
Optimising Soft Robot Designs through an Integrated Environment

Syed Ismail Ahmad and Helge Wurdemann

Abstract— Simulation-driven optimisation is increasingly
utilised in the design and control development of soft robots and
actuators. However, setting up such an optimisation pipeline is
complex, often requiring the integration of multiple software
tools and algorithms, which can compromise robustness.

To address these challenges, we propose a single integrated
environment that allows for the flexible description of soft
robots and actuators. Our system robustly handles geometry
generation, meshing, simulation, and optimisation.

We achieve this by using implicit geometry shape functions
and voxelisation to create tetrahedral meshes, followed by
Extended Position-Based Dynamics (XPBD) to simulate soft
materials. As XPBD lacks physical constants, we use an
evolutionary optimisation algorithm to calibrate simulation
parameters to real-world behaviour and assess how geometry
and voxel count affect simulation accuracy. Once calibrated,
we find these parameters enable accurate simulations of more
complex geometries.

Finally, we validate the effectiveness of our integrated envi-
ronment by optimising a cylindrical soft actuator, demonstrat-
ing its potential as an optimisation platform for the field of soft
robotics.

I. INTRODUCTION

Soft robotics has emerged as a rapidly growing field due
to its significant advantages across numerous applications
[1], [2]. Soft robots can navigate challenging environments
[3]–[5], enhance safety in human-machine interactions [6],
and achieve complex actuation with inherent simplicity [7]–
[9]. These capabilities position soft robotics as a promising
avenue for the future of robotic systems.

However, the design process for soft robots is highly
iterative and requires multiple prototypes to be manufactured
and tested [10]. To mitigate this, virtual methods have been
increasingly employed to simulate and optimise soft robot
performance prior to manufacturing [11], [12]. This approach
accelerates the design process and reduces the number of
iterations required to achieve high-performance designs. Cur-
rent simulation approaches utilise commercial solvers like
ANSYS, ALTAIR, ABAQUS, or COMSOL. These solvers
employ Finite Element Analysis (FEA) techniques to solve
a global stiffness matrix based on boundary conditions and
input volumetric meshes, predicting the expected displace-
ment of the soft robot or actuator.

Integrating these simulation tools into an optimisation
loop necessitates coupling them with geometry generation,
meshing, and optimisation algorithms. Typically, the original
geometry is stored and modified in a parametric Boundary

This work was supported by the Department of Mechanical Engineering,
University College London, London, UK.

Syed Ismail Ahmad and Helge Wurdemann are with the Depart-
ment of Mechanical Engineering, University College London, UK.
ucemsia@ucl.ac.uk h.wurdemann@ucl.ac.uk

Fig. 1. Overview of the soft robot optimisation pipeline: Geometry is
defined via a shape function, followed by voxelisation and tetrahedralisation.
XPBD simulation applies forces and constraints, providing data for the
optimiser to iteratively refine parameters, feeding back into meshing and
simulation for optimal performance.

Representation (B-Rep) format. A meshing algorithm then
converts the B-Rep geometry into a volumetric mesh, which
is passed to the simulation engine for boundary condition
application and simulation.

Most Computer-Aided Design (CAD) software, such as
SOLIDWORKS, CATIA, and open-source kernels like Open
Cascade Technology (OCCT), utilise the B-Rep format.
Meshing is often handled within a separate software like
GMSH, and the simulation is conducted in yet another
tool. This fragmented pipeline poses challenges: creating a
simulation workflow is complex and often brittle, especially
with intricate geometries. Failures can occur during geometry
updates within the B-Rep format or due to errors in meshing
and boundary condition application.

Recent literature reflects efforts to optimise soft actuators
and robots with these pipelines. For example, [13] optimised
a bending soft actuator using genetic algorithms by integrat-
ing ABAQUS for geometry generation and simulation with
MATLAB for optimisation. Similarly, [14] optimised a soft
finger using a pipeline that integrates an OCCT backend for
geometry generation, GMSH for meshing, SOFA [15] for
simulation, and Optuna [16] for optimisation.

