Na to GEMA-AI) resulted in a differential 

prioritization of 6.4% of patients within the first 90 days and would potentially save one in 

59 deaths overall, and one in 13 deaths among women. Results did not substantially change 

when ascites was not included in the models. 

Conclusions: The use of explainable machine learning models may be preferred over 

conventional regression-based models for waiting list prioritization in LT. GEMA-AI made 

more accurate predictions of waiting list outcomes, particularly for the sickest patients. 

 

Keywords: eXplainable Artificial Intelligence; Machine Learning; Artificial Neural 

Networks; Liver Allocation; Gender; Disparities 
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Introduction 

The historical imbalance between organ donors and potential candidates for liver 

transplantation (LT) requires to delineate strategies for organ allocation which allow to 

maximize donor utility while reducing the risk of mortality in the waiting list. The principle 

of urgency has prevailed over decades, with the sickest patients granted the first positions in 

the waiting list for earlier access to LT.1 The current gold standard for ranking patients in the 

waiting list according to their mortality risk is the Model for End-stage Liver Disease 

corrected by serum sodium (MELD-Na), which combines four serum analytic and objective 

parameters, namely bilirubin, international normalized ratio (INR), creatinine and sodium.2 

However, despite the use of MELD-Na, the risk of mortality or delisting for sickness beyond 

safety thresholds for LT ranges from 9%-30% depending on the geographical area,1 and is 

higher among women.3 

In recent years, two alternative models have emerged to reduce mortality in the waiting 

list while addressing gender disparities for accessing LT. MELD 3.0 was developed and 

internally validated in the United States,4 and the gender-equity model for liver allocation 

corrected by serum sodium (GEMA-Na) was trained and internally validated in the United 

Kingdom, and externally validated in Australia.5 GEMA-Na was associated with a more 

pronounced discrimination benefit than MELD 3.0, probably owing to the replacement of 

serum creatinine with the Royal Free Hospital cirrhosis Glomerular Filtration Rate (RFH-

GFR)6 in the formula.5 GEMA-Na has since been independently validated in Italian7 and 

Spanish8 transplant cohorts and has been adopted as the official transplant allocation system 

in Spain. 

The methodology to design MELD-Na, MELD 3.0 and GEMA-Na was generalized 

additive Cox’s regression which assumes a linear relationship between the analytical 
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predictors and waiting list mortality.9 This linearity assumption is not met in clinical practice 

by any of the continuous variables contained in these scores, thus making it necessary to set 

lower and upper thresholds to define a range in which the relationship is linear. Such capping 

may result in less accurate predictions in individuals showing extreme analytical values, who 

are precisely the sickest patients requiring maximal prioritization. In addition, Cox models do 

not capture the complexity of the relationships between the covariates of the model and may 

overlook specific patterns or combinations of parameters associated with worse outcomes. 

Machine Learning (ML) techniques, particularly Artificial Neural Networks (ANNs), 

have shown utility in hepatology,10 although their implementation in clinical practice is not 

widely accepted by the medical community.11 Indeed, ML algorithms are often criticized and 

referred to as “black box” models because of their difficult interpretability.12 In recent years, 

eXplainable Artificial Intelligence (XAI)13 has emerged under the rationale of giving equal 

relevance to performance and explainability, therefore granting acceptance for clinical use.12 

By using non-linear methods such as ANNs, empirical capping of continuous variables would 

not be required while patterns of variables associated with worse outcomes could be 

identified. A shallow ANN model composed of a reduced number of neurons in hidden layer 

enables its full explanation and interpretation about how outcome predictions are derived from 

specific inputs. 

In this study, we propose a XAI model for waiting list LT prioritization using the same 

input variables which compose GEMA-Na.5 The proposed model, Gender-Equity Model for 

Liver Allocation using Artificial Intelligence (GEMA-AI), was created using an ANN 

optimized by neuroevolution14 and hybridization15 and compared with existing LT allocation 

models. Finally, we provide a comprehensive explanation of GEMA-AI to ease the 

interpretation of its predictions, which is essential for its implementation in clinical practice. 
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Materials and Methods 

Data sources, study population and outcomes 

The population (n=9,320) comprised two cohorts of patients who were listed for LT in the 

United Kingdom and Australia. Briefly, a consecutive cohort of adult patients enlisted for 

elective LT in the United Kingdom Transplant Registry between April 1st, 2010, and March 

31st, 2020, was used for model training and internal validation after random split of the 

database in a 3:1 ratio (n=5,762 and n=1,920, respectively). A second cohort of 1,638 patients 

included in the waiting list of LT in two Australian institutions from January 1st, 1998, to 

December 31st, 2020, was used for external validation. The data required to calculate the 

models used for comparison purposes (MELD-Na, MELD 3.0 and GEMA-Na) and to develop 

GEMA-AI was obtained at the inclusion in the waiting list. An overview of transplant policies 

in the United Kingdom and in the participating transplant institutions during the study period 

is provided in the appendix (p3).  

After inclusion in the waiting list, patients were followed until transplantation, exclusion 

from the waiting list or death. The primary outcome of the study was a composite endpoint 

comprising death or exclusion from the waiting list due to clinical worsening, whichever 

occurred first, as a time-dependent outcome right-censored at 90 days after inclusion. The 

present study complies with the principles contained in the Declaration of Helsinki and was 

approved by the Andalusian ethics committee (Code 5412, 22/09/2022). This study followed 

the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 

Diagnosis (TRIPOD) guidelines. 
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GEMA-AI model development 

To develop GEMA-AI we used ANNs16 as ML approach based on Artificial Intelligence (AI). 

GEMA-AI was constructed from the training dataset using INR, bilirubin, sodium, and RFH-

GFR as input variables. To optimize GEMA-AI during the training phase we used a hybrid 

approach combining neuroevolution14 and hybridization.15 We followed a XAI13 perspective 

to provide the explanation and interpretation about how GEMA-AI derives prioritization 

scores. GEMA-AI score for each patient was rounded to the nearest integer and fitted to the 

range [6-40], which is used in LT prioritization. The methodology considered to develop 

GEMA-AI is fully described in appendix (pp3-11). 

Performance evaluation of the GEMA-AI model 

GEMA-AI model performance was compared with GEMA-Na, MELD-Na and MELD 3.0 in 

terms of discrimination, calibration, and re-classification. Discrimination was assessed by the 

Harrell’s concordance statistic (Hc), which is specific for time-dependent outcomes. To 

compare the discrimination ability of the different models, we used a one-shot non-parametric 

method specifically designed for right-censored outcomes,17 in which resampling is not 

required. To evaluate the overall accuracy of the model we used the Brier score. Calibration 

was evaluated by the Greenwood-Nam-D’Agostino test, merging deciles if necessary to allow 

at least two events in each decile of risk. Calibration diagrams were plotted to graphically 

compare the agreement between the observed and predicted probabilities in each group. Re-

classification refers to the ability of GEMA-AI to change the position of the patients in the 

waiting list compared with a reference model (MELD-Na, MELD 3.0 or GEMA-Na). A 

change of ≥2 points in the model score was considered clinically relevant as this could 

significantly impact on the probability of receiving a LT. To better understand the clinical 
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impact of implementing GEMA-AI, we estimated the number of potential lives saved. First, 

we ranked the patients according to the score obtained from each model and considered the 

number of transplants performed within the first 90 days equal to the number of organs 

available. For each model, the prioritized group comprised those patients with the highest 

scores according to the number of available organs. To compare the re-classification benefit 

of GEMA-AI against another model, for instance MELD-Na, we identified the subgroup of 

patients who would be transplanted only under GEMA-AI prioritization or only under MELD-

Na prioritization and calculated the risk of the primary outcome in both subgroups. The model 

which granted higher priority to patients with higher risk of the primary outcome was 

considered more appropriate for clinical use. Finally, the potential deaths avoided were 

calculated by subtracting the absolute number of patients experiencing the primary outcome 

in the GEMA-AI prioritized group, from the number of patients experiencing the primary 

outcome using each reference model, divided by the total number of patients experiencing the 

primary outcome.5 In a sensitivity analysis, we assessed the performance of the model without 

taking into account the presence of moderate/severe ascites in the RFH-GFR equation (i.e. all 

patients were considered as not having ascites). 

These analyses were performed in the training, internal validation, and external validation 

cohorts separately. Sub-analyses were performed in women for each cohort and in the 

subgroup of patients who showed at least one extreme analytical value in which a linear 

relationship with the primary outcome was not met: bilirubin >550 µmol/L, INR >3, RFH-

GFR <20 mL/min, and serum sodium <122 mmol/L or >138 mmol/L.5 As the number of 

patients in these subgroups was reduced, internal and external validation cohorts were merged 

for some analyses. For statistical tests, the significance level α=0.0500 was used. Analyses 

were performed using SPSS v27.0 and/or R v4.1.2. 

Jo
urn

al 
Pre-

pro
of



12 

Results 

Clinical features of the study population including 7,682 patients from the United Kingdom 

for model training and internal validation, and 1,638 patients from Australia for external 

validation, are presented in table 1. The primary outcome occurred in 333 patients from the 

training cohort (5.8%), in 116 patients from the internal validation cohort (6.0%), and in 87 

patients from the external validation cohort (5.3%). In the whole cohort, deaths accounted for 

64.6% and delisting due to clinical deterioration accounted for 35.4% of the primary outcome 

events (n=346 and n=190, respectively). Minimum and maximum values of each input 

variable were obtained from the training dataset: serum bilirubin (2-870 µmol/L), INR (0.8-

7.7), RFH-GFR (10.45-270.44 mL/min), and serum sodium (113-154 mmol/L), which were 

set as lower and upper thresholds for each of them to scale their values in the range [-1,1] 

(appendix p8) before entering the GEMA-AI model. 

The mathematical definition of the GEMA-AI model is shown in table 2 and its graphical 

representation is illustrated in figure 1. The explanation and interpretation about how GEMA-

AI derives prioritization scores is provided in appendix (pp12-14), being of particular interest 

the analysis of the sodium behavior due to its non-linear relationship with the primary 

outcome (“U” shape). 

Table 3 shows the Hc for discrimination of GEMA-AI, GEMA-Na, MELD 3.0 and 

MELD-Na to predict the primary outcome. In the training cohort, GEMA-AI showed better 

discrimination (Hc=0.798) than MELD-Na (Hc=0.783;p=0.0424) and MELD 3.0 

(Hc=0.770;p=0.0003). This superiority was consistent and more pronounced in the internal 

and external validation cohorts, with GEMA-AI obtaining the best discrimination capacity 

among women. When comparing GEMA-AI with GEMA-Na, there was no significant 

difference in the training cohort, but GEMA-AI performed better in the internal validation 
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cohort (Hc=0.781 vs 0.766; p=0.0354) and in the external validation cohort (Hc=0.793 vs 

0.774; p=0.003), with these differences being again more pronounced among women. The 

subanalysis according to the baseline liver disease is shown in the appendix (p27). GEMA-AI 

performed better than MELD-Na and MELD 3.0 in all cohorts, and better than GEMA-Na in 

the internal and external validation cohorts using the Brier score (appendix p28).  

GEMA-AI and GEMA-Na showed good calibration in the internal and external validation 

cohorts (appendix p15). However, although MELD-Na and MELD 3.0 had adequate 

calibration in the external validation cohort, they showed poorer calibration in the internal 

validation cohort. The subgroups of women from the internal and external validation cohorts 

were combined to have a sufficient number of events to allow meaningful calibration. Again, 

GEMA-AI was well calibrated (appendix p16). Linear calibration diagrams of GEMA-AI and 

the reference models are shown in appendix (pp17-18). 

Figures 2 and 3 and appendix (p19) show the re-classification diagrams of GEMA-AI vs 

the reference models, merging the internal and the external validation cohorts. GEMA-AI 

changed the position in the waiting list for a significant proportion of patients: a meaningful 

change of ≥2 score prioritization points occurred in 27.8% of patients (11.4% upgraded, 

16.4% downgraded) when compared with GEMA-Na, in 67.7% of patients (39.2% upgraded, 

28.5% downgraded) when compared with MELD 3.0, and in 61.5% of patients (33.4% 

upgraded, 28.1% downgraded) when compared with MELD-Na. During the first 90 days, a 

total of 3,725 transplant procedures were performed. Differential prioritization (ie, patients 

who would be transplanted only with GEMA-AI vs any of the other models) occurred in 6.4% 

(n=240) when compared with GEMA-Na, in 15.9% (n=594) when compared with MELD 3.0, 

and in 15.1% (n=561) when compared with MELD-Na. Clinical characteristics of patients 

differentially prioritized are shown in appendix (pp29-31). GEMA-AI prioritized more 

patients with moderate-severe ascites and worse renal function than any other model. GEMA-
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AI attributed more weight to serum sodium and relatively less weight to bilirubin and INR. 

