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ABSTRACT

Simulations of the dark matter distribution throughout the Universe are essential in order to analyse data from cosmological
surveys. N-body simulations are computationally expensive, and many cheaper alternatives (such as lognormal random fields)
fail to reproduce accurate statistics of the smaller, non-linear scales. In this work, we present PSI-GAN (power-spectrum-informed
generative adversarial network), a machine learning model that takes a two-dimensional lognormal dark matter density field
and transforms it into a more realistic field. We construct PSI-GAN so that it is continuously conditional, and can therefore
generate realistic realizations of the dark matter density field across a range of cosmologies and redshifts in z € [0, 3]. We train
PSI-GAN as a generative adversarial network on 2000 simulation boxes from the Quijote simulation suite. We use a novel
critic architecture that utilizes the power spectrum as the basis for discrimination between real and generated samples. PSI-GAN
shows agreement with N-body simulations over a range of redshifts and cosmologies, consistently outperforming the lognormal
approximation on all tests of non-linear structure, such as being able to reproduce both the power spectrum up to wavenumbers
of 1 h Mpc™!, and the bispectra of target N-body simulations to within ~5 per cent. Our improved ability to model non-linear
structure should allow more robust constraints on cosmological parameters when used in techniques such as simulation-based
inference.
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1 INTRODUCTION

The standard model of cosmology, known as Lambda cold dark mat-
ter (ACDM,; see e.g. Peebles 1993), describes a Universe consisting
of CDM, ordinary matter (baryons), and includes the existence of
a cosmological constant A associated with dark energy. ACDM
favours that the relative abundance of dark matter is approximately
five times that of baryonic matter, making it the predominant form of
matter throughout the Universe (Bertone & Hooper 2018). The model
describes a Universe in which galaxies form along and trace the
cosmic web structure formed by dark matter, consisting of filaments
that connect clusters and surround voids. Although the gravitational
effects of dark matter have been observed in many different ways,
the nature of dark matter itself remains a mystery (see e.g. Bertone &
Tait 2018, and references therein).

N-body simulations are a common tool used to analyse the origin
and evolution of the cosmic web structure formed by dark matter
(see e.g. Efstathiou et al. 1985; Springel 2005; Springel et al. 2005,
2021; Boylan-Kolchin et al. 2009; Villaescusa-Navarro et al. 2020,
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2021). In its simplest form, running an N-body simulation involves
initializing a number of massive particles in a cubic box of fixed
comoving dimensions, imposing periodic boundary conditions, and
then allowing gravity to act on the particles through its gravita-
tional potential (governed by the Poisson equation; Springel et al.
2021). The initial conditions of the N-body simulation are often
approximated by a Gaussian random density field and, starting
from these initial conditions, the positions and velocities of each
particle are updated iteratively over a series of time-steps until
today (z = 0).

There exist many different implementations of N-body simula-
tions with differing complexity and accuracy. Direct methods, in
which the force on each particle with respect to every other particle
is calculated for each time-step, are extremely computationally
expensive, and so approximations are used to reduce the time taken
to run a simulation. These approximations include tree code methods
(Barnes & Hut 1986), fast-multipole methods (Greengard & Rokhlin
1987), particle-mesh methods (Hockney & Eastwood 1988), adaptive
mesh refinement (Berger & Oliger 1984; Bryan et al. 2014), and
combinations such as TREE-PM (see e.g. Springel 2005; Springel
et al. 2021). Despite the improvements in speed due to these approx-
imations, N-body simulations are still computationally expensive to
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run and require access to high-performance computing systems. The
time and computing resources required to run a sufficient number
of N-body simulations limits our ability to study the nature of dark
matter and the Universe through techniques such as simulation-based
inference (Cranmer, Brehmer & Louppe 2020).

When a significantly large number of simulations is required,
it is common to resort to cheaper approximations. One such ap-
proximations for describing dark matter fields is to use a lognormal
random field (see e.g. Coles & Jones 1991; Percival, Verde & Peacock
2004; Xavier, Abdalla & Joachimi 2016; Clerkin et al. 2017; Tessore
et al. 2023). A lognormal random field can be easily obtained from
a given Gaussian random field, and can be entirely described by
very few parameters: the mean p and variance o2 of the associated
Gaussian random field, and a shift parameter 1. A lognormal random
field also demonstrates a skew, which is useful in modelling the
matter overdensity field, given that it varies from values of —1 in
voids to values in the range of ~107 in clusters. These properties
make lognormal random fields a useful approximation of the matter
overdensity field. However, as discussed in Xavier et al. (2016) and
Tessore et al. (2023), its low computational complexity comes with
limitations. Lognormal random fields are able to reproduce a power
spectrum to a high level of accuracy as the power spectrum relies
only on the amplitudes of Fourier modes. However, they are unable
to reproduce accurate statistics that rely on the phases of Fourier
modes, which contain much of the information regarding non-linear
structure (Coles 2008).

Recently, machine learning (ML) methods have been used to
approximate N-body simulations. Rodriguez et al. (2018) and
Mustafa et al. (2019) used generative adversarial networks (GANs;
Goodfellow et al. 2020) to emulate slices of N-body simulations
and weak lensing convergence maps, respectively. Perraudin et al.
(2019) and Feder, Berger & Stein (2020) extended this approach
from two-dimensional slices to three-dimensional simulation boxes,
and showed that GANs are able to reproduce the large-scale and
small-scale features of N-body simulations. He et al. (2019) and de
Oliveira et al. (2020) trained U-Nets (Ronneberger, Fischer & Brox
2015) to learn the non-linear growth of cosmic structure.

More recently, Piras, Joachimi & Villaescusa-Navarro (2023) used
a U-Net in a GAN framework to emulate N-body simulations by
learning how to transform a corresponding lognormal approximation.
Shirasaki & Ikeda (2023) similarly used a U-Net in a Cycle GAN
(an unpaired image-to-image method; Zhu et al. 2017) framework to
learn unpaired translation from lognormal approximations of weak
lensing mass maps to non-Gaussian counterparts. Boruah et al.
(2024) developed new network layers in order to generate full-sky
weak lensing mass maps from lognormal approximations.

While useful, very few methods consider the impact of cosmology
and redshift on the structure of the cosmic web. Piras et al. (2023)
considered cosmology and redshift dependence for a simplified low-
resolution case; however, this dependence was not built into the
model. Jamieson et al. (2023) encode cosmology dependence into
their U-Net-based model to output non-linear displacements and
velocities of N-body simulation particles based on their linear inputs.

