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Abstract

Dynamic reconfigurations of the functional connectome across different connectivity states are
highly heritable, predictive of cognitive abilities, and linked to mental health. Despite their
established heritability, the specific polymorphisms that shape connectome dynamics are largely
unknown. Given the widespread regulatory impact of modulatory neurotransmitters on functional
connectivity, we comprehensively investigated a large set of single nucleotide polymorphisms
(SNPs) of their receptors, metabolic enzymes, and transporters in 674 healthy adult subjects
(347 females) from the Human Connectome Project. Pre-registered modulatory
neurotransmitter SNPs and dynamic connectome features entered a Stability Selection
procedure with resampling. We found that specific subsets of these SNPs explain individual
differences in temporal phenotypes of fMRI-derived connectome dynamics for which we
previously established heritability. Specifically, noradrenergic polymorphisms explained
Fractional Occupancy, i.e., the proportion of time spent in each connectome state, and
cholinergic polymorphisms explained Transition Probability, i.e., the probability to transition
between state pairs, respectively. This work identifies specific genetic effects on connectome
dynamics via the regulatory impact of modulatory neurotransmitter systems. Our observations
highlight the potential of dynamic connectome features as endophenotypes for neurotransmitter-
focused precision psychiatry.

Significance Statement
Understanding how genetic variations affect brain activity and connectivity can unlock new

insights into cognitive abilities and mental health. This study reveals that specific genetic
variations influence how long the brain stays in different connectivity states and how it
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transitions between these states. These genetic variations were found in two modulatory
neurotransmitter systems: acetylcholine and noradrenaline. These findings suggest that brain
connectivity patterns influenced by genetics could serve as markers for personalized psychiatric
treatment, pushing the boundaries of precision psychiatry.



1. Introduction

The time-varying characteristics of the brain’s functional connectivity architecture (the
connectome) are specific to the individual, highly heritable, and predictive of individual
cognitive abilities!=3. Such dynamic characteristics consist of temporal features which
depict the connectome’s sequence of state (spatial connectivity patterns), i.e., the
trajectory of the connectome through the space of possible states. These dynamic
connectome features are associated with cognitive functioning and implicated in several
psychiatric and neurological disorders*®. Importantly, particular temporal features of
connectome dynamics, such as the proportion of the total recording time spent in each
connectome state (Fractional Occupancy) and the probability to transition between
specific pairs of connectome states (Transition Probability), have been linked to
behavioral performance?®’” and found to be heritable?2. Specifically, our previous work
has established substantial genetic effects (h* ~ 40%) and strong behavioral relevance
of Fractional Occupancy and Transition Probability?. This work further highlighted that
such heritability is specific to the temporal features and does not encompass the spatial
connectivity pattern and topology (specifically modularity) of the connectome states.
Despite such strong support for genetic effects on the temporal characteristics of
functional connectome dynamics, it is unknown which specific genes carry this effect.
The goal of the current study is to identify genetic variants associated with these
dynamic connectome phenotypes for which heritability has been established.

Recent theoretical advances and empirical evidence suggest that ascending
neuromodulatory inputs play a pivotal role in driving such dynamic fluctuations in
connectome states and cognitive functioning. This role may be due to the widespread
volume transmission and long-lasting regulatory impact of modulatory
neurotransmitters®*1, Unlike wiring transmissions, which involves rapid point-to-point
signaling, neuromodulators such as acetylcholine and monoamines are commonly
released non-synaptically, and instead diffusing through the extracellular space. Such
diffusion allows a large number of cells to detect these neuromodulators through
extrasynaptic receptors. Indeed, pharmacological studies have shown that the release of
all core modulatory neurotransmitters — i.e. acetylcholine (ACh)*?, noradrenaline (NAd)*3,
dopamine (DA)*, and serotonin (5HT)!215-17— can drastically alter large-scale
connectome reconfigurations across various behavioral states. Further, spatial
distributions of neurotransmitter receptors are aligned with the structural and intrinsic
connectivity networks!1819 facilitating the flow of information and supporting cognitive
processes?.

Single nucleotide polymorphisms (SNPs), the most common form of genetic variation 2%,
have been extensively studied for their role in shaping individual differences in brain
structure and function 2. As specific and measurable genetic variants, SNPs enable
fine-grained analyses of genetic contributions to brain function. SNPs can modify a
gene’s function by either altering its expression or by modifying the composition of its
product, i.e., the protein, through changes of amino acids or splice variants, to name the
most common means. Therefore, we propose that SNPs in the genes, encoding
receptors, metabolic enzymes, and transporters of the modulatory neurotransmitter



systems, are likely contributors to the heritability of dynamic connectome state
transitions and associated cognitive functions.

If empirically confirmed, such genetic impact of neurotransmitter systems on
connectome dynamics and cognition would have implications for understanding mental
health. Connectome dynamics are implicated in numerous psychiatric and neurological
conditions® and explain individual differences in certain cognitive abilities across
different diagnostic categories?*. Regarding Fractional Occupancy and Transition
Probability in particular, associations have been observed with major depressive
disorder*, schizophrenia®, and subjective cognitive decline®. Moreover, the patho-
etiology of most psychiatric disorders involves abnormalities of neurotransmitter-related
proteins, such as receptors dysfunction and neurotransmitter imbalance?.
Consequently, most pharmacological interventions for psychiatric disorders target
modulatory neurotransmitter systems?27. Not surprisingly, specific SNPs in these
systems may contribute to individual differences in symptoms and treatment
response?®?%, Therefore, it is likely that modulatory neurotransmitter systems impact
mental health and cognitive functioning through dynamic reconfigurations of the
functional connectome, and that polymorphisms in the former shape the latter.