With all of these advancements, a common pattern
emerges: optimisation pipelines rely on multiple software
tools for geometry design, meshing, simulation, and op-
timisation. This approach introduces brittleness within the
pipeline, as multiple geometry type conversions are required
for each algorithm. This issue is especially pronounced when
working with complex geometries. It also means the barrier

to entry for engineers looking to optimise their soft robot and
actuator designs is high, as a pipeline must first be created
[17]–[19].

Therefore, there is a pressing need to generate soft robot
and actuator volumetric meshes, simulate, and optimise them
in a cohesive manner within a single, robust environment. To
effectively search this design space, fast simulation methods
are essential due to the increased number of simulations
required. Several frameworks aim to reduce computational
costs in simulating soft robots. The SOFA framework in-
tegrates FEA with coarse grids to enable real-time control
system interactions [20], [21]. For finer meshes, model order
reduction techniques using proper orthogonal decomposition
have been applied [22]. However, these require offline sim-
ulations tailored to specific shape types, making them infea-
sible for optimisation loops involving diverse geometries.

In computer graphics, Position-Based Dynamics (PBD)
[23] offers a robust approach to deformable simulation by
directly manipulating particle positions and enforcing physi-
cal constraints, contrasting traditional methods that solve for
forces and accelerations. Extended Position-Based Dynamics
(XPBD) [24] further improves this by making constraint
stiffness time-step independent. While PBD and XPBD have
been applied in surgical soft tissue simulation [25] and soft
robot simulation with strain energy constraints and model
order reduction [26], their potential for simulating soft robots
and actuators remains underexplored.

We address these challenges by proposing an integrated
environment that enables robust volumetric mesh generation
and rapid simulation, thereby facilitating the optimisation of
soft robots and actuators. Our contributions are:

1) A direct uniform meshing algorithm: We introduce
a method to rapidly produce tetrahedral meshes from
simple shape functions in a robust, unbreakable man-
ner. This eliminates dependencies on complex B-Rep
geometry and meshing software, enhancing reliability
and simplifying the pipeline.

2) An XPBD simulation framework: We develop an
XPBD-based simulator and material calibration pro-
cess that leverages the uniform meshing algorithm
to efficiently simulate soft robots. Its simplicity and
efficiency make it suitable for optimisation loops.

3) An integrated optimisation environment: We pro-
vide an environment that seamlessly embeds optimisa-
tion algorithms for the design of soft actuators. This
enables exploration of novel designs beyond traditional
parametric limitations, unlocking new possibilities in
soft robotics.

Link to repository:
https://anonymous.4open.science/r/VoxSoft

II. DIRECT UNIFORM MESHING ALGORITHM

We create meshes directly by leveraging voxelisation to
define material presence at points in 3D space. This binary
representation, where each point either contains material or
not, eliminates geometry computation errors and simplifies

material placement. To facilitate this process, we developed
two libraries:

1) Low-Level Voxel Positioning Library: Allows for the
placement of specific voxels within the 3D space.

2) High-Level Implicit Shape Function Library: En-
ables generation of primitive and periodic shapes to
build complex soft actuators and robots.

The implicit shape function generates a 3D surface. We
use this to determine whether a point lies inside or outside
the shape. The low-level voxel positioning library then fills
voxels within these surfaces to create a voxelised solid body
(we denote a solid body as B ∈ A, where A represents the
set of all solid bodies, and non-solid shell bodies as B ∈
B, where B represents the set of all shell bodies). Finally,
for the mesh setup, a tetrahedralisation step is performed
that converts the individual voxels into a tetrahedral mesh
by splitting each voxel into five separate tetrahedra.

To ensure the simulation runs as a single object rather
than a multitude of individual tetrahedralised voxels, the ver-
tex coordinates are stitched together. This ensures adjacent
voxels share the same vertices.

A. Voxel Positioning Based on an Implicit Shape Function

The shape function s(x) is represented as an implicit
function, which defines a surface as the set of points that
satisfy a certain equation. It can be written for a three-
dimensional space as:

s(x, y, z) = 0, (1)

where (x, y, z) ∈ R3 are the coordinates of a point in 3D
space. The surface of the shape is defined by the set of points
for which this equation holds true.