In this paper, we aim to improve lognormal approximations
through the use of ML techniques, across a range of cosmologies and
redshifts. We build upon the work of Piras et al. (2023) by extending
their approach to fully capture cosmology and redshift dependence,
with the long-term goal of integrating our work into GLASS (Tessore
et al. 2023). Our approach starts from the Quijote N-body simulation
suite (Villaescusa-Navarro et al. 2020), which contains 2 000N -body
simulation boxes with cosmologies sampled from a five-dimensional
Latin hypercube. The simulation suite includes snapshots at five
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redshifts as well as the initial conditions, which we use to create
a data set of pairs of lognormal and N-body slices. We train a
conditional U-Net in a GAN in order to learn an image-to-image
translation between the domains. Our novel method uses the power
spectrum of the generated emulation to inform the network during
training and guide it towards reproducing the structure of N-body
simulations across all scales.

Our paper is structured as follows. In Section 2, we describe the
data used from the Quijote simulations. In Section 3, we describe the
data generation procedure used to obtain a corresponding lognormal
slice for each N-body simulation slice, our model architecture, as
well as our training, validation, and testing methods. In Section 4,
we present the results of our method, including evaluating model
performance within the domain of the training data, as well as testing
its ability to interpolate within the cosmology and redshift spaces.
We conclude in Section 5 with a summary of our work, as well as
suggestions for future work needed to meet our long-term goal of
GLASS integration.

2 DATA: SIMULATIONS AND MATTER FIELDS

In this work, we use the Quijote simulation suite (Villaescusa-
Navarro et al. 2020). We specifically use simulations from the Latin
hypercube, in which the values of the matter density parameter
(), the baryon density parameter (€2,), the Hubble parameter
(h), the scalar spectral index (), and the root mean square of the
matter fluctuations in spheres of radius 8 #~' Mpc (o3) are varied
by sampling from a five-dimensional Latin hypercube. We only
consider massless neutrinos, and a constant value for the dark energy
equation of state parameter w = —1 (i.e. a constant A). This Latin
hypercube contains 2000 standard simulations, each containing 5123
dark matter particles in a box with comoving length of 1000 2 ~! Mpc.
The limits of the Latin hypercube are shown in Table 1 along with the
corresponding fiducial values. We utilize both the initial conditions
at z = 127 of each simulation, as well as snapshots at redshifts
z€{0,0.5,1, 2,3}, thus forming a data set spanning a range of
cosmologies and redshifts.

For each simulation, we convert the particles’ positional infor-
mation to a continuous field through a mass assignment scheme.
Throughout this work, we will consider the matter overdensity field
8(x), defined as

5(X)=Lf)—1, ey
o

where p(x) is the matter density at each position x, and p is the mean
density in the simulation box.

We consider a three-dimensional regular grid with N3 = 5123
voxels. The interpolation of the overdensity field over the grid is
then obtained by evaluating the continuous function,

< dx’ e
8(x) = / 2y W(x —x")3(x"), 2

Table 1. The limits and fiducial values for each cosmological
parameter in the Quijote simulation’s Latin hypercube suite.

Parameter Limits Fiducial value
Qm [0.1,0.5] 0.3175
Qp [0.03, 0.07] 0.049
h [0.5,0.9] 0.6711
ng [0.8,1.2] 0.9624
o3 [0.6, 1.0] 0.834
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where W(x) is the weight function that describes the number of
grid points, per dimension, to which each particle is assigned. We
utilize the piecewise cubic spline interpolation scheme (Chaniotis &
Poulikakos 2004; Sefusatti et al. 2016) in which the weight function
is symmetric, positively defined, and separable such that W(x) =
Wip(x1/H)Wip(xa/ H)Wp(x3/H), with H being the grid spacing,
and Wp being the unidirectional weight function:

fa—6s>+3|sP) ifo<|s| <1,

Wip(s) = ¢ 22— |s])? if1 <|s] <2, 3)
0 otherwise.
3 METHOD

The goal of this work is to be able to train a model that can transform
two-dimensional lognormal overdensity fields into more realistic
overdensity fields with statistics that match those of the Quijote
Latin hypercube across redshifts and cosmologies. In order to do this,
we first create a data set containing pairs of two-dimensional slices
of the Quijote Latin hypercube and their corresponding lognormal
counterpart (Section 3.1), we then train a machine learning model to
apply this transformation (Sections 3.2 and 3.3), and finally validate
the model using a set of statistical metrics (Section 3.4).

3.1 Data generation

In order to create the required data set, we obtain n = 16 slices
for each three-dimensional simulation box by slicing each box
along a chosen axis such that each slice has a depth of 32 pixels.
We reduce the dimensions of the slices from three to two by
taking the depth-wise mean. The depth of each slice is then given
by 1000/n h~' Mpc = 62.5 h~! Mpc, which was chosen to be
lower than the approximate depth of matter shells in GLASS (von
Wietersheim-Kramsta et al. 2024). A shallower depth ensures that
more small-scale structure remains in the slices, thus making it more
difficult to model. Successfully reproducing slices of this depth will
ensure that PSI-GAN will also be able to reproduce slices of a greater
depth. While the matter shells in GLASS have varying depth, we
leave incorporating this depth dependence into the model to future
work. Our training data spans all of the 2000 cosmologies in the
Quijote Latin hypercube at redshifts of z € {0, 0.5, 1, 2, 3}, resulting
in 16 x 2000 x 5 = 160000 slices.

In order to generate corresponding lognormal counterpart to each
slice we follow the procedure outlined by Piras et al. (2023). While
a brief description will be provided here we direct the reader to Piras
et al. (2023) for a more detailed description of this procedure.

We start by measuring the two-dimensional power spectrum of
each slice P(k). In order to generate a lognormal random field
with the given measured power spectrum, we follow Coles & Jones
(1991) and Percival et al. (2004). We then convert P (k) to the matter
correlation function & (7), and calculate the corresponding Gaussian
correlation function:

&g =1In[l 4 &N (r)]. “4)

We convert this Gaussian correlation function back to Fourier space
to obtain a Gaussian power spectrum Pg(k).

A zero-mean Gaussian field is entirely defined by its power
spectrum that depends only on the absolute values of the Fourier
coefficients; therefore, the Fourier phases can be uniformly sampled
in the interval [0, 277) in order to create a realization of a Gaussian
random field (Chiang & Coles 2000; Coles & Chiang 2000; Watts,
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Coles & Melott 2003). However, as we aim to generate Gaussian
random fields §g with high correlations to each given N-body slice,
we instead use the set of phases from the corresponding slice of
the initial conditions at z = 127. The lognormal field d;y is then
calculated by evaluating

(SLN = exp ((SG — 03/2) (5)

for each grid point, where o is the standard deviation of the Gaussian
field. For these operations, we used the PYTHON package NBODYKIT
(Hand et al. 2018).

There are two limitations to this method due to the fact that we
are measuring the power spectrum from a grid. First, due to relying
only on the simulation boxes for the measured power spectrum, we
are only able to survey a limited range of k € [0.025, 1] h Mpc™".
In order to access larger scales, we use CLASS (Blas, Lesgour-
gues & Tram 2011) to generate a theoretical power spectrum for
k € [107°,0.025] h Mpc~! and concatenate this with the measured
power spectrum.