Despite such strong translational implications for putative genetic effects on functional
connectome dynamics, previous genetics neuroimaging studies have not investigated
the dynamic connectome. These studies have primarily focused on the association
between genetic polymorphisms and structural connectivity?2, static (time-averaged)
functional connectivity??21-23, and more broadly cortical volume*® and network
activations?%34-3_ Further, most of the previous work has separately examined the
impact of each individual genetic polymorphism of interest on brain imaging phenotypes.
However, in a complex biological system, phenotypic expression typically results from
the joint contribution of multiple genetic factors. Therefore, our study aimed to fill a
critical knowledge gap by demonstrating how genetic polymorphisms of the modulatory
neurotransmitter systems jointly shape the heritable phenotypes of the functional
connectome dynamics, i.e., Fractional Occupancy and Transition Probability?.

To this end, we examined a comprehensive list of SNPs from genes encoding ionotropic
and metabotropic receptors, metabolic enzymes, and transporters for each modulatory
neurotransmitter system (ACh, NAd, DA, 5HT). The quality control and
inclusion/exclusion criteria of the SNPs as well as definition of connectome and cognitive
phenotypes followed our pre-registered project
(https://doi.org/10.17605/0SF.I0/VE2ZW). For each neurotransmitter system, we
employed a five-fold cross validation approach with a stable feature selection algorithm
(Stability Selection)®=3 to explain each connectome phenotype. This approach aimed to
identify the joint contribution of all SNPs in each neurotransmitter system to the
connectome dynamics phenotypes. Further, in light of the established relationship
between the above-described connectome dynamics phenotypes and cognitive
abilities®*’, we examined whether the same set of SNPs that explained connectome
dynamics could concomitantly explain variability in cognitive abilities.



https://doi.org/10.17605/OSF.IO/VF2ZW

2. Materials and Methods

Figure 1 is a schematic representation of the overall approach and analysis subsections.
SNP selection and phenotype definition followed our pre-registered project. Note that
statistical analyses deviated from the pre-registered project because we identified a
testing approach more pertinent to the goal of the present study*’, which we were not
aware of at the time of pre-registration (cf. its successful application in comparable
genotype-phenotype association studies*'4?).

2.1. Subjects

We used genetics, resting-state fMRI, and behavioral data from the Washington
University-University of Minnesota (WU-Minn) consortium’s Human Connectome Project
(HCP) S1200 release®. Participants were recruited, and informed consent was acquired
by the WU-Minn HCP consortium according to procedures approved by the Washington
University IRB*.

The genotyping data for 1,141 subjects was made available through the dbGAP
repository. Briefly, the DNA samples were collected from either whole blood or saliva
sample and genotyped using the lllumina Multi-Ethnic Global Array (MEGA) SNP-array.
This array included chip-specific content from PsychChip and ImmunoChip and provided
comprehensive coverage of European, East Asian, and South Asian populations. To
maintain ethnic homogeneity, only subjects with European genetic ancestry were
included in the study using the genetic ancestry predicted with the SNPweights software
package*>#¢ (Figure 1-1). Consequently, 674 healthy adult subjects (aged 22-36 years,
347 females) with four complete resting-state fMRI scans (4800 total timepoints) were
included. Further details on the HCP data collection protocol**4’, cognitive measures?,
and inclusion and exclusion criteria **#’ can be found elsewhere.

2.2. Genotype Imputation

Genotype imputation for the SNPs of interest (see below) was performed using
minimac4 method and the HRC reference panel (version rl1.1, which consists
predominantly of European ancestry) through the Michigan Imputation Server (accessed
on 29 January 2022)*. Prior to the imputation process, we conducted quality control of
the HCP data using the toolbox provided by Will Rayner
(http://www.well.ox.ac.uk/~wrayner/tools/; accessed on January 29, 2022). This step was
taken to ensure the data was properly organized to be imputed with the HRC reference
panel. The input data was prepared following the guidelines provided by the Michigan
Imputation Server. The genotype imputation was done for each chromosome after
several quality control and phasing steps by the server.

2.3. SNPs selection and quality control

We targeted a specific set of SNPs in the genes that encode receptors, metabolic
enzymes, ion channels, and transporters of modulatory neurotransmitters (i.e., ACh,
NAd, DA, and 5HT) in the human brain following our pre-registered selection
procedures. Specifically, we selected 60 genes related to these neurotransmitter
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systems from the Neurotransmitter Study (Figure 1-2) conducted by the Allen Institute
for Brain Science. These genes were characterized by in situ hybridization (ISH) in the
adult human brain. The SNPs associated with these genes were identified using the
Variant Effect Predictor (VEP; https://useast.ensembl.org/info/docs/tools/vep/) tool. In
particular, we identified SNPs with the upstream and downstream distance of 5000 bp
from the gene as a buffer (which is a default setting of VEP and a common choice in the
field) meeting specific criteria, including having a Minor Allele Frequency (MAF) greater
than 0.05, as well as being of either intron, synonymous, or missense variant types.
These criteria were chosen to ensure that the selected SNPs represent common genetic
variations and are pertinent to gene expression regulation and protein function. Further,
we used GTEXx Portal (https://gtexportal.org/; accessed on 02 November 2021) to
guantify each SNP’s expression quantitative trait loci (eQTL) in cortical tissue, then
selected SNPs with eQTL p-value less than 0.05. This additional step allowed us to hone
in on SNPs with substantial influence on gene expression in the cortex.