Of note, GEMA-AI prioritized more women than GEMA-Na (38.3% vs 28.8%;p=0.026) and 

MELD-Na (48.1% vs 29.9%;p<0.0001), but less than MELD 3.0 (36.4% vs 45.3%;p=0.002). 

The probability of the primary outcome was increased in patients differentially prioritized by 

GEMA-AI compared to MELD 3.0 (8.6% vs 2.5%;p<0.0001) and MELD-Na (8.4% vs 

3.2%;p<0.0001), suggesting that sicker patients would get higher priority. Although 

numerically higher, this difference did not reach statistical significance when comparing 

GEMA-AI with GEMA-Na (6.7% vs 2.9%;p=0.054). The number of potential deaths avoided 

with the implementation of GEMA-AI would be one in 59 deaths overall compared with 

GEMA-Na (one in 13 deaths in women), one in 13 deaths overall compared with MELD 3.0 

(one in 11 deaths in women), and one in 18 deaths overall compared with MELD-Na (one in 

9 deaths in women). 

Subsequently, we performed a subgroup analysis of the patients who showed at least one 

extreme analytical value. After merging the internal and the external validation cohorts 

(n=3,558), a total of 1,403 patients (39.4%) were eligible for this analysis. GEMA-AI obtained 

the highest discrimination (Hc=0.823), which was superior to that obtained by GEMA-Na 

(Hc=0.797;p=0.0362), MELD 3.0 (Hc=0.778;p=0.0189), and MELD-Na 

(Hc=0.769;p=0.0044). GEMA-AI was the only model with adequate calibration in this subset 

of patients (𝜒
7
2=5.04, p=0.6554) (appendix pp20-23). 

Finally, we performed a sensitivity analysis where all patients were considered as not having 

ascites when estimating the RFH-GFR. This showed a non-significant decrease of the 

discrimination of the GEMA-AI score, which still performed better than MELD-Na and 

MELD 3.0 (appendix p32). 
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Discussion 

In this study, using data from two different countries and LT allocation systems, we developed 

and validated the GEMA-AI score, which is a shallow ANN optimized by combining neuro-

evolution and hybridization techniques. This is the first non-linear model aimed to waiting 

list prioritization according to the individual risk of short-term mortality or delisting for 

sickness. The interpretability of GEMA-AI with rational explanations of how prioritization 

scores are derived from covariates makes it attractive for implementation in clinical practice. 

The components of the current scores available for waiting list prioritization provide 

objective and reproducible information about liver function (bilirubin, albumin, INR, and 

ascites) and renal function (serum sodium and RFH-GFR to a greater extent than serum 

creatinine), which in turn are associated with the probability of mortality or clinical 

deterioration resulting in transplant unsuitability.18 However, this relationship is non-linear 

and could roughly follow two different patterns in real clinical practice. For most analytical 

parameters, there is a normality threshold below which the risk of the outcome remains almost 

unchanged. Above this threshold, there is a linear association with the outcome risk but at a 

certain point, for the highest values typically found in the sickest patients, the relationship 

with the outcome risk becomes exponential.5 The second pattern is characteristic of serum 

sodium, and to a lesser extent of serum creatinine and bilirubin, and consists in a narrow range 

in which there is a linear relationship, but with exponential increase in the risk of mortality 

for both abnormally high and low values (“U” shape). To use these parameters in linear models 

such as additive Cox’s regression, previous studies empirically established lower and upper 

bounds between which the relationship with the primary outcome is linear. However, this 

strategy may result in neglecting important prognostic information, particularly for the sickest 

patients who may require the first positions in the waiting list. This was confirmed in the sub-
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analysis of patients with at least one variable outside the linear range, in which GEMA-AI 

was the only adequately calibrated model and showed the greatest advantage on 

discrimination, even over GEMA-Na. 

Another advantage of non-linear methodologies, and particularly of ANNs, is their ability 

to identify patterns of combinations of values that are associated with an increased risk of 

death or delisting due to clinical worsening. While linear models give a fixed weight to each 

variable irrespective of its value or the value of other variables in the model, ANNs could 

capture specific combinations to modulate the weighting.19 For instance, GEMA-AI identified 

the combination of severe sodium alterations and low RFH-GFR as a pattern associated with 

very high risk of the primary outcome, particularly in the presence of moderate-severe ascites, 

and therefore granted maximal priority to these patients (appendix p33). This observation is 

supported by previous studies in which the subgroup of patients with refractory ascites and 

hyponatremia were identified as insufficiently prioritized by the current linear models.20,21 

Although ANNs allow to consider a large number of variables to refine clinical predictions, it 

would also make the score more complex and prevent explainability. Our approach restricted 

the input variables to those already contained in previous scores and enabled full 

explainability, which could facilitate its implementation in clinical practice. 

The implementation of GEMA-AI would have a significant impact on the waiting list 

composition, with a varying extent depending on the model in effect. The position in the 

waiting list would change by ≥2 score points in 27.8%-67.7% of patients. Differential 

prioritization between GEMA-AI vs MELD-Na and MELD 3.0 would be 15.1% and 15.9%, 

respectively, but to some extent, this could be explained because these models used different 

covariates: GEMA-AI included RFH-GFR and ascites instead of creatinine, and MELD 3.0 

had sex and albumin. The comparison of GEMA-AI with GEMA-Na found differential 

prioritization in 6.4% of patients, which truly mirrored the impact of the transition from a 
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linear to a non-linear methodology given that both models shared the same input variables. 

This may be clinically relevant in terms of potential lives saved and demonstrated that the use 

of ANNs allowed refined allocation decisions. An additional finding was that MELD 3.0 did 

not perform better than MELD-Na in these non-US cohorts, and that although it prioritized 

more women, these were not necessarily at higher risk of death. 

There are subgroups of patients who could benefit the most from the implementation of 

this methodology. In recent years, many centers have incorporated Acute-on-Chronic Liver 

Failure (ACLF) grade 2 and 3, and severe acute alcoholic hepatitis unresponsive to 

corticosteroids as new indications for LT.22 Such patients are extremely sick and their 

mortality risk without LT at 90 days is around 80%.23 The analytic values of patients with 

ACLF and severe acute alcoholic hepatitis are often by far outside the bounds established for 

existing scores, resulting in inaccurate predictions of outcomes.24 The use of GEMA-AI in 

these patients could provide them with the priority they deserve according to their actual risk 

of mortality. Another group of interest would be women. There is a historical gender 

imbalance for accessing LT according to which women have to wait longer to receive a liver 

graft, and they show increased risk of delisting for sickness.3,25 GEMA-Na replaced creatinine 

by RFH-GFR and could amend this gender inequity5 but in the present study it seems that 

GEMA-AI could make even more accurate predictions in women. 

The GEMA-Na score was criticized for incorporating the presence of moderate/severe 

ascites in the calculation of RFH-GFR, which is one of its four components. The criticism 

concerns the lack of objectivity in assessing ascites. Although objective assessment of ascites 

can be accomplished with cross-sectional imaging, it is possible that this criticism might 

hinder implementation in certain countries. In order to alleviate these concerns, we tested an 

iteration of the GEMA-AI score which did not take into account the presence of ascites. We 

are pleased to report that even without ascites, the score still performed better than MELD-
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Na and MELD 3.0. This iteration can be used in healthcare systems where the presence of 

ascites is considered too subjective for inclusion in an organ allocation score. 

This study is not without limitations. In our efforts to develop an explainable model only 

including objective analytic variables widely available, we may have overlooked other 

relevant clinical or analytical parameters which could have improved the performance of the 

model. As with other transplant scores, GEMA-AI was designed to predict 90-days outcomes 

in the waiting list. Therefore, GEMA-AI should be reassessed at least every 3 months until 

transplant, or earlier than that upon a clinically meaningful change in the patient’s physical 

condition. In addition, the model would require additional validations before implementing in 

allocation systems different from those used in the study. Patients with hepatocellular 

carcinoma and other MELD exceptions may require corrections of the score to allow equitable 

access to transplantation when using GEMA-AI. As the population of LT candidates may 

change over time, periodical performance tests should be performed to update the structure of 

the model if necessary. Finally, we lacked the data to evaluate the effect of implementing 

GEMA-AI on post-LT outcomes.  

In conclusion, GEMA-AI made more accurate predictions of waiting list outcomes than 

the currently available models, and could alleviate gender disparities for accessing LT. The 

iteration of GEMA-AI without ascites also outperformed the MELD family scores and would 

be easier to implement in certain allocation systems. The implementation of GEMA-AI could 

save a significant number of lives and is considered feasible owing to the interpretability of 

the model.  
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Tables 

Table 1: Clinical features of the study population. Descriptive analysis of 9,320 patients enlisted for liver transplantation 

stratified in a derivation cohort from the United Kingdom (n=7,682) and an external validation cohort from Australia 

(n=1,638).  

 

NAFLD: Non-alcoholic fatty liver disease; RFH-GFR: Royal Free Hospital glomerular filtration rate; INR: international normalized 

ratio; MELD-Na: model for end-stage liver disease corrected by serum sodium; MELD 3.0: model for end-stage liver disease 3.0; 

GEMA-Na: gender-equity model for liver allocation corrected by serum sodium; GEMA-AI: gender-equity model for liver allocation 

using artificial intelligence. 

* Albumin and MELD 3.0 were not available in 549 patients from the derivation cohort (7.14%). 

** Mortality or delisting due to clinical deterioration within the first 90 days after inclusion in the waiting list. 

 

 

 

 

 

 

VARIABLE UNITED KINGDOM 

n=7,682 

AUSTRALIA 

n=1,638 

p 

Age  53.22 ± 11.55 53.52 ± 9.28 0.27 

Sex (Women) 2,578 (33.6%) 432 (26.4%) <0.001 

Etiology of liver disease: 

    Alcohol 

    Hepatitis C 

    NAFLD/cryptogenic 

    Primary sclerosing cholangitis 

    Primary biliary cholangitis 

 

 

2,783 (36.2%) 

1,242 (16.2%) 

1,374 (17.9%) 

808 (10.5%) 

633 (8.2%) 

 

474 (28.9%) 

681 (41.6%) 

203 (12.4%) 

87 (5.3%) 

142 (8.7%) 

 

<0.001 

<0.001 

<0.001 

<0.001 

0.57 

Ascites 

    No 

    Mild 

    Moderate-severe 

 

3,285 (42.8%) 

1,986 (25.8%)  

2,411 (31.4%) 

 

616 (37.6%) 

440 (26.9%) 

582 (35.5%) 

 

<0.001 

 

Urea (mmol/L) 5.10 (IQR 3.9-7.1) 6 (IQR 4.0-8.0) 0.09 

Creatinine (µmol/L) 80.13 ± 35.04 84.13 ± 39.14 <0.001 

RFH-GFR (ml/min) 69.81 ± 25.04 66.51 ± 24.99 <0.001 

INR 1.45 ± 0.44 1.63 ± 0.59 <0.001 

Bilirubin (µmol/L) 43.95 (IQR 24-87) 53 (IQR 27-116) <0.001 

Na (mmol/L) 136.24 ± 4.65 136.17 ± 5.04 0.63 

Albumin (g/L)* 31.86 ± 6.61 32.26 ± 6.91 0.034 
MELD-Na 17.25 ± 6.44 18.90 ± 7.65 <0.001 

MELD 3.0* 17.15 ± 6.29 18.80 ± 7.59 <0.001 
GEMA-Na 17.65 ± 5.84 19.39 ± 6.93 <0.001 
GEMA-AI 17.46 ± 5.62 19.13 ± 6.73 <0.001 
Primary outcome** 449 (5.8%) 87 (5.3%) 0.40 
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Table 2: Mathematical definition of the GEMA-AI model. 
Model equation and basis functions Sign of the coefficient 

GEMA-AI = −25.210 × B1 + 21.395 × B2 + 10.592 × B3 – 7.108 × B4 + 29.981 B1(−),B2(+),B3(+),B4(−) 
B1 = B(−3.094 × bilirubin∗ + 2.620 × sodium∗ − 1.961 × INR∗ + 1.594 × RFH-GFR∗ − 3.427) bilirubin∗(−),sodium∗(+),INR∗(−),RFH-GFR∗(+) 

      B2 = B(−7.175 × RFH-GFR∗ + 2.448 × sodium∗ + 1.136 × bilirubin∗ − 6.631) RFH-GFR∗(−),sodium∗(+),bilirubin∗(+) 
      B3 = B(15.596 × sodium∗ + 4.996 × RFH-GFR∗ − 5.524) sodium∗(+),RFH-GFR∗(+) 

B4 = B(13.977 × bilirubin∗ + 11.911 × sodium∗ + 9.137 × RFH-GFR∗ − 4.792 × INR∗ + 3.645) bilirubin∗(+),sodium∗(+),RFH-GFR∗(+),INR∗(−) 
The result of each basis function (B1, B2, B3 and B4) is calculated according to equation 3 in appendix (p4). Basis functions and their input variables 

(INR∗, bilirubin∗, sodium∗ or RFH-GFR∗) are shown ordered according to the absolute value of their coefficients. The ∗ means that each input 

variable was previously scaled in the range [−1,1] (appendix p8). A positive coefficient is represented by (+), whereas (−) represents a negative 

coefficient. 