Secondly, we observe a discrepancy in the power spectrum of the
generated lognormal field and the measured power spectrum from the
Quijote slice. This can be attributed to correlations in phases being
introduced when converting the Quijote initial conditions (obtained
by second-order Lagrangian perturbation theory) to a density field.
We correct for this discrepancy by iteratively re-scaling Pg(k),
which is used to generate the lognormal field dpy. Each iteration
involves generating a lognormal field from Pg(k) as per equation
(5), measuring its power spectrum Ppn(k), calculating the ratio of
Pin(k) to the target power spectrum P (k) ateach k, and then rescaling
P (k) by this ratio at each value of k. This process is iterated through
until Ppn(k) matches the target power spectrum P(k) to within a
0.1 per cent discrepancy at all values of k.

We are left with a data set of pairs of lognormal and Quijote
slices (8L and dng), which we split into a number of sets. We firstly
reserve all slices across all redshifts of cosmologies #1586 and #815
(randomly selected) as part of the test set in order to test model
performance on unseen cosmologies. As we only have snapshots at
certain redshifts, we create an additional set of lognormal slices at
redshift z € {0.25, 0.75} for cosmology #663 (which we will refer
to as our ‘fiducial’ cosmology from now on, as it is the closest
cosmology in our data set to the Quijote fiducial cosmology) in
order to test the model’s ability to interpolate between redshifts.
We follow the previously outlined procedure for producing these
lognormal slices. However, as we have no Quijote snapshots at these
redshifts (and are therefore unable to measure a power spectrum),
we create a ‘measured’ power spectrum by linearly interpolating
the power spectrum at each value of k between redshift snapshots.
Furthermore, we reserve 512 randomly chosen slices at each redshift
as part of a test set to assess model performance on cosmologies and
redshifts within the training set. 10 per cent of the remaining data
set is used for validation, with the other 90 per cent being used for
training. Table 2 summaries these six sets of data used in the training,
validating, and testing of our model.

3.2 Model architecture

We train a Wasserstein GAN with gradient penalty (WGAN-GP;
Arjovsky, Chintala & Bottou 2017; Gulrajani et al. 2017) consisting
of a generator (~2.06 x 107 parameters) and a critic (~2.59 x 107
parameters). In a traditional GAN, the generator and critic are
adversarially trained in tandem in order to produce generated data
that is identical to real data. Our approach builds physics into the
critic of the GAN to constrain the generator to produce data that
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Table 2. A summary of the data sets used in training, validating, and testing our model.
Set name Description Cosmology Redshift
Interpolate cosmology test set #1 Testing on reserved cosmology, unseen during Simulation #1586 z €

training process {0,0.5,1,2,3}
Interpolate cosmology test set #2 Testing on reserved cosmology, unseen during Simulation #815 ZE€E

training process {0,0.5,1,2,3}
Interpolate redshift test set Testing interpolation between redshifts Simulation #663 z €{0.25,0.75}
Randomly split test set Testing within the domain of the training data Randomly selected from all simulations z€

using randomly chosen slices at each z (excluding #1586 and #815) {0,0.5,1,2,3}
Validation set Validating the model using 10 per cent of the All simulations (excluding #1586 and z€

remaining slices not used for testing #815) {0,0.5,1,2,3}
Training set Training the mode with 90 per cent of the All simulations (excluding #1586 and z€

remaining slices not used for testing #815) {0,0.5,1,2,3}

is physically consistent with the target domain. A full schematic
of the PSI-GAN framework can be found in Fig. 1. In this figure,
we demonstrate how an emulation can be generated by feeding a
lognormal density field, along with its associated cosmology and
redshift, into the generator. This framework is trained via a loss
function which depends on the output of our physics-informed critic,
which takes as inputs either an emulated or N-body map, its asso-
ciated power spectrum, its associated cosmology and redshift, and
finally the power spectrum of the corresponding lognormal density
field.

Details regarding the computation blocks used to construct PSI-
GAN along with the construction of the generator itself can be found
in Appendix A, while the construction of the critic is shown in
Fig. 2. The critic consists of two paths, a convolutional path and a
power spectrum path (shown in orange and blue, respectively). The
convolutional path takes an input image (with cosmology and redshift
embeddings) and processes it using a pre-trained ResNet-50 model
(He et al. 2016) to obtain a feature representation of the input.! The
power spectrum path takes the power spectrum of the input image and
compares this to the power spectrum of the corresponding lognormal
map via an elementwise subtraction. Both the feature representation
and the power spectrum comparison are concatenated and then fed
into a linear classifier, along with another set of cosmology and
redshift embeddings.

GANs for image synthesis often use a purely feature-based
network for the critic, however using a fully-convolutional critic
resulted in the generator altering the power spectrum of its input when
attempting to generate a more realistic output. The power spectrum
path was then added to the critic in order to guide the generator
towards not altering the power spectrum. As a lognormal input to
the generator has a matching power spectrum to its corresponding
N-body slice, any deviation away from this would be indicative of
a generated map. The power spectrum path is constructed such that
it calculates an elementwise difference between the lognormal and
emulated power spectra. This is then fed into the classification head
to aid the critic in differentiating emulated images as any significant
deviation from the lognormal power spectrum can be used to easily
identify an emulation, thus aiding the critic in achieving its goal.
This in turn forces the generator to learn how to maintain the power
spectrum of its input so that it can successfully ‘fool’ the critic. This

'A pretrained ConvNeXt-T (Liu et al. 2022) model was also investigated as
an option; however, this resulted in an increase in training time by a factor of
~2. The initial results also indicated poor performance due to the ConvNeXt-
T model immediately down-sampling the input by a factor of 4, thus placing a
limit on how well small-scale features can be backpropagated to the generator.

information is also able to be backpropagated through the critic and
generator networks to ensure that the generator is trained to capture
features at all scales.

This approach was favoured over the more traditional method of
adding a power spectrum term directly to the loss function as the
loss function was found to be extremely sensitive to the weighting
of this additional term, often resulting in non-convergent training.
Determining the optimal value of this weighting would require a
brute-force hyperparameter search, which would be less efficient
than our method of introducing a power spectrum path to the critic
and allowing the network to learn the optimal balance between
the power spectrum path and the convolutional path. The addition
of the power spectrum path introduces 256 x 256 = 65536 extra
parameters to the network, which is computational insignificant in
comparison to both the size of the whole PSI-GAN network, as
well as the alternative of adding a power spectrum term to the loss
function and running a hyperparameter search in order to optimize its
weighting.

