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Abstract 15 

Dynamic reconfigurations of the functional connectome across different connectivity states are 16 

highly heritable, predictive of cognitive abilities, and linked to mental health. Despite their 17 

established heritability, the specific polymorphisms that shape connectome dynamics are largely 18 

unknown. Given the widespread regulatory impact of modulatory neurotransmitters on functional 19 

connectivity, we comprehensively investigated a large set of single nucleotide polymorphisms 20 

(SNPs) of their receptors, metabolic enzymes, and transporters in 674 healthy adult subjects 21 

(347 females) from the Human Connectome Project. Pre-registered modulatory 22 

neurotransmitter SNPs and dynamic connectome features entered a Stability Selection 23 

procedure with resampling. We found that specific subsets of these SNPs explain individual 24 

differences in temporal phenotypes of fMRI-derived connectome dynamics for which we 25 

previously established heritability. Specifically, noradrenergic polymorphisms explained 26 

Fractional Occupancy, i.e., the proportion of time spent in each connectome state, and 27 

cholinergic polymorphisms explained Transition Probability, i.e., the probability to transition 28 

between state pairs, respectively. This work identifies specific genetic effects on connectome 29 

dynamics via the regulatory impact of modulatory neurotransmitter systems. Our observations 30 

highlight the potential of dynamic connectome features as endophenotypes for neurotransmitter-31 

focused precision psychiatry. 32 

 33 

Significance Statement 34 

Understanding how genetic variations affect brain activity and connectivity can unlock new 35 

insights into cognitive abilities and mental health. This study reveals that specific genetic 36 

variations influence how long the brain stays in different connectivity states and how it 37 
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transitions between these states. These genetic variations were found in two modulatory 38 

neurotransmitter systems: acetylcholine and noradrenaline. These findings suggest that brain 39 

connectivity patterns influenced by genetics could serve as markers for personalized psychiatric 40 

treatment, pushing the boundaries of precision psychiatry.41 
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1. Introduction 

The time-varying characteristics of the brain’s functional connectivity architecture (the 

connectome) are specific to the individual, highly heritable, and predictive of individual 

cognitive abilities1–3. Such dynamic characteristics consist of temporal features which 

depict the connectome’s sequence of state (spatial connectivity patterns), i.e., the 

trajectory of the connectome through the space of possible states. These dynamic 

connectome features are associated with cognitive functioning and implicated in several 

psychiatric and neurological disorders4–6. Importantly, particular temporal features of 

connectome dynamics, such as the proportion of the total recording time spent in each 

connectome state (Fractional Occupancy) and the probability to transition between 

specific pairs of connectome states (Transition Probability), have been linked to 

behavioral performance2,3,7 and found to be heritable2,3. Specifically, our previous work 

has established substantial genetic effects (h2 ~ 40%) and strong behavioral relevance 

of Fractional Occupancy and Transition Probability2. This work further highlighted that 

such heritability is specific to the temporal features and does not encompass the spatial 

connectivity pattern and topology (specifically modularity) of the connectome states. 

Despite such strong support for genetic effects on the temporal characteristics of 

functional connectome dynamics, it is unknown which specific genes carry this effect. 

The goal of the current study is to identify genetic variants associated with these 

dynamic connectome phenotypes for which heritability has been established.  

Recent theoretical advances and empirical evidence suggest that ascending 

neuromodulatory inputs play a pivotal role in driving such dynamic fluctuations in 

connectome states and cognitive functioning. This role may be due to the widespread 

volume transmission and long-lasting regulatory impact of modulatory 

neurotransmitters8–11. Unlike wiring transmissions, which involves rapid point-to-point 

signaling, neuromodulators such as acetylcholine and monoamines are commonly 

released non-synaptically, and instead diffusing through the extracellular space. Such 

diffusion allows a large number of cells to detect these neuromodulators through 

extrasynaptic receptors. Indeed, pharmacological studies have shown that the release of 

all core modulatory neurotransmitters – i.e. acetylcholine (ACh)12, noradrenaline (NAd)13, 

dopamine (DA)14, and serotonin (5HT)12,15–17– can drastically alter large-scale 

connectome reconfigurations across various behavioral states. Further, spatial 

distributions of neurotransmitter receptors are aligned with the structural and intrinsic 

connectivity networks16,18,19, facilitating the flow of information and supporting cognitive 

processes20.  

Single nucleotide polymorphisms (SNPs), the most common form of genetic variation 21, 

have been extensively studied for their role in shaping individual differences in brain 

structure and function 22. As specific and measurable genetic variants, SNPs enable 

fine-grained analyses of genetic contributions to brain function. SNPs can modify a 

gene’s function by either altering its expression or by modifying the composition of its 

product, i.e., the protein, through changes of amino acids or splice variants, to name the 

most common means. Therefore, we propose that SNPs in the genes, encoding 

receptors, metabolic enzymes, and transporters of the modulatory neurotransmitter 
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systems, are likely contributors to the heritability of dynamic connectome state 

transitions and associated cognitive functions.  

