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We study sound-soft time-harmonic acoustic
scattering by general scatterers, including fractal
scatterers, in 2D and 3D space. For an arbitrary
compact scatterer Γ we reformulate the Dirichlet
boundary value problem for the Helmholtz equation
as a first kind integral equation (IE) on Γ involving
the Newton potential. The IE is well-posed, except
possibly at a countable set of frequencies, and
reduces to existing single-layer boundary IEs whenΓ is the boundary of a bounded Lipschitz open set,
a screen, or a multi-screen. When Γ is uniformly
of d-dimensional Hausdorff dimension in a sense
we make precise (a d-set), the operator in our
equation is an integral operator on Γ with respect
to d-dimensional Hausdorff measure, with kernel the
Helmholtz fundamental solution, and we propose
a piecewise-constant Galerkin discretization of the
IE, which converges in the limit of vanishing mesh
width. When Γ is the fractal attractor of an iterated
function system of contracting similarities we prove
convergence rates under assumptions on Γ and the IE
solution, and describe a fully discrete implementation
using recently proposed quadrature rules for singular
integrals on fractals. We present numerical results for
a range of examples and make our software available
as a Julia code.
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1. Introduction
This paper, prepared in large part during a recent Isaac Newton Institute programme on
multiple wave scattering, is concerned with the classical problem of scattering of time-harmonic
acoustic waves in ℝn, n = 2 or 3, by a scatterer Γ (assumed to be a compact subset of ℝn)
that may have multiple components or other complicated geometrical features. We consider
the sound-soft case, where the total field ut vanishes on Γ and satisfies the Helmholtz equa-
tion (Δ + k2)ut = 0 for some wavenumber k > 0 in the open set Ω := ℝn ∖ Γ. Our focus is on
integral equation (IE) formulations of this scattering problem and their numerical solution.1

Our particular interest is in scattering by fractals, which provide a model for the multi-scale
roughness of many natural and man-made scatterers.

In a sequence of recent papers [1–3] we studied scattering by fractal planar screens (i.e.
scattering in ℝn by fractal subsets of ℝn − 1). In the current paper, we show how the results of [1–
3] can be generalized to scattering by fractal subsets of ℝn that are not contained in a hyperplane.
This is a significant novelty compared with previous contributions, greatly extending the class
of scatterers to which our results apply. This generalization complicates the analysis because
when the scatterer is a planar screen as in [1–3], irrespective of its smoothness, the scattering
problem can be written as a coercive (sign-definite) variational problem by the results in [4–6],
while in the general case considered here the integral operators involved are compact perturba-
tions of coercive ones, and we have to resort to Fredholm theory. This generalization also forces
us to use a novel Sobolev space setting for the IE. On the other hand, for the case where the
scatterer is a planar screen, the analysis carried out here is in certain respects a simplification
of that in [1–3], as the trace operator from ℝn to a hyperplane (see lemma 3.11) does not play a
role.

The contributions of the paper are several. Firstly, we write down in theorem 3.4 a novel IE
formulation of the problem that applies for any compact Γ ⊂ ℝn. The scattered field is sought as
an acoustic Newton potential u = Aϕ, with an unknown density ϕ on Γ satisfying a first-kind IE

(1.1)Aϕ = g,

for some data g depending on the incident wave. The operator A, defined in (3.11) below, is
a generalization of the classical single-layer boundary integral operator, in cases where this is
well-defined. Importantly, we prove in lemma 3.3 that A is a compact perturbation of a coercive
operator, so that all Galerkin solution methods are convergent, provided A is also injective.
Using this result, in theorem 3.4, we provide an IE-based proof of well-posedness for scattering
by a general compact Γ, generalizing existing IE-based proofs for cases where Ω is Lipschitz or
smoother (e.g. [7, theorem 9.11]).

We focus mostly on the particular case where Γ is a d-set (definition (2.1)), which means
(roughly speaking) that Γ is uniformly of Hausdorff dimension d, for some integer or fractionald ∈ (0,n]. If Γ is a d-set and d ≤ n − 2, then, as we explain in remark 3.5, the scatterer is invisible
to incident waves. To focus on cases where u ≠ 0, we restrict our study to the range n − 2 < d ≤ n.

A range of examples with n − 2 < d ≤ n, relevant to our later discussions and computations, is
pictured in figures 1 and 2. Figure 1 shows examples in 2D space (n = 2), namely: (a) Γ = D is the
closure of a bounded Lipschitz open set D (d = n = 2); (b) Γ = @D is the boundary of the same set
(d = n − 1 = 1); (c) Γ = [0, 1] × {0} is a line segment (d = n − 1 = 1); (d) Γ = [ − 1, 1] × {0} ∪ {0} × [ − 1, 1]
is the cross formed by two line segments, an example of a multi-screen in the sense of [8] (all
such multi-screens are d-sets with d = n − 1); (e) Γ = C × {0}, where C ⊂ [0,1] is the classical
middle-third Cantor set (d = log (2)/ log (3) ≈ 0.6309); (f) Γ is the Koch curve
(d = log (4)/ log (3) ≈ 1.262); (g) Γ is the closure of the Koch snowflake domain (d = 2).

1We note that our methods and results apply, with obvious modifications, to the analogous (yet simpler) problem in
potential theory, in which the Helmholtz equation is replaced by the Laplace equation.
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Examples (c) and (e)–(g) in figure 1 are all fixed points (attractors) of an iterated function
system (IFS) satisfying the standard open set condition (OSC) (we recall these definitions in
§2a). As we recall in §2a, every such IFS attractor is a d-set, with d its fractal (Hausdorff)
dimension. Figure 2 shows examples in 3D space (n = 3) where Γ is an IFS attractor that is a
Sierpinski tetrahedron, with d = 2 and d = log 4/ log (8/3) ≈ 1.41. (We show numerical simula-
tions for scattering by these shapes in §5). These examples make clear that our results include
multiple scattering cases where Γ has a complicated geometry and/or multiple components.
Indeed, the IFS attractor examples in figures 1e and 2b are both fractal cases where the IFS
is disjoint (as defined in §2a) so that Γ is totally disconnected and has uncountably many
components!

A key result, proved in theorem 3.16, important both theoretically and computationally, is
that in the d-set case, we can interpret the Newton potential Aϕ as an integral with respect to
Hd, the d-dimensional Hausdorff measure. Similarly, we show in theorem 3.16 that the operatorA in (1.1) can also be written equivalently as an integral operator A with respect to the Hd
measure.

In certain special cases, our formulation coincides with previously studied IE formulations.
If d = n (e.g. figure 1a,g), so that Hd is n-dimensional Lebesgue measure, A is a volume integral
operator and (1.1) is equivalent to a volume IE on Γ. (Note, however, that, where Ω+ is the
unbounded component of Ω, the solution of (1.1) is always supported in @Ω+ ⊂ @Γ; see remark
3.7). If d = n − 1 and Γ is the whole or part of the boundary of a bounded Lipschitz open set (e.g.
figure 1b,c), or is a multi-screen in the sense of [8] (e.g. figure 1d), then Hd is standard surface
measure (e.g. [9, theorem 3.8]), A is a surface integral operator, specifically an acoustic single-
layer boundary integral operator, and (1.1) is equivalent to a standard first kind boundary IE
(see remark 3.17). Finally, in the case when Γ is a subset of a hyperplane (e.g. figure 1c,e),
our formulation reduces to cases studied recently in [1–3,10,11]. In particular, as already noted

Closure of a

bounded Lipschitz

open set

Boundary of a

bounded Lipschitz

open set

Line segment

screen

Multi-screen

Cantor set screen Koch curve Koch snowflake

(a) (b) (c)

(e) ( f )

(g)

(d)

Figure 1. Examples of d-sets in 2D space (n = 2), with: (a) d = 2; (b) d = 1; (c) d = 1; (d) d = 1;
(e) d = log (2)/ log (3) ≈ 0.63; (f) d = log (4)/ log (3) ≈ 1.26; (g) d = 2. For details, see text of §1.
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above, our results and methods build on those in [3,11], where we study scattering by fractal
planar screens that are d-sets with n − 2 < d ≤ n − 1.

In the d-set case, we show that the integral operator A is a continuous mapping on a scale of
Sobolev spaces on Γ (proposition 3.18), a first step in a regularity theory for solutions of (1.1). In
the d-set case, we are also able to propose (in §4, equation (4.4) in particular) a
piecewise-constant Galerkin IE method (IEM) for the numerical solution of (1.1), which we
prove (in theorem 4.3) is convergent as the mesh size ℎ tends to zero. Moreover, the entries of
the matrix and right-hand side of the linear system defining the Galerkin solution are given
explicitly as double and single integrals, respectively, with respect to Hd measure.

Our IEM is familiar in the case where Γ is the whole or part of the boundary of a bounded
Lipschitz open set, or is a multi-screen in the sense of [8]; our IEM is then a standard Galerkin
boundary element method (BEM) with a piecewise-constant approximation space. In the case
where Γ is a d-set that is a planar screen our IEM coincides with that of [3]; indeed, our linear
system is identical to that in [3, equation (55)].

Our strongest results (see §4a) are for the special d-set case where Γ is the attractor of an
IFS satisfying the OSC (e.g. figures 1c,e–g and 2). In this case, under appropriate assumptions
on Γ, we are able to prove (in theorems 4.4 and 4.5) convergence rates for our IEM. The rate
of convergence depends on the regularity of the solution ϕ. In hypothesis 3.21 and remark 4.6,
we introduce a hypothesis relating to this regularity and detail the resulting convergence rates.
In this case, we also propose in §4b a fully discrete implementation, evaluating our Hausdorff
single and double integrals using recently proposed quadrature methods for singular integrals
on IFS attractors satisfying the OSC [12,13].

In §5, we show computations using our fully discrete Galerkin IEM, solving (1.1) and
computing the scattered field u = Aϕ for scatterers Γ including the examples in figure 2.
This section includes numerical experiments exploring the convergence of our method. These
suggest that our regularity hypothesis (hypothesis 3.21) is true for many of the examples we
study, and that the conditions of theorem 4.4, guaranteeing the validity of our convergence rate
analysis, may be satisfied generally whenever Γ is an IFS attractor satisfying the OSC (establish-
ing this, and proving some version of our regularity hypothesis, are both open problems).

We end this introduction by noting that an alternative approach to the simulation of
scattering by fractals is to approximate the fractal by a smoother ‘prefractal’ scatterer and
apply a more conventional numerical method to the resulting approximate scattering problem.
This was the approach taken in [2,14], and in the earlier work in [15,16] for Laplace and

ρ = 1/2, non-disjoint ρ = 3/8, disjoint

(a) (b)

Figure 2. Sierpinski tetrahedron d-sets in 3D space, attractors of the IFS (2.4) for (a) ρ = 1/2 (d = 2) and (b) ρ = 3/8
(d = log 4/ log (8/3) ≈ 1.41).
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elasticity problems. An achievement of [2,14] was to prove convergence (without rates) of
conventional BEMs for prefractal approximations of fractal planar screen problems, via Mosco
convergence techniques. In principle, a similar analysis could be carried out for the problems
under consideration in the current paper. However, we do not pursue this here.

2. Preliminaries
In this section, we set some notation/terminology, and briefly review a number of known results
that we will use later in the paper. Further details can be found in the references provided.

Throughout, for n ∈ ℕ and E ⊂ ℝn, E, @E and E∘ ≔ E ∖ @E denote the closure, boundary
and interior of E with respect to the standard Euclidean metric on ℝn, and Ec ≔ ℝn ∖ E its
complement in ℝn. In the case that E is measurable, m(E) denotes its n-dimensional Lebesgue
measure. Br(x) ⊂ ℝn denotes the closed ball of radius r centred on x.

(a) Hausdorff measure and dimension, d-sets, iterated function system attractors
For 0 ≤ d ≤ n, let Hd denote the Hausdorff d-measure on ℝn and let dimH(S) ∈ [0,n] denote the
Hausdorff dimension of S ⊂ ℝn (e.g. [17]). For convenience, we adopt the normalization of [9,
definition 2.1], so that Hd coincides with Lebesgue measure for d = n. As in [18, §1.1] and [19,
§3], given 0 < d ≤ n, we say a closed set Γ ⊂ ℝn is a d-set if there exist c2 > c1 > 0 such that

(2.1)c1rd ≤ Hd Γ ∩ Br(x) ≤ c2rd, x ∈ Γ, 0 < r ≤ 1.