Both the generator and the critic are trained in tandem in order
to minimize the loss function L,i,, Which we choose to be the
standard WGAN-GP formulation with an additional term equating
to the /2 norm between out generated map and the target N-body
slice:

Lyyin = Lg + Lng + Lgp + Lpixels (6)

where each component of the training loss is given by

Lo = Ea0[CGBLO, ™
Ly = ~Fig [CON)) ®)
Lor = A5 [(I195C@11 —1)°] ©
Line = hinel|GBx) — 1. (10)

where G and C are the generator and critic networks, respectively,
81N and dnp are lognormal and N -body simulation slices, 8 represents
a linear combination of G(8;x) and dxg,>E represents the expectation
over a sample, || - ||, represents the 12 norm, and Agp and Apiyel are
hyperparameters used to control the amount of regularization from
the gradient penalty and /> norm between the generated output and

2Speciﬁcally, 5 =adng + (1 — ¢)G(8LN) with @ ~ U(0, 1), where U(0, 1)
indicates the uniform distribution between 0 and 1. This linear combination
means that we constrain the gradient norm to be 1 only along lines that
connect real and fake data (Gulrajani et al. 2017).
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Figure 1. A schematic showing the full construction of the PSI-GAN framework. Data that are part of the initial data set are coloured in blue, while data that
are calculated by the PSI-GAN framework are coloured in red. All computational steps are coloured in purple. Note that the critic takes in either an emulated
map or an N-body map as an input (along with their associated power spectrum), which is indicated by dashed lines. The internal structure of the critic is also

shown, and can be seen in more detail in Fig. 2.

the target. We set Ay, = 10 and A = 100; however, we leave the
optimization of these hyperparameters to future work.

The addition of Ly to what is otherwise the standard WGAN-
GP loss function was motivated by Piras et al. (2023), who found
this term to aid in generating emulations with accurate statistics
but ineffective in producing structure correlated with target N-body
simulations.

3.3 Training

We train using the Adam optimizer (Kingma & Ba 2014) with a base
learning rate o = 104, and decay parameters (8, £2) = (0.5, 0.9).
Following Heusel et al. (2017), we increase the learning rate for the
critic by a factor of f = 3 while using the base rate for the generator.
We allow the model to train for an initial period of three epochs,
after which we half the learning rate after every epoch where the
validation loss increases. We also employ gradient clipping to clamp
the magnitude of the gradients to a maximum value of 1000. The
gradient penalty term in the loss function should act to keep gradients
close to unity; however, there is a warm up period until it is able to
have its intended effect. Clipping the gradients was found to be useful
in avoiding overflow errors before the gradient penalty took effect.
We train using a batch size of 6, and use randomized data
augmentation techniques when compiling a batch. The same data
augmentations were applied both &, 5 and dnp and consist of

(1) horizontal and vertical flips,
(ii) horizontal and vertical translations of x, y € [0, 512) pixels,

MNRAS 536, 3138-3157 (2025)

(iii) rotations of 6 € {0, /2, , 37 /2}.

We use 32-bit floating point precision for numerical stability.
A single epoch of training and validation takes ~15 hours on a
single NVIDIA A100 Tensor Core GPU, and we train for 10 epochs.
Training time is significantly inflated as the critic requires the power
spectrum to be calculated for each generated sample in the data set.
However, we accelerate this computation by using a parallelized GPU
implementation. We also pre-compute power spectra for all §x and
Snp 1n our data set so that they do not need to be calculated during
training. Once trained, the generator can process 512 lognormal slices
in ~2 min on similar hardware.

3.4 Validation and testing

We validate and test our model using a range of summary statistics
that will be described in this section. We save the model after
each training epoch, and select the best model using a weighted
sum of the absolute percentage error across the summary statistics
(excluding the bispectrum and reduced matter bispectrum, due to the
complexity of their calculation). We weight the summary statistics
such that the power spectrum has a weighting seven times that of the
other statistics in order to bias our model selection towards a model
that reproduces an accurate power spectrum. We also add redshift-
dependent weighting to the validation loss, with redshift z =0
examples being given double the weighting of all other redshifts.
This is to bias model selection towards a model that performs well
at low redshifts. To test the model, we quantitatively compare these

Gz0z Aieniga4 90 uo Jasn (aAnoeur) uopuo 869100 AusiaAlun AQ 8§E0ZE6./8E L E/E€/9ES/8101UE/SBIUW/WOD dNo-oIWapeoe.//:sdny WoJj papeojumoq



Power Spectrum Path

- _ )
Lognormal Emulated / N-body
Power Spectrum Power Spectrum
(B, 256) (B, 256)

Elementwise 1 Ic
Subtraction (hidden_nodes=8,
out_nodes=2)
| S
PR 4
Pre-trained
ResNet-50
Model
‘ / ——
N ,/
N
Featurewise
Concatenation
-

Psi-GAN 3143

wolutional Path

L

O
O
o

'Emulated / N-body
Map
(B, 1,512, 512)

[zlnmlnblhsnSIc’a] |
86

e e = e N
Conditioning Block

Ié

\

—_—

Y

. N
Conditioning Block
(hidden_nodes=8, [«
out_nodes=16)
N

Y

A

Linear Layer
(out_nodes=1)

S

Output
(8,1)

-

Linear Layer
(out_nodes=256)
—_—
+GELU
A

~

i

Classification Hea’d

Figure 2. A schematic showing the construction of our critic. The power spectrum path, convolutional path, and classification head are outlined and labelled
in blue, orange, and green, respectively. We also provide information, in parentheses, regarding the dimensions for both the inputs (blue) and outputs (red) in
roman font, and the hyperparameters of each layer in italics. Dimensions are quoted in the ‘batch, channels, %’ convention, where * represents any number of
latent dimensions and B is used as a placeholder for the batch dimension of all inputs and outputs. All convolutional layers use circular padding in order to
maintain the height and width of the input, and GELU represents the Gaussian Error Linear Unit (Hendrycks & Gimpel 2016). The conditioning block is used
to inform the network of the cosmology and redshift of the emulation, and is defined in Appendix A.

summary statistics for the lognormal slices, generated slices, and
N-body slices in each of the test sets described in Table 2.

3.4.1 Pixel counts histogram

We bin the pixel values of the lognormal, generated, and N-body
slices into a histogram of 64 equally sized bins. The ranges that
these bins span differ depending on redshift, and were qualita-
tively chosen in order to ensure that all bins have a count of
at least 10 pixels in order to avoid divide-by-zero errors when

computing relative differences. It can be seen in Section 4 that
the lognormal approximation differs significantly from the target
N-body distribution, while our model aims to improve over the
lognormal.