Table 3: Harrell’s concordance statistics for the distinct models in each cohort of the study. 

Cohort 

GEMA-AI GEMA-Na MELD 3.0 MELD-Na    
Hc Hc Hc Hc p value1 p value2 p value3 

 
Training (whole; 
n=5,762) 

 
 
0.798 (0.772-0.824) 

 
 
0.796 (0.769-0.823) 

 
 
0.770 (0.740-0.800) 

 
 
0.783 (0.755-0.810) 

 
 
0.4945 

 
 
0.0003 

 
 
0.0424 

Training (women; 
n=1,955) 0.824 (0.785-0.864) 0.821 (0.781-0.860) 0.766 (0.718-0.815) 0.784 (0.739-0.829) 0.3872 0.0001 0.0027 
Internal validation 
(whole; n=1,920) 0.781 (0.732-0.829) 0.766 (0.715-0.818) 0.720 (0.657-0.784) 0.742 (0.686-0.797) 0.0354 0.0006 0.0023 
Internal validation 
(women; n=623) 0.826 (0.747-0.905) 0.802 (0.716-0.888) 0.763 (0.660-0.867) 0.779 (0.688-0.871) 0.0487 0.0578 0.0196 
External validation 
(whole; n=1,638) 0.793 (0.741-0.846) 0.774 (0.720-0.827) 0.749 (0.696-0.802) 0.745 (0.690-0.800) 0.0030 0.0005 0.0024 
External validation 
(women; n=432) 
 

0.836 (0.751-0.921) 0.796 (0.698-0.895) 0.732 (0.625-0.839) 0.714 (0.592-0.835) 0.0143 0.0024 0.0048 

Hc=Harrell’s concordance statistic (95% Confidence Interval). Each cohort was analyzed as a whole and also the subgroup of women 

separately. Albumin data was not available for 413 and 136 patients from the training and the internal validation cohorts, respectively, 

and were excluded from comparisons of MELD 3.0 vs GEMA-AI. GEMA-Na=Gender-Equity Model for liver Allocation corrected by serum 

sodium. MELD-Na=Model for End-stage Liver Disease corrected by serum sodium. P values highlighted with boldface denote statistically 

significant differences. 
1 p values of the discrimination comparison of GEMA-AI vs GEMA-Na. 
2 p values of the discrimination comparison of GEMA-AI vs MELD 3.0. 

3 p values of the discrimination comparison of GEMA-AI vs MELD-Na. 
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Figure legends 

 

Figure 1 Graphical representation of GEMA-AI. The ∗ means that each input variable was 

previously scaled in the range [−1,1] as expressed in equation 9 in appendix (p8). B1, B2, B3 

and B4 represent the four basis functions according to equation 3 in appendix (p4). The 

GEMA-AI score is calculated as defined in equation 2 in appendix (p4), then the score is 

rounded to the nearest integer and fitted to the range [6,40]. 

 

 

Figure 2 Re-classification diagram showing patients prioritization of GEMA-AI vs MELD-

Na merging the internal and the external validation cohorts (n=3,558). The number in each 

box represents the percentage of GEMA-AI for a specific MELD-Na score value. The 

diagonal, matching score values of both models, is represented by a gray frame. Above 

diagonal values represent lower GEMA-AI scores compared with MELD-Na, whereas below 

diagonal values higher GEMA-AI scores compared with MELD-Na. 

 

 

Figure 3 Re-classification diagram showing patients prioritization of GEMA-AI vs GEMA-

Na merging the internal and the external validation cohorts (n=3,558). 
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3.915.6 13.91.7 6.111.715.615.615.615.6 11.711.7 13.96.7 13.913.913.9 11.7 11.715.66.7 15.6 11.711.711.713.913.9 15.6 6.113.9 1.16.11.1 13.913.96.7 13.911.7 5.615.613.9 15.6 11.76.7 15.6 11.7 5.66.7 15.66.7 13.911.711.76.7 13.911.713.9 13.913.9 11.7 5.615.6 11.71.7 11.7 6.16.7 11.711.7 3.913.9 6.111.711.76.7 11.76.7 6.7 11.7 13.911.7 11.7 13.96.7 6.115.615.6 11.711.7 13.9 6.111.715.6 11.715.613.9 11.715.6 13.911.7 11.715.6 5.6 3.915.6 3.96.7 13.96.7 11.7 13.91.1 5.613.9 11.7 5.613.913.9 0.615.6 6.115.615.66.7 6.1 3.913.915.613.96.7 13.9 15.6 11.713.9 13.913.9 15.6 13.915.6 13.913.96.7 11.7 13.9 6.15.613.915.613.913.96.7 3.9 1.16.113.913.96.76.7 13.91.7 11.7 3.913.9 5.66.7 13.911.76.7 13.9 5.613.96.76.7 13.913.9 11.711.711.7 5.611.7

12.914.8 5.310.510.5 10.53.8 12.910.510.5 10.512.93.8 5.312.910.510.5 10.51.9 10.5 14.8 10.512.4 14.8 10.514.810.510.5 14.812.4 14.81.9 10.5 14.812.412.4 12.9 10.512.912.910.510.5 1.910.5 12.4 10.512.4 10.510.510.5 10.510.5 10.510.5 5.310.5 10.510.5 10.512.43.8 14.81.4 1.912.4 10.512.4 12.9 10.514.810.5 14.8 5.35.310.5 12.910.5 10.5 0.510.5 10.510.5 5.31 10.510.5 12.910.510.5 12.914.8 10.5 1.91.914.812.412.4 14.8 12.9 10.51.4 12.4 10.510.5 12.4 14.810.5 14.8 5.310.510.5 14.8 10.51.9 10.512.41 12.91.93.8 10.514.814.83.8 0.510.514.812.4 14.8 10.512.912.412.4 10.512.9 0.512.9 10.510.5 10.510.5 10.510.510.5 5.310.5 0.510.5 12.9 5.312.910.5 12.4 14.814.814.814.8 10.510.51.4 12.93.8 10.510.510.5 12.910.5 12.912.914.814.8 5.314.812.4 12.9 10.510.5 10.510.512.4 10.510.5 10.5 10.512.9 10.510.514.8 12.912.914.812.412.4 10.512.4 10.5 5.33.83.8 14.8 12.9 10.512.412.410.5 12.4 14.80.5 10.5
10.3 11.41210.38 14.98 12.6 13.112.614.914.98 12.6 11.4 13.11.1 14.914.9 11.46.9 12.612 12.612 12.612 5.713.11.1 8 10.3 12.66.9 14.98 11.4 5.78 5.78 13.16.96.9 5.710.3 13.114.9121212 12.6 13.110.3 12 5.711.410.3 1.712.610.3 12 13.112.6 5.712 5.713.113.112.6 13.113.112.6 11.412.6 13.110.3 12 11.46.9 11.414.9 11.48 1.712 14.9 13.112 12.614.912 11.414.910.31.1 8 11.41210.310.3 14.912 11.414.9 11.4 13.112 14.914.914.910.3 11.412.614.9 13.112.610.3 11.410.36.90.6 11.4 13.114.914.9 12.614.96.9 14.910.3 12.6 11.411.4 5.7126.9 13.114.914.9 12.61.1 86.9 8 13.113.11210.3 13.110.3 13.186.9 5.7 0.612.66.9 13.114.98 5.712.68 11.41210.3 12 13.114.9 11.46.9 1.712.614.9

11.8 8.717.911.4 17.911.4 12.212.2 78.710.9 8.72.6 11.4 12.217.917.9 710.911.4 11.8 17.911.4 10.9 72.6 11.811.8 17.911.4 12.26.6 8.7 2.212.210.910.96.64.4 17.94.4 11.82.6 12.24.4 8.710.911.4 17.96.6 12.212.211.8 717.9 12.217.917.90.4 8.712.217.92.6 12.2 8.72.22.2 10.9 8.711.411.4 17.917.9 717.911.86.6 10.90.9 17.9 12.211.8 17.910.911.4 11.810.9 17.917.917.9 712.22.2 10.911.4 11.8 717.9 711.811.4 11.84.4 17.9 717.910.9 11.80.9 11.411.4 8.711.811.8 17.917.910.911.4 10.9 17.9 8.712.217.9 712.2 8.710.911.46.62.2 6.66.66.62.20.4 17.9 12.211.811.86.6 12.211.4 710.9 12.217.911.811.80.4 2.278.717.9 12.2 710.9 8.712.212.2 8.712.217.917.911.4 10.910.9 8.712.24.4 11.4 11.811.4 11.811.4 711.4 11.8 17.917.96.6 710.910.9 12.210.9 11.811.4 17.917.911.82.6 8.7 76.6 8.7 2.211.4 8.717.911.8 17.92.6 17.911.811.84.4 2.217.94.4 2.26.6 11.44.4 12.2 8.76.6 17.9 12.210.9 12.2 8.710.96.64.4 10.94.4 12.211.46.6
11.511.5 13.7 4.613.78.44.64.6 11.513.711.5 10.710.712.2 11.513.713.7 12.211.5 12.28.4 10.711.5 11.511.511.5 4.611.511.58.40.8 13.7 10.73.1 13.78.44.6 11.52.3 3.14.6 13.7 12.2 11.511.511.5 12.22.3 10.710.713.7 4.611.510.78.4 11.511.5 11.50.8 11.511.5 12.211.5 12.213.713.7 11.510.712.213.78.4 12.213.74.6 11.51.5 11.5 11.58.4 12.2 10.78.4 10.78.4 11.5 0.813.713.711.511.5 11.53.12.3 13.71.5 11.5 1.511.5 13.711.5 12.2 10.7 11.510.711.511.58.44.6 4.64.68.43.1 11.5 13.7 10.712.212.2 4.612.211.5 11.511.5 12.2 10.7 1.512.2 0.811.5 11.511.5 11.5

10.312.11.2 14.511.5 13.30.6 14.514.511.5 12.1 4.810.311.5 10.314.5 10.97.30.6 10.913.3 2.414.514.513.33.6 10.33.6 13.3 2.414.5 4.811.5 10.314.512.10.6 7.3 12.1 10.314.5 10.910.9 1.210.913.3 4.87.3 10.3 4.813.312.1 14.53.6 7.37.37.3 11.57.3 12.1 13.313.3 1.214.5 10.912.111.5 12.112.13.6 11.57.3 13.31.8 7.3 14.5 4.811.5 10.3 4.81.8 13.3 14.514.512.1 4.81.2 11.5 1.214.5 10.31.8 13.3 14.57.3 11.5 10.9 10.313.3 10.310.910.913.311.5 10.314.513.3 10.310.910.910.912.111.5 13.31.8 10.313.31.8 10.912.17.3 14.512.111.5 10.912.112.1 10.912.1 13.37.31.8 12.1 13.312.1 14.511.5 12.1 10.911.511.5 13.3 2.411.5 2.413.3 10.33.6 14.512.1 14.5 10.311.5 10.311.5 10.9 4.813.3 10.913.3 14.514.5 1.23.6 14.5
7.75.1 10.310.310.3 10.3 12.8 4.34.3 4.312 12.815.4 12.81210.3 15.410.32.6 4.3 15.4 12.85.1 9.4 12.84.3 9.4 15.47.7 2.610.3 12.810.39.4 15.49.4 10.39.4 15.4 12.815.4 12.810.3 10.39.45.1 9.4 15.45.1 12.815.47.7 12.82.6 9.4 10.39.4 12 12.810.3 4.312 12.815.47.7 1210.3 10.3 15.4127.7 10.3 12 12.812.810.34.3 12 2.69.4 12 15.44.3 10.37.7 15.410.35.1 1212 2.6127.77.70.9 5.1 15.410.3 0.92.6 15.4 4.315.410.3 12.810.310.3 12 0.912 15.4 4.39.4 15.410.30.9 7.7