We note that d-sets are also termed Ahlfors d-regular or Ahlfors–David d-regular sets, e.g. in [20, p.
92]. We note also that if Γ is a d-set then dimH(Γ) = d.

By an iterated function system of contracting similarities (we abbreviate this whole phrase
as IFS),2 we mean a collection {s1, s2, …, sM}, for some M ≥ 2, where, for each m = 1, …,M,sm : ℝn ℝn, with |sm(x) − sm(y)| = ρm|x − y|, x, y ∈ ℝn, for some ρm ∈ (0,1). The attractor of the
IFS is the unique non-empty compact set Γ satisfying

(2.2)Γ = s(Γ), where s(E) ≔ ⋃m = 1

M sm(E), E ⊂ ℝn .

We shall restrict our attention to OSC-IFSs, i.e. IFSs that satisfy the standard OSC [17, (9.11)],
which implies that the attractor Γ is a d-set (e.g. [19, theorem 4.7]), where d ∈ (0,n] is the unique
solution of ∑m = 1

M (ρm)d = 1. For a homogeneous OSC-IFS, where ρm = ρ ∈ (0,1) for m = 1, …,M, we
have d = log (M)/ log (1/ρ). If an OSC-IFS is not homogeneous, we say it is non-homogeneous.
Returning to the general, not necessarily homogeneous case, the OSC also implies (again, see
[19, theorem 4.7]) that Γ is self-similar, meaning that the sets

(2.3)Γm ≔ sm(Γ), m = 1, …,M,

satisfy Hd(Γm ∩ Γm′) = 0, m ≠ m′, so that Γ is decomposed by (2.2) into M similar copies of itself
whose pairwise intersections have Hausdorff measure zero. For many of our results, we make
the additional assumption that the sets Γ1, …, ΓM are disjoint. If this holds, we say that the IFS
attractor Γ is disjoint, the OSC is automatically satisfied (e.g. [3, lemma 2.5]), and d < n (e.g. [3,
lemma 2.6]). If Γ is not disjoint, we say it is non-disjoint.

The following construction makes clear that if C is an IFS attractor in dimension n − 1, thenC × {0} is an IFS attractor in dimension n.

2A useful introduction to IFSs is Falconer [17, chapter 9]; the website [21] gives many examples of IFSs and their attractors.
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Remark 2.1. (Lifting attractors to higher dimensions). Suppose that M ≥ 2 and that S = {s1, s2,
…,sM} is an IFS on ℝn. For m = 1, …,M, define s~m : ℝn + 1 ℝn + 1 by s~m((x, t)) = (sm(x), ρmt), forx ∈ ℝn, t ∈ ℝ. Then, for m = 1, …,M, s~m is a contracting similarity with the same contraction factor ρm
as sm, so that S={s~1, s~2, …, s~M} is an IFS on ℝn + 1. Further, S  satisfies the OSC/is disjoint if the same
holds for S. If Γ is the attractor of S, then Γ ≔ Γ × {0} = {(x, 0):x ∈ Γ} is the attractor of S , and if the
OSC holds for S then Γ and Γ are both d-sets with the same value of d.

Example 2.2. (Cantor set examples of IFS attractors). Let S = {s1, s2}, where sm : ℝ ℝ,m = 1,  2, are defined, for some ρ ∈ (0,1/2], bys1(t) = ρt, s2(t) = 1 + ρ(t − 1), t ∈ ℝ.

Then, S is a homogeneous IFS with attractor C that is the ‘middle-(1 − 2ρ)’ Cantor set, given by

C = ⋂n = 0

∞ Cn, where C0 ≔ [0, 1], Cn := s(Cn − 1), n ∈ ℕ,

and s is the mapping given by (2.2) on the set of subsets of ℝ. In the case ρ = 1/2, C = Cn = [0,1] for
each n. If 0 < ρ < 1/2, then Cn is a union of 2n disjoint closed intervals and Cn is obtained from Cn − 1

by removing the middle (1 − 2ρ) from each of the intervals comprising Cn − 1. This IFS satisfies the OSC
(see [17, §9.2]), so that (see above) it is a d-set with d = dimH(C) = log (2)/ log (1/ρ). The attractor C is
disjoint if ρ < 1/2. By remark 2.1, C × {0} ⊂ ℝ2, shown for ρ = 1/2 and ρ = 1/3 in figure 1c,e, respectively,
is also the attractor of an IFS, is a d-set with the same value of d, and is disjoint if ρ < 1/2.

Example 2.3 (Koch curve). The Koch curve Γ ⊂ ℝ2, shown in figure 1f, is the attractor of the
homogeneous IFS {s1, s2, s3, s4}, where the mappings sm : ℝ2 ℝ2, m ∈ {1, …, 4}, are given by

s1(x) = x/3, s2(x) = Rx/3 +
1
3

0
, s3(x) = R−1x/3 +

1
2

1
2 3

, s4(x) = x/3 +
2
3

0
,

for x ∈ ℝ2, where R is the (orthogonal) rotation matrix for rotation counter-clockwise by angle π/3. S
satisfies the OSC (e.g. [17, example 9.5]) and so Γ is a d-set with d = log (4)/ log (3) ≈ 1.26. By remark
2.1, Γ × {0} ⊂ ℝ3 is also the attractor of a homogeneous IFS, and is a d-set with the same value of d.

Example 2.4 (Koch snowflake). The Koch snowflake Γ ⊂ ℝ2, shown in figure 1g, is the attractor of
a non-homogeneous IFS of seven contracting similarities satisfying the OSC. It is non-disjoint and has
dimension d = 2. For details, see [13, §5.4].

Example 2.5 (Sierpinski tetrahedron). A Sierpinski tetrahedron Γ ⊂ ℝ3 can be defined, for every
0 < ρ ≤ 1/2, as the attractor of the IFS comprising the four contracting similarities

(2.4)si(x) ≔ xi + ρ(x − xi), i = 1, …, 4,

where the xi are the vertices of a unit tetrahedron, explicitly

x1 = (0,0,0)T, x2 = (1,0,0)T, x3 = (1/2, 3/2,0)T, x4 = (1/2,1/(2 2), 5/(2 2))T.Γ is shown in figure 2 for ρ = 3/8 and ρ = 1/2. It satisfies the OSC, has dimension d = log 4/ log (1/ρ)
and is disjoint for 0 < ρ < 1/2 but not for ρ = 1/2.

(b) Function spaces
In this section, we briefly review some function space definitions and results that will be used in
our scattering problem and its IE formulations. Our notation follows that of [3,7]. Throughout,
our function spaces are spaces of complex-valued functions/distributions.

6

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 481: 20230650
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
10

 F
eb

ru
ar

y 
20

25
 



For s ∈ ℝ, we let Hs(ℝn) denote the usual Bessel potential Sobolev space. For a non-empty
open set Ω ⊂ ℝn, where C0

∞(Ω) is the set of those C∞ functions that are compactly supported
in Ω, we define Hs(Ω) ≔ C0

∞(Ω)Hs(ℝn), a closed subspace of Hs(ℝn). For a non-empty closed setE ⊂ ℝn, we denote by HEs  the set of all elements of Hs(ℝn) whose support is contained in E,
also a closed subspace of Hs(ℝn). We recall that, for s ∈ ℝ, H−s(ℝn) is dual to Hs(ℝn), with the
duality pairing ⟨ ⋅ , ⋅ ⟩H−s(ℝn) × Hs(ℝn) extending the L2(ℝn) inner product,3 and that, with respect to
this same pairing, HE−s is dual to Hs(Ec)⊥, the orthogonal complement of Hs(Ec) in Hs(ℝn), for any
non-empty closed E ⫋ ℝn [10, corollary 3.4].

For non-empty open sets Ω ⊂ ℝn, we also work with the classical Sobolev space W1(Ω),
normed by ‖u‖W1(Ω)

2 = ‖u‖L2(Ω)
2 + ‖∇u‖L2(Ω)

2 , the closed subspace W0
1(Ω) = C0

∞(Ω)
W1(Ω) and their

‘local’ versions W1, loc(Ω) and W0
1, loc(Ω), defined as the sets of measurable functions v on Ω such

that σ|Ωv is in W1(Ω) or W0
1(Ω), respectively, for every σ ∈ C0

∞(ℝn). Similarly, we define local
versions H1, loc(ℝn) and H1, loc(Ω) of H1(ℝn) and H1(Ω). We note that H1(ℝn) = W1(ℝn) (and henceH1, loc(ℝn) = W1, loc(ℝn)) and that H1(Ω) = W0

1(Ω) (and hence H1, loc(Ω) = W0
1, loc(Ω)) for arbitrary

non-empty open Ω ⊂ ℝn, with the latter identification involving the restriction operator, with
extension by zero as its inverse.

Finally, for compact Γ ⊂ ℝn, let C0, Γ∞  denote the set of functions in C0
∞(ℝn) that equal one in a

neighbourhood of Γ.

3. Scattering problem and integral equation formulations
Let Γ ⊂ ℝn (n = 2,3) be non-empty and compact and let k > 0. We consider the time-harmonic
acoustic scattering of an incident wave ui by Γ, a sound-soft obstacle. We assume that the
incident wave ui is an element of W1, loc(ℝn) = H1, loc(ℝn) satisfying the Helmholtz equation

(3.1)Δu + k2u = 0,

in a distributional sense in some neighbourhood of Γ (so that ui is C∞ in that neighbourhood
by elliptic regularity, e.g. [22, theorem 6.3.1.3]); for instance, ui might be the plane waveui(x) = eikϑ ⋅ x for some ϑ ∈ ℝn with |ϑ| = 1). Where Ω ≔ Γc = ℝn ∖ Γ, we seek a scattered fieldu ∈ W1, loc(Ω) satisfying (3.1) in a distributional sense in Ω (so that u ∈ C∞(Ω) by elliptic
regularity), the Sommerfeld radiation condition

(3.2)@u(x)
@ r − iku(x) = o(r−(n − 1)/2), r ≔ |x| → ∞,  uniformly in x ≔ x/ |x | ,

and the boundary condition u = −ui on @Ω = @Γ, enforced by requiring that the total field

(3.3)ut ≔ u + ui ∈ W0
1, loc(Ω) .

Note that @Ω = Γ if and only if Γ has empty interior.
This problem, which we will refer to as our scattering problem, is uniquely solvable in the

case that Ω is connected (e.g. [23, §3]). Figure 1, with the exception of (b), and figure 2 are all
examples of such cases. However, to understand the well-posedness of our IE formulation, we
also want to allow cases (such as figure 1b) where Ω is not connected, in which case Ω = Ω+ ∪ Ω−,
where Ω± are disjoint open sets, with Ω+ the unbounded component of Ω and Ω− a bounded
open set. In such cases, the above problem decouples into a uniquely solvable scattering
problem for u|Ω+ ∈ W1, loc(Ω+) and the homogeneous Dirichlet problem that ut|Ω− ∈ W0

1(Ω−)
satisfies (3.1) in Ω−. Thus, if Ω is not connected, our scattering problem is uniquely solvable
(with ut = 0 and u = −ui in Ω−) if and only if k2 is not a Dirichlet eigenvalue of −Δ in Ω−. We

3Note that all our distributions and dual spaces are anti-linear rather than linear to suit our complex Hilbert space setting.
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will frequently assume that k is not one of these exceptional values, making the following
assumption.

Assumption 3.1. The only v ∈ W0
1, loc(Ω) satisfying (3.1) in Ω := Γcand (3.2) is v = 0.

Remark 3.2. We emphasize that assumption 3.1 holds for all k > 0 if Ω is connected, and that if Ω
is not connected, in which case Ω = Ω+ ∪ Ω−, where Ω± are the disjoint open sets defined above, then
assumption 3.1 holds if and only if there is no non-trivial v ∈ W0

1(Ω−) that satisfies (3.1) in Ω−, which
holds for all k > 0 outside a countable set whose only accumulation point is infinity.

In the case that assumption 3.1 holds, and where u is the unique solution to the above
scattering problem and ut ≔ u + ui ∈ W0

1, loc(Ω), it proves convenient to extend ut by zero from
Ω to ℝn so that (as noted in §2b) ut ∈ H1, loc(Ω) ⊂ H1, loc(ℝn). We can correspondingly extend
the definition of u from Ω to ℝn, by setting u ≔ ut − ui ∈ H1, loc(ℝn) (so that u = −ui on Γ almost
everywhere with respect to n-dimensional Lebesgue measure). We will assume these exten-
sions hereafter, so that u and ut are defined (almost everywhere) on ℝn and u,ut ∈ H1, loc(ℝn).
Alternatively, one can require from the outset that u ∈ H1, loc(ℝn) and satisfies (3.1) in Ω and (3.2)
and that ut = u + ui ∈ H1, loc(Ω), in which case u|Ω is the unique solution to the above scatter-
ing problem and u = −ui on Γ (almost everywhere with respect to n-dimensional Lebesgue
measure).