A voxel grid is then used to subdivide the three-
dimensional space into cubic elements. Each voxel represents
a discrete sample point within the space. In the context of
the shape function, each voxel in the grid stores the value of
the shape function s(x, y, z) at the center of that voxel.

Sampling and Processing Implicit Geometry

To sample and process the shape function in the voxel
grid, the following steps are taken:

1) Define the Voxel Grid: Establish the dimensions of
the grid, Nx×Ny ×Nz , and the spacing between two
adjacent voxels, also known as the scale factor µ.

2) Evaluate the Shape Function: For each voxel cen-
tered at (xi, yj , zk), compute the value of the shape
function s(xi, yj , zk).

3) Thresholding: Determine if the voxel is inside, out-
side, or on the surface of the shape by comparing the
function value to 0 or a shell thickness ϵ for a shell
object. Specifically, the voxel is considered to be:

• On the surface if s(xi, yj , zk) = 0.
• Inside the shape if s(xi, yj , zk) < 0.
• Outside the shape if s(xi, yj , zk) > 0.

For a shell object (denoted as B ∈ B), the classification
is as follows:

• Inside the shell if |s(xi, yj , zk)| <
ϵ

2
.

• Outside the shell if |s(xi, yj , zk)| ≥
ϵ

2
.

Algorithm 1 details the process of sampling each point in
a voxel grid to determine the classification of each voxel.

B. Tetrahedralisation of Positioned Voxels

Once the voxel grid has been created, each voxel is split
into five tetrahedra. This is required because the XPBD
volume constraint is formulated for tetrahedra, and this
allows us to capture shear movement of the elements. The
four outer tetrahedra are congruent, creating a final regular
tetrahedron at the core.

To capture this geometry, four separate rectangular arrays
are created:

1) A vertex position ID array z, containing the vector
positions of all the individual vertices in the mesh.

2) A tetrahedral array f , containing the position IDs of
vertices which make up each tetrahedron within the
mesh, used for maintaining the volumetric constraints
within the XPBD simulation.

3) An edge array e, containing the position IDs of ver-
tices which are connected to each other; this is used
for maintaining the distance constraint between edges
within the XPBD simulation.

4) A surface triangle array s, containing the position IDs
of vertices on the surface of a voxel that make a
triangular plane; this is used to render the mesh.

For each one of the voxels, new vertex positions are added
to the array based on the position of a specific voxel Gi.
Similarly, the tetrahedral, edge, and surface triangle arrays
are also updated.

The process of integrating a new voxel mesh into the
overall mesh structure can be generalised as follows. Starting
with the initial array C for a voxel at the origin (i, j, k) =

Algorithm 1 Implicit Shape Function Voxel Positioning
1: Input: Voxel grid G with dimensions Nx × Ny × Nz ,

shell thickness ϵ, scale factor µ
2: Output: Positioned voxels for the implicit shape func-

tion
3: for i = 1 to Nx do
4: for j = 1 to Ny do
5: for k = 1 to Nz do
6: Compute s(i, j, k) at voxel center (µi, µj, µk)
7: if B ∈ B then
8: if |s(i, j, k)| < ϵ

2
then

9: Position voxel at (µi, µj, µk)
10: end if
11: else if s(i, j, k) < 0 then
12: Position voxel at (µi, µj, µk)
13: end if
14: end for
15: end for
16: end for

(0, 0, 0), we generate array components D for each new
voxel. These components are then concatenated with C to
create the updated array C ′:

C ′ =

[
C

D

]
, C = [aij]m×n, D = [bij]p×n, (2)

bpn =


8Giamn if α = z,

5Giamn if α = f ,

18Giamn if α = e,

16Giamn if α = s.

(3)

C. Mesh Vertex Stitching Algorithm

The tetrahedralisation step generates a mesh of individual
tetrahedralised voxels. In order for the object to be simulated
as a single body rather than multiple separate voxels, the
mesh must be stitched together where voxels are adjacent to
one another. To stitch the mesh together, we remove duplicate
vertices from the geometry arrays. This is accomplished by
identifying vertices that share the same position and merging
them. This ensures that the mesh forms a continuous, con-
nected structure. Algorithm 2 outlines the steps involved to
do this in a computationally efficient manner.