After identifying the SNPs to be included in the study, quality control measures were
taken on the imputed HCP data using PLINK v2.0%°. SNPs with a MAF < 5%, a Hardy-
Weinberg equilibrium (P < 1 x 107%), missing call rates (> 10%) across individuals were
removed. Additionally, individuals with missing call rates (> 20%) across the genotypes
were excluded. Linkage disequilibrium (LD) analysis was conducted, and SNPs were
greedily pruned until no pairs with r2 > .2 within a 500kb sliding window with a step size
of 50 markers (Note that this value was updated from the originally pre-registered 50kb
window upon a reviewer request at the revision stage of the manuscript). The list of
SNPs selected after the process is reported in Figure 1-3. Population structure and
kinship were modeled as described in the statistical analyses below.

2.4. Neuroimaging data preprocessing and parcellation

With the goal of investigating specifically those connectome phenotypes that we
previously established as being heritable?, all neuroimaging procedures correspond to
those that were performed in our prior work and resulted in the pre-registered phenotype
selection. The procedures are included here for completeness. Imaging data were
acquired on a customized Siemens 3T Skyra at Washington University in St. Louis using
a multi-band sequence. Each subject had four 15-minute resting-state fMRI runs. We
used the data that were minimally preprocessed by the HCP consortium** with the
pipeline of Smith et al.*”*! using tools from FSL>? and Freesurfer® and artifact removal
using ICA+FIX%*%%, Inter-subject registration of the cerebral cortex was carried out using
areal feature-based alignment and the Multimodal Surface Matching algorithm
(‘MSMAII')*¢57, The HCP team had previously parcellated the neuroimaging data using
Independent Component Analysis (ICA) in FSL with model orders of 25, 50, 100, 200,
and 300 and provided averaged BOLD time-series data for regions of these group-ICA-
based parcellations. For the present study and our previous work?, the 300-model order
ICA was chosen and its time-series data was used without global signal regression.
However, Automated Anatomical Labeling (AAL) atlas-based masks and visual
inspection identified that 161 out of 300 independent components were either from
cerebellar or brainstem. Therefore, the focus of our investigation was on the 139
independent components from the cortical and subcortical cerebrum, which represent
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the canonical intrinsic connectivity networks. The reconfigurations of these canonical
networks have been described as key contributors to the behavioral impact of
connectome dynamics®®-%, Further details on cerebral parcellation can be found in our
previous work?.,

2.5. Hidden Markov modeling and temporal features of the connectome dynamics

The following briefly describes the procedures performed in our prior twin heritability
study that provided the foundation for the current investigation?. The hidden Markov
model (HMM) assumes that time series data can be represented by a finite sequence of
hidden states. Each HMM-inferred connectome state, along with its corresponding time
series, represents a unique connectivity pattern that temporally re-occurs over time.
Using the HMM-MAR (multivariate autoregressive) toolbox®!, we applied the HMM to the
minimally preprocessed, region-wise BOLD time-series and obtained four discrete
connectome states (K of 4; Figure 1-4). Specifically, the number of states (K) was
chosen following our previous work? which identified heritability of the temporal
connectome dynamics phenotypes using K = 4 and replicated the findings using K = 6.
Such Ks were selected based on prior HMM studies that have directly compared several
Ks and identified Ks between 3 and 7 as optimal®'¢2, Further details on the HMM and
reasonings for the selection of K can be found in our previous work?.

HMM-derived estimates describe the temporal aspects of connectome dynamics by
characterizing the sequence of connectome states or the connectome’s trajectory
through state space. Specifically, we calculated Fractional Occupancy (the cumulative
total time spent in a given state; 1 x K) and Transition Probability (the probability matrix
of transitioning between all possible pairs of discrete states; K x K) for each subject.
While Transition Probability and Fractional Occupancy are not fully independent
measures, they do provide non-overlapping information about connectome dynamics.
For example, a state with particularly high Fractional Occupancy is likely to have high
values as initial state and target state in the Transition Probability matrix. Despite such
dependence, however, two hypothetical subjects with highly comparable Fractional
Occupancy values across the k states may still have substantially different Transition
Probability matrices. Our previous work demonstrated strong genetic effects on these
temporal characteristics of functional connectome reconfigurations?.

Our phenotypes of interest (i.e., Fractional Occupancies and Transition Probabilities)
span multiple brain states and are inherently multi-dimensional. While recent methods
extend genetic association analyses to multivariate phenotypes, these approaches
involve several assumptions and may increase type | error rates®. As our prior work?
demonstrates the heritability of the multivariate phenotypes after dimensionality
reduction, we believe that important phenotypic information is retained after such
reduction.