8.41.9 11 9.78.4 116.5 17.5 5.85.83.9 11.7 18.2 2.618.218.2110.6 9.78.4 18.217.5 5.81.9 11 17.5 9.79.73.9 6.5 9.717.517.5 5.85.818.217.511 18.23.90.6 8.48.4 11 18.217.517.53.9 18.28.4 9.71.9 0.611.711.711.7 17.56.5 9.79.78.4 9.78.48.46.5 2.617.511 17.53.9 11.7 18.217.58.4 18.211 18.20.6 18.218.218.218.2 9.79.718.217.5 18.211.711.711.7 17.5 18.211 18.26.5 11 17.517.511.7 2.69.79.711 5.811.76.5 17.517.5 18.218.211.76.5 11.7 2.611.711 17.5 18.211.7 17.511.76.5 11.78.4 17.5 18.211 18.2 9.7 5.818.2113.9 8.4 18.28.4 18.218.2 5.86.5 11.7 17.511 17.5 5.86.5 11.7 17.517.517.51111 17.5 9.7
15.29.1 15.215.219.219.2 214.1 7.1 215.2 14.1 9.114.13 19.2 7.119.2 9.115.219.2 14.19.17.1 7.1 15.215.27.17.1 19.2 14.114.114.17.1 19.2 9.115.2 219.2 15.219.231 7.119.27.1 7.1 9.13 7.1 19.2 15.21 7.119.2 9.114.17.1 9.114.17.1 19.219.27.13 15.29.1 15.29.1 15.2 14.114.1 7.17.119.27.1 9.115.2 7.19.17.1 19.219.29.1 19.219.27.13 14.13 14.19.1 14.19.1 9.115.2 29.19.1

16.3 12.516.316.36.7 12.511.56.7 12.56.7 16.36.7 12.516.36.7 16.3 12.516.316.311.5 16.316.311.51.9 16.316.36.7 16.36.7 16.316.3 16.316.312.5 16.316.36.76.7 12.5 16.311.5 16.31.9 6.7 16.3 12.512.512.5 3.812.512.56.7 16.316.312.5 3.816.311.5 12.5 12.56.7 16.3 16.311.56.7 12.511.5 12.512.512.5 16.311.56.7 12.511.5 12.56.76.7 3.816.36.7 11.5 12.512.5 116.36.7 12.511.511.5 16.36.7 3.82.96.7 12.516.36.7 12.5 2.916.31 2.916.3
18.47.92.6 6.6 18.422.422.415.8 22.415.85.3 18.418.47.92.6 2.618.46.6 3.915.86.6 15.8 22.422.47.9 22.42.6 15.86.6 18.4 1.322.47.9 15.8 1.322.422.4 18.46.6 18.46.6 7.96.6 18.46.6 22.45.36.6 22.422.45.3 15.8 2.615.82.6 15.815.8 22.422.4 18.4 2.62.618.4 3.918.45.3 22.4 3.922.4 18.415.87.9 15.8 18.46.6 22.4

19.78.211.5 3.36.6 8.26.6 3.311.51.6 1.6 19.719.711.5 6.6 3.319.719.719.719.719.7 1.68.2 8.23.319.78.28.2 8.211.5 6.6 3.319.7 1.68.219.7 3.311.5 3.319.711.5 8.28.2 3.311.5
12 22 24 12124 242424 1212 42 2242 12 82424 824 4 8 2242 244 888 24 88 24

6.9 15.513.86.9 5.2 5.213.85.23.4 13.86.9 5.21.7 3.413.8 15.5 5.23.4 13.8 1.75.2 15.515.515.515.5 5.213.813.8 15.5 3.415.56.9 5.2 15.55.2 1.713.8
18.44.1 10.214.3 18.414.3 6.1210.210.2 14.3 18.410.214.310.22 214.3 18.44.1 6.110.2 10.2 8.214.34.1 6.110.2 18.4 8.218.4 8.210.2 10.210.214.3 218.4 4.1 210.2 4.18.210.210.2 18.4 10.218.44.1

8484 1616 816 4 84 4 16 8884 8
25 6.225 25 6.26.2 256.2 25 6.26.22525 256.2 6.2

6.2 18.8 12.518.818.825252525 6.2 12.5
1025 515 5 255 15 55 101010 25 5 52515 255

14.3 7.17.1 21.4 14.321.421.4 14.3 7.1 14.37.17.1 7.17.1
18.29.1 18.29.1 9.19.1 9.19.1

14.314.3 14.3 14.3
11.1 22.211.1 22.2 11.111.1

6.7 206.7 6.720 202020 2013.313.3

25.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.625.6
26.526.526.530.1 26.530.130.130.130.130.130.130.1 26.526.530.130.130.130.130.130.1 26.530.1 26.526.526.526.526.526.530.130.1 26.530.130.1 26.526.530.130.1 26.526.526.530.130.1 26.526.526.530.130.1

31.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.231.2
34.3 25.525.525.525.534.334.334.334.3 25.534.334.3 25.525.534.334.3 25.534.3 25.534.334.3 25.525.525.534.3 25.534.334.3 25.534.334.334.3 25.534.334.3 25.534.334.334.3 25.534.3 25.534.334.334.334.334.334.334.3 25.525.534.334.334.334.3 25.525.525.525.525.525.5

37.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.437.4
27.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.827.8

26.226.226.226.226.226.226.226.226.226.226.226.226.226.226.226.2
26262626262626262626262626

36.236.236.236.236.236.236.236.236.236.236.236.236.236.236.236.236.236.236.236.236.2

28282828282828

31.231.231.231.231.2

27.327.327.3
42.942.942.9

33.333.333.3
26.726.726.726.7
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Re-classification from GEMA-Na to GEMA-AI

GEMA-AI score at listing
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10.510.510.57 10.521.121.121.17 21.121.17 721.1 1.87 21.121.121.1 710.521.121.1 10.5 771.821.1
8.1 9.99.9 5.48.1 7.28.1 5.49.98.18.1 9.9 1.89.97.27.27.2 9.90.9 5.49.9 5.49.98.1 9.98.1 7.2 9.9 1.87.2 5.48.1 7.27.28.1 9.9 5.4

11.5 23.123.111.5 23.1 2.311.5 0.82.311.5 3.123.123.123.1 5.423.111.511.5 23.1 5.4 2.323.123.1 5.45.423.123.123.1 3.123.1 0.823.1 3.123.111.511.511.511.51.5 23.111.5 23.111.5 5.423.123.123.11.5 23.123.123.1 1.523.1 5.411.5 23.1 3.111.5 1.523.123.123.1 5.423.111.5
1.1 1.713.513.52.2 13.513.513.513.513.513.513.513.52.2 13.513.513.5 0.613.5 1.113.513.5 1.12.2 13.5 1.713.5 1.713.513.5 1.113.513.513.52.2 13.5 0.6
5.513.513.513.513.513.50.6 3.7 3.10.6 13.5 0.93.13.7 13.5 5.513.53.7 13.513.513.53.7 13.5 5.55.53.7 13.5 3.1 0.60.613.53.7 5.5 0.95.513.513.5 3.15.53.7 13.5 0.913.5 3.13.7 13.513.513.513.5 3.10.9 13.5 5.513.513.50.9 13.5 5.55.53.7 13.513.513.5 5.513.53.7 13.5 5.55.513.5 3.15.513.5 5.513.5 3.15.55.513.50.9 13.513.513.5 3.113.513.5 3.113.513.5 5.513.513.53.73.7

23.8 60.6 23.823.823.84.2 23.81.2 23.823.8 6623.823.823.8 1.223.8 623.823.8 623.823.823.823.823.823.8 64.2 23.823.823.84.2 23.823.823.84.2 23.823.81.2 623.8 0.623.84.2 23.823.8 623.823.823.8 1.223.823.8 664.24.2 23.823.823.823.8
16.516.50.5 112.2 0.516.51111 6.611 6.611 6.624.224.2 6.616.524.224.224.211 24.224.2 16.524.2 16.511 16.5 6.624.224.224.224.224.224.211 24.2 16.524.2 16.524.2 16.524.2 6.61111 16.524.2 16.516.5 6.66.616.511 6.611 24.224.22.2 16.5 6.624.2 16.524.224.224.2 16.516.524.2 16.524.2 16.524.224.2 16.524.2 6.616.524.2 16.516.524.224.224.224.22.2 24.224.2 16.511 24.224.224.224.2 16.51111 24.211 16.51111 16.524.2 16.5 6.611112.2 16.524.2

12.112.113.1 12.113.1 12.113.12.5 13.1 12.113.113.1 12.112.112.113.113.113.11.5 13.1 12.112.112.112.112.11.5 13.1 12.113.113.113.113.1 313.1 12.112.1 3313.1 12.10.5 13.12.51.5 12.112.1 0.512.113.1 32.5 12.113.1 12.113.1 3313.12.5 13.1 12.112.113.113.113.12.50.5
21.90.5 24 9.21.5 2424242424 9.22421.9 24 4.12 21.921.9 9.221.9 9.224 0.521.9 2421.9 4.19.29.2 4.121.9 2424 4.121.9 9.21.5 2 2421.921.9 2421.9 9.221.9 24242421.9 2421.91.5 9.221.9 9.2242424242421.9 2421.921.921.9 2424 9.2241.5 241.5 4.1242424 9.224 9.2 4.121.91.5 21.921.9 24 0.521.921.9 2421.90.5 9.221.921.9 2421.9 24 4.12 21.9 9.2 4.121.921.921.9 2421.9 2424 9.221.9 24 0.521.9 2421.921.9 9.221.92 2421.9 2421.9 24 9.22421.921.9 2424

15.824.5 9.29.224.5 9.224.5 9.224.5 15.82.7 9.215.815.815.824.5 15.8 9.22.2 24.5 15.824.5 9.224.5 1.124.524.56 24.5 15.862.2 15.824.524.52.70.5 15.8 9.22.7 1.115.8 0.524.5 9.224.5 15.8 9.215.815.815.80.5 15.8 9.215.815.815.80.5 6 15.8 9.215.824.524.5 9.224.5 15.824.5 15.815.8 9.224.524.56 24.560.5 24.52.2 24.524.56 9.224.524.524.56 9.215.824.5 15.815.86 24.524.524.524.56 24.52.2 24.524.5 15.815.824.524.524.52.7 6 24.524.524.562.7 24.5 9.224.524.5
6.1 0.50.5 7.516.81.9 16.86.1 7.516.816.80.5 16.816.816.816.8 7.57.516.816.8 7.516.8 0.96.1 7.516.81.9 16.816.8 7.57.56.1 16.816.8 7.57.51.9 16.816.86.1 16.86.10.90.9 16.816.8 7.57.56.1 16.816.816.86.1 16.86.1 16.816.816.80.5 16.816.8 7.516.8 7.51.9 16.86.16.1 0.96.1 7.516.816.86.1 16.8 7.516.8

10.921.20.5 18.7 10.918.7 21.221.218.7 21.218.7 21.218.70.5 21.221.218.7 10.918.7 10.921.2 10.921.218.7 10.918.7 10.918.70.5 18.718.7 21.22.1 21.221.218.718.718.7 10.921.2 121.221.221.2 10.9 2.121.218.718.7 10.921.2 2.118.7 10.921.218.718.7 21.221.218.7 2.121.23.6 21.221.2 10.910.918.718.718.718.72.1 21.221.218.7 10.921.221.221.2 10.910.918.7 2.110.921.23.6 18.73.6 21.218.718.718.73.6 18.7 10.93.6 21.221.221.22.1 21.221.2 110.93.6 21.218.7 21.221.218.7 10.918.72.1 3.6 21.221.2 10.918.7
15.115.1 11.86.5 11.8 0.511.811.8 3.215.16.5 15.1 11.86.5 3.23.2 0.515.1 11.811.81.1 6.5 11.815.1 11.811.815.115.115.1 3.26.56.5 15.115.1 11.815.1 11.86.5 11.815.115.16.5 11.815.115.1 11.811.811.815.1 11.815.16.5 11.815.115.1 3.215.115.1 11.86.5 3.211.86.5 15.11.1 15.115.1 11.815.115.115.16.5

21.1 7.81.8 21.121.121.121.121.1 7.87.821.121.121.1 0.621.1 7.87.821.1 7.821.121.1 0.621.1 1.821.1 7.821.1 0.621.121.121.13 21.121.1 7.821.1 7.821.13 21.11.8 21.13 21.13 1.87.80.6 21.10.6 7.821.121.13 21.121.1 1.87.821.121.121.11.8 7.821.1
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What you need to know 

Background: Existing models for liver transplant wating list prioritization are built on 

generalized additive Cox regression, which is a linear methodology that neglects 

prognostic information coming from extreme analytical values. 