If empirically confirmed, such genetic impact of neurotransmitter systems on 

connectome dynamics and cognition would have implications for understanding mental 

health. Connectome dynamics are implicated in numerous psychiatric and neurological 

conditions23 and explain individual differences in certain cognitive abilities across 

different diagnostic categories24. Regarding Fractional Occupancy and Transition 

Probability in particular, associations have been observed with major depressive 

disorder4, schizophrenia5, and subjective cognitive decline6. Moreover, the patho-

etiology of most psychiatric disorders involves abnormalities of neurotransmitter-related 

proteins, such as receptors dysfunction and neurotransmitter imbalance25. 

Consequently, most pharmacological interventions for psychiatric disorders target 

modulatory neurotransmitter systems26,27
. Not surprisingly, specific SNPs in these 

systems may contribute to individual differences in symptoms and treatment 

response28,29. Therefore, it is likely that modulatory neurotransmitter systems impact 

mental health and cognitive functioning through dynamic reconfigurations of the 

functional connectome, and that polymorphisms in the former shape the latter. 

Despite such strong translational implications for putative genetic effects on functional 

connectome dynamics, previous genetics neuroimaging studies have not investigated 

the dynamic connectome. These studies have primarily focused on the association 

between genetic polymorphisms and structural connectivity22,30, static (time-averaged) 

functional connectivity22,31–33, and more broadly cortical volume30 and network 

activations20,34–36. Further, most of the previous work has separately examined the 

impact of each individual genetic polymorphism of interest on brain imaging phenotypes. 

However, in a complex biological system, phenotypic expression typically results from 

the joint contribution of multiple genetic factors. Therefore, our study aimed to fill a 

critical knowledge gap by demonstrating how genetic polymorphisms of the modulatory 

neurotransmitter systems jointly shape the heritable phenotypes of the functional 

connectome dynamics, i.e., Fractional Occupancy and Transition Probability2. 

To this end, we examined a comprehensive list of SNPs from genes encoding ionotropic 

and metabotropic receptors, metabolic enzymes, and transporters for each modulatory 

neurotransmitter system (ACh, NAd, DA, 5HT). The quality control and 

inclusion/exclusion criteria of the SNPs as well as definition of connectome and cognitive 

phenotypes followed our pre-registered project 

(https://doi.org/10.17605/OSF.IO/VF2ZW). For each neurotransmitter system, we 

employed a five-fold cross validation approach with a stable feature selection algorithm 

(Stability Selection)37–39 to explain each connectome phenotype. This approach aimed to 

identify the joint contribution of all SNPs in each neurotransmitter system to the 

connectome dynamics phenotypes. Further, in light of the established relationship 

between the above-described connectome dynamics phenotypes and cognitive 

abilities2,3,7, we examined whether the same set of SNPs that explained connectome 

dynamics could concomitantly explain variability in cognitive abilities. 
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2. Materials and Methods 

Figure 1 is a schematic representation of the overall approach and analysis subsections. 

SNP selection and phenotype definition followed our pre-registered project. Note that 

statistical analyses deviated from the pre-registered project because we identified a 

testing approach more pertinent to the goal of the present study40, which we were not 

aware of at the time of pre-registration (cf. its successful application in comparable 

genotype-phenotype association studies41,42).  

2.1. Subjects 

We used genetics, resting-state fMRI, and behavioral data from the Washington 

University-University of Minnesota (WU-Minn) consortium’s Human Connectome Project 

(HCP) S1200 release43. Participants were recruited, and informed consent was acquired 

by the WU-Minn HCP consortium according to procedures approved by the Washington 

University IRB44.  

The genotyping data for 1,141 subjects was made available through the dbGAP 

repository. Briefly, the DNA samples were collected from either whole blood or saliva 

sample and genotyped using the Illumina Multi-Ethnic Global Array (MEGA) SNP-array. 

This array included chip-specific content from PsychChip and ImmunoChip and provided 

comprehensive coverage of European, East Asian, and South Asian populations. To 

maintain ethnic homogeneity, only subjects with European genetic ancestry were 

included in the study using the genetic ancestry predicted with the SNPweights software 

package45,46 (Figure 1-1). Consequently, 674 healthy adult subjects (aged 22–36 years, 

347 females) with four complete resting-state fMRI scans (4800 total timepoints) were 

included. Further details on the HCP data collection protocol43,47, cognitive measures48, 

and inclusion and exclusion criteria 43,47 can be found elsewhere. 

2.2. Genotype Imputation  

Genotype imputation for the SNPs of interest (see below) was performed using 

minimac4 method and the HRC reference panel (version r1.1, which consists 

predominantly of European ancestry) through the Michigan Imputation Server (accessed 

on 29 January 2022)49. Prior to the imputation process, we conducted quality control of 

the HCP data using the toolbox provided by Will Rayner 

(http://www.well.ox.ac.uk/~wrayner/tools/; accessed on January 29, 2022). This step was 

taken to ensure the data was properly organized to be imputed with the HRC reference 

panel. The input data was prepared following the guidelines provided by the Michigan 

Imputation Server. The genotype imputation was done for each chromosome after 

several quality control and phasing steps by the server.  