Introducing the orthogonal projection operator

(3.4)P : H1(ℝn) → H1(Ω)⊥,

we observe that ut ∈ H1, loc(Ω) if and only if P(σut) = 0 for some, and hence every,4 σ ∈ C0, Γ∞ , in
other words, if and only if

(3.5)P(σu) = g,

where

(3.6)g := −P(σui).
Thus, (3.5) is an alternative formulation of the boundary condition that u = −ui on Γ, equivalent
to the requirement that ut ∈ H1, loc(Ω).

To summarize, our scattering problem can be stated as follows: find u ∈ H1, loc(ℝn) satisfying
(3.1) in Ω, (3.2) and (3.5). We now reformulate this problem as an IE.

(a) The integral equation on general compact sets
In what follows, A will denote the standard acoustic Newton potential operator, defined for
compactly supported ϕ ∈ L2(ℝn) = H0(ℝn) by

(3.7)Aϕ(x) = ℝnΦ(x, y)ϕ(y) dy, x ∈ ℝn,
where Φ(x, y) ≔ eik|x − y|/(4π |x − y| ) (n = 3), Φ(x, y) ≔ i

4H0
(1)(k|x − y| ) (n = 2), is the standard

fundamental solution of the Helmholtz equation, and H0
(1) is the Hankel function of the first

kind of order zero (e.g. [24, equation (10.4.3)]). It is standard (e.g. [25, theorem 3.1.2]) that, fors ∈ ℝ, in particular for s = 0, A is continuous as a mapping

(3.8)A : Hcomp
s − 1 (ℝn) Hs + 1, loc(ℝn),

4If σ1,σ2 ∈ C0, Γ∞  then σ1 = σ2 on some open set G ⊃ Γ, so that, for υ ∈ H1, loc(ℝn), (σ1 − σ2) υ∈ Hℝn ∖ G1 ⊂ H~1(Ω), so that P((σ1 − σ2) υ) = 0.
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where, for s ∈ ℝ, Hcomp
s (ℝn) is the space of compactly supported elements of Hs(ℝn). Further

(e.g. [25, theorem 3.1.4]),

(3.9)(Δ + k2)Aϕ = A(Δ + k2)ϕ = −ϕ, ϕ ∈ Hcomp
−1 (ℝn).

Viewing A as an operator A :HΓ−1 → H1, loc(ℝn) = W1, loc(ℝn), we have that

(3.10)Aϕ(x) = ⟨σΦ(x, ⋅ ), ϕ⟩H1(ℝn) × H−1(ℝn), x ∈ Ω,

where ϕ denotes the complex conjugate of ϕ and σ is any element of C0, Γ∞  with x ∉ suppσ. We
define the operator A:HΓ−1 → H1(Ω)⊥ = (HΓ−1)∗ (the latter equality holding by [10, corollary 3.4])
by

(3.11)Aϕ ≔ P(σAϕ), ϕ ∈ HΓ−1,

with σ ∈ C0, Γ∞  arbitrary. We also define the associated sesquilinear form a( ⋅ , ⋅ ) on HΓ−1 × HΓ−1 by

(3.12)a(ϕ,ψ) ≔ ⟨Aϕ,ψ⟩H1(ℝn) × H−1(ℝn), ϕ,ψ ∈ HΓ−1 .

This form is compactly perturbed coercive, meaning that the operator A:HΓ−1 → H1(Ω)⊥ is a
compact perturbation of a coercive operator (e.g. [2, §2.2] for detailed definitions and discus-
sion). The following lemma is a generalization of [8, propositions 8.7 and 8.8], and our proof is
similar.

Lemma 3.3. Let Γ ⊂ ℝn be compact. The sesquilinear form a( ⋅ , ⋅ ) is continuous and compactly
perturbed coercive on HΓ−1 × HΓ−1, i.e., for some constants Ca,α > 0, and some compact sesquilinear forma~( ⋅ , ⋅ ),

(3.13)|a(ϕ,ψ) | ≤ Ca‖ϕ‖HΓ−1 ‖ψ‖HΓ−1, |a(ϕ, ϕ) − a~(ϕ, ϕ) | ≥ α‖ϕ‖HΓ−1
2 , ϕ,ψ ∈ HΓ−1 .

Proof. Continuity follows immediately from (3.8). Let us temporarily introduce the notations Aκ
and Aκ to denote the operators A and A with k replaced by some complex wavenumber κ. To
prove that a( ⋅ , ⋅ ) is compactly perturbed coercive, we split the associated operator A = Ak asAk = Ai + (Ak − Ai), where Ai is the operator with wavenumber κ = i. It is easy to check that for
ϕ ∈ C0

∞(ℝn) the Fourier transform of Aiϕ is given by ϕ(ξ)/(|ξ|2 + 1), which gives that

⟨Aiϕ, ϕ⟩H1 ℝn × H−1 ℝn = ℝn
|ϕ(ξ)|2|ξ |2 + 1

dξ = ‖ϕ‖H−1(ℝn)
2 , ϕ ∈ HΓ−1,

so that Ai : HΓ−1 → H1(Ω)⊥ is coercive with coercivity constant α = 1. Further, for allσ ∈ C0, Γ∞ , Ak − Ai = Pσ(Ak −Ai) and, arguing as in [25, remark 3.1.3] and [8, proposition 8.8],
(Ak −Ai) : HΓ−1 → H3, loc(ℝn) is continuous, so that σ(Ak −Ai) : HΓ−1 → H1(ℝn) is compact, which
implies that Ak − Ai is compact. ∎

Using lemma 3.3, we can prove well-posedness of the scattering problem for arbitrary
compact Γ, by reformulating it as a well-posed IE, which we do in the following theorem.
Our description of (3.15) as an IE will be justified in §3b, when we discuss conditions under
which the operator A can be interpreted as an integral operator on Γ.

Theorem 3.4. Let Γ ⊂ ℝn be compact, and suppose that assumption 3.1 holds. Then,A : HΓ−1 → H1(Ω)⊥ is invertible. Further, for every g ∈ H1(Ω)⊥ the problem defined by (3.1) in Ω, (3.2)
and (3.5) has a unique solution u ∈ H1, loc(ℝn) given by

(3.14)u = Aϕ,

where ϕ ∈ HΓ−1is the unique solution of the IE

(3.15)Aϕ = g,

which can be written equivalently in variational form as

9
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(3.16)a(ϕ,ψ) = ⟨g,ψ⟩H1(ℝn) × H−1(ℝn), ∀ψ ∈ HΓ−1 .

If assumption 3.1 does not hold, then Aϕ = 0 has a non-trivial solution ϕ ∈ HΓ−1.
Proof. If ϕ ∈ HΓ−1 satisfies (3.15), then u given by (3.14) solves the scattering problem, by

(3.9) and (3.11), and the fact that the acoustic Newton potential (3.7) satisfies (3.2). Thus, if
(3.15) has a solution then the scattering problem has a solution, and this solution is unique if
assumption 3.1 holds. By lemma 3.3, A is continuous and compactly perturbed coercive, and
hence Fredholm of index zero by Lax–Milgram. Thus, to prove A:HΓ−1 → H1(Ω)⊥ is invertible, so
that (3.15) has a unique solution, it suffices to prove that A is injective. For this, suppose that
ϕ ∈ HΓ−1 and Aϕ = 0. Then, Aϕ satisfies the homogeneous scattering problem, so, if assump-
tion 3.1 holds, we have Aϕ = 0 in Ω. But, for σ ∈ C0, Γ∞ , we also have P(σAϕ) = Aϕ = 0, soσAϕ ∈ H1(Ω). Thus, by [10, equation (17)], Aϕ = σAϕ = 0 in Ωc = Γ, almost everywhere with
respect to n-dimensional Lebesgue measure. Hence, Aϕ = 0, and by (3.9), we conclude that
ϕ = 0, proving injectivity, and hence invertibility of A.

If assumption 3.1 does not hold then, by remark 3.2, where Ω− is as in that remark,
there exists a non-zero v ∈ H1(Ω−) ⊂ H1(Ω) such that Δv + k2v = 0 in Ω−. By (3.9), we havev = Aϕ, where ϕ ≔ − (Δ + k2)v ∈ H@ Ω−

−1 ⊂ HΓ−1. Further, for σ ∈ C0, Γ∞ , P(σv) = 0 since σv ∈ H1(Ω),
so Aϕ = P(σAϕ) = 0, and ϕ ≠ 0 since Aϕ = v ≠ 0. ∎

Remark 3.5 (The role of the capacity of Γ). We make the trivial observation that, if HΓ−1 = {0},
then the only solution to (3.15) is ϕ = 0, so that the scattered field u = Aϕ = 0; i.e. the incident field does
not interact with Γ. Further, HΓ−1 ≠ {0} if and only if Γ has positive H1 capacity (e.g. [26, theorem 13.2.2],
and for a collection of related results and generalizations, see [10,27]). This holds if dimH(Γ) > n − 2 [27,
theorem 2.12], and is equivalent to dimH(Γ) > n − 2 if Γ is a d-set [27, theorem 2.17]. Moreover, by [10,
theorem 3.12], HΓ−1 = {0} if and only if H1(Ω)⊥ = {0}, so if HΓ−1 = {0} then the datum g of the IE (3.15) is
zero (recall the definition of g in (3.4), (3.6)).

The following proposition concerns the support of the IE solution, and allows us to
determine when the scattered fields and IE solutions for different scatterers Γ coincide.

Proposition 3.6. Let Γ ⊂ ℝn be compact with non-empty interior Γ∘ and let Ω ≔ Γc be connected.
Let u = Aϕ be the unique solution of the scattering problem for Γ, where ϕ ∈ HΓ−1 is the unique solution
of (3.15), with g given by (3.6). Then, ϕ ∈ H@ Γ−1 . Suppose further that Γ† is compact, with @Γ ⊂ Γ† ⊂ Γ,
and that assumption 3.1 is satisfied by Γ†, and let u† = Aϕ† be the unique solution of the scattering
problem for Γ†, where ϕ† ∈ HΓ†

−1 is the unique solution of the IE for Γ†. Then u† = u and ϕ† = ϕ ∈ H@ Γ−1 .
Proof. Since Aϕ + ui = u + ui = ut ∈ H1, loc(Ω), it holds in Γ∘ that

(3.17)0 = (Δ + k2)ut = (Δ + k2)Aϕ + (Δ + k2)ui = −ϕ,

by (3.9), and since ui satisfies (3.1) in a neighbourhood of Γ. Thus, ϕ ∈ H@ Γ−1 . Further,ut ∈ H1, loc(Ω) implies that ut = 0, so u = −ui, in Γ∘. Since Ω ⊂ Ω† ⊂ Ω ∪ Γ∘, where Ω† ≔ Γ†
c, andui satisfies (3.1) in a neighbourhood of Γ, it follows that ut ∈ H1, loc(Ω†) and that u satisfies

(3.1) in Ω†. Since u also satisfies (3.2), it follows from assumption 3.1 for Γ† that u† = u. Sinceu − u† = A(ϕ − ϕ†), it follows from (3.9) that ϕ = ϕ†. ∎
Remark 3.7. Proposition 3.6 implies that if, for a given k > 0, assumption 3.1 holds for a scattererΓ for which Ω ≔ Γc is not connected, then the scattered field and the IE solution ϕ for the scatterer Γ

coincide with those for the scatterer Ω+
c, where Ω+ is the unbounded component of Γc, and ϕ is supported

in @Ω+.

Remark 3.8 (Alternative IEs for the same scattering problem). Consider the case where Ω ≔ Γc
is connected and Γ∘ is non-empty (e.g. as in figure 1a,g). By proposition 3.6 and remark 3.7, to solve the
scattering problem for Γ, we can solve the IE on Γ†, for any compact Γ† with @Γ ⊂ Γ† ⊂ Γ provided k2

is not a Dirichlet eigenvalue of −Δ in Ω− ≔ Γ ∖ Γ†, in particular if 0 < k < k0 where k0
2 is the smallest
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such eigenvalue. Recall from theorem 3.4 that satisfying the IE on Γ† is equivalent to requiring thatut = Aϕ + ui ∈ H1(Γ†
c), i.e. to enforcing Aϕ = −ui on Γ†.