Findings: Using artificial intelligence in data from two different countries and organ 

allocation systems, we developed and validated the GEMA-AI score, which outperforms 

previous linear models to predict waiting list outcomes.  

Implications for patient care: GEMA-AI is the first externally validated and fully 

explainable machine learning model which could avoid a meaningful number of deaths, 

particularly among historically disadvantaged groups of patients including women, 

individuals with ascites, and to the sickest patients showing extreme analytical values. 
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1 Supplementary Methods

1.1 Overview of liver transplant policies in the United Kingdom and Australia

during the study period

There were similarities and differences of liver transplant practices between the United Kingdom and Aus-

tralia during the study period that should be noted. Deceased donation was the major source of donors for

adults in both countries, being living donors anecdotical. Regarding liver transplant candidates, there was

a male predominance in both countries, although this was more pronounced in the participating Australian

centres (73.6% men, 26.4% women) than in the UK (66.4% men, 33.6% women). The most frequent ethnicity

was Caucasian (88% in the UK and 80.1% in Australia) followed by Asian (7.7% in the UK and 14.4% in

Australia), and Black (6.8% in the UK and 2.5% in Australia). Allocation of donors for adult elective liver

transplantation was centre based in both countries. Donors were offered to centres rather than to named

individuals. If the local centre declined the offer for all patients on its list, the organ would be offered to

centres in other regions. The United Kingdom End Stage Liver Disease (UKELD) score was used in the UK

and the MELD score was used in Australia during the study period. In 2018, the National Liver Offering

Scheme (NLOS) was introduced in the UK, which is an algorithm aimed to balance survival on the waiting

list and survival after liver transplantation [1]. In Australia, the ”Share 35” policy, which grants national

priority to patients with MELD score above 35, was adopted in 2016. Hepatocellular carcinoma was the

most frequent MELD exception in both countries and Milan criteria were observed during the earlier period

of the study. In the UK, the alpha-fetoprotein model [2] replaced Milan criteria in 2014. In Australia, the

UCSF criteria were implemented in 2010 [3]. Downstaging to Milan criteria was allowed both in the UK and

Australia and bridging therapies were performed in the waiting list unless technically unfeasible. Finally,

the probability of death or delisting for sickness at 90 days in the UK was 5.8% while in the participating

Australian institutions was 5.3%.

1.2 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) [4] promotes the development of explainable models that enable

end-users to understand their mechanisms and predictions while maintaining their prediction accuracy, and

is broadly acknowledged as an utmost characteristic for the adoption of Machine Learning (ML) models

based on Artificial Intelligence (AI), especially in healthcare.

Although interpretable by design models (ie, transparent models) are desirable in clinical practice, they

have limitations for modeling non-linear problems, where a XAI model can overcome such limitations. Be-

sides, interpretability can also be considered as a design factor in ML models development that are not

interpretable by design without loss of performance [5].

We used post-hoc XAI techniques for model explanation and understanding. In addition, we considered

some constraints in the model structure as an attempt to develop an intrinsically interpretable model.

1.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) [6] are ML models based on AI that can infer complex learning rules

or non-linear relationships from data using mathematical non-linear functions, often referred to as basis

functions, arranged and interconnected in a layered structure. Usually, this structure is mainly composed of

3

Jo
urn

al 
Pre-

pro
of



one input layer, at least one hidden layer, and one output layer, which are linked by connections between

neurons of contiguous layers. Specifically, in feedforward ANNs the input layer feeds data to the model, which

is non-linearly transformed by basis functions in the hidden layers and, finally, the output layer obtains the

model prediction.

To develop GEMA-AI, we addressed the problem from the point of view of binary classification, with the

class C+ representing the patients who experienced the primary outcome within the 90 days in the waiting list

(ie, primary outcome = 1), and the class C− representing the patients who did not (ie, primary outcome = 0).

Hence, the problem was formulated as follows:

D =
{

(xi, yi) ; i = 1, 2, . . . , n
}
, (1)

where D is the training dataset, xi ∈ X ⊂ R4 represents the vector composed of the four input variables

of the i-th patient, being xT
i = (xi1, xi2, xi3, xi4), with xi1, xi2, xi3, and xi4 standing for INRi, bilirubini,

sodiumi, and RFH-GFRi, respectively; yi ∈ {0, 1} is the target class to predict (ie, class C− or class C+,

respectively); and n is the number of patients in the dataset.

As aforementioned, with the aim of developing an intrinsically interpretable model, favoring its trans-

parency without loss of performance, we considered the following two constraints in the model structure:

1) the number of hidden layers was fixed to one (ie, a shallow model); 2) the maximum number of basis

functions in the hidden layer was fixed to four. Hence, the ANN classification model we considered for

the problem being tackled was composed of three layers: one input layer with four neurons (one for each

analytical predictor), one hidden layer, and one output layer with one linear neuron to predict the class of

each patient. So, the model output was defined as follows:

f(xi,W,β) = β0 +

m∑
j=1

βjBj(xi,wj), (1 ≤ m ≤ 4), (2)

where W = (w1,w2, . . . ,wm); Bj(xi,wj) stands for each basis function in the hidden layer that non-linearly

transforms the input vector xi of the i-th patient; βT = (β0, β1, β2, . . . , βm) represent the synaptic weights

(coefficients) of the connections between neurons of the hidden and the output layers, β0 being the bias;

wT
j = (wj0, wj1, . . . , wj4) are the coefficients of the connections between neurons of the input and the hidden

layers, wj0 being the bias; and m represents the number of basis functions in the hidden layer.

As for the basis functions in the hidden layer, the Sigmoidal Unit (SU) [7] was considered. An ANN

model using SUs as basis functions represents an additive model of non-linear transformations able to learn

problems that are non-linearly separable. Following the notation used in equation 2, SU basis function was

formulated as follows:

Bj(xi,wj) =
1

1 + e−(wj0+
∑4

k=1 wjkxik)
, j = 1, ...,m, (0 ≤ Bj(xi,wj) ≤ 1) . (3)

Therefore, and according to equation 2, the optimization of the proposed ANN model consisted in

estimating from the training dataset D the number m of basis functions in hidden layer along with their

connections, and the values of the parameters W and β, that is, the model structure and synaptic weights.

Finally, to obtain the predicted class of each patient, the model output (equation 2) was transformed
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into a probability using the following softmax transformation:

g(xi,W,β) =
exp(f(xi,W,β))

1 + exp(f(xi,W,β))
, (0 ≤ g(xi,W,β) ≤ 1) , (4)

where g(xi,W,β) represents the probability that patient xi belongs to the positive class, whereas 1 −
g(xi,W,β) is the probability of not belonging to the positive class.

1.4 Neuroevolution

The optimization of ANNs involves both structure and synaptic weights, being a challenging task due to

the numerous local minima they present as a consequence of their convoluted and complex error surface [8].

Backpropagation [9] and other gradient-descent-based algorithms (local optimization techniques) are most

commonly used for ANNs optimization. However, these algorithms present two important shortcomings.

They often get stuck in the local minima presented in the error surface of the ANNs, which makes it

necessary to run the process several times. Moreover, most of them only adjust the synaptic weights of the

ANNs in an iterative process, not their structure. Hence, taking into account that there is no systematic

procedure to automatically design a specific near-optimal structure, many model architectures have to be

empirically evaluated to identify the best possible configuration.

Neuroevolution [10] is a powerful alternative approach to overcome the above referred drawbacks which

leverages Evolutionary Algorithms (EAs) to formulate the optimization task as the evolution of both synaptic

weights and structure in the environment defined by the problem being addressed (ie, the training dataset

D). The evolution of ANNs structure provides an automatic way to discover new structures, allowing ANNs

to dynamically adapt to their environment by inferring learning rules from it [8], that is, relationships

between input variables. The simultaneous evolution of synaptic weights and structure represents a more

efficient way of optimization leading to better results. In addition, EAs maintain a population of ANNs

during evolution, enabling large exploration. Therefore, we used neuroevolution for ANNs optimization, as

it is a rather competitive and robust approach that performs global and adaptive optimization with the goal

of more efficiently exploring the search space and, thus, finding better performance ANNs.

1.5 Hybridization

The efficiency of ANNs optimization can be improved by hybridizing neuroevolution approach and gradient-

descent-based algorithms. We considered a hybrid optimization approach by incorporating a gradient-

descent-based method in the evolution (ie, a hybridization that combines global and local search capabilities

throughout the evolution).

1.6 Hybrid Evolutionary Algorithm

EAs are AI-based metaheuristics that emulate natural evolution, and have shown their robustness and

flexibility to address the optimization of complex problems, even performing competitively with state-of-the-

art reinforcement learning algorithms [11]. EAs use a search scheme based on a population of individuals

(ANNs in this case), which are evolved simultaneously throughout the evolutionary process (search space

exploration) by means of mechanisms inspired in nature. The evolution is based on randomly generated

decisions, and a fitness function evaluates ANNs to guide the process toward better performance ANNs.
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The pseudocode of the Hybrid Evolutionary Algorithm (HEA) used for ANNs optimization is presented

in Algorithm 1 and described below.

Algorithm 1 Hybrid Evolutionary Algorithm

1: create a random population of size Np of ANNs, using the structure defined in equation 2
2: i = 0
3: repeat
4: calculate the fitness of every ANN
5: rank the ANNs according to their fitness
6: if i mod 20 = 0 then
7: apply local search optimization to the best ANN
8: end if
9: replicate the best 10% of the ANNs that substitutes the worst 10%

10: perform parametric mutation to the best 10% of the ANNs
11: perform structural mutation to the remaining 90% of the ANNs
12: i = i+ 1
13: until the stopping criteria are met
14: return the best optimized ANN

The HEA starts creating a random population of ANNs. After that, the population is optimized through

the evolution, which is an iterative process including the following actions: calculation of ANNs fitness

(equation 8) and their ranking, optimization of the best ANN applying local search, substitution of the

worst 10% of ANNs by a replica of the best 10% of ANNs, and parametric and structural mutations of

ANNs. The HEA finishes the evolution when the stopping criteria are fulfilled, returning the best optimized

ANN. Crossover is not considered, as it may be inefficient for ANNs optimization [12, 13].

The main actions related to the evolution of ANNs are described bellow:

� Parametric mutation: updates the synaptic weights of the connections of each ANN by adding Gaussian

noise, and whose variance gradually decreases as evolution progresses to control the strength of changes.

Hence, this type of mutation optimizes the values of W and β parameters of each ANN (equation 2,

more details are provided in Section 1.9).

� Structural mutation: aims to optimize the structure of ANNs (ie, number of neurons in hidden layer

and their connections to contiguous layers) enabling the HEA to explore and discover new structures

while providing ANNs with the way of dynamically adapting to their environment as evolution takes

place. This type of mutation also aims to maintain a diverse population of ANNs, favoring large

exploration of the search space while avoiding getting stuck in possible local minima. To this end, the

HEA applies the following types of structural mutations: neuron deletion, neuron addition, neuron

fusion, connection deletion and connection addition. So, structural mutation optimizes for each ANN

the number m of basis functions in hidden layer along with their connections (equation 2, more details

are provided in Section 1.9).