By iteratively merging duplicate vertices and updating the
geometry arrays, the algorithm stitches the mesh together,
ensuring that adjacent voxels share vertices and the mesh
forms a single, connected body suitable for the XPBD
simulation.

III. SIMULATION AND MATERIAL CALIBRATION

Extended Position-Based Dynamics (XPBD) models an
object as a series of particles connected by constraints,
with each particle defined by its mass mi, position pi,
and velocity vi, in this case positioned at the vertices
of a tetrahedral mesh. Edge distance constraints maintain
fixed distances between particles, while volume constraints
preserve the volume of each tetrahedron. XPBD iteratively
adjusts particle positions to new positions qi in order to
satisfy these constraints, using semi-implicit time integra-
tion: particles move based on velocities and external forces

Algorithm 2 Mesh Vertex Stitching
1: Input: Vertex array z, tetrahedral array f , edge array e,

surface triangle array s
2: Output: Updated geometry arrays with merged vertices
3: Initialise an empty mapping for unique vertex positions
4: for each vertex index i in z do
5: positioni ← z[i]
6: if positioni is not in the mapping then
7: Add positioni to the mapping with index i
8: else
9: j ← index of existing vertex at positioni

10: Update indices in f , e, and s: replace i with j
11: end if
12: end for

Fig. 2. A tetrahedral mesh generated for a gyroid structure to evaluate the
robustness of voxelisation, meshing, and vertex stitching processes.

fext, followed by constraint corrections, thereby enhancing
stability, especially for stiff objects.

However, material compliance α(e,v) within XPBD is a
non-physical parameter affected by mesh density and time
step size. Therefore for high-accuracy soft robotics appli-
cations, tuning the simulation with specific time steps and
compliance values is essential to achieve precise results.

A. Material Calibration

To calibrate simulation parameters with real-world ma-
terials, a beam deflection test was devised. Beams made
from three materials (EcoFlex 00-20, 00-30, and 00-50), each
measuring 10 mm in width and height and 100 mm in length,
were tested. In three separate experiments, the beams were
clamped 10 mm from one end, leaving 90 mm exposed,
and displacements due to gravity were recorded at 10 mm
intervals along the length.

An XPBD simulation was run to model the experiment,
with each voxel representing a 5x5x5mm volume of ma-
terial. The simulation was run in tandem with the genetic
optimisation given in Algorithm 4 that adjusted edge and
volume compliance to align simulated displacements with

Algorithm 3 Extended Position Based Dynamics Algorithm
1: for all particles i do
2: initialise pi = p0

i ,vi = v0
i , wi = 1/mi, αe,v = 1

ke,v

3: end for
4: loop
5: for all particles i do
6: vi ← vi +∆twifext(pi,pN)
7: end for
8: dampVelocities(v1, . . . ,vN)
9: for all particles i do

10: qi ← pi +∆tvi

11: end for
12: for solverIterations times do
13: projectConstraints(C1, . . . , CN ,q1, . . . ,qN , αe,v)
14: end for
15: for all particles i do
16: vi ← (qi − pi)/∆t
17: pi ← qi

18: end for
19: velocityUpdate(v1, . . . ,vN)
20: end loop

real-world data. An exponentially decaying fitness function
f was applied to minimise the error between simulated and
actual displacements.

f = eS (4)

where:

S = k

8∑
i=0

∥r⃗i− r⃗i, real∥ (5)

r⃗i = (xi, yi, zi), r⃗i, real = (xi,real, yi,real, zi,real)

• r⃗i is the simulated displacement vector at position i.
• r⃗i,real is the real displacement vector at position i.
• k is the decay coefficient (-10).
1) Genetic Algorithm Implementation: The genetic al-

gorithm evolves a population of candidate solutions, each
represented by a DNA sequence of fixed length n.