3.4.2 Peak counts histogram

We use peak counts to assess whether the model has learned the
non-Gaussian features of the N-body field. A peak is defined as a
pixel with a higher value than all of its eight surrounding pixels.
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We bin peak count values into a histogram of 64 equally sized bins
in order to compare non-Gaussian information between different
models. Similarly to the pixel counts histogram, the ranges of these
bins differ by redshift and were chosen in order to avoid divide-by-
zero errors when calculating errors. Peak count statistics have been
shown to carry significant cosmological information, especially in
cosmic shear studies (Pires, Leonard & Starck 2012; Lin & Kilbinger
2015a, b; Kacprzak et al. 2016; Lin, Kilbinger & Pires 2016; Martinet
et al. 2018; Shan et al. 2018; Harnois-Déraps et al. 2021; Ziircher
et al. 2022; Harnois-Deraps et al. 2024).

3.4.3 Phase difference distribution

The phases of Fourier modes are an important measure of non-
linearity in the cosmic web. While a Gaussian field exhibits ran-
domized phases, non-linear structure growth introduces correlations
into the phases. While the power spectrum relies only on Fourier
amplitudes, it has been shown that the phases carry substantial
information regarding the structure of the matter overdensity field
(Coles 2008) thus making phase statistics extremely important in
analysing the cosmic web.

Many methods exist to quantify phase statistics, including calcu-
lating the entropy of Fourier phases and measuring the distribution
of phases (see e.g. Chiang & Coles 2000; Coles & Chiang 2000;
Matsubara 2003; Watts et al. 2003; Matsubara 2007). We focus
on the probability distribution of phase differences as described by
Watts et al. (2003), in which the authors define a quantity D, given
by

Dy = &y — P4, an

which measures the difference in the phases of adjacent Fourier
modes (in a single dimension) k and k + 1. This can be extended to
a two-dimensional field by calculating a set of Dy in two orthogonal
directions. Watts et al. (2003) find that the distribution of these phase
differences P(D) can be described by a von Mises distribution:

1
T 2mlo(k)

P(D) efl(cos(Dfu) , (1 2)
where p is the mean angle which varies from sample to sample, «
is a parameter that describes the level of non-linearity, and I is a
modified Bessel function of order zero.

In order to measure P (D) for a dark matter overdensity map, we
bin the phase differences into histograms of 64 equally spaced bins
which we use to assess whether the model has correctly learned
non-linear growth through phase statistics.

3.4.4 Power spectrum

Although the lognormal input to the model and the target N-body
simulation have the same power spectrum, we cannot ensure that our
model does not significantly alter it. In order to assess whether the
power spectrum has been significantly changed, we use the estimator

N 1
Plky= — > |8k, 13
0 =3 —5 %| )| (13)

where §(k) is the Fourier transform of the matter overdensity §(x),
the summation is performed over all k vectors with a magnitude of
k, and Nyoges(k) is the number of modes in each & bin.
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3.4.5 Bispectrum

Since the power spectrum is unable to capture any informa-
tion regarding Fourier phases, we can use the matter bispectrum
B(ky, ky, k3) to quantify non-linear structure. The bispectrum can be
seen as a three-point counterpart to the power spectrum (Sefusatti
et al. 2006). The bispectrum for a two-dimensional field is defined
by the relation:

(8(k1)8(k2)3(k3)) = 2m)*8p(ky + ko + k3)B(ky, ka, k3), (14)

where k; = |k;|, all k; vectors are in the plane of the two-dimensional
slice, ép(-) indicates the Dirac delta function, and (-) represents an
expectation value over all Fourier space.

We also assess the reduced matter bispectrum Q(ky, k2, k3) (see
e.g. Scoccimarro 2000):

B(ki, k2, k3)

ki, ky, k3) = .
Ok ko ks) = 5 Pt + P P(ks) + P k) P(Ks)

5)

We measure the bispectra and reduced matter bispectra based on
an estimator of the binned bispectrum (Coulton & Spergel 2019;
Coulton et al. 2019). Bispectra can be measured along different
triangle configurations, and it is important to consider many config-
urations when using the bispectrum as a statistical tool in order to
break degeneracies when inferring cosmological parameters (Berge,
Amara & Refregier 2010). Therefore, we measure the bispectra
and reduced bispectra using multiple configurations of (ki, k) €
{0.05,0.2, 0.4, 0.6} h Mpc™', which span both regular configurations
and squeezed bispectra configurations. In Section 4, we report PSI-
GAN’s performance for only two of these configurations: (ki, k;) =
(0.4,0.4) h Mpc~" and (ky, k) = (0.4, 0.6) h Mpc™'; however, our
full set of tests show that PSI-GAN’s performance is similar over all
configurations tested.

4 RESULTS

Visual inspection shows that PSI-GAN is able to accurately reproduce
the structure of the cosmic web across all redshift bins. Fig. 3 shows
a set of examples for simulation #663, our ‘fiducial’ cosmology.

In addition, Fig. 4 shows example maps at redshift z = 0 for
our ‘fiducial’ cosmology, as well as extreme values of the Qy,, og
subspace. Table 3 shows the values for the chosen cosmologies.

Although PSI-GAN was trained with the goal of reproducing
accurate statistics, we also see some correlations in structure between
PSI-GAN emulations and N-body simulations. This emerges as
the GAN framework aims to reproduce maps matching N-body
simulations starting from correlated lognormal maps. However, for
the applications we are interested in, we mainly care about summary
statistics, and therefore choose to assess the model’s performance by
how well it is able to reproduce those, as opposed to assessing any
apparent structure correlation.

4.1 Randomized test set

Fig. 5 shows the results of all eight test metrics for our randomized
test set for redshift z = 0. On the top panel for each metric, we show
the mean value averaged over 64 examples of the N-body simulation,
the PSI-GAN emulation, and the lognormal approximation. On the
bottom panel, we show the relative difference with respect to the
N-body simulation for each model. We include uncertainties only on
the bottom panel for the sake of visual clarity.

In addition, in Fig. 6, we show the relative differences averaged
over 64 examples for each model, for all redshifts when compared
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Simulation #663
Q,=0.3223,Q, =0.0463, h=0.7015,n; = 0.9607, 0g = 0.8311

Lognormal Approximation Psi-GAN Emulation N-body Simulation

0.5

2=

Z=3

Figure 3. A set of examples for our ‘fiducial’ cosmology, showing lognormal random fields (left), PSI-GAN generated emulations (centre), and N-body
simulations (right) for all redshift bins.
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Lognormal Approximation Psi-GAN Emulation N-body Simulation

"Fiducial"

Low Qn, Low og

Figure 4. A set of examples for our ‘fiducial’ cosmology and extreme values of the Qy,, og subspace (as defined in Table 3), showing lognormal random fields
(left), PSI-GAN generated emulations (centre), and N-body simulations (right) for redshift z = 0.

to N-body simulations. We also display the relative differences for Ps1-GAN shows an improvement over the lognormal approxima-
the lognormal approximation for comparison. We show all redshift tion with the sole exception of the power spectrum. The lognormal
snapshots on the top two panels; however, we only show redshift approximation was designed to have an identical power spectrum
z = 0 on the remaining panels for visual clarity. to the N-body simulation, so this was an expected result. However,
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Table 3. The cosmologies used to demonstrate PSI-GAN’s emulations in
Fig. 4.