To reduce the dimensionality of Fractional Occupancy and Transition Probabilities as in
our prior work?, we calculated the distance of individuals from an origin point.
Specifically, we generated surrogate data to derive the origin point from which the
Euclidean distance of each multivariate phenotype was estimated for each subject.
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Surrogate datasets were simulated using the simhmmmar function from the HMM-MAR
toolbox, which preserves the static covariance structure of the original data while
disrupting the precise temporal ordering of states. An HMM inference with K = 4 states
was applied to each of 50 surrogate datasets, and Fractional Occupancy and Transition
Probability were recomputed. The Fractional Occupancy (respectively Transition
Probability) values averaged across the surrogate datasets were used to determine the
origin point. Further details on obtaining the origin point from the null models can be in
our previous work?.

2.6. Cognitive performance

The following briefly describes the factorization that was performed in our prior
heritability study and resulted in preregistered cognitive phenotypes of interest?.
Specifically, we included 14 cognitive measures provided by the HCP, which are
summary scores from cognitive tasks or questionnaires under the cognition domain (see
Figure 1-5 for more information on each variable). The measures were normalized to
have zero mean and unit variance. A factor analysis was then conducted to cluster the
cognitive measures into four Cognitive Factors?. The Cognitive Factors were interpreted
as follows: factor 1: “Language”; factor 2: “Impulsivity/self-regulation”; factor 3: “Cognitive
control”’; and factor 4: “Memory”. Further details on the factor analysis can be found in
our previous work?.

2.7. Statistical analysis

We evaluated the joint effect of the neuromodulatory SNPs on the temporal phenotypes
of the connectome dynamics, i.e., Fractional Occupancy and Transition Probability.
Specifically, separately for each neurotransmitter system, we aimed to build a model
incorporating the optimal combination of SNPs and covariates that best explains each
temporal connectome dynamics phenotype. Note that SNP genotypes were dummy
coded as 0/1/2 to represent subjects with 0, 1, or 2 copies of the minor allele, which is
according to the standard additive model applied in genetic association studies.

To avoid overfitting, we employed a 5-fold cross-validation approach (Figure 1C)54. This
approach involves splitting the full data into equally sized five folds and using 4/5" of the
data as train set and the remaining 1/5" of the data as test set, then rotating which 1/5"
is used for testing. When combined, the five test sets form the original full data. It's

important to note that participants from the same family were assigned to the same fold.

In each train set, we used the Stability Selection procedure?’8 with elastic net
regression as the selection algorithm to identify a subset of predictors that best explains
each of the connectome phenotypes. Specifically, for each connectome phenotype,
SNPs of a modulatory neurotransmitter system and covariates (i.e., age, sex, frame-wise
displacement (FD) calculated across the entire scan duration for head motion, and 10
principal components that account for European-ancestry population structure) entered a
Stability Selection procedure®’3 through the R package stabs (https://cran.r-
project.org/web/packages/stabs/index.html). We opted for Stability Selection procedure
as our selection algorithm because it offers greater stability compared to other
regularization methods (e.g., stepwise regression or elastic net without Stability
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Selection)®®. The method also generates more parsimonious models by reducing the
unmodelled variability to the estimates and, thus, mitigating the risk of type 1 errors. As
such, Stability Selection has been widely used in the fields dealing with high-dimensional
data, such as gene regulatory networks®®, genome-wide association studies®®, and
graphical modeling®’:8,

Specifically, Stability Selection implemented a complementary pairs subsampling
approach®=° which involved dividing a given train set into 50 random pairs of
subsamples (where each subsample comprised half of the data) and conducting variable
selection on each subsample. Variables selected in a predetermined proportion of the
subsamples were retained. Typically, the proportion threshold is preselected in the
recommended range of 0.6 to 0.9%. We chose a threshold of 0.75 that balances rigorous
selection with the risk of false negatives®®.

Then, we fitted two models to the values of a connectome phenotype in the test set (i.e.,
the left-out fold): (i) the “full model” comprising a subset of covariates and SNPs selected
by Stability Selection on the train set, along with random genetic effects in the form of a
kinship matrix, and (ii) the “base model,” which included only the selected covariates and
the kinship matrix (excluding SNPs). Note that the base model was identical to the full
model, except for the absence of SNPs. The kinship matrix, representing family
structure, was obtained using the Imekin function in the R package coxme (https://cran.r-
project.org/web/packages/coxme/index.html). Importantly, we did not predict the test set
using the parameter weights of these two models derived from the training set. Instead,
we fitted the two models (i.e., full and base models) directly to the test set and obtained
the residuals, respectively. This approach was necessary because accounting for the
kinship in the linear mixed-effects models, a critical step to adjust for the random
genetics effect in the data with families, does not allow using the pre-defined parameter
weights obtained from the training set and, obviously the kinship matrix differs between
the training and testing samples. This process was repeated 5 times, with each fold
serving as the test set once.

Consequently, each subject had two residuals: one from the full model and the other
from the base model. The absolute values of these residuals were then concatenated
across subjects, i.e. across the five test sets’®". To assess whether the full model fits
the data significantly better than the base model, the two sets of residuals entered an F
test. In the regression context, the numerator degrees of freedom (dfl) are related to the
number of parameters being tested, which is the difference in the number of parameters
between the full and the base models. The denominator degrees of freedom (df2) are
related to the number of observations minus the number of parameters in the full model.
In order to compute the F statistics and P values with the most conservative approach,
we set the dfl to be largest by taking the maximum number of parameters from the full
models and the minimum number of parameters from the base models across the five
folds. All statistical analyses were performed in R.