Since ϕ ∈ H@ Γ−1 , the choice Γ† = @Γ is natural; with this choice the IE enforces Aϕ = −ui on @Γ.
When Ω is a Lipschitz open set this corresponds, as we discuss in remark 3.17 below, to the standard
single-layer-potential boundary IE (BIE) formulation. But, it may be attractive to choose a larger Γ†, so that
Aϕ = −ui is enforced not just on @Γ but also at points in Γ∘. This reduces the size of Ω− and so increases k0,
and hence the interval (0, k0) in which the IE is uniquely solvable. (This is the rationale behind the CHIEF
method and its variants for removing irregular frequencies of BIEs, e.g. [28,29]). For the largest choice,Γ† = Γ, Aϕ = −ui is enforced on the whole of Γ, and the IE is uniquely solvable for all k > 0, but at the cost in
computation of discretizing the whole of Γ rather than @Γ or some intermediate set.

We explore this further in §5, where we compare computations for the choices Γ† = Γ and Γ† = @Γ for
the particular example of the Koch snowflake (figure 1g)—see the discussion around figure 7 below.

The variational formulation (3.16) will be the starting point for our Galerkin discretization
in §4. Having computed ϕ by solving a Galerkin discretization of (3.16), we will evaluate u(x)
at points x ∈ Ω using the formulae (3.14)/(3.10). We will also compute the far-field patternu∞ ∈ C∞(Sn − 1), which satisfies (e.g. [30, equation (2.23)], [7, p. 294])

u(x) = eik|x||x|(n − 1)/2 u∞(x) + O(|x|−1) , as |x| ∞,

uniformly in x ≔ x/ |x|. Explicitly ([30, equation (2.23)], [7, p. 294]),

(3.18)u∞(x) = ⟨σΦ∞(x, ⋅ ), ϕ⟩H1(ℝn) × H−1(ℝn), x ∈ Sn − 1,

where σ is any element of C0, Γ∞  and Φ∞( ⋅ , y) is the far-field pattern of Φ( ⋅ , y), for y ∈ ℝn, viz.

(3.19)Φ∞(x, y) ≔ ik(n − 3)/2

2(2πi)(n − 1)/2 exp( − ikx ⋅ y), x ∈ Sn − 1, y ∈ ℝn .

(b) The integral equation on d-sets in trace spaces
So far, our analysis has been for general compact scatterers Γ ⊂ ℝn. We now assume addition-
ally that Γ is a d-set (in the sense of (2.1)), and that n − 2 < d ≤ n, so we have a non-trivial
scattered field (see remark 3.5). In this case, one can view the operator A as an integral operator
with respect to Hausdorff measure Hd, by reinterpreting A as a map between certain ‘trace
spaces’ on Γ. This will allow us to relate our IE (3.15) to previously studied IE formulations in
certain special cases (see remark 3.17), and will pave the way for the discretization we consider
in §4. We begin by briefly recalling the definition of trace spaces on d-sets, and the relationship
between them and function spaces on ℝn. For a more detailed explanation, see [3, §2.4].

Let Γ ⊂ ℝn be a d-set for some n − 2 < d ≤ n.5 We denote by L2(Γ) the Hilbert space of
functions on Γ that are measurable and square integrable with respect to Hd|Γ, normed by‖f‖L2(Γ) ≔ (∫ Γ |f(x) |2 dHd(x))1/2, and by L∞(Γ) the Banach space of functions on Γ that are
measurable and essentially bounded with respect to Hd|Γ, normed by ‖f‖L∞(Γ) ≔ ess supx ∈ Γ |f(x)|.

Let trΓ :C0
∞(ℝn) → L2(Γ) be the trace (or restriction) operator, with dense range, defined by

trΓφ = φ|Γ ∈ L2(Γ), for φ ∈ C0
∞(ℝn). For s > n − d

2 , this extends to a continuous linear operator

(3.20)trΓ :Hs(ℝn) → L2(Γ),

also with dense range (see [19, theorem 18.6] and [3, §2.4]). Setting

5While our focus here is on n = 2, 3 and n − 2 < d ≤ n, we note that the definitions and results from the current
paragraph onwards, up to and including lemma 4.1, all extend to general n ∈ ℕ and 0 < d ≤ n . For details see, e.g. [3,
§2.4].
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(3.21)t := s − n − d2 > 0,

we define the trace space ℍt(Γ) := trΓ(Hs(ℝn)) ⊂ L2(Γ), and equip it with the quotient norm‖f‖ℍt(Γ) ≔ infφ ∈ Hs(ℝn)
trΓφ = f

‖φ‖Hs(ℝn) .

This makes ℍt(Γ) a Hilbert space unitarily isomorphic to the quotient space Hs(ℝn)/ker(trΓ). Fort > 0, we denote by ℍ−t(Γ) the dual space (ℍt(Γ))∗. Identifying L2(Γ) with its dual in the standard
way, and with ℍ0(Γ) := L2(Γ), we have that ℍt′(Γ) is continuously embedded in ℍt(Γ) with dense
image for any t, t′ ∈ ℝ with t′ > t, and if g ∈ ℍt(Γ) for some t ≥ 0 and f ∈ L2(Γ) then

(3.22)⟨f, g⟩ℍ−t(Γ) × ℍt(Γ) = (f, g)L2(Γ) .

Assuming (3.21), trΓ :Hs(ℝn) → ℍt(Γ) is a continuous linear surjection that has unit norm and is a
unitary isomorphism from ker(trΓ)⊥ to ℍt(Γ). Furthermore, Hs(Γc) ⊂ ker(trΓ). Accordingly, again
assuming (3.21), its adjoint

(3.23)trΓ∗ :ℍ−t(Γ) → H−s(ℝn),
is a continuous linear isometry with range contained in HΓ−s = (Hs(Γc)⊥)∗, satisfying

(3.24)⟨φ, trΓ∗f⟩Hs(ℝn) × H−s(ℝn) = ⟨trΓφ,f⟩ℍt(Γ) × ℍ−t(Γ), f ∈ ℍ−t(Γ), φ ∈ Hs(ℝn) .

In particular, when f ∈ L2(Γ) we have that

(3.25)⟨φ, trΓ∗f⟩Hs(ℝn) × H−s(ℝn) = (trΓφ,f)L2(Γ) .

The following theorem is a slight modification of the results presented in [3,31].

Theorem 3.9. Let Γ ⊂ ℝn be a d-set for some n − 2 < d ≤ n . If n − d
2 < s < n − d

2 + 1, so thatt ≔ s − n − d2 ∈ (0, 1), then for trΓ :Hs(ℝn) → ℍt(Γ), it holds that ker(trΓ) = Hs(Γc).
Hence, trΓ |Hs(Γc)⊥ :Hs(Γc)⊥ → ℍt(Γ) is a unitary isomorphism, the range of trΓ∗ is equal to HΓ−s, the map

trΓ∗ :ℍ−t(Γ) → HΓ−s is a unitary isomorphism, and trΓ∗(L2(Γ)) is dense in HΓ−s.
If d = n (in which case t = s) then the above statements hold also for the limiting case s = t = 0.
Proof. For the statements for n − d2 < s < n − d

2 + 1 see [31, proposition 6.7, theorem 6.13] and [3,
theorem 2.7]. For the limiting case mentioned, we note that when d = n we have L2(Γ) = L2(Γ),
and the trace map trΓ :Hs(ℝn) → L2(Γ) is continuous for all s ≥ 0 and is given simply by
trΓϕ = ϕ|Γ, so that ker(trΓ) is the set of functions in Hs(ℝd) that vanish almost everywhere onΓ with respect to Lebesgue measure. For s = 0, that ker(trΓ) = H0(Γc) is then a consequence of [10,
lemma 3.16]. ∎

Remark 3.10 (Connection to known cases: I). The spaces ℍt(Γ) introduced above can be related to
well-known trace spaces in special cases. For instance:

(i) If Γ is the closure of a bounded Lipschitz open set D (e.g. figure 1a), then Γ is a d-set with d = n,
so that t = s, and ℍt(Γ) coincides with the restriction space Ht(D) = {U |Γ :U ∈ Ht(ℝn)} for t ≥ 0
(this follows from the fact that trΓ coincides with the restriction operator |Γ in this case, as noted
in the proof of theorem 3.9 above). Hence, for t < 0, ℍt(Γ) is unitarily isomorphic to the spaceHt(D) = (H−t(D))∗ (e.g. [7, theorem 3.30]).

(ii) If Γ is the boundary of a bounded Lipschitz open set (e.g. figure 1b), then Γ is a d-set withd = n − 1 and ℍt(Γ) coincides, for |t| ≤ 1/2, with the boundary Sobolev space Ht(Γ), as defined, e.g.
in [7, pp. 98−99]; see [31, remark 6.5] for details.

(iii) A further example of a family of d-sets with d = n − 1 is provided by the ‘multi-screens’ defined
in definition 2.3 of [8]; these are finite unions of Lipschitz subsets of the boundaries of bounded
Lipschitz open sets, a specific example being given in figure 1d. In [8], trace spaces on multi-
screens are defined as quotient spaces. Specifically, in the parlance of multi-screen theory, the space
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H1/2([Γ]) := H1(ℝn)/H1(Γc) is referred to as the ‘Dirichlet single-trace space’ (see [8, definition
6.1]). It is unitarily isomorphic to the space ℍ1/2(Γ). The dual space H−1/2([Γ]) := (H1/2([Γ]))∗ is
referred to as the ‘Neumann jump space’ (see [8, definition 6.4]). It is unitarily isomorphic toℍ−1/2(Γ) = (ℍ1/2(Γ))∗, which, by theorem 3.9, is unitarily isomorphic to HΓ−1.

In [3], we studied scattering by planar screens Γ ⊂ Γ∞ ≔ ℝn − 1 × {0} (see figure 1c,e). There, we
defined trace spaces on Γ by a two-step process, first taking a trace onto the hyperplane Γ∞, then
applying the above trace results in ℝn − 1. The next result, which is stated without proof since
it follows trivially from standard trace mapping properties (e.g. [7, lemma 3.35]), allows us to
avoid this complication, and instead treat a planar screen as any other compact set.

Lemma 3.11 (Planar screens). Suppose that Γ = Γ × {0} ⊂ Γ∞ ≔ ℝn − 1 × {0} where Γ ⊂ ℝn − 1 is
a d-set in ℝn − 1 for some n − 2 < d ≤ n − 1. Then, Γ is a d-set in ℝn. Further, noting from (3.21)
that t = s − (n − d)/2 = (s − 1/2) − (n − 1 − d)/2, for s > (n − d)/2, we have one continuous trace operator
trΓ :Hs − 1/2(ℝn − 1) → L2(Γ) with range ℍt(Γ), and another continuous trace operator trΓ :Hs(ℝn) → L2(Γ)
with range ℍt(Γ). The spaces ℍt(Γ) and ℍt(Γ) coincide up to identification by the map f f( ⋅ , 0),
and the traces satisfy trΓ = trΓ ∘ γ, where γ : Hs(ℝn) Hs − 1/2(ℝn − 1) is the standard (surjective) trace
operator.

Of central importance is the case s = 1, as our scattering problem is posed in H1, loc(ℝn).
Hence, we give the value of t given by (3.21) for s = 1 its own notation, defining (forn − 2 < d ≤ n)

(3.26)td ≔ 1 − n − d2 ∈ (0, 1] .

The case s = 1 (t = td) is covered by theorem 3.9 for n − 2 < d < n, but not for d = n. It is not known
to us whether ker(trΓ) = H1(Γc) for general n-sets Γ, although we know it to hold in many cases
(see remark 3.14). For convenience, we introduce this as an assumption, under which corollary
3.13 below is an immediate consequence of theorem 3.9.

Assumption 3.12. Γ ⊂ ℝn is a d-set with either: (i) n − 2 < d < n; or (ii) d = n and
ker (trΓ) = H1(Γc).

Corollary 3.13. Suppose that assumption 3.12 holds. Then, with td defined by (3.26),
trΓ :H1(Γc)⊥ → ℍtd(Γ) and trΓ∗ :ℍ−td(Γ) → HΓ−1 are unitary isomorphisms and trΓ∗(L2(Γ)) is dense in HΓ−1.