The algorithm operates with a population size (N) of 30
and a DNA length (n) of 2. It selects 2 elite individuals (E)
in each generation with a mutation rate (m) of 0.05. When
running the genetic algorithm with function f the objective
becomes to minimise the error between the simulated and
real beam displacements. Thus, through this optimisation
we encode the material compliance characteristics into the
tetrahedralised voxel.

Using the genetic algorithm, we achieved average errors
between simulation and reality for EcoFlex 00-50, 00-30,
and 00-20 of 3.69%, 4.23%, and 6.71%, respectively. This
corresponds to a maximum displacement error of 2.14mm,
3.26mm and 5.72mm for the beam across its length.

To analyse encoding sensitivity to voxel count and ge-
ometry, we conducted six experiments using Ecoflex 00-
30 beams of varying sizes (shown in Figure 4). The first

Algorithm 4 Genetic Algorithm
1: Initialise population Population with N random individ-

uals
2: Set generation counter G← 1
3: repeat
4: for each individual DNAi in Population do
5: Compute fitness fi = ei

S

6: end for
7: Sort Population in descending order of fitness
8: Copy top E elite individuals to New Population
9: for i = E + 1 to N do

10: Select parents DNAa, DNAb using roulette wheel
selection approach

11: Create offspring DNAchild via crossover
12: Mutate DNAchild with mutation rate m
13: Add DNAchild to New Population
14: end for
15: Replace Population with New Population
16: Increment generation G← G+ 1
17: until termination condition is met (G = 50)

Fig. 3. Beam deflection under gravity within an XPBD simulation
compared to real world experiment. (a) Shows the fitness function evolution,
(b) the edge compliance evolution and (c) the volume compliance evolution
for 50 generations of the Genetic Algorithm.

beam (a) retained the original dimensions (10×10×100mm),
while the width of beam (b) and height of beam (c) were
separately doubled to 20mm. These experiments were then
repeated, but with the beam length halved to 50mm (d, e,
f). Node displacement under gravity was recorded at 10mm
increments. With a constant voxel scale factor µ, voxel count
varied with geometry, but local mesh density and pattern
remained unchanged. We also conducted all simulations with
the optimised parameters given in Table I.

We found that doubling the voxel count in beams (b) and
(c) increased the average error from 4.23% to 5.53% and
12.76%, respectively. Conversely, reducing the voxel count
in beams (d) and (e) lowered the error to 3.68% and 2.41%.
Notably, beam (f), like beam (c), where height was increased,
showed a greater accuracy drop than width expansion, with
an average error of 6.56%. Thereby indicating accuracy of
an XPBD approach being linked to the force application
direction in relation to the mesh.

IV. OPTIMISING A SOFT ACTUATOR USING THE
INTEGRATED ENVIRONMENT

To evaluate the system as a whole, a cylindrical soft
actuator was optimised to maximise displacement under fixed
pressure (4 kPa) within specific geometric constraints using
our integrated environment. The optimised values were then
used to manufacture a real actuator in order to validate the
effectiveness of the integrated environment.

A. Optimisation and Simulation Protocol

A parametric shape function characterised the cylindrical
actuator, with variables for radius, height, and wall thickness.
Geometric constraints set maximums for radius (5 voxels,
each 5x5x5 mm), height (7 voxels, 35 mm), and wall

TABLE I
OPTIMISED XPBD SIMULATION VARIABLES FOR DIFFERENT MATERIAL

TYPES.

Material Type Edge Compliance Volume Compliance
Ecoflex 00-20 0.29939 0.01761
Ecoflex 00-30 0.27877 0.09300
Ecoflex 00-50 0.14575 0.05815

Fig. 4. Overlay of real and simulated displacements for the 6 beams tested.

thickness (3 voxels, 15 mm). A brute-force optimisation
searched the design space, enabled by the discrete voxel-
based geometry (105 combinations in 210s on an ARM64
Apple M3 Max processor) using EcoFlex 00-30 compliance
values from Table I. The optimal configuration for maximum
displacement was found at radius = 5 voxels, height = 7
voxels, and wall thickness = 3 voxels. A physical actuator
with these dimensions was then produced and tested for
validation.