Subsequently, in a second analysis, the above-described neurotransmitter models —
specifically built for each of the connectome dynamics phenotypes— underwent further
testing to evaluate their explanatory capacity for cognitive abilities. Specifically, each of
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the neurotransmitter models that outperformed the base model was tested for a new set
of phenotypes: the Cognitive Factors, i.e., Language, Impulsivity, Cognitive Control, and
Memory. The “cognitive full model” was fitted to the test set, which includes the same
subset of SNPs and covariates selected above for each fold and the kinship matrix as
predictors and each of the Cognitive Factors as a dependent variable. Simultaneously,
the “cognitive base model” was fitted to the same test set, consisting only of the above-
selected covariates and the kinship matrix. The significance of each cognitive model
against their respective cognitive base model was tested using the same approach
(Table 2-1).

3.Results

Consequent to the selection and quality control process of the genotype data (Figure
1A), a total of 155 SNPs were included in the present study (Figure 1-3): 25 SNPs from
14 ACh genes, 9 SNPs from 4 NAd genes, 38 SNPs from 5 DA genes, and 83 SNPs
from 17 5HT genes. Two heritable connectome phenotypes and four associated
cognitive phenotypes were adopted from our prior twin study?.

3.1. Effects of select SNPs on temporal connectome phenotypes

Stability Selection (Figure 1C) identified a subset of SNPs for each neurotransmitter
system that best explained the connectome states’ Fractional Occupancy or Transition
Probability, respectively. The SNPs and covariates included for each model by Stability
Selection are listed in Table 1-1. We found two neurotransmitter models that significantly
outperformed the covariates-only base model (P? < .05, where P is the Bonferroni-
corrected P value for eight models; Table 1). Specifically, Fractional Occupancy was
explained by the noradrenergic model (F(2, 671) = 6.56, PT =.012), and Transition
Probability was explained by the cholinergic model (F(3, 670) = 12.25, P" = 6.61e-07).
The significant models included SNPs related to two NAd alpha-1 receptors, both G
protein-coupled receptors (ADRA1A and ADRALD genes), an ACh metabolic enzyme
(BCHE gene), and ACh nicotinic ion channels (CHRNB1, CHRNB4, and CHRNA2
genes). To provide an intuition, Figure 2 illustrates how one polymorphism contributing
to a significant association model is linked to each connectome dynamics phenotype.
Note that while the illustration highlights a single SNP for demonstration purposes, the
significance of the models emerged from the synergistic impact of the respective SNPs
in combination.

For completeness, we also tested each of the 155 SNPs individually (along with the
covariates) in separate linear regression models. This analysis represents our originally
pre-registered association approach prior to identifying and adopting an established and
stable approach®”® to unveil the impact of multiple SNPs. When tested individually in
this manner, none of the SNPs survived a highly conservative correction method
(Bonferroni-corrected P < .05/155), strengthening the notion that the SNPs are
associated collectively, rather than individually, with the investigated connectome
dynamics phenotypes.
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Table 1. Neurotransmitter models explaining temporal connectome dynamics
phenotypes

Predictors selected from five train sets Full model vs. base model

NT models
Predictors Genes Protein family F value P value P*value
(# selected)

Fractional Occupancy
NAd rs35105284 (5x) ADRALD  NAd alpha 1 receptor F(2, 671)=6.56  .0015 .012
rs1048101 (2x) ADRA1A  NAd alpha 1 receptor
rs60593443 (1x) ADRA1A  NAd alpha 1 receptor
Sex (4x)
Age (1x)
Transition Probability
ACh rs1803274 (3x) BCHE ACh enzyme F(3,670)=12.25 8.26e-08 6.61e-07
rs2302761 (1x) CHRNB1  ACh nicotinic ion channel
rs2565061 (1x) CHRNA2  ACh nicotinic ion channel
rs3743072 (1x) CHRNB4  ACh nicotinic ion channel
rs1948874 (1x) SLC44A5 Choline transporter
n_ps3 (5x)
Sex (1x)

Age (1x)

During the five-fold cross validation, modulatory neurotransmitter SNPs and covariates
entered the Stability Selection algorithm on the train set (4/5" of the data) five times. The
table shows how many times each SNP and each covariate were selected by Stability
Selection across the five folds. NT: Neurotransmitter, ACh: acetylcholinergic, NAd:
noradrenergic, DA: dopaminergic, # selected; number of each predictor selected across
the 5 folds, P: P values Bonferroni-corrected for 8 tests. *P’ < .05. Note that ACh model
of Fractional Occupancy and 5HT model of Transition Probability outperformed the
covariates-only base model. See Extended Data Table 1-1 for the complete list of
predictors selected from stability selection across five training sets for each temporal
connectome dynamics phenotype and neurotransmitter system and Table 1-2 for gene
expression levels of the select genes in the seven canonical intrinsic connectivity
networks.