2.3. SNPs selection and quality control 

We targeted a specific set of SNPs in the genes that encode receptors, metabolic 

enzymes, ion channels, and transporters of modulatory neurotransmitters (i.e., ACh, 

NAd, DA, and 5HT) in the human brain following our pre-registered selection 

procedures. Specifically, we selected 60 genes related to these neurotransmitter 
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systems from the Neurotransmitter Study (Figure 1-2) conducted by the Allen Institute 

for Brain Science. These genes were characterized by in situ hybridization (ISH) in the 

adult human brain. The SNPs associated with these genes were identified using the 

Variant Effect Predictor (VEP; https://useast.ensembl.org/info/docs/tools/vep/) tool. In 

particular, we identified SNPs with the upstream and downstream distance of 5000 bp 

from the gene as a buffer (which is a default setting of VEP and a common choice in the 

field) meeting specific criteria, including having a Minor Allele Frequency (MAF) greater 

than 0.05, as well as being of either intron, synonymous, or missense variant types. 

These criteria were chosen to ensure that the selected SNPs represent common genetic 

variations and are pertinent to gene expression regulation and protein function. Further, 

we used GTEx Portal (https://gtexportal.org/; accessed on 02 November 2021) to 

quantify each SNP’s expression quantitative trait loci (eQTL) in cortical tissue, then 

selected SNPs with eQTL p-value less than 0.05. This additional step allowed us to hone 

in on SNPs with substantial influence on gene expression in the cortex.  

After identifying the SNPs to be included in the study, quality control measures were 

taken on the imputed HCP data using PLINK v2.050. SNPs with a MAF < 5%, a Hardy-

Weinberg equilibrium (P ˂ 1 × 10−6), missing call rates (> 10%) across individuals were 

removed. Additionally, individuals with missing call rates (> 20%) across the genotypes 

were excluded. Linkage disequilibrium (LD) analysis was conducted, and SNPs were 

greedily pruned until no pairs with r2 > .2 within a 500kb sliding window with a step size 

of 50 markers (Note that this value was updated from the originally pre-registered 50kb 

window upon a reviewer request at the revision stage of the manuscript). The list of 

SNPs selected after the process is reported in Figure 1-3. Population structure and 

kinship were modeled as described in the statistical analyses below. 

2.4. Neuroimaging data preprocessing and parcellation 

With the goal of investigating specifically those connectome phenotypes that we 

previously established as being heritable2, all neuroimaging procedures correspond to 

those that were performed in our prior work and resulted in the pre-registered phenotype 

selection. The procedures are included here for completeness. Imaging data were 

acquired on a customized Siemens 3T Skyra at Washington University in St. Louis using 

a multi-band sequence. Each subject had four 15-minute resting-state fMRI runs. We 

used the data that were minimally preprocessed by the HCP consortium44 with the 

pipeline of Smith et al.47,51 using tools from FSL52 and Freesurfer53 and artifact removal 

using ICA+FIX54,55. Inter-subject registration of the cerebral cortex was carried out using 

areal feature-based alignment and the Multimodal Surface Matching algorithm 

(‘MSMAll’)56,57. The HCP team had previously parcellated the neuroimaging data using 

Independent Component Analysis (ICA) in FSL with model orders of 25, 50, 100, 200, 

and 300 and provided averaged BOLD time-series data for regions of these group-ICA-

based parcellations. For the present study and our previous work2, the 300-model order 

ICA was chosen and its time-series data was used without global signal regression. 

However, Automated Anatomical Labeling (AAL) atlas-based masks and visual 

inspection identified that 161 out of 300 independent components were either from 

cerebellar or brainstem. Therefore, the focus of our investigation was on the 139 

independent components from the cortical and subcortical cerebrum, which represent 
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the canonical intrinsic connectivity networks. The reconfigurations of these canonical 

networks have been described as key contributors to the behavioral impact of 

connectome dynamics58–60. Further details on cerebral parcellation can be found in our 

previous work2. 

2.5. Hidden Markov modeling and temporal features of the connectome dynamics 

The following briefly describes the procedures performed in our prior twin heritability 

study that provided the foundation for the current investigation2. The hidden Markov 

model (HMM) assumes that time series data can be represented by a finite sequence of 

hidden states. Each HMM-inferred connectome state, along with its corresponding time 

series, represents a unique connectivity pattern that temporally re-occurs over time. 

Using the HMM-MAR (multivariate autoregressive) toolbox61, we applied the HMM to the 

minimally preprocessed, region-wise BOLD time-series and obtained four discrete 

connectome states (K of 4; Figure 1-4). Specifically, the number of states (K) was 

chosen following our previous work2 which identified heritability of the temporal 

connectome dynamics phenotypes using K = 4 and replicated the findings using K = 6. 

Such Ks were selected based on prior HMM studies that have directly compared several 

Ks and identified Ks between 3 and 7 as optimal61,62. Further details on the HMM and 

reasonings for the selection of K can be found in our previous work2.  

HMM-derived estimates describe the temporal aspects of connectome dynamics by 

characterizing the sequence of connectome states or the connectome’s trajectory 

through state space. Specifically, we calculated Fractional Occupancy (the cumulative 

total time spent in a given state; 1 × K) and Transition Probability (the probability matrix 

of transitioning between all possible pairs of discrete states; K × K) for each subject. 