� Local search optimization: applies local optimization (ie, fine tuning of the values of W and β pa-

rameters estimated throughout parametric mutation) every 20 generations to the best ANN of the

population. The aim of this scheme of optimization is a compromise between efficacy and efficiency,

since one ANN is optimized each time, but throughout the evolution, thus intensifying the exploitation

of the global search to be able to find better and near-optimal ANNs. The method used for this task is

the iRprop+ algorithm [14], which is an adaptive gradient-based algorithm that implements a weight-

backtracking scheme. The iRprop+ is considered a robust algorithm with minimal parameterization
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and has shown great performance in optimizing ANNs of arbitrary structure (more details can be found

in Section 1.10).

To evaluate the ANNs, one could consider cross-entropy as a measure of performance, which is commonly

used in classification problems. However, in imbalanced classification problems, some classes are underrepre-

sented in the training dataset, and cross-entropy can mask a poor performance for the minority class, which

is precisely the most important one. In our case, patients who experienced the primary outcome within

the 90 days in the waiting list (class C+) are much less frequent than patients who did not (class C−). The

Minimum Sensitivity (MS) metric [15] was proposed to correctly estimate the performance in the minority

class, as it calculates the minimum value of the sensitivity among all classes. In this way, in order to increase

the ANNs performance taking into account the minority class, we used a continuous adaptation of the MS

metric based on the maximum cross-entropy individually calculated for each class (ie, the maximum error

obtained among both classes).

On the one hand, the cross-entropy of the positive class C+ was defined as:

LC+ (X,W,β) =− 1

nC+

∑
xi|yi=1

((yi log (g (xi,W,β))) + (1− yi) log (1− g (xi,W,β)))

=− 1

nC+

∑
xi|yi=1

log (g (xi,W,β)) ,

(5)

where XT = (x1,x2, . . . ,xn), and nC+ denotes the number of patients from the positive class.

Similarly, the cross-entropy of the negative class C− was defined as:

LC− (X,W,β) = − 1

nC−

∑
xi|yi=0

log (1− g (xi,W,β)) , (6)

where nC− denotes the number of patients from the negative class.

Then, the maximum cross-entropy error function was formulated as follows:

LMax(X,W,β) = max
{
LC+(X,W,β), LC−(X,W,β)

}
. (7)

Therefore, as the goal of the HEA is to optimize the ANNs by maximizing their performance throughout

the evolution, the fitness function used by the HEA to assess ANNs performance was formulated as a strictly

decreasing transformation of the maximum cross-entropy error function:

A(X,W,β) =
1

1 + LMax(X,W,β)
, (0 < A(X,W,β) ≤ 1) . (8)

1.7 Experimental setup

Since this study aimed to propose one ANN model for waiting list liver transplantation (LT) prioritization,

we performed a large exploration and exploitation (hybridizing global and local search) to find a competitive

and interpretable model.

The settings used for the main parameters of the HEA involved in the optimization of the ANNs were

as follows. The size of ANNs population was Np=1, 000 to perform an extensive exploration, and for the

random initialization of each ANN: the range to select the initial number of neurons was [1, 3], the range
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to initialize the synaptic weights of the connections between input and hidden layers was [−10, 10], whereas

[−5, 5] was the range to initialize the synaptic weights for the connections between hidden and output layers.

For the evolution of each ANN: the range to both select the number of connections and neurons to add or

delete by structural mutation was [1, 2], with 4 being the maximum number of neurons in hidden layer that

an ANN could have. Regarding the iRprop+ local optimizer, applied every 20 generations to the best ANN

of the population, the paremeter configuration was η+ = 1.2, η− = 0.2, ∆0 = 0.0125, ∆min = 0, ∆max = 50

and Epochs = 500. As for the stopping criterion, it was set at a maximum of 500 generations or a maximum

of 10 generations without improving the best fitness, whichever occurred first.

Prior to the evolution, the input variables were scaled in the interval [−1, 1] using the following expression:

x∗ = 2 · x−min(x)

max(x)−min(x)
− 1, (9)

where x is the input variable being scaled, and min(x) and max(x) are the minimum and the maximum

values of x from the training dataset, respectively.

We performed 40 independent runs of the HEA due to its stochastic search and also to carry out a

large exploration. The optimized ANN that obtained, out of all local optimizations from all runs, the best

discrimination by means of the highest Area under the ROC Curve (AUC) in the training dataset was

selected as the GEMA-AI model.

1.8 GEMA-AI output transformation

To compare the performance of GEMA-AI with the reference models for LT prioritization, the output of

GEMA-AI (defined in equation 2) was transformed to follow the same distribution of values than GEMA-

Na, MELD 3.0 and MELD-Na (ie, [6, 40]). To this end, and using the training dataset, the 25th and 75th

quartiles of the GEMA-AI outputs were matched to those of the MELD-Na, as it is the most frequently used

model for LT allocation. Then, the values of the coefficients of βT = (β0, β1, β2, . . . , βm) corresponding to

the linear part of the model were transformed accordingly. GEMA-AI score for each patient was rounded to

the nearest integer and fitted to the range [6, 40].

1.9 Parametric and structural mutations

The goal of mutation mechanisms is to maintain a diverse population of ANNs and to properly exploit them

during evolutionary process. Each ANN in the population is mutated independently. To control the intensity

of ANNs mutations throughout their evolution, each ANN in the population has an associated temperature,

which is expressed as follows:

T (X,W,β) = 1−A(X,W,β), 0 ≤ T (X,W,β) < 1, (10)

where A(X,W,β) is the fitness function defined in equation 8 .

Concerning the parametric mutation, it is applied to the best 10% of the ANNs in the population. It

updates the synaptic weights of the connections of each ANN by adding Gaussian noise and whose variance

gradually decreases as a function of the associated temperature to the ANN being mutated, to control the

intensity of changes as its evolution progresses. Hence, this adaptive variance enables the HEA to shift from

exploring ANNs to exploiting them.
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On the one hand, and following the notation used in equation 2, the synaptic weights of the connections

linking the input and hidden layers are altered as described next:

wjk(t+ 1) = wjk(t) + ξ1(t), k = 1, . . . , 4, j = 1, . . . ,m, (11)

where ξ1(t) ∈ N(0, α1(t) · T (X,W,β)) is a random number obtained from a one dimension normal distri-

bution of 0 mean and α1(t) · T (X,W,β) variance. The objective is to gradually decrease the intensity of

the parametric mutations applied to each ANN as its performance increases. This adaptive mutation is also

controlled using the parameter α1(t), which will be explained later.

On the other hand, the synaptic weights of the connections linking the hidden and output layers are

updated as described next:

βj(t+ 1) = βj(t) + ξ2(t), j = 1, . . . ,m, (12)

where ξ2(t) ∈ N(0, α2(t) ·T (X,W,β)) is similar to ξ1(t), but using α2(t) as the variance control parameter.

Once each ANN is parametrically mutated, its fitness is calculated again, and then, using a simulated

annealing strategy [16], the mutation is finally accepted or discarded. Specifically, considering ∆A as the

difference between the fitness of the ANN before and after being mutated, the mutation is always accepted

if ∆A ≥ 0. Conversely, if the fitness of the ANN mutated is worse than before being mutated, the mutation

is accepted with a probability given by exp(∆A/T (X,W,β)).

The mentioned α1(t) and α2(t) parameters are aimed to determine the intensity of parametric mutations

through the evolution of ANNs, enabling them to infer learning rules from their environment. To this end,

both parameters are dynamically adapted through evolutionary process to avoid getting stuck in possible

local minima and to speed up the convergence of ANNs as long as the conditions of the search space are

appropriate. The adaptation of α1(t) and α2(t) is defined as follows:

αk(t) =


(1 + λ) · αk(t) if A(X,Wg,βg) > A(X,Wg−1,βg−1) ∀g ∈ {t, t− 1, . . . , t− ρ}
(1− λ) · αk(t) if A(X,Wg,βg) = A(X,Wg−1,βg−1) ∀g ∈ {t, t− 1, . . . , t− ρ}

αk(t), otherwise

(13)

where k ∈ {1, 2}, A(X,Wg,βg) corresponds to the fitness of the best ANN in generation g, and λ and ρ

are parameters that manage the change. The values used for these parameters were α1(0) = 0.5 , α2(0) = 1,

λ = 0.1, and ρ = 10. The reason for using the scheme defined in equation 13 is following explained: a

successful generation indicates that the best current ANN is better than the best ANN of the previous

generation. When this happens ρ consecutive times it means that the best ANNs could be located at the

region of the search space being explored. In this situation, the intensity of mutations is raised with the

purpose of finding better and near-optimal ANNs. On the contrary, if the best ANN remains the same for

ρ times, the intensity of mutations is decreased. Otherwise, the intensity of mutations remains unchanged.

As for structural mutation, which is applied to the remaining 90% of the ANNs in the population, it

consists in modifying ANNs structure by deleting or adding hidden neurons and their connections linking

the input and output layers. Hence, this type of mutation enables the HEA to perform a large exploration

of the search space, maintaining the diversity in the population, and allows ANNs to dynamically adapt to

their environment.

The HEA considers five types of structural mutations: neuron deletion, neuron addition, neuron fusion,

connection deletion and connection addition. These types of structural mutations are consecutively applied

to each ANN in the population using a probability given by T (X,W,β). If none of the five structural

mutations is applied because of the probability, one of them is randomly chosen and applied. Then, the
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fitness of the ANN mutated is calculated again.

The structural mutations related to the connections of ANNs are described next:

� Connection addition. A new connection is created between two randomly chosen neurons from con-

tiguous layers using a random synaptic weight. This mutation is firstly applied to connect neurons

between the input and hidden layers, and then between neurons of the hidden and output layers.

� Connection deletion. A connection between neurons of contiguous layers is chosen at random and

deleted. This mutation is also performed on all contiguous layers.

The number of connections involved in both mutations is calculated as ∆min + u · T (X,W,β) · [∆max −
∆min], where u represents a number generated at random in the range [0, 1], and ∆min and ∆max are user-

defined values (specified in Section 1.7) that represent the minimum and maximum number of connections

that can be mutated at a time, respectively.

Finally, the structural mutations related to the neurons of ANNs are described below:

� Neuron addition. A new neuron is added in the hidden layer and connected to two neurons chose at ran-

dom, one of them from the input layer and the other from the output layer. As for the synaptic weights,

they are randomly chosen from user-defined ranges [−I, I] and [−O,O] (specified in Section 1.7) for

the connections from input to hidden and from hidden to output layers, respectively.

� Neuron deletion. One hidden neuron is selected at random and deleted along with its connections.

� Neuron fusion. Two hidden neurons, a and b, are chosen at random and fused into a single hidden

neuron c. Their connections in common are maintained, recalculating the synaptic weights in the

following way:

βc = βa + βb, wck =
wak + wbk

2
. (14)

The connections that are not common to the neurons being fused are inherited by c with a probability

of 0.5, and their synaptic weights remain unchanged.

The number of neurons involved in neuron addition and deletion is obtained as ∆min + u · T (X,W,β) ·
[∆max − ∆min], with ∆min and ∆max being user-defined values (described in Section 1.7) indicating the

minimum and maximum number of neurons that can be mutated at a time, respectively.

Finally, all the mutations applied to each ANN are accepted if the mutated ANN is valid. On the contrary,

if the mutated ANN is invalid, the mutations are discarded, and another parametric or structural mutation

is chosen at random and applied to the original ANN, avoiding the use of repair mechanisms.

1.10 Local search optimization

The purpose of local optimization is to fine adjust the synaptic weights of the ANNs connections, which are

estimated throughout parametric mutation, with the aim of finding better and near-optimal ANNs. This

optimization is applied each 20 generations to the best ANN of the population. The aim of this scheme of

optimization is a compromise between efficacy and efficiency, since one ANN is optimized each time, but

throughout the evolution, thus intensifying the exploitation of the global search. The method used for local

optimization is the iRprop+ algorithm [14], which is an adaptive gradient-based algorithm that implements

a weight-backtracking scheme.
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The iRprop+ algorithm uses individual step-sizes for updating each ANN connection (ie, the change

amount for a particular synaptic weight is individually adapted during the optimization process with the aim

of minimizing variations and maximizing the update change). iRprop+ requires a minimal parameterization,

which controls the step-size adaption along the optimization process, as detailed next:

� ∆0: initial step-size.