Cosmology Qm Qp h ng og

‘Fiducial’ 0.3223 0.04630 0.7015  0.9607  0.8311
Low Qp,, low og 0.1663 0.04783 0.6173 1.1467  0.6461
Low Qp, highog  0.1289 0.06325 0.7293 1.1537  0.9489
High Qp,, low o3 0.4599 0.04055 0.7287  0.8505 0.7011
High Qp, highog  0.4423 0.03533 0.8267  1.0009 09151

we can say that the power spectrum path in the critic of PSI-GAN
was effective in constraining the power spectrum so that it was not
altered by more than ~5 per cent. Initial trials of an GAN using a
fully convolutional critic (i.e. without the power spectrum path) saw
differences in the power spectrum between the emulation and the
N-body simulation of ~20 per cent. Thus, we can be confident that
our critic architecture is effective in maintaining the power when
transforming a lognormal random field.

We see agreement to within ~35 per cent for all metrics, with the
exception of the pixel counts at low values of In(1 + §). This is
due to the baseline count for the N-body simulation being very low
(~10?%), and thus making the relative differences sensitive to small
changes in pixel counts. We also believe that this issue is partially
caused by the model’s architecture more easily modelling higher
values of In(1 + §) due to the use of the GELU activation function
(Hendrycks & Gimpel 2016), which is more expressive at positive
values.

4.2 Redshift interpolation

Fig. 7 displays similar results to Fig. 5, but for our redshift
interpolation test at z = 0.25. On the bottom panel, we show the
relative difference with respect to a value interpolated between the
two adjacent redshift snapshots (z = 0 and z = 0.5) as we have no
N-body snapshot to act as the ground truth.

It can be seen that PSI-GAN improves on the lognormal approxi-
mation across all metrics. Although not much can be quantitatively
said about the performance of PSI-GAN with respect to the N-body
snapshots, we can qualitatively say that the results lie reasonably
between the upper and lower bounds set by the adjacent redshift
snapshots (as shown in Fig. 7), and within ~5 percent of an
interpolated baseline. We can also see that PSI-GAN’s metrics
intercept the N-body snapshots exactly at cross-over points for the
pixel counts, peak counts, and phase difference distributions. We
can also see that the power spectrum does not vary by more than
3 percent from the lognormal approximation at redshift z = 0.25,
again showing the effectiveness of the power spectrum path in PsI-
GAN’s critic.

Our second redshift interpolation test at redshift z = 0.75 showed
similar results to the test at z = 0.25, but are not shown here for
brevity. All metrics showed agreement with N-body simulations
to within ~5 percent, with the power spectrum showing closer
agreement to ~3 per cent. The only case of the agreement differing
by more than this when the pixel and peak counts histograms were
at a very low baseline value (~10?%), where we saw discrepancies of
~15 per cent.

4.3 Cosmology interpolation

Fig. 8 displays similar results to Fig. 5, but for our cos-
mology interpolation test for simulation #1586 at redshift
z=0.

Psi-GAN 3147

Fig. 9 displays the relative differences for all redshifts tested
(similar to Fig. 6). Our second cosmology interpolation test for
cosmology #815 showed similar results to those shown for simulation
#1586.

PSI-GAN shows an improvement over the lognormal approxima-
tion, again with the sole exception of the power spectrum which was
constrained so that it was not altered by more than ~5 per cent. We
do see greater discrepancies in the power spectrum compared to the
previous tests. We believe that this discrepancy can be explained by
the node coverage over cosmology-space when compared to redshift-
space.

Redshift is a one-dimensional space which we cover with five
nodes at snapshots of z € {0, 0.5, 1, 2, 3}. However, cosmology is
a five-dimensional space (i.e. we condition on five cosmological
parameters) which we cover with 2000 nodes. In order to cover
cosmology-space with the same density as we cover redshift-space,
we would require 5° = 3125 nodes in cosmology space. We are
significantly short of this number, requiring 56.25 percent more
simulations than are part of the Latin hypercube suite.

4.4 Model analysis through saliency mapping

Saliency mapping is a field of techniques used to produce visual
explanations of the behaviour of computer vision models (Smilkov
et al. 2017). These explanations take the form of heatmaps which
aim to highlight which areas are most important for the model to
reach a specific output. These scores are often computed by taking
gradients of the output in question with regards to the input image
(see e.g. Adebayo et al. 2018; Hooker et al. 2019, for an overview of
various methods used in computer vision).

Saliency mapping has been explored in astrophysics through a
variety of applications such as measuring galaxy bar lengths from
morphology classification models (Bhambra, Joachimi & Lahav
2022), and qualitatively investigating model behaviour for both
AGN classification models (Peruzzi et al. 2021) and cosmological
parameter estimation models (Kacprzak & Fluri 2022).

In order to investigate potential model improvements, we perform
saliency mapping on the output of the critic with respect to a PsI-
GAN emulation with the hope of discovering any features that may
be tell-tale signs of a certain map being an emulation. We use
SMOOTHGRAD-SQUARED (Hooker et al. 2019) to visualize which
areas of an emulation are used by the critic to identify it as an
emulation as opposed to an N-body simulation.

SMOOTHGRAD-SQUARED extends vanilla saliency (Simonyan,
Vedaldi & Zisserman 2013), in which the saliency map L€ is created
by simply taking the gradient of the output with regards to each input
pixel. Vanilla saliency has been shown to be unstable (Adebayo et al.
2018) due to gradients exhibiting large fluctuations with respect to
pixel values, which creates excess noise in the resultant saliency
maps. SMOOTHGRAD-SQUARED aims to improve this limitation by
creating N, visually similar samples of each image by adding a small
amount of Gaussian noise to the original to create each sample,
calculating a saliency map for each sample, and then aggregating
these to produce a final saliency map:

N,

iLC[x + N, o)1, (16)

i=1

1

Lo(x)=
Neg

where N(0, 2) is the probability density function for a Gaussian
distribution with a mean of 0 and a standard deviation of 2. Here, we
adopt the notation used by Hooker et al. (2019) in which L€ is a vanilla
saliency map, and L¢ is the SMOOTHGRAD-SQUARED saliency map
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Figure 5. A comparison of the statistical tests as described in Section 3.4 for the lognormal approximation (cyan), N-body simulation (grey), and PSI-GAN
emulation (red) on the randomized test set. The metrics displayed are as follows (from top to bottom, and left to right): pixel counts, peak counts, phase
difference distribution, power spectrum, bispectrum with (k1, k2) = (0.4, 0.6) h Mpc’l, reduced bispectrum with (k, k2) = (0.4,0.6) h Mpc’l, bispectrum
with (k1, ko) = (0.4,0.4) h Mpc_1 , and reduced bispectrum with (ky, k2) = (0.4,0.4) h Mpc_1 . The relative performance with respect to the N-body simulation
can be seen in the bottom panel for each test, along with the respective uncertainties. We show that PSI-GAN outperforms the lognormal approximation across
all tests with the exception of the power spectrum, in which we see small discrepancies within 5 per cent.
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Figure 6. A comparison of the relative differences in the statistical tests as described in Section 3.4 for the lognormal approximation (grey dashed line with
looser dash spacing indicating a lower redshift snapshot), N-body simulation (black line), and PSI-GAN emulation (lines coloured with respect to the redshift
colour at the top of the figure) on the randomized test set. The metrics shown are the same as in Fig. 5. We show that PSI-GAN outperforms the lognormal
approximation across all tests with the exception of the power spectrum, in which we see small discrepancies within 5 per cent. Uncertainties are similar to those

shown in Fig. 5, but are omitted here for visual clarity.