Remark 3.14. In the case d = n, a sufficient condition for ker (trΓ) = H1(Γc) is that H1(Γc) = HΓc1 ,
since H1(Γc) ⊂ ker (trΓ) ⊂ HΓc1  (e.g. [10, equation (17)]). Hence, assumption 3.12 holds in the following
cases:

Ì 2 (Γ)
td (Γ)

H
~1 (Γc)

^

H1 ( n) H1,loc ( n)

–td (Γ)

 = trΓ Atr*
Γ

A = Pσ

Ì

P

trΓ tr*
Γ

HΓ
–1

σ.

Figure 3. Schema of relevant function spaces and operators for s = 1, t = td := 1 − n − d
2 ∈(0,1]. The operators trΓ and

trΓ∗  are isometries, indeed unitary isomorphisms if assumption 3.12 holds.
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(i) Γc is C0 [7, theorem 3.29], so in particular if Γ is the closure of a Lipschitz open set; more
generally, if Γcis C0 except at points in a closed, countable subset P of @ (Γc) with at most finitely
many limit points [10, theorem 3.24]; e.g., the examples in [10, fig. 4].

(ii) Γ is an n-set OSC-IFS attractor (see [11]), e.g. the Koch snowflake in figure 1g.
(iii) Γ is the closure of one of the classical snowflake domains in [31, §5.1].

Returning to our IE, we can now ‘lift’ the potential A :HΓ−1 → H1, loc(ℝn) and the operatorA:HΓ−1 → H1(Ω)⊥ to continuous maps on the trace spaces via the compositions

(3.27)
AtrΓ∗ :ℍ−td(Γ) → H1, loc(ℝn) andA ≔ trΓ A trΓ∗ :ℍ−td(Γ) → ℍtd(Γ) .

The next lemma collects some basic results about these compositions. A schematic showing the
relationships between the main function spaces and operators involved is given in figure 3.

Lemma 3.15. Let Γ be a compact d-set with n − 2 < d ≤ n, and define A as in (3.27). Then:

(i) For arbitraryσ ∈ C0, Γ∞
(3.28)AΨ = trΓ(σAtrΓ∗Ψ), Ψ ∈ ℍ−td(Γ) .

(ii) The sesquilinear form on ℍ−td(Γ) × ℍ−td(Γ) associated with the operator A satisfies

(3.29)⟨AΨ, Ψ⟩ℍtd(Γ) × ℍ−td(Γ) = a(trΓ∗Ψ, trΓ∗Ψ), Ψ, Ψ ∈ ℍ−td(Γ),

with a( ⋅ , ⋅ ) as in (3.12), and is continuous and compactly perturbed coercive.
(iii) If assumption 3.12 holds, then problem (3.15)/(3.16) can be equivalently stated as follows: giveng ∈ H1(Ω)⊥, find Ψ ∈ ℍ−td(Γ) such that

(3.30)AΨ = trΓg,

or, equivalently,

(3.31)⟨AΨ, Ψ⟩ℍtd(Γ) × ℍ−td(Γ) = ⟨trΓg, Ψ⟩ℍtd(Γ) × ℍ−td(Γ), Ψ ∈ ℍ−td(Γ),

with the solutions of (3.15)/(3.16) and (3.30)/(3.31) related by ϕ = trΓ∗Ψ. If assumption 3.1 also
holds, then A:HΓ−1 → H1(Ω)⊥ and A:ℍ−td(Γ) → ℍtd(Γ) are both invertible.

Proof. (i) Equation (3.28) follows from (3.4), (3.11), and the fact that H1(Ω) ⊂ ker(trΓ), which
implies that trΓPϕ = trΓϕ for ϕ ∈ H1(ℝn).

(ii) Equation (3.29) follows from (3.12) and (3.24), and the rest of (ii) follows from (3.29),
lemma 3.3, and that trΓ∗ :ℍ−td(Γ) → HΓ−1 is an isometry.

(iii) The first statement follows from corollary 3.13, and the second from theorem 3.4. ∎
Crucial for the practical implementation of the Hausdorff IE method described in §4 is the

fact that both AtrΓ∗ and A have integral representations with respect to Hausdorff measure.

Theorem 3.16. Let Γ be a compact d-set with n − 2 < d ≤ n. Then:

(i) For Ψ ∈ L2(Γ),

(3.32)AtrΓ∗Ψ(x) = ΓΦ(x, y)Ψ(y) dHd(y), x ∈ Ω .

(ii) For Ψ ∈ L∞(Γ), the right-hand side of (3.32) is well-defined (as a Lebesgue integral with respect to
Hd measure) for all x ∈ ℝn, and is a continuous function on ℝn. Further, (3.32) holds for almost
all x ∈ ℝn with respect to n-dimensional Lebesgue measure, so that AtrΓ∗Ψ ∈ C(ℝn).

(iii) For Ψ ∈ L∞(Γ),
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(3.33)AΨ(x) = ΓΦ(x, y)Ψ(y)dHd(y),  for Hd-a.e. x ∈ Γ .

Proof. (i) This is an immediate consequence of (3.10) and (3.25).
(ii) For Ψ ∈ L∞(Γ), that the right-hand side of (3.32) is well-defined for all x ∈ ℝn and defines

a continuous function on ℝn follows as in the proof of [3, proposition 4.5], using the estimates
for convolution integrals with respect to Hd measure on d-sets in [3, remark 2.2] (cf. [32, lemma
2.18]). For d < n, in which case m(@Γ) = Hn(Γ) = 0, we have from (i) that (3.32) holds for almost
all x ∈ ℝn. For d = n, when Ψ ∈ L∞(Γ) ⊂ L2(ℝn), that (3.32) holds for almost all x ∈ ℝn is just a
special case of (3.7).

(iii) Suppose Ψ ∈ L∞(Γ). For x ∈ ℝn, let G(x) denote the right-hand side of (3.32). By part
(ii) and (3.8), σG ∈ H1(ℝn) and is continuous, for σ ∈ C0, Γ∞ , so that trΓ(σG) = (σG) |Γ = G|Γ. Since
AtrΓ∗Ψ(x) = G(x), for a.e. x ∈ ℝn with respect to n-dimensional Lebesgue measure by part (ii), it
follows by (3.28) that AΨ = G|Γ in L2(Γ), giving the claimed result. ∎

Our next remark builds on the characterizations of the spaces ℍt(Γ) in remark 3.10.

Remark 3.17 (Connection to known cases: II). The trace space formulation (3.30) of our IE is
familiar in a number of cases, in each of which Γ is a d-set by remark 3.10 or lemma 3.11.

(i) If Γ is the boundary of a bounded Lipschitz open set (e.g. figure 1b and remark 3.10(ii)),
then d = n − 1, td = 1/2, and Hd coincides with surface measure on Γ [9, theorem 3.8]. Thus,
the expression (3.32) for AtrΓ∗Ψ coincides with the definition (e.g. [30, equation (2.19)])
of the standard single-layer potential with density Ψ. The representation (3.33) for A coin-
cides with the definition [30, equation (2.32)] of the single-layer boundary integral operatorS:H−1/2(Γ) → H1/2(Γ), viz. Sϕ(x) = ∫ ΓΦ(x, y)ϕ(x)ds(y), and (3.28) coincides with [25, equation
(3.6), definition 3.15]. The IE (3.30) coincides with [30, equation (2.63)].

(ii) In the case where Γ is a multi-screen (e.g. figure 1d and remark 3.10(iii)), d = n − 1, td = 1/2, the
representation (3.32) for AtrΓ∗ coincides with the definition of the single-layer potential given in
[8, equation (8.2)] and the representation (3.33) for A coincides with the first boundary integral
operator from proposition 8.8 in [8] (with the same explicit surface integral form as in part (i)
above). The mapping properties and coercivity up to a compact perturbation derived in lemma
3.15(ii) generalize the first inequality of [8, proposition 8.8].

(iii) If the d-set Γ is a compact subset of Γ∞ := ℝn − 1 × 0 (see lemma 3.11), so Γ is a planar screen
(examples are figure 1c,e), the expression (3.32) for AtrΓ∗Ψ coincides with [3, equation (43)] and
the representation (3.33) for A coincides with [3, equation (49)].

The definition and mapping properties of trΓ and trΓ∗, noted in (3.20) and (3.23), combined with
the representation (3.28), enable us to extend the domain of A to ℍ−t(Γ) for td < t < 2td or restrict
it to ℍ−t(Γ) for 0 < t < td as stated in the following result (cf. [3, proposition 4.7]).

Proposition 3.18. Let Γ be a compact d-set with n − 2 < d ≤ n, and let |t| < td. ThenA:ℍt − td(Γ) → ℍt + td(Γ) and is continuous. When d = n this holds also for t = ±td = ±1.
Proof. This follows from (3.28) and the mapping properties (3.8) of A, recalling from

(3.20) and (3.23) that, for s > (n − d)/2, the mappings trΓ :Hs(ℝn) → ℍt(Γ) and trΓ∗ :ℍ−t(Γ) → HΓ−s
are continuous, where t = s − (n − d)/2 > 0, and that, when d = n and t = s, these mappings are
continuous also for s = 0 (see the proof of theorem 3.9). ∎

Under certain assumptions, A:ℍt − td(Γ) → ℍt + td(Γ) is invertible for a range of t around 0.

Proposition 3.19. Let Γ be an OSC-IFS attractor with dimension d := dimH(Γ) such that either (i)Γ is disjoint with n − 2 < d < n, (ii) d = n, or (iii) d = n − 1 and Γ ⊂ Γ∞ := ℝn − 1 × {0}. If assumption 3.1
holds, there exists 0 < ϵ ≤ td such that A:ℍt − td(Γ) → ℍt + td(Γ) is invertible for |t| < ϵ.

Proof. The claimed invertibility of A:ℍt − td(Γ) → ℍt + td(Γ) for a range of t in a neighbourhood
of t = 0 follows by applying a result on interpolation of invertibility of operators ([33, propo-
sition 4.7], which quotes [34]), recalling that (i) A:ℍt − td(Γ) → ℍt + td(Γ) is bounded for |t| < td
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(proposition 3.18); (ii) A:ℍ−td(Γ) → ℍtd(Γ) is invertible, as noted below (3.31); and (iii) in the case
that Γ is disjoint and d < n, {ℍt(Γ)}|t | < 1 is an interpolation scale [3, corollary 3.3]; (iv) in the case
that d = n, {ℍt(Γ)}t ≥ 0 and {ℍt(Γ)}t ≤ 0 are interpolation scales [11]; (v) in the case d = n − 1 andΓ ⊂ Γ∞ := ℝn − 1 × {0} the statement of (iv) is also true, by (iv) applied in ℝn − 1 and lemma 3.11. ∎

Invertibility of A:ℍt − td(Γ) → ℍt + td(Γ) for some t > 0 implies a regularity result about the
solution ϕ of the IE (3.15), provided that the datum g is sufficiently smooth.

Remark 3.20 (Solution regularity in the HΓs  scale). If there exists 0 < t < td such thatA:ℍt − td(Γ) → ℍt + td(Γ) is invertible and trΓg ∈ ℍt + td(Γ), and if assumption 3.12 holds, then, by (3.27)
and the mapping properties of trΓ∗ recalled in theorem 3.9, the solution ϕ = trΓ∗Ψ of the IE (3.15) satisfies

(3.34)ϕ ∈ HΓ−1 + t, with ‖ϕ‖HΓ−1 + t ≤ C‖trΓg‖ℍt + td(Γ),

for some constant C > 0 independent of ϕ and g. In the case of scattering of an incident wave ui, in
which g is given by (3.6), we have that trΓg = − ui |Γ ∈ ℍt + td(Γ) for all 0 < t < td, since ui is C∞ in a
neighbourhood of Γ. Hence, in this case, if the conditions of proposition 3.19 hold, then (3.34) holds for
0 < t < ϵ, where ϵ is as in proposition 3.19.

Given Γ, determining the largest value of t for which A:ℍt − td(Γ) → ℍt + td(Γ) is invertible is an
open problem. However, so that we have a theoretical prediction against which to compare our
numerical results in §5, we consider the following hypothesis.