� ∆min: step-size lower bound.

� ∆max: step-size upper bound.

� η+: step-size increment factor.

� η−: step-size reduction factor.

The value of each parameter is given in Section 1.7. After each weight update, iRprop+ decides whether

or not to discard the update using both the sign of the partial derivative and the evolution of the ANN error,

thus taking advantage of local and global information, respectively. The iRprop+ is considered a robust

algorithm with respect to its parameters, and has shown great performance in optimizing ANNs of arbitrary

structure.
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2 Supplementary Results

2.1 GEMA-AI model explanation

GEMA-AI (table 2 of the manuscript) comprises four basis functions (B1 to B4), each one with its own

coefficient or synaptic weight (−25.210, 21.395, 10.592 and −7.108, respectively), and the bias (29.981). Each

basis function interacts with input variables by a sigmoidal function defined in equation 3, which performs a

non-linear transformation of the input variables. For example, basis function B3 interacts with sodium∗ and

RFH-GFR∗ (the ∗ means that input variable was previously scaled using equation 9) using the coefficients

15.596 and 4.996, respectively, and the bias −5.524, as follows:

B3([sodium∗,RFH-GFR∗], [15.596, 4.996,−5.524]) = (15)

=
1

1 + e−(15.596×sodium
∗+4.996×RFH-GFR∗−5.524) , (0 ≤ B3 ≤ 1) .

Therefore, GEMA-AI is a linear model of non-linear basis functions whose specific contribution is detailed

below.

As shown in equations 3 and 15, the result of each basis function Bi is in the range [0, 1]. Therefore, as

the result of Bi tends to 1 its contribution increases and, conversely, its contribution decreases as the result

tends to 0. Thus, the higher the absolute value of the coefficient of Bi, the greater the contribution of Bi

to the GEMA-AI score. B1 is the basis function with the highest contribution in GEMA-AI model, whereas

B4 provides the lowest contribution, as their coefficients are −25.210 and −7.108, respectively (table 2 of

the manuscript). In addition, the positive coefficients (+) of B2 and B3 mean that increments in the result

of each basis function lead to increments in the GEMA-AI score. Conversely, the negative coefficients (−)

of B1 and B4 lead to reductions in the GEMA-AI score as their results increase.

Noteworthy, B1 and B4 comprise information of all input variables, whereas B2 and B3 include only

some of them ([RFH-GFR∗, sodium∗, bilirubin∗] and [sodium∗, RFH-GFR∗], respectively). Besides, the

contribution of each input variable differs from one basis function to another according to the absolute value

of the coefficient. For instance, bilirubin∗ has the highest contribution in B1 and B4, and the lowest in

B2. For RFH-GFR∗, the highest contribution is in B2 and the lowest in B1. This aspect highlighted the

non-linear relationship between the input variables and the risk of the primary outcome, so that each basis

function focuses on specific interactions between input variables. This non-linearity was studied by deriving

smoothing splines from the training cohort [17].

Supplementary table 1 summarizes the effect of each input variable in each basis function and, conse-

quently, their effect on the GEMA-AI score. The way in which a particular variable impact on the GEMA-AI

score depends on the sign of two coefficients: that of the input variable and that of the basis function. For

instance, in the basis function B1, which shows itself a negative coefficient (−), the positive coefficients (+)

of sodium∗ and RFH-GFR∗ indicate that the higher the values of these variables, the higher the result of

B1 and therefore, GEMA-AI score decreases. The opposite effect occurs with bilirubin∗ and INR∗ due to

their negative coefficients: the higher their values, the lower the result of B1, which leads to increments in

the GEMA-AI score. Besides, the basis function B3, which shows itself a positive coefficient, the positive

coefficients of sodium∗ and RFH-GFR∗ mean a direct relationship with the GEMA-AI score, contrary to the

effect observed in the basis function B1.

As bilirubin∗ increases, the result of B1 decreases and that of B2 increases, contributing in both cases to
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Supplementary Table 1: Behavior of input variables associated with each basis function and its effect on GEMA-AI score.

Basis function

B1(−) B2(+) B3(+) B4(−)
Input variable Sign B1 GEMA-AI Sign B2 GEMA-AI Sign B3 GEMA-AI Sign B4 GEMA-AI

bilirubin∗ (−) ↓ ↑ (+) ↑ ↑ (+) ↑ ↓
INR∗ (−) ↓ ↑ (−) ↓ ↑
sodium∗ (+) ↑ ↓ (+) ↑ ↑ (+) ↑ ↑ (+) ↑ ↓
RFH-GFR∗ (+) ↑ ↓ (−) ↓ ↓ (+) ↑ ↑ (+) ↑ ↓

The ∗ means that each input variable was previously scaled in the range [−1, 1] using equation 9. A positive coefficient is
represented by (+), whereas (−) represents a negative coefficient. ↑ means that Bi result or GEMA-AI score increments as the
value of the input variable increases, the opposite behavior is represented by ↓ .

higher GEMA-AI score. The opposite behavior of bilirubin∗ is observed in B4, causing reductions in GEMA-

AI score, so it can be said that bilirubin∗ in B4 behaves as a modulation in GEMA-AI score increments.

Concerning INR∗, when its value increases, the result of B1 and B4 decrease, thus increasing the GEMA-AI

score. Regarding the RFH-GFR∗, as its value increases, the result of B1 and that of B4 increase, whereas

the result of B2 decreases, however, in all three cases GEMA-AI score decreases (supplementary table 1).

Conversely, the result of B3 increases and so does the GEMA-AI score. Considering the absolute value of

the coefficient of each basis function, a decrease of the GEMA-AI score would be expected, with RFH-GFR∗

in B3 behaving as a modulation of this reduction.

The analysis of the behavior of sodium∗ is particularly interesting due to its “U” shape relationship

with the primary outcome, which is decreasing monotonous for sodium values lower than 140 mmol/L and

increasing monotonous from this value (supplementary figure 1A). As sodium∗ increases, the result of the

four basis functions increases and especially in B3 due to its higher coefficient of sodium∗. However, GEMA-

AI score only increases in B2 and B3, decreasing in B1 and B4 (supplementary table 1). The reason for

this behavior is that for intermediate values of sodium, GEMA-AI score decreases as a consequence of B1

and B4. Conversely, for extreme values, either high or low, GEMA-AI score increases as a consequence of

B2 and especially B3. The basis functions of GEMA-AI allow to infer the non-linear relationship between

sodium and the primary outcome (supplementary figure 1B) whereas linear models cannot. As shown in

supplementary figures 11, 12, and 13, MELD-Na, MELD 3.0 and GEMA-Na scores reach a plateau at a

sodium value of 140 mmol/L whereas GEMA-AI score continue raising above this threshold.
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Supplementary Figure 1: Comparison of the non-linear relationship of sodium with the risk of the
primary outcome vs the response of the GEMA-AI model to sodium. (A) Relationship between sodium and
the risk of the primary outcome (smoothing spline plotted with the blue line) obtained from the training
cohort (n=5, 762), using generalized additive models. (B) Response of the GEMA-AI model to sodium in
the internal validation cohort (n=1, 920). Each circle represents a patient GEMA-AI score for a specific
sodium value. The color of each circle denotes the percentage of patients matching both score and sodium
value.
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Supplementary Figure 2: Bar calibration diagrams of the GEMA-AI model. The observed and predicted
probabilities for the primary outcome are showed. Deciles of risk were merged into risk groups if necessary
to allow at least two events in each group. The p values correspond to the Greenwood-Nam-D’Agostino test.
(A) Internal validation cohort (n=1, 920). (B) External validation cohort (n=1, 638).
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Supplementary Figure 3: Bar calibration diagram of the GEMA-AI model in women. In this analysis,
the subgroups of women from the internal and external validation cohorts were combined to have a sufficient
number of events to allow meaningful calibration (n=1, 055). The observed and predicted probabilities for
the primary outcome are showed. Deciles of risk were merged into risk groups if necessary to allow at least
two events in each group. The p value corresponds to the Greenwood-Nam-D’Agostino test.
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Supplementary Figure 4: Linear calibration diagrams of the GEMA-AI, GEMA-Na, MELD-Na and
MELD 3.0 models. The observed and predicted probabilities for the primary outcome are showed. Deciles of
risk were merged into risk groups if necessary to allow at least two events in each group. Each circle represents
the intersection between the observed and predicted probabilities of each group. The gray diagonal line
simulates a perfect calibration. GEMA-Na=Gender-Equity Model for liver Allocation corrected by serum
sodium. MELD-Na=Model for End-stage Liver Disease corrected by serum sodium. (A) Internal validation
cohort (n=1, 920), albumin data was not available for 136 patients from this cohort and were excluded from
MELD 3.0 calibration analysis. (B) External validation cohort (n=1, 638).

17

Jo
urn

al 
Pre-

pro
of



0.0 0.1 0.2 0.3 0.4

0
.0

0
.1

0
.2

0
.3

0
.4

Predicted probabilities

O
b

s
e
rv

e
d
 f

re
q

u
e

n
c
ie

s

MELD 3.0

MELD−Na

GEMA−Na

GEMA−AI

Supplementary Figure 5: Linear calibration diagrams of the GEMA-AI, GEMA-Na, MELD-Na and
MELD 3.0 models in women. In this analysis, the subgroups of women from the internal and external
validation cohorts were combined to have a sufficient number of events to allow meaningful calibration
(n=1, 055). Albumin data was not available for 50 patients and were excluded from MELD 3.0 calibration
analysis. The observed and predicted probabilities for the primary outcome are showed. Deciles of risk
were merged into risk groups if necessary to allow at least two events in each group. Each circle represents
the intersection between the observed and predicted probabilities of each group. The gray diagonal line
simulates a perfect calibration. GEMA-Na=Gender-Equity Model for liver Allocation corrected by serum
sodium. MELD-Na=Model for End-stage Liver Disease corrected by serum sodium.
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Supplementary Figure 6: Re-classification diagram showing patients prioritization of GEMA-AI vs
MELD 3.0 merging the internal and the external validation cohorts (n=3, 422). The number in each box
represents the percentage of GEMA-AI for a specific MELD 3.0 score value. The diagonal, matching score
values of both models, is represented by a gray frame. Above diagonal values represent lower GEMA-AI
scores compared with MELD 3.0, whereas below diagonal values higher GEMA-AI scores compared with
MELD 3.0. Albumin data was not available for 136 patients and were excluded from this analysis.
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Supplementary Figure 7: Bar calibration diagram of the GEMA-AI model in patients with at least one
extreme analytical value. The internal and the external validation cohorts were merged (n=3, 558) and a
total of 1, 403 patients (39.4%) were eligible for this analysis. The observed and predicted probabilities for
the primary outcome are showed. Deciles of risk were merged into risk groups if necessary to allow at least
two events in each group. The p value corresponds to the Greenwood-Nam-D’Agostino test.
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Supplementary Figure 8: Bar calibration diagram of the MELD-Na model in patients with at least one
extreme analytical value. The internal and the external validation cohorts were merged (n=3, 558) and a
total of 1, 403 patients (39.4%) were eligible for this analysis. The observed and predicted probabilities for
the primary outcome are showed. Deciles of risk were merged into risk groups if necessary to allow at least
two events in each group. The p value corresponds to the Greenwood-Nam-D’Agostino test.
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Supplementary Figure 9: Bar calibration diagram of the MELD 3.0 model in patients with at least one
extreme analytical value. The internal and the external validation cohorts were merged (n=3, 422) and a
total of 1, 337 patients (39.1%) were eligible for this analysis. The observed and predicted probabilities for
the primary outcome are showed. Deciles of risk were merged into risk groups if necessary to allow at least
two events in each group. The p value corresponds to the Greenwood-Nam-D’Agostino test. Albumin data
was not available for 136 patients and were excluded from this analysis.
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Supplementary Figure 10: Bar calibration diagram of the GEMA-Na model in patients with at least one
extreme analytical value. The internal and the external validation cohorts were merged (n=3, 558) and a
total of 1, 403 patients (39.4%) were eligible for this analysis. The observed and predicted probabilities for
the primary outcome are showed. Deciles of risk were merged into risk groups if necessary to allow at least
two events in each group. The p value corresponds to the Greenwood-Nam-D’Agostino test.
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Supplementary Figure 11: Response of the MELD-Na model to sodium in the internal validation cohort
(n=1, 920). Each circle represents a patient MELD-Na score for a specific sodium value. The color of each
circle denotes the percentage of patients matching both score and sodium value.
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Supplementary Figure 12: Response of the MELD 3.0 model to sodium in the internal validation cohort
(n=1, 784). Each circle represents a patient MELD 3.0 score for a specific sodium value. The color of each
circle denotes the percentage of patients matching both score and sodium value. Albumin data was not
available for 136 patients and were excluded from this analysis.
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Supplementary Figure 13: Response of the GEMA-Na model to sodium in the internal validation cohort
(n=1, 920). Each circle represents a patient GEMA-Na score for a specific sodium value. The color of each
circle denotes the percentage of patients matching both score and sodium value.
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Supplementary Table 2: Harrells’ concordance statistics and 95% confidence intervals (in brackets) for each
model in the different subgroups of interest in the whole study cohort.