While Transition Probability and Fractional Occupancy are not fully independent 

measures, they do provide non-overlapping information about connectome dynamics. 

For example, a state with particularly high Fractional Occupancy is likely to have high 

values as initial state and target state in the Transition Probability matrix. Despite such 

dependence, however, two hypothetical subjects with highly comparable Fractional 

Occupancy values across the k states may still have substantially different Transition 

Probability matrices. Our previous work demonstrated strong genetic effects on these 

temporal characteristics of functional connectome reconfigurations2.  

Our phenotypes of interest (i.e., Fractional Occupancies and Transition Probabilities) 

span multiple brain states and are inherently multi-dimensional. While recent methods 

extend genetic association analyses to multivariate phenotypes, these approaches 

involve several assumptions and may increase type I error rates63. As our prior work2 

demonstrates the heritability of the multivariate phenotypes after dimensionality 

reduction, we believe that important phenotypic information is retained after such 

reduction.  

To reduce the dimensionality of Fractional Occupancy and Transition Probabilities as in 

our prior work2, we calculated the distance of individuals from an origin point. 

Specifically, we generated surrogate data to derive the origin point from which the 

Euclidean distance of each multivariate phenotype was estimated for each subject. 
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Surrogate datasets were simulated using the simhmmmar function from the HMM-MAR 

toolbox, which preserves the static covariance structure of the original data while 

disrupting the precise temporal ordering of states. An HMM inference with K = 4 states 

was applied to each of 50 surrogate datasets, and Fractional Occupancy and Transition 

Probability were recomputed. The Fractional Occupancy (respectively Transition 

Probability) values averaged across the surrogate datasets were used to determine the 

origin point. Further details on obtaining the origin point from the null models can be in 

our previous work2.  

2.6. Cognitive performance 

The following briefly describes the factorization that was performed in our prior 

heritability study and resulted in preregistered cognitive phenotypes of interest2. 

Specifically, we included 14 cognitive measures provided by the HCP, which are 

summary scores from cognitive tasks or questionnaires under the cognition domain (see 

Figure 1-5 for more information on each variable). The measures were normalized to 

have zero mean and unit variance. A factor analysis was then conducted to cluster the 

cognitive measures into four Cognitive Factors2. The Cognitive Factors were interpreted 

as follows: factor 1: “Language”; factor 2: “Impulsivity/self-regulation”; factor 3: “Cognitive 

control”; and factor 4: “Memory”. Further details on the factor analysis can be found in 

our previous work2. 

2.7. Statistical analysis 

We evaluated the joint effect of the neuromodulatory SNPs on the temporal phenotypes 

of the connectome dynamics, i.e., Fractional Occupancy and Transition Probability. 

Specifically, separately for each neurotransmitter system, we aimed to build a model 

incorporating the optimal combination of SNPs and covariates that best explains each 

temporal connectome dynamics phenotype. Note that SNP genotypes were dummy 

coded as 0/1/2 to represent subjects with 0, 1, or 2 copies of the minor allele, which is 

according to the standard additive model applied in genetic association studies. 

To avoid overfitting, we employed a 5-fold cross-validation approach (Figure 1C)64. This 

approach involves splitting the full data into equally sized five folds and using 4/5th of the 

data as train set and the remaining 1/5th of the data as test set, then rotating which 1/5th 

is used for testing. When combined, the five test sets form the original full data. It’s 

important to note that participants from the same family were assigned to the same fold. 

In each train set, we used the Stability Selection procedure37,38 with elastic net 

regression as the selection algorithm to identify a subset of predictors that best explains 

each of the connectome phenotypes. Specifically, for each connectome phenotype, 

SNPs of a modulatory neurotransmitter system and covariates (i.e., age, sex, frame-wise 

displacement (FD) calculated across the entire scan duration for head motion, and 10 

principal components that account for European-ancestry population structure) entered a 

Stability Selection procedure37,38 through the R package stabs (https://cran.r-

project.org/web/packages/stabs/index.html). We opted for Stability Selection procedure 

as our selection algorithm because it offers greater stability compared to other 

regularization methods (e.g., stepwise regression or elastic net without Stability 
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Selection)39. The method also generates more parsimonious models by reducing the 

unmodelled variability to the estimates and, thus, mitigating the risk of type 1 errors. As 

such, Stability Selection has been widely used in the fields dealing with high-dimensional 

data, such as gene regulatory networks65, genome-wide association studies66, and 

graphical modeling67,68.  

Specifically, Stability Selection implemented a complementary pairs subsampling 

approach38,39, which involved dividing a given train set into 50 random pairs of 

subsamples (where each subsample comprised half of the data) and conducting variable 

selection on each subsample. Variables selected in a predetermined proportion of the 

subsamples were retained. Typically, the proportion threshold is preselected in the 

recommended range of 0.6 to 0.937. We chose a threshold of 0.75 that balances rigorous 

selection with the risk of false negatives69.  