Hypothesis 3.21. A:ℍt − td(Γ) → ℍt + td(Γ) is invertible for 0 ≤ t < td′, where td′ := 1 − (n − d′)/2, withd′ := dimH(@Ω+) and Ω+ the unbounded component of Ω = Γc.
To give some context for hypothesis 3.21, we note that, to match proposition 3.18, a naive

hypothesis might be that A:ℍt − td(Γ) → ℍt + td(Γ) is invertible for all 0 ≤ t < td (cf. [3, conjecture
4.8] in the planar screen case). However, such a hypothesis fails in cases where d′ < d, such
as figure 1a (where d′ = 1 < 2 = d) and figure 1g (where d′ = log (4)/ log (3) < 2 = d). Indeed, if
this naive hypothesis were to hold, then, for a scattering problem with ui |Γ ≠ 0, arguing as in
remark 3.20, it would follow that 0 ≠ ϕ ∈ HΓs  for every s < −(n − d)/2. Furthermore, by remark
3.7, we would have that supp ϕ ⊂ @Ω+, from which it would follow that 0 ≠ ϕ ∈ H@ Ω+

s  for everys < −(n − d)/2. But if d′ < d, this is impossible because H@ Ω+
s = {0} for −(n − d′)/2 < s < −(n − d)/2,

in fact for −(n − d′)/2 ≤ s < −(n − d)/2 if @Ω+ is a d′-set [27, theorems 2.12 and 2.17]. Therefore,
hypothesis 3.21 is the strongest hypothesis that is consistent with remark 3.7. In §5, we report
numerical results which suggest that hypothesis 3.21 may hold in certain cases but not in
general.

4. The Hausdorff-measure integral equation method
We now define and analyse our Hausdorff-measure Galerkin IEM. To begin with, let us assume
that Γ is a compact d-set for some n − 2 < d ≤ n. Given N ∈ ℕ let {Tj}j = 1

N  be a mesh of Γ, a
collection of Hd-measurable subsets of Γ (the elements) such that

Γ = ⋃j = 1

N Tj, Hd(Tj) > 0  for j = 1, …,N,  and Hd(Tj ∩ Tj′) = 0  for j ≠ j′,
and set ℎ := maxj = 1, …,N diam (Tj). Define the N-dimensional space of piecewise constants

(4.1)VN := {f ∈ L2(Γ):f|Tj = cj for some cj ∈ ℂ, j = 1, …,N} ⊂ L2(Γ),

and set

(4.2)VN := trΓ∗(VN) ⊂ HΓ−1 .

Under appropriate assumptions, the spaces VN are dense in HΓ−1 as N ∞.
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Lemma 4.1. Suppose that assumption 3.12 holds, and that ℎ 0 as N ∞. Then,

(4.3)infψN ∈ VN ‖ψ − ψN‖H−1(ℝn) → 0 as N → ∞, for all ψ ∈ HΓ−1 .

Proof. Suppose that ℎ 0 as N ∞. It is easy to see (see the proof of [3, theorem 5.1]) that
inffN ∈ VN‖f − fN‖L2(Γ) → 0 as N ∞ for every f ∈ L2(Γ), and then (4.3) follows by the density of
trΓ∗(L2(Γ)) in HΓ−1, which holds under assumption 3.12 by corollary 3.13. ∎

Our method for solving the IE (3.15) uses VN as the approximation space in a Galerkin
method, based on (3.16), with a defined by (3.12). Given g ∈ (H1(Γc))⊥ we seek ϕN ∈ VN such
that

(4.4)a(ϕN,ψN) = ⟨g,ψN⟩H1(ℝn) × H−1(ℝn), ∀ψN ∈ VN.

Let {fi}i = 1
N  be a basis for VN, and let {ei = trΓ∗fi}i = 1

N  be the corresponding basis for VN. Then,
writing ϕN = ∑j = 1

N cjej, (4.4) implies that c→ = (c1, …, cN)T ∈ ℂN satisfies the system

(4.5)A c→ = b→,

where, by (3.29), (3.22) and (3.33), the matrix A ∈ ℂN × N has (i, j)-entry given by

(4.6)Aij = a(ej, ei) = ⟨Afj,fi⟩ℍtd(Γ) × ℍ−td(Γ) = Γ ΓΦ(x, y)fj(y)fi(x) dHd(y)dHd(x),

and, by (3.25), the vector b→ ∈ ℂN has ith entry given by

(4.7)bi = ⟨g, ei⟩H1(ℝn) × H−1(ℝn) = ΓtrΓg(x)fi(x) dHd(x),

with trΓg(x) = − ui(x), x ∈ Γ, for the scattering problem with g given by (3.6).

Remark 4.2 (Connection to known cases: III). Building on remark 3.17, if Γ is the boundary of
a bounded Lipschitz open set, or a multi-screen, then the above Galerkin method is simply a classical
piecewise-constant BEM for the single-layer equation Sϕ = g. If Γ is a planar screen in the sense of
lemma 3.11, then the method is identical to that proposed in [3, §5] and the linear system (4.5) is
identical to [3, equation (55)].

Once we have computed ϕN by solving (4.5), we will compute approximations to u(x) andu∞(x), given by (3.14)/(3.10) and (3.18), respectively. Each expression takes the form J(ϕ), where

(4.8)J(ψ) := ⟨φ,ψ⟩H1(ℝn) × H−1(ℝn), ψ ∈ HΓ−1,

for some φ ∈ (H1(Ω))⊥. Explicitly,

(4.9)φ = P σv ,

where σ is any element of C0, Γ∞  (with x not in the support of σ in the case that J(ϕ) = u(x)) andv = Φ(x, ⋅ ) in the case that J(ϕ) = u(x), v = Φ∞(x, ⋅ ) in the case that J(ϕ) = u∞(x); note that eachv is C∞ in a neighbourhood of Γ. In each case, we approximate J(ϕ) by J(ϕN) which, recalling
(3.25), is given explicitly by (cf. [3, equation (62)])

(4.10)J(ϕN) = ⟨φ, ϕN⟩H1(ℝn) × H−1(ℝn) = c→Tφ→,

where φ→ has jth entry given by

(4.11)φ→j = ΓtrΓφ(x)fj(x) dHd(x),

and trΓφ(x) = v(x), x ∈ Γ, for φ given by (4.9). The following is a basic convergence result.
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Theorem 4.3. Let Γ be a compact d-set for some n − 2 < d ≤ n, and suppose that assumptions 3.1 and
3.12 hold. Suppose also that ℎ 0 as N ∞. Then for sufficiently large N ∈ ℕ, the variational problem
(4.4) has a unique solution ϕN ∈ VN that is quasi-optimal in the sense that, for some constant C > 0
independent of ϕ and N,

(4.12)‖ϕ − ϕN‖H−1(ℝn) ≤ C infψN ∈ VN ‖ϕ − ψN‖H−1(ℝn),

where ϕ ∈ HΓ−1 denotes the solution of (3.15). Furthermore, ‖ϕ − ϕN‖H−1(ℝn) 0 as N ∞, and, whereJ( ⋅ ) is given by (4.8) for some φ ∈ (H1(Ω))⊥, J(ϕN) J(ϕ) as N ∞.
Proof. The sesquilinear form a( ⋅ , ⋅ ) is compactly perturbed coercive (lemma 3.3), and

invertible if assumption 3.1 holds (theorem 3.4), so the quasi-optimality (4.12) holds for all
sufficiently large N by (4.3) and standard Galerkin method theory [25, §4.2.3]. The remaining
results follow by lemma 4.1 and the continuity of the linear functional J( ⋅ ). ∎
(a) Galerkin error estimates
If the exact solution ϕ possesses sufficient regularity and the spaces VN have appropriate
approximability properties, then theorem 4.3 can be used to derive Galerkin error estimates,
and superconvergence estimates for functionals. We record this fact in the following theorem.

Theorem 4.4. Let the assumptions of theorem 4.3 hold. Suppose additionally that ϕ ∈ HΓs  for some
−1 < s < −(n − d)/2, and that

(4.13)infψℎ ∈ VN ‖ψ − ψℎ‖HΓ−1 ≤ cℎ1 + s‖ψ‖HΓs , 0 < ℎ ≤ diam(Γ), ψ ∈ HΓs .

Then, for some constant c > 0 independent of ℎ and ϕ,

(4.14)‖ϕ − ϕN‖HΓ−1 ≤ cℎ1 + s‖ϕ‖HΓs ,
for all sufficiently large N. Furthermore, let J( ⋅ ) be given by (4.8) for some φ ∈ (H1(Ω))⊥, and denote byζ ∈ HΓ−1 the solution ϕ of (3.16), in the case that g is replaced by φ. Suppose that ζ ∈ HΓs . Then,

(4.15)|J(ϕ) − J(ϕN) | ≤ cℎ2(1 + s)‖ϕ‖HΓs‖ζ‖HΓs ,
for some constant c > 0 independent of ℎ, ϕ and ζ, for all sufficiently large N.

Proof. The bound (4.14) follows from (4.13) and (4.12). The bound (4.15) follows from (4.14)
by a standard Aubin–Nitsche trick argument, as in the proof of [3, theorem 5.6]. ∎

In the case where Γ is the attractor of an OSC-IFS, there is a natural way to build
quasi-uniform meshes on Γ. Furthermore, under certain assumptions, we prove in theorem 4.5
that the conditions of theorem 4.4 are satisfied, so that the error bounds (4.14) and (4.15) hold.

Let Γ ⊂ ℝn be the attractor of an OSC-IFS {s1, …, sM}. Following [35], for ℓ ∈ ℕ we define the
set of multi-indices Iℓ := {1, …,M}ℓ={m = (m1,m2, …,mℓ): 1 ≤ mj ≤ M, j = 1,2, …, ℓ}, and for E ⊂ ℝn

ℓ = 1 decomposition ℓ = 2 decomposition

(a) (b)

1 4

2 3

11

12 13

14

21

22

23

24 31

32

33

34

41

42 43

44

114111

112 113

Figure 4. Level 1 (a) and level 2 (b) decompositions of the Koch curve. To make the labelling more compact, in (a) the labels
“1”,…, “4” indicate the subsets Γ1, …, Γ4, and in (b) the labels “ij” and “ijk” indicate Γ(i, j) and Γ(i, j, k). In (b), the insert
shows the level 3 decomposition of Γ(1, 1).
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and m ∈ Iℓ, we define Em = sm1 ∘ sm2 ∘ … ∘ smℓ(E). We also set I0 := {0} and adopt the convention
that E0 := E. This notation extends that of (2.3) where the sets Γ1, …, ΓM were introduced,
corresponding to E = Γ and ℓ = 1 here. We illustrate this for the Koch curve (Example 2.3, figure
1e) in figure 4. Illustrations for other examples are given in [13, figs. 1–6].

Let 0 < ℎ ≤ diam(Γ). Define the index set Lℎ by Lℎ := {0} for ℎ = diam(Γ), and by

(4.16)Lℎ := m ∈ ⋃ℓ = 1

∞ Iℓ:diam(Γm) ≤ ℎ and diam(Γm−) > ℎ ,

for ℎ < diam(Γ), where, for m = (m1, …,mℓ), m− := (m1, ...,mℓ − 1) if ℓ ∈ ℕ with ℓ ≥ 2, and m− := 0
if ℓ = 1. Then, {Tj}j = 1

N := {Γm}m ∈ Lℎ defines a quasi-uniform mesh of Γ. We define the spaces of
piecewise-constant functions

(4.17)Yℎ := span {χm}m ∈ Lℎ and Yℎ := trΓ∗(Yℎ) ⊂ HΓ−1,

where {χm}m ∈ Lℎ is the canonical L2(Γ)-orthonormal basis for Yℎ given by

(4.18)
χm(x) :=

1
Hd(Γm)1/2 , x ∈ Γm,

0, otherwise.

The following theorem is then a consequence of results in [3,11].

Theorem 4.5. Let Γ be an OSC-IFS attractor with dimension d ≔ dimH(Γ), such that either (i) Γ is
disjoint and d > n − 2, (ii) d = n, or (iii) d = n − 1 and Γ ⊂ Γ∞ := ℝn − 1 × {0}. Let assumption 3.1 hold, and
set VN = Yℎ. Then (4.13) holds for all −1 < s < −(n − d)/2.

Furthermore, for the scattering problem with g defined by (3.6), there exists −1 < s < −(n − d)/2 such
that (4.14) holds and (4.15) holds for both J(ϕ) = u(x) and J(ϕ) = u∞(x).

Proof. For case (i), where Γ is a disjoint IFS attractor, it was proved in [3, proposition 5.2] that,
for every 0 < t < 1 and every 0 < t′ < t, there exists a constant c > 0 such that

(4.19)inf
Ψℎ ∈ Yℎ ‖f − Ψℎ‖ℍ−t(Γ) ≤ c ℎt − t′‖f‖ℍ−t′(Γ), 0 < ℎ ≤ diam(Γ), f ∈ ℍ−t′(Γ) .