3.2. Effects of select SNPs on cognition
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In accord with our pre-registered hypotheses, we tested whether the above-described
models containing a set of SNPs that explain connectome dynamics phenotypes can
also explain cognitive abilities. Specifically, the NAd model of Fractional Occupancy and
the ACh model of Transition Probability were fitted to each of the four Cognitive Factors.
In other words, the multi-SNP models initially built for connectome phenotypes were re-
fitted to cognitive phenotypes. We found two models explaining

cognitive abilities compared to their respective base model (P* < .05, where P’ is the
Bonferroni-corrected P value for 8 models in Table 2; see full results in Table 2-

1). Specifically, the NAd SNPs originally identified in each fold to explain Fractional
Occupancy explained Language and Memory factors.

Table 2. Neurotransmitter models explaining Cognitive Factors

Mean Residuals

Re-fitted models concatenated across five test sets

Cognitive full model vs. Cognitive base model

Cognitive Cognitive base Cognitive full

Phenotype model model F value P value P* value
NAd model explaining Fractional Occupancy

Language <.001 <.001 F(2,671) = 66.52 4.24e-27 3.54e-26

Memory 0.026 0.017 F(2,671)=363.62  1.05e-107 8.42e-106

Modulatory neurotransmitter SNPs and covariates selected using Stability Selection
algorithm on the train set (4/5" of the data) in each fold for the temporal connectome
dynamics phenotypes were re-fitted to each of the Cognitive Factors. NAd:
noradrenergic, DA: dopaminergic, PT: P values Bonferroni-corrected for 8 tests (two
significant models in Table 1 and four Cognitive Factors). *P < .05. See Extended Data
Table 2-1 for complete results of the neurotransmitter models explaining of Cognitive
Factors.

Discussion

The complexity of brain function and cognitive abilities arise from brain dynamics,
including the functional connectome that changes dynamically over time. Such time-
varying connectome dynamics, which are highly heritable, predictive of cognitive
abilities?2, and linked to mental health*®, may be modulated by the modulatory
neurotransmitter systems!%7273, However, the specific genetic polymorphisms that shape
connectome dynamics have been largely unknown. The current study departs from
previous genetics neuroimaging investigations of static functional connectome
measures® 4 and reveals that genetic profiles of modulatory neurotransmitter systems
impact dynamic connectome phenotypes, specifically Fractional Occupancy and
Transition Probabilities. Our findings provide evidence for genetic effects on connectome
dynamics via the regulatory impact of modulatory neurotransmitter systems.

Interestingly, the genetic impact on dynamic connectome phenotypes was observed in
the NAd and ACh systems, the two modulatory neurotransmitter systems that have been
hypothesized to drive functional connectome dynamics through their cooperative and
competitive impact on neural gain (output as a function of input)®. Notably, we observed
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a double dissaociation in how these neurotransmitter systems contribute to the
connectome phenotypes, with the NAd system (specifically alpha 1 receptor genes)
explaining Fractional Occupancy and the ACh system (maost notably nicotinic ion
channel and enzyme genes) explaining Transition Probability. This observation indicates
that distinct neural mechanisms support Transition Probability and Fractional
Occupancy, which contain non-overlapping information about connectome dynamics
(although they are not fully independent measures; cf. Methods 2.5). However,
understanding of the mechanisms behind the differential effects of modulatory
neurotransmitters on connectome phenotypes will require dedicated studies in the
future.

The observed contribution of neurotransmitter systems to the heritability of connectome
dynamics aligns with the role of these systems in driving widely distributed but spatially
organized neuromodulation. Neuromodulatory neurotransmitter receptors-and
transporters are spatially distributed according to canonical intrinsic connectivity
networks and functional gradients that are hallmarks of the connectome’s architecture,
thereby effectively mediating the connectome-wide propagation of synaptic
communication and population activity®®74, Table 1-2 showcases this distributed gene
expression across the intrinsic neurocognitive networks’ for each of the genes identified
in Table 1 using the microarray data of the Allen Institute for Brain Science. In dedicated
studies, this spatial organization may provide mechanistic insights into how genetic
variation in neurotransmitter systems may modulate connectome states’ Fractional
Occupancy and Transition Probabilities. As an example in prior literature, combining
spatial mapping of a serotonergic receptor with modelling and pharmacological
intervention (serotonergic agonist psilocybin), the causal chain from serotonergic
neuromodulation to connectome state’s Fractional Occupancy and Transition
Probabilities has been outlined®1”. Building on our current findings, such models can be
extended to include the subjects’ receptor/enzyme/transporter genotypes to
mechanistically understand inter-individual variability in connectome-level effects of
neuromodulation.