Then, we fitted two models to the values of a connectome phenotype in the test set (i.e., 

the left-out fold): (i) the “full model” comprising a subset of covariates and SNPs selected 

by Stability Selection on the train set, along with random genetic effects in the form of a 

kinship matrix, and (ii) the “base model,” which included only the selected covariates and 

the kinship matrix (excluding SNPs). Note that the base model was identical to the full 

model, except for the absence of SNPs.  The kinship matrix, representing family 

structure, was obtained using the lmekin function in the R package coxme (https://cran.r-

project.org/web/packages/coxme/index.html). Importantly, we did not predict the test set 

using the parameter weights of these two models derived from the training set. Instead, 

we fitted the two models (i.e., full and base models) directly to the test set and obtained 

the residuals, respectively. This approach was necessary because accounting for the 

kinship in the linear mixed-effects models, a critical step to adjust for the random 

genetics effect in the data with families, does not allow using the pre-defined parameter 

weights obtained from the training set and, obviously the kinship matrix differs between 

the training and testing samples. This process was repeated 5 times, with each fold 

serving as the test set once.  

Consequently, each subject had two residuals: one from the full model and the other 

from the base model. The absolute values of these residuals were then concatenated 

across subjects, i.e. across the five test sets70,71. To assess whether the full model fits 

the data significantly better than the base model, the two sets of residuals entered an F 

test. In the regression context, the numerator degrees of freedom (df1) are related to the 

number of parameters being tested, which is the difference in the number of parameters 

between the full and the base models. The denominator degrees of freedom (df2) are 

related to the number of observations minus the number of parameters in the full model. 

In order to compute the F statistics and P values with the most conservative approach, 

we set the df1 to be largest by taking the maximum number of parameters from the full 

models and the minimum number of parameters from the base models across the five 

folds. All statistical analyses were performed in R. 

Subsequently, in a second analysis, the above-described neurotransmitter models –

specifically built for each of the connectome dynamics phenotypes– underwent further 

testing to evaluate their explanatory capacity for cognitive abilities. Specifically, each of 
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the neurotransmitter models that outperformed the base model was tested for a new set 

of phenotypes: the Cognitive Factors, i.e., Language, Impulsivity, Cognitive Control, and 

Memory. The “cognitive full model” was fitted to the test set, which includes the same 

subset of SNPs and covariates selected above for each fold and the kinship matrix as 

predictors and each of the Cognitive Factors as a dependent variable. Simultaneously, 

the “cognitive base model” was fitted to the same test set, consisting only of the above-

selected covariates and the kinship matrix. The significance of each cognitive model 

against their respective cognitive base model was tested using the same approach 

(Table 2-1). 

 

3.Results 

Consequent to the selection and quality control process of the genotype data (Figure 

1A), a total of 155 SNPs were included in the present study (Figure 1-3):  25 SNPs from 

14 ACh genes, 9 SNPs from 4 NAd genes, 38 SNPs from 5 DA genes, and 83 SNPs 

from 17 5HT genes. Two heritable connectome phenotypes and four associated 

cognitive phenotypes were adopted from our prior twin study2.  

3.1. Effects of select SNPs on temporal connectome phenotypes 

Stability Selection (Figure 1C) identified a subset of SNPs for each neurotransmitter 

system that best explained the connectome states’ Fractional Occupancy or Transition 

Probability, respectively. The SNPs and covariates included for each model by Stability 

Selection are listed in Table 1-1. We found two neurotransmitter models that significantly 

outperformed the covariates-only base model (P† < .05, where P† is the Bonferroni-

corrected P value for eight models; Table 1). Specifically, Fractional Occupancy was 

explained by the noradrenergic model (F(2, 671) = 6.56, P†  = .012), and Transition 

Probability was explained by the cholinergic model (F(3, 670) = 12.25, P†  = 6.61e-07). 

The significant models included SNPs related to two NAd alpha-1 receptors, both G 

protein-coupled receptors (ADRA1A and ADRA1D genes), an ACh metabolic enzyme 

(BCHE gene), and ACh nicotinic ion channels (CHRNB1, CHRNB4, and CHRNA2 

genes). To provide an intuition, Figure 2 illustrates how one polymorphism contributing 

to a significant association model is linked to each connectome dynamics phenotype. 

Note that while the illustration highlights a single SNP for demonstration purposes, the 

significance of the models emerged from the synergistic impact of the respective SNPs 

in combination.  