In [3, proposition 5.2], this result was actually only stated for n − 1 < d < n, but the argument of
[3, proposition 5.2] holds in fact for all 0 < d < n (so, in particular for n − 2 < d < n), because the
results from [35] on which it is based hold for all 0 < d < n. The latter statement requires some
explanation. A key step in the argument of [3, proposition 5.2] was the use of results from [35]
to prove that ‖ ⋅ ‖ℍt(Γ) is equivalent to a norm defined in terms of coefficient decay in a wavelet
expansion; see [3, theorem 3.1 and corollary 3.3(iii)]. The relevant results in [35, theorems 1 and
2] are stated under the additional assumption that Γ is not contained in an (n − 1)-dimensional
hyperplane. However, this additional assumption is made in [35] solely to ensure that Markov’s
inequality [35, equation (4.1)] is satisfied for whatever class of polynomials is being used in
the wavelet expansion. As a result, this additional assumption is superfluous for us because
we consider only piecewise-constant approximations and 0 < t < 1, while [35] considers also
higher-order polynomials and larger t, and for constant functions Markov’s inequality [35,
equation (4.1)] is trivially satisfied.

For case (ii), the result (4.19) was proved for t = 1 in [11], using a quite different argument
based on Poincaré inequalities. The fact that it also holds in case (iii), again for t = 1, follows
from the result for case (ii), applied in the setting of ℝn − 1, and lemma 3.11.

The above establishes (4.19) for the particular case t = td. The bound (4.13) then follows by
theorem 3.9 and corollary 3.13, noting that in case (ii), assumption 3.12 holds by remark 3.14(iii).

The final statement then follows from theorem 4.4, since, for the scattering problem, and
the choices of J under consideration, the solutions ϕ and ζ possess some extra regularity by
proposition 3.19 (see the argument in remark 3.20 for ϕ, and argue similarly for ζ). ∎
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Remark 4.6 (Convergence rates). Suppose that, in addition to the assumptions of theorem 4.5,
hypothesis 3.21 holds. Then, arguing as in remark 3.20, assuming the datum g is sufficiently smooth,
we will have the maximum possible regularity for ϕ, i.e. ϕ ∈ HΓs  for every −1 < s < −(n − d′)/2. Then,
assuming that the bounds in theorem 4.4 are sharp, in numerical experiments we should expect to see
errors in the computation of ϕ and of linear functionals of ϕ roughly proportional to ℎ1 + (d′ − n)/2 andℎ2 + d′ − n, respectively. (For the latter, assume also that φ in theorem 4.3 is sufficiently smooth so thatζ ∈ HΓs  for every −1 < s < −(n − d′)/2).

If, additionally, Γ is homogeneous, with ρm = ρ for m = 1, …,M, for some 0 < ρ < 1, in which
case d = dimH(Γ) = log(M)/log(1/ρ), then the meshes defined by (4.16) are uniform, and takingℎ = ρℓdiam Γ, for some ℓ ∈ ℕ, gives Lℎ = Iℓ = {1, …,M}ℓ and VN = Yℎ = trΓ∗(span {χm}m ∈ Iℓ ). In this
case, since ℎ is proportional to ρℓ and ρ = M−1/d, we should see errors in ϕ and in linear functionals of
ϕ proportional to (Md′/d)−ℓ/2 and (Md′/d)−ℓ, respectively, in the case n = 2, and proportional to (Md′/dρ)−ℓ/2

and (Md′/dρ)−ℓ, respectively, in the case n = 3.

(b) Numerical quadrature
To implement our method, we need suitable numerical quadrature rules to evaluate the
integrals (4.6), (4.7) and (4.11). For this, we generalize the approach taken for the screen case
in [3]. Here, we give only the main ideas, and refer the reader to appendix A in the electronic
supplementary material, [3, §5.4], and [12,13] for details.

Suppose that Γ  is an OSC-IFS attractor with dimension d > n − 2, and that, as in §4a,
we are using the approximation space VN = Yℎ  given by (4.17). Suppose that g is given by
(3.6) and φ by (4.9), with ui  and v  both C∞  in a neighbourhood of Hull(Γ), the convex hull
of Γ. Suppose that we adopt the canonical L2(Γ)-normalized basis (4.18), so that fj = χm(j),j = 1, …,N, where N ≔ |Lℎ|,  with Lℎ given by (4.16), and (m(1), …,m(N)) is some ordering
of the elements of Lℎ.  Then, where μm ≔ Hd(Γm) for m ∈ Lℎ, the integrals to be evaluated
are, for i, j ∈ {1, …,N},

(4.20)Aij = μm(i)−1/2μm(j)−1/2 Γm(i) Γm(j)Φ(x, y) dHd(y)dHd(x),

(4.21)bi = − μm(i)−1/2 Γm(i)ui(x) dHd(x), φ→i = μm(i)−1/2 Γm(i)v(x) dHd(x) .

Since ui and v are smooth in a neighbourhood of Γ, (4.21) can be evaluated using the com-
posite barycentre rule of [12, definition 3.1], cf. [3, (97–99)]. This involves decomposing the
mesh element Γm(i) into smaller self-similar sub-elements whose vector indices are taken from
the index set LℎQ, for some maximum quadrature element diameter ℎQ ≤ ℎ, and applying a
one-point quadrature rule on each sub-element. Similarly, provided that Γm(i) and Γm(j) are
disjoint, (4.20) can be evaluated using a tensor product version of this composite barycentre rule
(defined in [12, definition 3.5]), cf. [3, (92)].

When Γm(i) and Γm(j) are not disjoint, the integral in (4.20) is singular. Singularity subtraction
reduces the problem to the evaluation of

(4.22)Γm(i) Γm(j)Φsing(x, y) dHd(y)dHd(x),

where Φsing(x, y) = − log( |x − y| )/(2π) if n = 2, and Φsing(x, y) = 1/(4π |x − y| ) if n = 3. The integral
of Φ −Φsing is regular and can be evaluated using the tensor product composite barycentre rule,
cf. [3, (94)]. The treatment of (4.22) depends on the nature of Γ.

If Γ is disjoint (e.g. the Cantor set, figure 1e) then (4.22) is singular if and only if i = j, in
which case (4.22) can be evaluated using the quadrature rules of [12, §4.3], cf. [3, (95)–(96)].
These rules exploit the self-similarity of Γ and the homogeneity of Φsing to write the singular
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integral (4.22) in terms of regular integrals, which can be evaluated by the composite barycentre
rule.

If Γ is non-disjoint (e.g. the Koch curve, or the Koch snowflake, figure 1f,g) then the situation
is more complicated, because, in addition to the self-interaction case i = j, (4.22) can also be
singular for i ≠ j, if Γm(i) and Γm(j) intersect at a point or at a higher-dimensional set. For certain
non-disjoint attractors, it holds that (i) all singular instances of (4.22) that arise in our discretiza-
tion can be written in terms of one of a finite collection of ‘fundamental’ singular integrals,
which capture the different singular interactions that can occur between mesh elements; and
(ii) these fundamental singular integrals together satisfy a small linear system of equations
that can be solved in closed form in terms of regular integrals, which can be evaluated using
the composite barycentre rule. A general algorithm for identifying the fundamental singular
integrals and deriving the associated linear system was presented in [13, algorithm 1], along
with explicit formulae for the Sierpinski triangle, the Vicsek fractal, the Sierpinski carpet and
the Koch snowflake. These formulae were applied in the context of screen scattering problems
in [13, §7.3]. In appendix A in the electronic supplementary material, we briefly explain the
methodology of [13], and derive explicit formulae for the case of the Koch curve, which was not
considered in [13].

The accuracy of the quadrature approximations described above for the evaluation of (4.20)
and (4.21) can be controlled by a single parameter ℎQ ≤ ℎ, which represents the maximum
diameter of the sub-elements used in the composite barycentre rule. Using the results of [12],
one can prove quadrature error estimates. The following theorem is a generalization of [3,
theorem 5.14]. While [3, theorem 5.14] was stated for the special case where Γ ⊂ ℝn − 1 × {0}
is a planar screen, it extends trivially to our more general context, with minor notational
adjustments, because the planarity of Γ was not used in its proof. We recall that Hull(E) denotes
the convex hull of E ⊂ ℝn, and we denote by ‖ ⋅ ‖2 both the Euclidean norm on ℂN and the
induced matrix norm on ℂN × N.

Theorem 4.7. Let Γ be an OSC-IFS attractor with dimension d > n − 2. Let AQ, b→Q
 and φ→Q

 denote
the approximations of (4.20) and (4.21) obtained via the quadrature described above, using a maximum
sub-element diameter 0 < ℎQ ≤ ℎ in the composite barycentre rule.

(i) Let ui satisfy the Helmholtz equation in some open neighbourhood of Hull(Γ). Then,

(4.23)‖b→ − b→Q‖2 ≤ ℎQ2 |ui |2, Hull(Γ)Hd(Γ)1/2,

where |ui |2, Hull(Γ) := maxx ∈ Hull(Γ) maxα ∈ ℕ0
n|α | = 2
|Dαui(x) | .

(ii) Let v be C∞ in a neighbourhood of Hull(Γ). Given ψN ∈ VN = Yℎ, let JQ(ψN) be defined by (4.10)
with φ→ replaced by φ→Q

, and let ψ→ denote the coefficient vector of ψN in the basis {ei = trΓ∗fi}i = 1
N .

Then, there exists C > 0, independent of ℎ, ℎQ, v and ψN, such that

(4.24)|J(ψN) − JQ(ψN)| ≤ ℎQ2 |v |2, Hull(Γ)‖ψ→‖2Hd(Γ)1/2 .

(iii) Suppose that Γ is hull-disjoint, meaning that Hull(Γm) ∩ Hull(Γm′) = ∅ for everym ≠ m′ ∈ {1, …,M}. Then, there exists C > 0, independent of ℎ and ℎQ, such that

(4.25)‖A − AQ‖2 ≤ CℎQℎ−(n − 1)Hd(Γ) .

If, further, Γ is homogeneous, then

(4.26)‖A − AQ‖2 ≤ CℎQ2ℎ−nHd(Γ) .

While theorem 4.7(iii) is stated only for hull-disjoint attractors (because that was the setting
considered in [3]), we expect it should be possible to prove similar results for non-disjoint
OSC-IFS attractors, by combining the results of [12, §4.3] with those of [13, §6]. Indeed,
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numerical experiments (not reported here) suggest that ‖A − AQ‖2 = O(ℎQ2 ) as ℎQ 0 for all the
examples considered in §5, including the Koch snowflake, which is both non-disjoint and
non-homogeneous. However, we leave the proof of this for future work.

In principle, the quadrature error estimates of theorem 4.7 could be combined with the
semi-discrete convergence estimates of theorem 4.4 to obtain a fully discrete analysis for our IE
method (under appropriate assumptions, such as disjointness), with conditions on how small ℎQ
should be in order to maintain the convergence rates in theorem 4.4. For brevity, we do not embark
on such an analysis here, but refer the interested reader to [3, §5.4] where the analogous analysis was
carried out for screen problems. In practice, our numerical results in §5 suggest that in many cases, it
may be sufficient to decrease ℎQ in proportion to ℎ in order to achieve the predicted rates.

5. Numerical results
In this section, we present numerical results obtained using our Galerkin IEM for scatter-
ing by various fractals Γ, each an OSC-IFS attractor.6 For each example, we assume plane
wave incidence, i.e. the datum g is as in (3.6) with ui(x) = eikϑ ⋅ x and |ϑ| = 1, and we com-
pute the Galerkin IEM solution by solving (4.5), using the piecewise-constant quasi-uniform-
mesh approximation space VN = Yℎ, with Yℎ defined as in (4.17), so that each element is
a scaled copy of Γ, and with the basis functions as defined above (4.20). We approximate
the scattered field u and/or the far-field u∞, which each (as discussed above (4.8)) take the
form of the linear functional (4.8) with φ given by (4.9), by the discretization (4.10). These
calculations require evaluation of the integrals (4.6), (4.7) and (4.11). We approximate these
by the methods detailed in §4b, using a maximum quadrature element size ℎQ = CQℎ. We
choose CQ := max {ρm2 : m = 1, …,M}, where ρm, m = 1, ..,M, are the contraction factors of the IFS,
except for the higher wavenumber simulations for k ≥ 20 in figures 5, 7 and 8, where we
use CQ := max {ρm4 : m = 1, …,M}. To validate the accuracy of our quadrature, a number of our
experiments were repeated using smaller values for ℎQ, and the difference in the results was
found to be negligible.