The identified genetic impact of modulatory neurotransmitter systems on connectome
dynamics may help understand the patho-etiology of various neurological and
psychiatric conditions and predicting treatment response. For instance, the ADRA1D
gene was consistently identified in the noradrenergic model of Fractional Occupancy
(Table 1 and Table 1-1). ADRA1D, along with ADRA1A which contained all other
identified NAd-related SNPs, encode NAd alpha 1 receptors whose activation
contributes to cortical arousal (including enhanced excitability’®’”). Alpha 1 receptors
thus serve as a pharmacological target (for receptors-specific antagonists) in post-
traumatic stress disorder characterized by hyper-arousal’’. The observed association
between ADRAL receptors and connectome dynamics may help explain the previously
established link between physiological arousal fluctuations and functional connectome
dynamics’®. Further, the BCHE gene was repeatedly selected in the cholinergic model of
Transition Probability (Table 1 and Table 1-1). The BCHE gene encodes the
butyrylcholinesterase enzyme that inactivates acetylcholine and consequently its
modulatory impact on processing of environmental stimuli’®. BCHE is thought to
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contribute to accelerated deactivation of acetylcholine in the aging brain®®! and is
implicated in mild cognitive impairment®? and Alzheimer’s disease®®! While BCHE
expression in astrocytes is widely distributed across the brain, the expression in heurons
is particularly high in limbic areas®®* (as confirmed in Table 1-2), regions that play a
critical role in Alzheimer’s dementia. Butyrylcholinesterase is considered a potential
therapeutic target for Alzheimer's disease, which is characterized by a cholinergic
deficit®®. It is interesting to note that the specific rs1803274 variant of BCHE gene found
in our study has been strongly associated with the serum level of the
butyrylcholinesterase®®. As connectome features have the potential to inform
individualized medicine®’, the genes we identified may help to refine treatment efforts
that embrace inter-individual differences in connectome dynamics.

In addition, we found that the noradrenergic model, which explained Fractional
Occupancy, also explains cognitive factors characterized by performance in the domains
of language and memory (Table 2). It is important to note that the specific emergence of
Language and Memory factors in this association closely aligns with our previous
heritability work in the same dataset?. Specifically, the prior work showed that
connectome phenotypes that were identified as heritable (and hence entered the current
study) exhibit the strongest cognitive association with the same Language factor,
followed by the Memory factor. Interestingly, a prior study®® that investigated heritability
of behavioral measures, likewise in the HCP dataset, demonstrated the highest
heritability in two cognitive factors with task loadings similar to those of our Language
and Memory factors. Collectively, these findings not only suggest that both subject-
specific trajectories across connectome states and cognitive abilities are under genetic
effects, but also that the noradrenergic polymorphisms may drive the relationships
between connectome phenotypes and cognition®11138° gspecifically between Fractional
Occupancy and Language/Memory.

Our study is subject to several limitations which must be considered when interpreting
our findings. Firstly, while we identified polymorphisms associated with connectome
dynamics, in some cases it is yet to be revealed whether they change the functional
capability of the respective proteins. Specifically, beyond missense protein-coding SNP
the identified models contained introns and synonymous SNPs (e.g. rs35105284;
ADRALD gene). Such inclusion of synonymous SNPs and introns is in line with the
observation that complex traits are primarily associated with noncoding variants that
likely impact gene regulation®. Furthermore, our work should be interpreted at the level
of identified genes rather than individual SNPs, as we have focused on investigating
variants which have significant influence on gene expression (eQTL p < .05), which is
their most likely mechanism of action. Finally, it is important to note that the genes
identified in our study and their encoded products (such as receptors or metabolic
enzymes) function as components of intricate system-level networks®! influenced by
various biological and environmental factors, making mechanistic interpretation of our
results challenging. For example, different receptors have distinct binding affinities,
downstream signaling pathways, and cellular responses to varying levels of
neuromodulatory neurotransmitters. Additionally, neural activity can also impact gene
expression and neurotransmitter function®2%. Thus, the associations between specific
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genes and connectome phenotypes identified in our study should be interpreted
cautiously and further investigated in the future in terms of the underlying molecular and
cellular mechanisms. The discoveries from our study motivate investigations into such
potentially indirect (i.e. regulatory) impact of the identified SNPs on the respective
proteins®, and suggest that such impact translates into connectome states’ Fractional
Occupancy and Transition Probability phenotypes. Moreover, our study is based on a
relatively small size of the European-ancestry population due to the difficulty in finding a
consortium-level dataset with publicly available genotype and high-quality resting-state
fMRI data of young adults, calling for future replication upon availability of such data.
Further, because ethnic differences in the frequency or the effect size of a variant can
affect the likelihood of its discovery and its contribution to phenotypes across
populations, a study cannot include subjects from multiple ethnic groups. Future studies
should replicate our approaches in other ethnic groups and compare the roles of
potentially different neurotransmitter genetic profiles in modulating the connectome
dynamics and cognition.

To conclude, our study reveals specific genes that modulate dynamic connectome
reconfigurations. This work extends beyond prior studies that have primarily focused on
static connectome measures. We demonstrate that multiple SNPs in each
neurotransmitter system are critical in shaping the dynamic trajectory of the functional
connectome in state space. Our study has the potential to inform the development of
precision medicine strategies that leverage genetic information to tailor diagnostics and
interventions for mental health disorders.
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Figure Legends