For completeness, we also tested each of the 155 SNPs individually (along with the 

covariates) in separate linear regression models. This analysis represents our originally 

pre-registered association approach prior to identifying and adopting an established and 

stable approach37,38 to unveil the impact of multiple SNPs. When tested individually in 

this manner, none of the SNPs survived a highly conservative correction method 

(Bonferroni-corrected P < .05/155), strengthening the notion that the SNPs are 

associated collectively, rather than individually, with the investigated connectome 

dynamics phenotypes. 
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Table 1. Neurotransmitter models explaining temporal connectome dynamics 

phenotypes 

NT models 

 

Predictors selected from five train sets 

 

Full model vs. base model 

Predictors  

(# selected) 
Genes Protein family F value  P value P† value 

Fractional Occupancy      

NAd rs35105284 (5x) ADRA1D NAd alpha 1 receptor  F(2, 671) = 6.56 .0015 .012 

 rs1048101 (2x) ADRA1A NAd alpha 1 receptor    

 rs60593443 (1x) ADRA1A NAd alpha 1 receptor    

 Sex (4x)      

 Age (1x)      

Transition Probability      

ACh rs1803274 (3x) BCHE ACh enzyme F(3, 670) = 12.25 8.26e-08 6.61e-07 

 rs2302761 (1x) CHRNB1 ACh nicotinic ion channel    

 rs2565061 (1x) CHRNA2 ACh nicotinic ion channel    

 rs3743072 (1x) CHRNB4 ACh nicotinic ion channel    

 rs1948874 (1x) SLC44A5 Choline transporter    

 n_ps3 (5x)      

 Sex (1x)      

 Age (1x)      

During the five-fold cross validation, modulatory neurotransmitter SNPs and covariates 

entered the Stability Selection algorithm on the train set (4/5th of the data) five times. The 

table shows how many times each SNP and each covariate were selected by Stability 

Selection across the five folds. NT: Neurotransmitter, ACh: acetylcholinergic, NAd: 

noradrenergic, DA: dopaminergic, # selected; number of each predictor selected across 

the 5 folds, P†: P values Bonferroni-corrected for 8 tests. *P† < .05. Note that ACh model 

of Fractional Occupancy and 5HT model of Transition Probability outperformed the 

covariates-only base model. See Extended Data Table 1-1 for the complete list of 

predictors selected from stability selection across five training sets for each temporal 

connectome dynamics phenotype and neurotransmitter system and Table 1-2 for gene 

expression levels of the select genes in the seven canonical intrinsic connectivity 

networks. 

 

3.2. Effects of select SNPs on cognition 
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In accord with our pre-registered hypotheses, we tested whether the above-described 

models containing a set of SNPs that explain connectome dynamics phenotypes can 

also explain cognitive abilities. Specifically, the NAd model of Fractional Occupancy and 

the ACh model of Transition Probability were fitted to each of the four Cognitive Factors. 

In other words, the multi-SNP models initially built for connectome phenotypes were re-

fitted to cognitive phenotypes. We found two models explaining 

cognitive abilities compared to their respective base model (P† < .05, where P† is the 

Bonferroni-corrected P value for 8 models in Table 2; see full results in Table 2-

1). Specifically, the NAd SNPs originally identified in each fold to explain Fractional 

Occupancy explained Language and Memory factors.  

 

Table 2. Neurotransmitter models explaining Cognitive Factors 

Re-fitted models  
Mean Residuals 

concatenated across five test sets 
Cognitive full model vs. Cognitive base model 

 
Cognitive 
Phenotype 

Cognitive base 
model 

Cognitive full 
model 

F value P value P† value 

NAd model explaining Fractional Occupancy 
 Language <.001 <.001 F(2, 671) = 66.52 4.24e-27 3.54e-26 
 Memory 0.026 0.017 F(2, 671) = 363.62 1.05e-107 8.42e-106 

Modulatory neurotransmitter SNPs and covariates selected using Stability Selection 

algorithm on the train set (4/5th of the data) in each fold for the temporal connectome 

dynamics phenotypes were re-fitted to each of the Cognitive Factors. NAd: 

noradrenergic, DA: dopaminergic, P†: P values Bonferroni-corrected for 8 tests (two 

significant models in Table 1 and four Cognitive Factors). *P† < .05. See Extended Data 

Table 2-1 for complete results of the neurotransmitter models explaining of Cognitive 

Factors. 

 

Discussion 

The complexity of brain function and cognitive abilities arise from brain dynamics, 

including the functional connectome that changes dynamically over time. Such time-

varying connectome dynamics, which are highly heritable, predictive of cognitive 

abilities2,3, and linked to mental health4,6, may be modulated by the modulatory 

neurotransmitter systems10,72,73. However, the specific genetic polymorphisms that shape 

connectome dynamics have been largely unknown. The current study departs from 

previous genetics neuroimaging investigations of static functional connectome 

measures31–34 and reveals that genetic profiles of modulatory neurotransmitter systems 

impact dynamic connectome phenotypes, specifically Fractional Occupancy and 

Transition Probabilities. Our findings provide evidence for genetic effects on connectome 

dynamics via the regulatory impact of modulatory neurotransmitter systems.  

Interestingly, the genetic impact on dynamic connectome phenotypes was observed in 

the NAd and ACh systems, the two modulatory neurotransmitter systems that have been 

hypothesized to drive functional connectome dynamics through their cooperative and 

competitive impact on neural gain (output as a function of input)8. Notably, we observed 
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a double dissociation in how these neurotransmitter systems contribute to the 

connectome phenotypes, with the NAd system (specifically alpha 1 receptor genes) 

explaining Fractional Occupancy and the ACh system (most notably nicotinic ion 

channel and enzyme genes) explaining Transition Probability. This observation indicates 

that distinct neural mechanisms support Transition Probability and Fractional 

Occupancy, which contain non-overlapping information about connectome dynamics 

(although they are not fully independent measures; cf. Methods 2.5). However, 

understanding of the mechanisms behind the differential effects of modulatory 

neurotransmitters on connectome phenotypes will require dedicated studies in the 

future. 