B. Soft Actuator Manufacturing and Experimental Protocol

To manufacture the actuator, 3D printed moulds were cre-
ated using an ELEGOO MARS 3 PRO printer and ELEGOO
ABS-LIKE 2.0 RESIN (GREY). The actuator was split into
two moulded sections, the first being the lower cap and
actuator walls and the second being the upper cap. Two part
EcoFlex 00-30 was then mixed by equal mass and vacuum
degassed before being poured into each mould. Once cured
the two sections were bonded using WACKER ELASTOSIL
E41. Finally 3D printed upper and lower caps (ELEGOO
ABS-LIKE 2.0 RESIN) were bonded to the actuator also
using ELASTOSIL E41, with the top cap also including an
air inlet port.

The actuator was then mounted to a table surface and
pressurised air was introduced via the air inlet port. This
was done with a HYUNDAI HY5508 compressor and a
pressure regulator with an embedded closed loop controller.
The displacement of the actuator was then measured using a
vernier calliper. The experiment was repeated 10 times and
the average displacement was then taken.

Fig. 5. Left: Manufacturing process of the soft actuator. Right: Actuator
in pressurised and non-pressurised states.

Fig. 6. 4D plot of cylindrical soft actuator optimisation, showing dis-
placement as a function of radius, height, and wall thickness under 4 kPa.
Colour denotes displacement magnitude, highlighting the optimal design.
Right: XPBD simulation mesh and real-world test.

We found that the displacement prediction was 1.63mm
and the real actuator displaced 2.3mm, thereby representing a
0.67mm discrepancy between the simulated and experimental
displacements. As the possible displacement of an actuator
of this type is relatively small, the discrepancy could be
attributed to a number of factors such as manufacturing
errors, the voxel definition not accurately capturing the
geometry used and errors within the material calibration
process. Further work is required to fully understand how
best to ensure accuracy with an environment of this nature.

V. CONCLUSION

This paper presented an integrated environment for soft
robotic design, combining geometry generation, voxel-based
meshing, XPBD simulation, and parameter optimisation.
Calibration against real-world beam bending tests demon-
strated its feasibility, with reasonable accuracy across vary-
ing geometries. The optimisation and fabrication of a soft
actuator further validated its effectiveness, despite minor
discrepancies between simulated and experimental results.
Future work will refine material calibration, enhance voxel
representation of complex geometries, and extend the frame-
work to more intricate actuators and soft robots. A com-
parative study with established FEA packages will also
assess XPBD’s computational efficiency and accuracy in soft
robotic applications.

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, May 2015.

[2] C. Laschi, B. Mazzolai, and M. Cianchetti, “Soft robotics: Technolo-
gies and systems pushing the boundaries of robot abilities,” Sci. Robot.,
vol. 1, no. 1, p. eaah3690, 2016.

[3] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D.
Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft
robot,” Proceedings of the National Academy of Sciences, vol. 108,
no. 51, pp. 20 400–20 403, 2011.

[4] E. Almanzor, F. Ye, J. Shi, T. G. Thuruthel, H. A. Wurdemann, and
F. Iida, “Static shape control of soft continuum robots using deep
visual inverse kinematic models,” IEEE Transactions on Robotics,
vol. 39, no. 4, pp. 2973–2988, 2023.

[5] A. Ataka, P. Qi, A. Shiva, A. Shafti, H. Wurdemann, H. Liu, and
K. Althoefer, “Real-time pose estimation and obstacle avoidance for
multi-segment continuum manipulator in dynamic environments,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 2827–2832.

[6] G. Agarwal, M. A. Robertson, H. Sonar, and J. Paik, “Design and
computational modeling of a modular, compliant robotic assembly
for human lumbar unit and spinal cord assistance,” Scientific Reports,
vol. 7, 12 2017.

[7] H. A. Wurdemann, A. Stilli, and K. Althoefer, “Lecture notes in
computer science: An antagonistic actuation technique for simul-
taneous stiffness and position control,” in Intelligent Robotics and
Applications, H. Liu, N. Kubota, X. Zhu, and R. Dillmann, Eds.
Cham: Springer International Publishing, 2015, pp. 164–174.