that results from the squaring and aggregation of the saliency maps for
each sample x + A0, o2). Throughout this section, we use values
of Ny, =256 and o = 0.2 to control the number of samples, and
the Gaussian noise used in the SMOOTHGRAD-SQUARED algorithm,
respectively.

Fig. 10 shows an example at z =0 of an N-body simulation,
a corresponding emulation produced by PSI-GAN, as well as the
SMOOTHGRAD-SQUARED saliency map, and a difference map.

We examined many such examples in order to visually identify
any salient features that are highlighted in the saliency maps.
However, we were unable to find any visual correlation between
the saliency map and the other visualized maps. We assumed that
this must be because the critic uses extremely small-scale features,

or long-range correlations (which the human eye is poor at iden-
tifying) in order to differentiate PSI-GAN emulations and N-body
simulations.

We also measure the power spectra of the saliency maps in
order to investigate which scales are the limiting factor in PsI-
GAN’s emulations. Fig. 11 shows the power spectra for each redshift
bin averaged over 64 example maps and normalized such that the
maximum value for each redshift is equal to 1.

Taking the power spectra of the saliency maps shows us that PSI-
GAN performs well over all scales. The power spectra show that
long-range correlations are slightly more present in the saliency
maps when compared to small-scale features. This indicates that
PsI-GAN struggles to capture large scales in comparison to small
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Simulation #663, Redshift z=0.25

—— Lognormal Approximation
—— Psi-GAN Emulation
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104 4

10° 4

Pixel Counts

Relative
Difference
=]

o

U
I
I
]
1
1
1
]
|
\
]
1
\

0.0

0.165

0.160

P(D)

0.155

0.01

0.00

Relative
Difference

-0.01

0.6 h Mpc?

ky=0.4 h Mpc™?

ky

Bispectrum [h~* Mpc]*

0.5
0.0 o

—0.5

Relative
Difference

3n/4

0.4 h Mpc*

ky=0.4 h Mpc™?

ka

Bispectrum [h~* Mpc]*

054 =

Relative
Difference

Reduced Bispectrum

Reduced Bispectrum

ky
ks

Power Spectrum
[h~ Mpc)?

ky=0.4 h Mpc~?!
k;=0.6 h Mpc?!

0.4 h Mpc~?
0.4 h Mpc™!

--- N-body Simulation (z=0.0)
N-body Simulation (z=0.5)

102 1

Peak Counts

=
n

Relative
Difference
o
o

0.0 0.5 10 15

102 4§

10! 4

10° 4
0.1

0.0 1

Relative
Difference

1.50

1.25 4

1.00 4

0.75 4

0.50 4

0.5
0.0 4

-0.5

Relative
Difference

1504

125

1.00 4

0.75 4

0.50 4

Relative
Difference

T
3n/4

3n/4

Figure 7. Similar to Fig. 5, but for the test set for interpolating redshift at z = 0.25. As we have no N-body snapshot to act as the ground truth, relative
differences are displayed with respect to a value interpolated between the two adjacent redshift snapshots. The dashed grey lines show the measured values for
these snapshots. Also, please note that the grey dashed lines line outside of the range of the y-axis for the relative differences plot of the power spectrum.

scales, and that long-range correlations are the limiting factor in our
architecture’s ability to accurately emulate the cosmic web.

We also see peaks at ~0.2 h Mpc™!' corresponding to a value
of 2.5 times the pixel width. This indicates that PSI-GAN exhibits
small amounts of artefacting at small-scales. Although we do not
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have the computational resources to fully diagnose the cause of this,
we believe that it is likely due to the interaction between the scale
factor of 2 up-sampling and down-sampling used in the architecture,
and the 9 x 9 convolutional filter used in the ConvNeXt blocks (see
Appendix A for further details). The convolutional filter propagates
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Figure 8. Similar to Fig. 5, but for the test set for interpolating cosmology on simulation #1586 at redshift z = 0.

information from 4.5 pixels away from the centre point of the central
pixel, leading to the half-integer pixel width artefacting.

For redshifts z =2 and z =3, we also see a sharp peak at
~0.8 h Mpc~!. However, as this is on the subpixel scale we have
no control over it, and we believe that its presence is due to the
interpolation algorithm used by NBODYKIT when measuring the
power spectrum.

5 CONCLUSIONS

In this paper, we used the Quijote simulations to train a machine
learning model (PSI-GAN) capable of transforming two-dimensional
flat-sky lognormal random fields of the dark matter overdensity
field into more realistic samples across a continuous redshift and
cosmology space. PSI-GAN takes the form of a generative adversarial
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Figure 9. Similar to Fig. 6, but for the test set for interpolating cosmology on simulation #1586.

network, with a U-Net generator and a novel critic which uses
the power spectrum of the generated samples as a means for
discrimination.

We have extensively tested PSI-GAN in a broad series of tests
covering: the model’s training domain across all redshift ranges,
the model’s ability to interpolate between the given redshift bins,
and the model’s ability to interpolate between cosmologies at all
redshifts. We observe that PSI-GAN has a closer agreement with N-
body simulations when compared to the lognormal approximation
across statistical tests that probe non-Gaussian features (such as
peak counts, phase statistics, and bispectra). PSI-GAN is able to
reproduce the bispectra and peak count distributions of N-body
simulations to ~5 percent, while the lognormal approximation
displays a discrepancy of ~25 percent. Due to our novel critic
architecture, PSI-GAN is also able to match the power spectrum of the
target N-body simulation, with relative differences of ~5 per cent.

MNRAS 536, 3138-3157 (2025)

The largest shortcoming of PSI-GAN is its slightly weaker per-
formance in constraining the power spectrum when tasked with
interpolating between cosmologies. In our tests, the power spectrum
of samples generated by PSI-GAN showed less agreement with
N-body simulations when interpolating between the cosmologies
used in the Quijote simulations. An approximately ~50 per cent
greater coverage of cosmology space should be enough to reduce
this shortcoming; however, this would require significant resources
to generate. Another potential method of improving this would
be to pre-train the model architecture to be able to reconstruct
lognormal random fields across an extensive data set before fine-
tuning the model to transform lognormal random field to more
accurate emulations.