The observed contribution of neurotransmitter systems to the heritability of connectome 

dynamics aligns with the role of these systems in driving widely distributed but spatially 

organized neuromodulation. Neuromodulatory neurotransmitter receptors and 

transporters are spatially distributed according to canonical intrinsic connectivity 

networks and functional gradients that are hallmarks of the connectome’s architecture, 

thereby effectively mediating the connectome-wide propagation of synaptic 

communication and population activity8,18,74. Table 1-2 showcases this distributed gene 

expression across the intrinsic neurocognitive networks75 for each of the genes identified 

in Table 1 using the microarray data of the Allen Institute for Brain Science. In dedicated 

studies, this spatial organization may provide mechanistic insights into how genetic 

variation in neurotransmitter systems may modulate connectome states’ Fractional 

Occupancy and Transition Probabilities. As an example in prior literature, combining 

spatial mapping of a serotonergic receptor with modelling and pharmacological 

intervention (serotonergic agonist psilocybin), the causal chain from serotonergic 

neuromodulation to connectome state’s Fractional Occupancy and Transition 

Probabilities has been outlined16,17. Building on our current findings, such models can be 

extended to include the subjects’ receptor/enzyme/transporter genotypes to 

mechanistically understand inter-individual variability in connectome-level effects of 

neuromodulation. 

The identified genetic impact of modulatory neurotransmitter systems on connectome 

dynamics may help understand the patho-etiology of various neurological and 

psychiatric conditions and predicting treatment response. For instance, the ADRA1D 

gene was consistently identified in the noradrenergic model of Fractional Occupancy 

(Table 1 and Table 1-1). ADRA1D, along with ADRA1A which contained all other 

identified NAd-related SNPs, encode NAd alpha 1 receptors whose activation 

contributes to cortical arousal (including enhanced excitability76,77). Alpha 1 receptors 

thus serve as a pharmacological target (for receptors-specific antagonists) in post-

traumatic stress disorder characterized by hyper-arousal77. The observed association 

between ADRA1 receptors and connectome dynamics may help explain the previously 

established link between physiological arousal fluctuations and functional connectome 

dynamics78. Further, the BCHE gene was repeatedly selected in the cholinergic model of 

Transition Probability (Table 1 and Table 1-1). The BCHE gene encodes the 

butyrylcholinesterase enzyme that inactivates acetylcholine and consequently its 

modulatory impact on processing of environmental stimuli79. BCHE is thought to 
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contribute to accelerated deactivation of acetylcholine in the aging brain80,81 and is 

implicated in mild cognitive impairment82 and Alzheimer’s disease80,81 While BCHE 

expression in astrocytes is widely distributed across the brain, the expression in neurons 

is particularly high in limbic areas83,84 (as confirmed in Table 1-2), regions that play a 

critical role in Alzheimer’s dementia. Butyrylcholinesterase is considered a potential 

therapeutic target for Alzheimer's disease, which is characterized by a cholinergic 

deficit85. It is interesting to note that the specific rs1803274 variant of BCHE gene found 

in our study has been strongly associated with the serum level of the 

butyrylcholinesterase86. As connectome features have the potential to inform 

individualized medicine87, the genes we identified may help to refine treatment efforts 

that embrace inter-individual differences in connectome dynamics. 

In addition, we found that the noradrenergic model, which explained Fractional 

Occupancy, also explains cognitive factors characterized by performance in the domains 

of language and memory (Table 2). It is important to note that the specific emergence of 

Language and Memory factors in this association closely aligns with our previous 

heritability work in the same dataset2. Specifically, the prior work showed that 

connectome phenotypes that were identified as heritable (and hence entered the current 

study) exhibit the strongest cognitive association with the same Language factor, 

followed by the Memory factor. Interestingly, a prior study88 that investigated heritability 

of behavioral measures, likewise in the HCP dataset, demonstrated the highest 

heritability in two cognitive factors with task loadings similar to those of our Language 

and Memory factors. Collectively, these findings not only suggest that both subject-

specific trajectories across connectome states and cognitive abilities are under genetic 

effects, but also that the noradrenergic polymorphisms may drive the relationships 

between connectome phenotypes and cognition9–11,13,89, specifically between Fractional 

Occupancy and Language/Memory.  