[8] F. Giorgio-Serchi, A. Arienti, and C. Laschi, “Underwater soft-bodied
pulsed-jet thrusters: Actuator modeling and performance profiling,”
International Journal of Robotics Research, vol. 35, pp. 1395–1416,
9 2016.

[9] Q. Qi, Y. Teng, and X. Li, “Design and characteristic study of a pneu-
matically actuated earthworm-like soft robot,” in 2015 International
Conference on Fluid Power and Mechatronics (FPM), 2015, pp. 435–
439.

[10] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, “Soft robotics:
Biological inspiration, state of the art, and future research,” Applied
Bionics and Biomechanics, vol. 5, no. 3, p. 520417, 2008.

[11] O. Goury and C. Duriez, “Fast, generic, and reliable control and simu-
lation of soft robots using model order reduction,” IEEE Transactions
on Robotics, vol. 34, no. 6, pp. 1565–1576, 2018.

[12] P. Polygerinos, Z. Wang, J. T. B. Overvelde, K. C. Galloway, R. J.
Wood, K. Bertoldi, and C. J. Walsh, “Modeling of soft fiber-reinforced
bending actuators,” IEEE Transactions on Robotics, vol. 31, no. 3, pp.
778–789, 2015.

[13] G. Runge, J. Peters, and A. Raatz, “Design optimization of soft
pneumatic actuators using genetic algorithms,” in IEEE International
Conference on Robotics and Biomimetics, 2017, pp. 393–400.

[14] S. E. Navarro, T. Navez, O. Goury, L. Molina, and C. Duriez, “An
open source design optimization toolbox evaluated on a soft finger,”
pp. 6044–6051, 2023.

[15] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau,
H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik et al., “Sofa:
A multi-model framework for interactive physical simulation,” in
Soft tissue biomechanical modeling for computer assisted surgery.
Springer, 2012, pp. 283–321.

[16] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
next-generation hyperparameter optimization framework,” in The 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 2623–2631.

[17] D. R. Ellis, M. P. Venter, and G. Venter, “Computational design
for inflated shape of a modular soft robotic actuator,” in IEEE
International Conference on Soft Robotics, 2019, pp. 7–12.

[18] Evolution of morphology through sculpting in a voxel based robot,
ser. Proceedings of the 2023 Artificial Life Conference, 2021.

[19] M. P. Venter and I. J. Joubert, “Generative design of soft robot
actuators using esp,” Mathematical and Computational Applications,
vol. 28, p. 53, 4 2023.

[20] C. Duriez, “Control of elastic soft robots based on real-time finite
element method,” in IEEE international conference on robotics and
automation. IEEE, 2013, pp. 3982–3987.

[21] P. Chaillou, J. Shi, A. Kruszewski, I. Fournier, H. A. Wurdemann,
and C. Duriez, “Reduced finite element modelling and closed-loop
control of pneumatic-driven soft continuum robots,” in 2023 IEEE
International Conference on Soft Robotics (RoboSoft), 2023, pp. 1–8.

[22] O. Goury and C. Duriez, “Fast, generic, and reliable control and simu-
lation of soft robots using model order reduction,” IEEE Transactions
on Robotics, vol. 34, no. 6, pp. 1565–1576, 2018.

[23] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position
based dynamics,” J. Vis. Comun. Image Represent., vol. 18, no. 2,
p. 109–118, 2007.

[24] M. Macklin, M. Müller, and N. Chentanez, “Xpbd: position-based
simulation of compliant constrained dynamics,” in International Con-
ference on Motion in Games, ser. MIG ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 49–54.

[25] M. Camara, E. Mayer, A. Darzi, and P. Pratt, “Soft tissue deformation
for surgical simulation: a position-based dynamics approach,” Interna-
tional Journal of Computer Assisted Radiology and Surgery, vol. 11,
no. 6, pp. 919–928, 2016.

[26] H. Peng, N. Li, D. Jiang, and F. Li, “Soft robot fast simulation
via reduced order extended position based dynamics,” Robotics and
Autonomous Systems, vol. 175, p. 104650, 2024.