Figure 1. An overview of the analysis pipeline. Panels A and B follow the steps
outlined in our pre-registered project to determine genotypes and phenotypes entering
the study. Specifically, the top section of Panel A describes the process of selecting the
single nucleotide polymorphisms (SNPs), while the bottom section details the imputation
and quality control steps carried out on the Human Connectome Project (HCP) genotype
data. The left side of Panel B depicts the hidden Markov model (HMM) estimates of
temporal phenotypes (i.e., Fractional Occupancy and Transition Probability) of functional
connectome dynamics 2. The right side of Panel B illustrates the factorization of the
various cognitive measures obtained from the HCP dataset. Note that as a foundation
for the current study, we have previously established the heritability of the connectome
and cognitive phenotypes depicted in Panel B using a twin study approach in the same
data®. In Panel C, we divided the data into five subsets for each connectome phenotype
and neurotransmitter system. Within the training set (comprising 4/5th of the full data),
we employed Stability Selection approach, which utilizes elastic net regularization and
resampling techniques, to select a subset of SNPs and covariates (age, sex, head
motion, and 10 principal components representing the European-ancestry population
structure) that best explain each temporal phenotype. Subsequently, we used this
subset in the "full model" (including the selected SNPs, covariates, and random genetic
effects (RGX)) and the "base model" (including the same subset of covariates and RGX,
but not SNPs) to be fitted to the test set. This process was repeated five times. For each
connectome phenotype and neurotransmitter system, we combined the residuals from
the full and base models across the five test sets and used a linear mixed-effects model
to assess model performance (full vs. base). In Panel D, we re-fitted the full models that
outperformed their respective base models in Panel C to be fitted to each of the
Cognitive Factors in the same test sets. Subsequently, we combined the residuals of the
“cognitive full” and “cognitive base” models across the five test sets and used a linear
mixed-effects model to evaluate model performance. Refer to Extended Data Figure 1-1
for a visualization of the population stratification of all HCP subjects with genotype data,
Figure 1-2 for the list of 60 selected genes from the Neurotransmitter Study of the Allen
Institute for Brain Science, Figure 1-3 for the 155 SNPs included in the analysis after
quality control, Figure 1-4 for a detailed visualization of the four HMM-derived states,
and Figure 1-5 for information on the 14 cognitive measures used in the analysis.

Figure 2. An illustration of genetic polymorphisms associated with temporal
connectome dynamics phenotypes. To provide an intuition of the association, the
figure uses the example of rs35105284, a SNP included in the significant noradrenergic
(NAd) model of Fractional Occupancy. Averaged across the subjects of a given
genotype, the pie charts depict the mean duration of time spent in each connectome
state. For example, subjects with the homozygous genotype for major allele (T/T) of
rs35105284 spend more time in state 4 and less time in state 3 compared to minor allele
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carriers (T/C and C/C). Note that while this illustration highlights a single SNP for
demonstration purposes, the significance of the models often emerged from the
synergistic impact of several SNPs in combination.
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A. SNP Selection Process

B. Phenotypes from Human Connectome Project Dataset

(

Allen Institute for Brain Science
26 ACh, 6 NAd, 9 DA, 19 5HT genes

Variant Effect Predictor (VEP)
SNPs linked to the select genes (MAF > 5%)

eQTL analysis (p < .05)
SNPs directly associated with gene expression levels

SNPs of Interest
(225 ACh, 39 NAd, 706 DA, 2082 5HT)

HCP Genotype Data Imputation
Michigan Imputation Server

Quality Control of SNPs of Interest
1. Exclusion criteria applied (e.g., MAF < 5%)
2. Keep European-ancestry subjects
3. Exclude SNPs with missingness > 10%
4. Exclude subjects with missingness > 20%
5. Linkage Disequilibrium analysis (r2 > 0.2)
: window size = 500kb, step size = 50 kb

Final set of SNPs

/

Neuroimaging preprocessing

Hidden Markov Model (HMM)

Connectome States (K = 4)

Connectome Dynamics Phenotypes

25%

28%

16%

AL
N :

Probability to transition

31%

Proportion of time spent

25 ACh, 9 NAd, 38 DA, 86 5HT SNPs

in each state between states

Fractional Occupancy Transition Probability

Behavioral Factorization

Cognitive Measures

Reading Recognition
Picture Vocabulary
Fluid Intelligence
Delay Discount 1
Delay Discount 2
Card Sorting
Flanker Task
Processing Speed
Picture Sequence
List Sorting
Sustained Attention 1
Sustained Attention 2
Working Memory
Spatial Orientation

|

Cognitive Factors

Cognitive Control
Impulsivity
Language

Memory

N

AN
C. Testing association of SNPs with Connectome Phenotypes
(Five-fold cross validation.. ...l
C SNPs of one NT system + Covariates
Full data -3
: & ¢ ldentify optimal combination of SNPs & Covariates
n D (Stability Selection in the Train set)
Train set Testset :
DQc
D & : Estimate Fractional Occupancy or Transition Probablllty

in the Test set

CV-ANOVA to test the model performance
(full vs. base models)

- Full model: Select SNPs & Covs+RGX
- Base model: Select Covs+RGX

D. Testing association of above-identified SNPs with Cognitive Factors

Five-fold cross validation (the same folds defined in C)

Es_thate Cognitive Factors (Cognitive Control, Impulsivity, Language, or Memory)

in the Test set

CV-ANOVA to test the model performance
(full vs. base models)

- Full model: Select SNPs & Covs+RGX
- Base model: Select Covs+tRGX




/ Examples of the Genotypes affecting Temporal Phenotypes of the Connectome Dynamics ™~

The Noradrenergic System Genotypes of rs35105284

T/C

c/c I state 4

25% 0goe  24%

28%

SNP: rs35105284
Gene: ADRA1D
Gene Product: ADRA1D encodes an
transmembrane protein that functions as
G protein-coupled receptors.

. /

15%

31% - 30%

Fractional Occupancy