Our study is subject to several limitations which must be considered when interpreting 

our findings. Firstly, while we identified polymorphisms associated with connectome 

dynamics, in some cases it is yet to be revealed whether they change the functional 

capability of the respective proteins. Specifically, beyond missense protein-coding SNP 

the identified models contained introns and synonymous SNPs (e.g. rs35105284; 

ADRA1D gene). Such inclusion of synonymous SNPs and introns is in line with the 

observation that complex traits are primarily associated with noncoding variants that 

likely impact gene regulation90. Furthermore, our work should be interpreted at the level 

of identified genes rather than individual SNPs, as we have focused on investigating 

variants which have significant influence on gene expression (eQTL p < .05), which is 

their most likely mechanism of action. Finally, it is important to note that the genes 

identified in our study and their encoded products (such as receptors or metabolic 

enzymes) function as components of intricate system-level networks91 influenced by 

various biological and environmental factors, making mechanistic interpretation of our 

results challenging. For example, different receptors have distinct binding affinities, 

downstream signaling pathways, and cellular responses to varying levels of 

neuromodulatory neurotransmitters. Additionally, neural activity can also impact gene 

expression and neurotransmitter function92,93. Thus, the associations between specific 
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genes and connectome phenotypes identified in our study should be interpreted 

cautiously and further investigated in the future in terms of the underlying molecular and 

cellular mechanisms. The discoveries from our study motivate investigations into such 

potentially indirect (i.e. regulatory) impact of the identified SNPs on the respective 

proteins94, and suggest that such impact translates into connectome states’ Fractional 

Occupancy and Transition Probability phenotypes. Moreover, our study is based on a 

relatively small size of the European-ancestry population due to the difficulty in finding a 

consortium-level dataset with publicly available genotype and high-quality resting-state 

fMRI data of young adults, calling for future replication upon availability of such data. 

Further, because ethnic differences in the frequency or the effect size of a variant can 

affect the likelihood of its discovery and its contribution to phenotypes across 

populations, a study cannot include subjects from multiple ethnic groups. Future studies 

should replicate our approaches in other ethnic groups and compare the roles of 

potentially different neurotransmitter genetic profiles in modulating the connectome 

dynamics and cognition.  

To conclude, our study reveals specific genes that modulate dynamic connectome 

reconfigurations. This work extends beyond prior studies that have primarily focused on 

static connectome measures. We demonstrate that multiple SNPs in each 

neurotransmitter system are critical in shaping the dynamic trajectory of the functional 

connectome in state space. Our study has the potential to inform the development of 

precision medicine strategies that leverage genetic information to tailor diagnostics and 

interventions for mental health disorders.  
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Figure Legends 

Figure 1. An overview of the analysis pipeline. Panels A and B follow the steps 

outlined in our pre-registered project to determine genotypes and phenotypes entering 

the study. Specifically, the top section of Panel A describes the process of selecting the 

single nucleotide polymorphisms (SNPs), while the bottom section details the imputation 

and quality control steps carried out on the Human Connectome Project (HCP) genotype 

data. The left side of Panel B depicts the hidden Markov model (HMM) estimates of 

temporal phenotypes (i.e., Fractional Occupancy and Transition Probability) of functional 

connectome dynamics 2. The right side of Panel B illustrates the factorization of the 

various cognitive measures obtained from the HCP dataset. Note that as a foundation 

for the current study, we have previously established the heritability of the connectome 

and cognitive phenotypes depicted in Panel B using a twin study approach in the same 

data2. In Panel C, we divided the data into five subsets for each connectome phenotype 

and neurotransmitter system. Within the training set (comprising 4/5th of the full data), 

we employed Stability Selection approach, which utilizes elastic net regularization and 

resampling techniques, to select a subset of SNPs and covariates (age, sex, head 

motion, and 10 principal components representing the European-ancestry population 

structure) that best explain each temporal phenotype. Subsequently, we used this 

subset in the "full model" (including the selected SNPs, covariates, and random genetic 

effects (RGX)) and the "base model" (including the same subset of covariates and RGX, 

but not SNPs) to be fitted to the test set. This process was repeated five times. For each 

connectome phenotype and neurotransmitter system, we combined the residuals from 

the full and base models across the five test sets and used a linear mixed-effects model 

to assess model performance (full vs. base). In Panel D, we re-fitted the full models that 

outperformed their respective base models in Panel C to be fitted to each of the 

Cognitive Factors in the same test sets. Subsequently, we combined the residuals of the 

“cognitive full” and “cognitive base” models across the five test sets and used a linear 

mixed-effects model to evaluate model performance. Refer to Extended Data Figure 1-1 

for a visualization of the population stratification of all HCP subjects with genotype data, 

Figure 1-2 for the list of 60 selected genes from the Neurotransmitter Study of the Allen 

Institute for Brain Science, Figure 1-3 for the 155 SNPs included in the analysis after 

quality control, Figure 1-4 for a detailed visualization of the four HMM-derived states, 

and Figure 1-5 for information on the 14 cognitive measures used in the analysis. 

 

Figure 2. An illustration of genetic polymorphisms associated with temporal 

connectome dynamics phenotypes. To provide an intuition of the association, the 

figure uses the example of rs35105284, a SNP included in the significant noradrenergic 

(NAd) model of Fractional Occupancy. Averaged across the subjects of a given 

genotype, the pie charts depict the mean duration of time spent in each connectome 

state. For example, subjects with the homozygous genotype for major allele (T/T) of 

rs35105284 spend more time in state 4 and less time in state 3 compared to minor allele 
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carriers (T/C and C/C). Note that while this illustration highlights a single SNP for 

demonstration purposes, the significance of the models often emerged from the 

synergistic impact of several SNPs in combination. 
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