We used saliency mapping techniques to investigate further ar-
chitectural improvements to PSI-GAN, which highlighted a slight
weakness in capturing long-range correlations as well as a small issue
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Figure 10. An example showing the dark matter distribution field from an N-body simulation (left) and an emulation generated by PSI-GAN (centre left).
We use SMOOTHGRAD-SQUARED to produce a saliency map (centre right) visualizing which parts of the emulation were most important for the critic when
determining whether the emulation was real or fake. We also visualize the difference map (right), showing the differences between the N-body simulation and

the PSI-GAN emulation.
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Figure 11. The normalized power spectra of SMOOTHGRAD-SQUARED
saliency maps evaluated on 64 examples for each redshift snapshot for our
‘“fiducial’ cosmology. Vertical, dashed-grey lines indicate wavenumbers of
integer multiples of the pixel width.

with pixel-scale artefacting. Increasing the depth of the generator by
another step (i.e. including an extra set of down-sample and up-
sample blocks) should help PSI-GAN model long-range correlations
better as the latent space will be more compressed and information
will propagate more efficiently across the simulation box. Adding
additional ConvNeXt blocks after the first convolution, and before
the last convolution should aid in modelling small scales and reduce
artefacting, as well as reduce the asymmetry between modelling
negative and positive values of the matter density field as discussed
in Section 4.1.

Another architectural change that could improve performance is
to replace the pre-trained ResNet-50 model in the critic with a more
powerful option, such as the EfficientNet (Tan & Le 2019) or RegNet
(Radosavovic et al. 2020) architectures. However, all of these archi-
tectural changes will lead to a significant increase in training time

which would require state-of-the-art hardware (although inference
time should remain unchanged).

To meet our long-term goal of building a full-sky emulator to
integrate into GLASS, we will have to extend our work to the sphere.
The Gower Street simulation suite (currently consisting of 791 full-
sky N-body simulations with varying cosmology; Jeffrey et al. 2024)
provides us with a data set for training; however, it is not as extensive
as the Quijote simulation suite used in this paper. Nevertheless, we
see two potential avenues for future work on this problem: graph
neural networks (see e.g. Lam et al. 2022, for an example pertaining
to meteorology), and rotationally equivariant convolutions on the
sphere (see e.g. Ocampo, Price & McEwen 2022; Boruah et al.
2024).

CARBON INTENSITY STATEMENT

All work that went into this paper was tracked via ‘Weights and
Biases’,> which allows us calculate that we used a total of ~2 000
GPU hours throughout this work. The majority of this was on
NVIDIA A100 Tensor Core GPUs, which had a time-averaged
power consumption rate of ~0.19 kW (0.2 kW during training and
0.1 kW during validation and testing), thus resulting in a total power
consumption of ~380 kW h.

Using the average carbon intensity of the UK power grid in 2024
(measured at ~120 gCO,eq kW~! h™!; National Grid ESO 2024), we
estimate that we have emitted a total of ~45.6 kgCO,eq as the result
of this work, roughly equivalent to that of a driving from London to
Edinburgh and back (~1 300 km) in a plug-in hybrid car.

We have removed the carbon emissions emitted due to this project
from the atmosphere via the funding of carbon capture schemes
through the Wren Trailblazer Portfolio.*
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APPENDIX A: MODEL ARCHITECTURE

Our generator consists of a ConvNeXt-inspired, conditional U-
Net (Ronneberger et al. 2015), constructed from the four types
of computational blocks shown in Fig. Al. Our ConvNeXt block
(Liu et al. 2022) consists of a depthwise separable 9 x 9 convo-
lution followed by two 1 x 1 convolutions, as well as a residual
connection. This architecture aims to efficiently process the input
and share information across long ranges and is used as the main
processing block for the generator. The conditioning block is used
to inject information regarding the redshift and cosmology into
the network. This is done by simply taking the 6 conditioning
labels (z, Qm, Q, &, 15, 0g) and embedding them through a two-
layered multi-level perceptron. We then expand the dimensions of the
embeddings to match that of the input, before finally concatenating
this with the input. The conditioning block has hyperparameters
controlling the number of hidden and output nodes in the embedding
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network, which can be used to compress or expand the dimensions of
the embedded labels. Following the ConvNeXt architecture, we have
separated down-sampling and up-sampling operations away from

the main computational block. The down-sample block consists of
down-sampling the input using a 2 x 2 convolution with a stride of
2, and then processing the result with three sequential ConvNeXt
blocks. The up-sample block takes two inputs, one from the previous
step in the generator and another from a skip connection. The first
input is up-sampled via bicubic interpolation with a scale-factor of
2 to match the dimensions of the skip connection. These are then
concatenated before being processed through a 3 x 3 convolution,
followed by three ConvNeXt blocks. Both the down-sample and
up-sample blocks have a single parameter that controls the number
of filters used in the initial convolution in each block. This is used
to control the number of channels in the block’s output. Gaussian
error linear units (GELU; Hendrycks & Gimpel 2016) are used as
activation functions throughout the construction of the network, and
layer normalization (LayerNorm; Lei Ba, Kiros & Hinton 2016) is
used for normalisation.

The construction of the generator can be found in Fig. A2. The
generator consists of an initial 3 x 3 convolution followed by three
down-sample blocks. We then introduce a bottleneck consisting of
three ConvNeXt blocks, before using three up-sample blocks to
return the input to its original resolution. We use a final 1 x 1 convo-
lution to reduce the number channels back to 1. We use conditioning
blocks to inject information about redshift and cosmology before
the initial and final convolutions, as well as before and after the
bottleneck.
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Figure Al. Schematics showing the four building blocks used in the construction of our generator and critic. We also provide information, in parentheses,
regarding the dimensions for both the inputs (blue) and outputs (red) in roman font, and the hyperparameters of each layer and block in italics. Dimensions are
quoted in the ‘batch, channels, %’ convention, where * represents any number of latent dimensions and (B, C, H, W) is used as a placeholder for the dimensions
of two-dimensional inputs and outputs (with any lower-dimensional inputs and outputs following a similar convention). All convolutional layers use circular
padding in order to maintain the height and width of the input.
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Figure A2. A schematic showing the construction of our conditional U-Net generator. We also provide information, in parentheses, regarding the dimensions
for both the inputs (blue) and outputs (red) in roman font, and the hyperparameters of each layer in italics. Dimensions are quoted in the ‘batch, channels,
%’ convention, where * represents any number of latent dimensions and B is used as a placeholder for the batch dimension of all inputs and outputs. All
convolutional layers use circular padding in order to maintain the height and width of the input.
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