When we plot errors, we use as our ‘exact’ solution a more accurate Galerkin IEM solution.
Most of our experiments are for homogeneous attractors, in which case, our mesh is uniform
with N = Mℓ, for some ℓ ∈ ℕ, we denote the corresponding approximate scattered, total and
far-fields by uℓ, uℓt ≔ ui + uℓ, and uℓ∞, respectively, and the ‘exact’ solution is the solution forℓ = ℓref, for some ℓref that we note for each example. Where we plot L∞ relative error estimates
these are

(5.1)
‖uℓref − uℓ‖L∞‖uℓref‖L∞ and

‖uℓref
∞ − uℓ∞‖L∞‖uℓref
∞ ‖L∞ ,

where the L∞ norms are discrete norms taken over a set of points detailed for each example.

(a) Examples in 2D space

(i) Cantor dust and Koch curve

Plots of Re(uℓt) are shown in figure 5 for two fractal scatterers. The first, see (a)–(c), is the
middle-third Cantor dust, Γ = C × C, where C is the Cantor set defined in example 2.2, and the
other, panel (d), is the Koch curve of example 2.3. For both scatterers the IFS is homogeneous,
with M = 4, ρ = 1/3, and hence d = dimH(Γ) = log 4/log 3 ≈ 1.26; e.g. [3, equation (125)] for the
Cantor dust IFS. In all plots, the incident plane wave has direction ϑ = (1,1)/ 2, and we take

6Our method is implemented in Julia and is available to download at github.com/AndrewGibbs/IFSIntegrals; for further
information see the electronic supplementary material.
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k = 20 and ℓ = 4 in (a) and (d), k = 60 and ℓ = 5 in (b) and (c), so that ℎ = 1/34 ≈ 0.0123 in (d),ℎ = 2/34 ≈ 0.0175 in (a), and ℎ = 2/35 ≈ 0.00582 in (b) and (c). The key difference between (a)
and (b) is the tripling of k, so that the wavelength λ = 2π/k reduces from λ ≈ 0.314 in (a) toλ ≈ 0.105 in (b). The wave field in (a) does not appear to resolve details beyond level 2, i.e. it
appears that ut ≈ 0 in the convex hull of each of the 16 Γm with m ∈ I2 (in the notation of §4a).
This is unsurprising as ut = 0 on each level 2 component, Γm, with m ∈ I2, and each comprises
four level 3 components on which ut = 0 and whose separation is only 1/33 ≈ 0.118λ, i.e. is a
small fraction of λ. In (b), where λ is reduced by a factor 3, the wave field appears to resolve
detail down to level 3, i.e. to resolve details of 1/3 the size. To see this more clearly, the region
inside the dotted boundary is blown up by a factor 3 in (c). After this scaling in fact, thanks to
the incidence direction we have chosen, the part of the plot (c) in [−1/3, 1/3]2 is very similar to
the field plotted in (a) in [−1,1]2.

(ii) Convergence plots

In figure 6, we show the discrete L∞ relative errors (5.1) for a range of 2D examples, namely the
Koch curve (example 2.3), the Cantor set C × {0} (example 2.2) and the Cantor dust C × C with
two different values of ρ, with plane wave incidence direction ϑ = (1, −1)/ 2 and wavenumberk = 5. To compute the scattered-field relative error given by (5.1), we sample at 50 points
equispaced along each edge of the square ( − 1, 2) × ( − 1.5,  1.5) (200 points in total), and for
the far-field, we sample at 50 equispaced points on the circle S1. We use, for each scatterer,ℓref = ℓmax + 2, where ℓmax is the largest ℓ for which results are shown.

Also plotted in figure 6 are graphs of cM−ℓ, with c > 0 chosen to fit each error curve. In the
cases where theorem 4.5 applies (all except the Koch curve), then if hypothesis 3.21 holds we
expect, by remark 4.6, errors to be roughly proportional to M−ℓ. In the examples with d ≈ 0.631,
the relative errors do seem to be proportional to M−ℓ for larger ℓ, supporting hypothesis 3.21
in these cases. The errors in the two examples with d ≈ 1.262 seem to decrease at the same rate,
suggesting the same solution regularity in both cases, and that the error estimate of theorem
4.5 may hold also for the Koch curve even though Γ is not disjoint in that case. However, the
convergence is slower than M−ℓ, suggesting that hypothesis 3.21 does not hold in these cases.

(iii) The Koch snowflake

In figure 7, we show approximations to Re(ut) for scattering by a Koch snowflake for the same
incident plane wave as figure 5, computed in two different ways, illustrating remark 3.8. In
figure 7a, we solve the IE by our Galerkin IEM with N = 4039 on the solid Koch snowflake Γ,
shown in figure 1g, which is the attractor of a non-homogeneous IFS with M = 7 as noted in
example 2.4. We refer to this as the volume approach. In figure 7b, we solve the IE by our Galerkin
IEM on @Γ, the boundary of the snowflake. We refer to this as the boundary approach. In contrast
to all our other examples, @Γ is not an IFS attractor, but it is the union of three IFS attractors
(rotated copies of the Koch curve of example 2.3, each the attractor of an IFS with M = 4), and so
@Γ is a d′-set, with d′ := dimH(@Γ) = log(4)/log(3) ≈ 1.262. In figure 7b, we use M4 = 256 degrees
of freedom on each Koch curve comprising @Γ, so that N = 768.

In the boundary approach, to assemble the Galerkin matrix A, we view it as a 3 × 3 block
matrix, each block corresponding to interactions between two of the three Koch curves. The
diagonal blocks correspond to self-interactions for a single Koch curve, and these matrix
elements are approximated by quadrature as described at the beginning of the section. The
off-diagonal blocks are assembled using the composite barycentre rule using the same value ofℎQ as for the diagonal blocks.

Proposition 3.6 and remark 3.2 tell us that the IE solution in the volume approach is
supported on @Γ, and that the IE solutions and scattered fields for the two approaches coincide
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as long as k2 is not a Dirichlet eigenvalue of −Δ in Ω− := Γ∘, the interior of the snowflake. It
appears that k = 20 is not one of these resonant wavenumbers as the fields in figure 7a,b coincide
and the field in Ω− is zero in (b), in agreement with the boundary condition for the volume
approach that ut ∈ H1(Ω), where Ω = Γc.

In figure 7c–e, we plot the modulus of the piecewise-constant Galerkin IEM solution
ϕN ∈ VN = Yℎ ⊂ HΓ−1 corresponding to figure 7a, for ℎ ≈ 0.22, ℎ ≈ 0.074, and ℎ ≈ 0.025. Since ϕN
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is constant on each element, the meshes used for each ℎ are discernible in figure 7c–e (each
element is a scaled copy of the original snowflake Γ). Each solution ϕN is highly peaked near
@Γ, especially where @Γ is illuminated by the incident wave, and is much smaller away from
@Γ; these effects are increasingly marked as ℎ is reduced. This is unsurprising as, by theorem
4.3, ϕN ϕ in HΓ−1 as ℎ 0, and ϕ is supported in @Γ.

In figure 7f, we explore convergence of the far-field approximations uℓ∞ computed by the
volume and boundary approaches, showing computations for ℎ = diam(Γ)/3ℓ/2 for ℓ = 0, 1, …, 6
for the volume approach, and ℎ = 3diam(Γ)/3ℓ for ℓ = 0,1, …, 4 for the boundary approach. For
each approach, we use as our ‘exact’ solution the boundary approach solution with ℓ = ℓref = 7.
Figure 7f shows the relative errors (5.1) in uℓ∞ for both methods, for plane wave incidence
direction ϑ = (1, −1)/ 2 and k = 5, with the L∞ norms computed using the same discrete set
of points as in figure 6. In the volume approach, every second increment in ℓ has a smaller
reduction in error. At these increments, the elements adjacent to @Γ, which is the support of
the solution, are not being subdivided, as a consequence of the definition of the approximation
space Yℎ. The convergence rate results of theorem 4.5 apply to the volume approach but not
to the boundary approach as @Γ is not an IFS attractor. But, assuming these estimates apply in
both cases, and if hypothesis 3.21 holds, so that the solution ϕ ∈ H@ Γ−1  has its maximum possible
regularity, then as in remark 4.6, we anticipate errors decreasing roughly in proportion to ℎd′ in
both cases, i.e. proportional to N−1 and N−d′/2 ≈ N−0.631 in the respective boundary and volume
cases. Both approaches appear to be converging somewhat more slowly than these conjectured

(a)

ρ = 3/8, and d = log(4)/log(8/3) ≈ 1.413ρ = 1/2, and d = 2

(b)
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Figure 8. Re(uℓ) for scattering by the Sierpinski tetrahedra with k = 50 and ℓ = 7. See §5b.
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theoretical rates, but, of the two, the boundary approach is certainly converging more rapidly.
It is plausible that the boundary approach, in which only @Γ is discretized, should be more
efficient, given that the solution is supported on @Γ. But the IE on @Γ is not well-posed for allk > 0, in contrast to the IE on Γ, and there must be scope to improve the efficiency of the volume
approach by using graded versions of our meshes, concentrating elements near @Γ (cf. [36,37]).

(b) Examples in 3D space
In figure 8, we show the real parts of the scattered fields created by the two Sierpinski tetra-
hedra of figure 2, which are attractors of the homogeneous IFS of example 2.5 with M = 4
and d = log 4/ log (1/ρ). The plane wave incidence direction is ϑ = (0, 1, −1)/ 2, k = 50, and both
approximations were computed with ℓ = 7, corresponding to N = 16 384.

In figure 9, we show L∞ far-field errors for the same incidence direction and k = 2 for a range
of 3D examples, namely: the Sierpinski tetrahedra of figures 2 and 8 and example 2.5; 3D Cantor
dusts, i.e. C × C × C where C is the Cantor set of example 2.2, with ρ = 1/3 and ρ = 0.45; the Koch
curve of figure 4 embedded in 3D space, i.e. K × {0}, where K ⊂ ℝ2 is the Koch curve of example
2.3. All these scatterers Γ have d = dimH(Γ) > 1 (see figure 9) so that HΓ−1 is non-trivial by remark
3.5, the Galerkin IEM is applicable, and the solution ϕ ∈ HΓ−1 to the IE (3.15) is non-zero (since
(3.15) is equivalent to (3.30) and trΓg = − ui|Γ is non-zero), so also (by (3.9)) the scattered fieldu = Aϕ is non-zero.

To compute the discrete L∞ relative errors (5.1) shown in figure 9a, we sample at 200 points
on the sphere S2, chosen so that the points form a uniform grid in spherical coordinate space
[0, π] × [0,2π], and we use, for each scatterer, ℓref = ℓmax + 1, where ℓmax is the largest ℓ for which
results are shown. This choice of ℓref, constrained by computational resources, is not large
enough for uℓref

∞  to be a sufficiently accurate ‘exact’ solution to see convergence rates clearly.
Thus, we also plot in figure 9b the absolute increment errors ‖uℓ∞ − uℓ + 1

∞ ‖L∞ for ℓ = 0, …, ℓref − 1.
As discussed in [3, §6.2], if, for some c > 0 and 0 < α < 1, ‖uℓ∞ − uℓ + 1

∞ ‖L∞ = cαℓ for all ℓ ≥ ℓ0 then,
by the triangle rule, ‖u∞ − uℓ∞‖L∞ ≤ c

1 − α αℓ for ℓ ≥ ℓ0. Thus, convergence rates can be deduced
from figure 9b. By remark 4.6, which applies to all the examples except the Koch curve and
the Sierpinski tetrahedron with d = 2, we expect, if hypothesis 3.21 holds, to see errors roughly
proportional to (Mρ)−ℓ. This rate is observed in figure 9b for sufficiently large ℓ for all the
cases with d < 2, but the convergence is significantly slower than (Mρ)−ℓ for the example withd ≈ 2.6. These results, and the convergence results reported in §5a, suggest that hypothesis 3.21
does not hold in cases where d′ = dimH(@Γ) > n − 1 (note @Γ = Γ for the scatterers in figures 6
and 9), but may hold in cases where d′ < n − 1. They suggest moreover that hypothesis 3.21
and the estimates of theorem 4.4 may hold for the Koch curve screen in 3D, even though Γ is
non-disjoint in this case.
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