Cohort n MELD-Na MELD 3.0 GEMA-Na GEMA-AI

Alcoholic liver disease 3, 257
0.736

(0.696-0.775)
0.734

(0.694-0.775)
0.753

(0.714-0.792)
0.758

(0.719-0.797)

Chronic hepatitis C 1, 923
0.775

(0.724-0.826)
0.777

(0.726-0.829)
0.782

(0.731-0.833)
0.796

(0.747-0.845)

NAFLD/cryptogenic cirrhosis 1, 577
0.761

(0.705-0.816)
0.756

(0.699-0.812)
0.781

(0.728-0.833)
0.773

(0.719-0.828)

Primary biliary cholangitis 775
0.762

(0.680-0.844)
0.743

(0.657-0.829)
0.788

(0.710-0.865)
0.801

(0.726-0.875)

Primary sclerosing cholangitis 895
0.823

(0.748-0.898)
0.799

(0.712-0.886)
0.855

(0.786-0.924)
0.856

(0.790-0.922)

NAFLD: Non-alcoholic fatty liver disease.
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Supplementary Table 3: Brier scores for the distinct models in each cohort of the study.

GEMA-AI GEMA-Na MELD 3.0 MELD-Na

Cohort Brier Score Brier Score Brier Score Brier Score

Training 0.0516 (0.0455-0.0577) 0.0510 (0.0447-0.0570) 0.0536 (0.0471-0.0602) 0.0528 (0.0467-0.0590)
(whole; n=5, 762)
Training 0.0483 (0.0385-0.0582) 0.0480 (0.0382-0.0579) 0.0531 (0.0421-0.0642) 0.0519 (0.0417-0.0621)
(women; n=1, 955)
Internal validation 0.0541 (0.0435-0.0646) 0.0534 (0.0429-0.0639) 0.0525 (0.0415-0.0635) 0.0549 (0.0443-0.0656)
(whole; n=1, 920)
Internal validation 0.0447 (0.0283-0.0611) 0.0461 (0.0294-0.0627) 0.0498 (0.0315-0.0681) 0.0491 (0.0319-0.0663)
(women; n=623)
External validation 0.0439 (0.0342-0.0536) 0.0454 (0.0356-0.0553) 0.0472 (0.0370-0.0574) 0.0474 (0.0372-0.0576)
(whole; n=1, 638)
External validation 0.0439 (0.0250-0.0627) 0.0452 (0.0259-0.0645) 0.0491 (0.0284-0.0698) 0.0493 (0.0285-0.0700)
(women; n=432)

Brier Score (95% Confidence Interval). Each cohort was analyzed as a whole and also the subgroup of women separately.
Albumin data was not available for 413 and 136 patients from the training and the internal validation cohorts, respectively,
and were excluded from MELD 3.0 Brier score calculations. GEMA-Na=Gender-Equity Model for liver Allocation corrected
by serum sodium. MELD-Na=Model for End-stage Liver Disease corrected by serum sodium.
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Supplementary Table 4: Clinical characteristics of prioritized patients according to the model
used. The p values denote comparisons between patients differently prioritized by GEMA-Na vs
GEMA-AI.

Variable Transplanted both
(n=3, 485)

GEMA-Na
transplanted

(n=240)

GEMA-AI
transplanted

(n=240)

p value

Age 53.08± 10.53 49.74± 12.18 56.35± 9.41 <0.001

Sex (women) 1, 253 (36.0%) 69 (28.8%) 92 (38.3%) 0.026

Ascites (Moderate-
severe)

1, 805 (51.8%) 64 (26.7%) 121 (50.4%) <0.001

Urea (mmol/L) 6.7 (IQR 4.7-10.0) 4.1 (IQR
3.20-5.28)

8.5 (IQR 6.4-11.3) <0.001

Creatinine (µmol/L) 95.80± 48.47 66.13± 19.44 106.60± 34.59 <0.001

RFH-GFR
(mL/min)

54.69± 21.82 84.32± 24.84 46.35± 14.61 <0.001

INR 1.78± 0.60 1.68± 0.34 1.27± 0.29 <0.001

Bilirubin (µmol/L) 92 (IQR 49-180) 87.02 (IQR
63.50-132.50)

23 (IQR
16.07-33.00)

<0.001

Sodium (mmol/L) 132.82± 4.96 137.01± 3.12 135.02± 4.58 <0.001

Albumin (g/L)1 30.02± 6.50 28.73± 5.33 33.11± 5.45 <0.001

Primary outcome2 396 (11.4%) 7 (2.9%) 16 (6.7%) 0.054

p values highlighted with boldface denote statistically significant differences.
RFH-GFR: Royal-Free Hospital Glomerular Filtration Rate.
INR: International normalized ratio.

1 Albumin was not available in 206 patients in this analysis.
2 Mortality or delisting due to clinical deterioration within the first 90 days after inclusion in the

waiting list.
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Supplementary Table 5: Clinical characteristics of prioritized patients according to the model used.
The p values denote comparisons between patients differently prioritized by MELD 3.0 vs GEMA-AI.
Patients transplanted with missing albumin at waitlist inclusion were excluded (n=198).

Variable Transplanted both
(n=2, 933)

MELD 3.0
transplanted

(n=594)

GEMA-AI
transplanted

(n=594)

p value

Age 52.58± 10.55 47.68± 13.22 57.51± 8.44 <0.0001

Sex (women) 1, 059 (36.1%) 269 (45.3%) 216 (36.4%) 0.002

Ascites (Moderate-
severe)

1, 479 (50.4%) 110 (18.5%) 348 (58.6%) <0.0001

Urea (mmol/L) 6.30 (IQR
4.40-9.60)

3.60 (IQR
2.90-4.62)

8.40 (IQR
6.5-11.0)

<0.0001

Creatinine (µmol/L) 93.36± 47.48 57.98± 15.51 100.63± 25.69 <0.0001

RFH-GFR
(mL/min)

56.59± 22.70 94.26± 25.55 46.02± 11.69 <0.0001

INR 1.84± 0.62 1.59± 0.33 1.36± 0.28 <0.0001

Bilirubin (µmol/L) 104.99 (IQR
59.00-198.51)

95 (IQR
70.96-141.07)

29 (IQR
20.00-43.94)

<0.0001

Sodium (mmol/L) 132.66± 5.13 137.94± 3.00 133.95± 3.86 <0.0001

Albumin (g/L) 29.64± 6.50 27.88± 5.11 32.81± 5.75 <0.0001

Primary outcome1 319 (10.9%) 15 (2.5%) 51 (8.6%) <0.0001

p values highlighted with boldface denote statistically significant differences.
RFH-GFR: Royal-Free Hospital Glomerular Filtration Rate.
INR: International normalized ratio.

1 Mortality or delisting due to clinical deterioration within the first 90 days after inclusion in the
waiting list.
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Supplementary Table 6: Clinical characteristics of prioritized patients according to the model used.
The p values denote comparisons between patients differently prioritized by MELD-Na vs GEMA-AI.

Variable Transplanted both
(n=3, 164)

MELD-Na
transplanted

(n=561)

GEMA-AI
transplanted

(n=561)

p value

Age 52.58± 10.56 48.07± 12.76 57.35± 9.09 <0.0001

Sex (women) 1, 075 (34.0%) 168 (29.9%) 270 (48.1%) <0.0001

Ascites (Moderate-
severe)

1, 619 (51.2%) 125 (22.3%) 307 (54.7%) <0.0001

Urea (mmol/L) 6.40 (IQR
4.50-9.70)

3.70 (IQR
2.90-4.60)

8.80 (IQR
6.80-11.65

<0.0001

Creatinine (µmol/L) 94.79± 50.05 58.73± 15.02 106.08± 30.27 <0.0001

RFH-GFR
(mL/min)

56.01± 22.33 91.15± 25.64 43.68± 11.64 <0.0001

INR 1.82± 0.61 1.63± 0.35 1.32± 0.23 <0.0001

Bilirubin (µmol/L) 100 (IQR
54.03-195.99)

82.08 (IQR
53.01-126.00)

29 (IQR
19.00-47.51)

<0.0001

Sodium (mmol/L) 132.53± 4.93 136.35± 2.86 135.67± 4.39 0.002

Albumin (g/L)1 29.89± 6.50 28.77± 5.46 32.05± 6.08 <0.0001

Primary outcome2 365 (11.5%) 18 (3.2%) 47 (8.4%) <0.0001

p values highlighted with boldface denote statistically significant differences.
RFH-GFR: Royal-Free Hospital Glomerular Filtration Rate.
INR: International normalized ratio.

1 Albumin was not available in 228 patients in this analysis.
2 Mortality or delisting due to clinical deterioration within the first 90 days after inclusion in the

waiting list.
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Supplementary Table 7: Results of sensitivity analysis considering all patients as
not having ascites when estimating RFH-GFR within the GEMA-AI equation.

GEMA-AI GEMA-AI without ascites

Cohort Hc Hc p value1

Training 0.798 (0.772-0.824) 0.797 (0.771-0.823) 0.2222
(whole; n = 5, 762)
Training 0.824 (0.785-0.864) 0.821 (0.781-0.860) 0.0295
(women; n = 1, 955)
Internal validation 0.781 (0.732-0.829) 0.778 (0.729-0.827) 0.2538
(whole; n = 1, 920)
Internal validation 0.826 (0.747-0.905) 0.827 (0.748-0.906) 0.5399
(women; n = 623)
External validation 0.793 (0.741-0.846) 0.789 (0.736-0.841) 0.0111
(whole; n = 1, 638)
External validation 0.836 (0.751-0.921) 0.830 (0.745-0.916) 0.1646
(women; n = 432)

Hc=Harrell’s concordance statistic (95% Confidence Interval). Each cohort was
analyzed as a whole and also the subgroup of women separately. P values high-
lighted with boldface denote statistically significant differences.

1 p values of the discrimination comparison of GEMA-AI vs. GEMA-AI without
ascites.
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Supplementary Table 8: Data from selected patients in the database who had extreme
analytical values and died awaiting liver transplantation or were excluded from the waiting
list due to clinical worsening. The prioritization scores according to the different models
evaluated are shown.

Variable Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Creatinine (µmol/L) 145 65 400 266 194

Sodium (mmol/L) 142 153 128 139 153

Bilirubin (µmol/L) 845.08 40.00 419.98 10.94 338.07

INR 1.8 1.7 1.1 1.4 2.1

RFH-GFR (mL/min) 24.61 50.15 13.15 16.38 24.80

Ascites (Moderate-severe) Yes Yes No Yes Yes

MELD-Na 32 16 35 21 34

MELD 3.0 37 16 34 21 35

GEMA-Na 34 19 34 22 33

GEMA-AI 40 24 38 24 40

INR: International normalized ratio.
RFH-GFR: Royal-Free Hospital Glomerular Filtration Rate.
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Creatinine* 100 μmol/L

Bilirubin* 120 μmol/L

INR* 1.8 INR Bilirubin (μmol/L) Sodium (mmol/L) RFH-GFR (mL/min)

Sodium* 140 mmol/L 1.8 120 140 30.71
Urea* 20 mmol/L

Gender* Female

Age* 56.00 Years

Ascites* (Moderate or Severe) Yes

RFH-GFR** 30.71 mL/min

* Values required for calculations.
** The RFH-GFR model is automatically calculated.

GEMA-AI predictors value after applying thresholds

GEMA-AI
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