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A B S T R A C T 

Simulations of the dark matter distribution throughout the Universe are essential in order to analyse data from cosmological 
surv e ys. N -body simulations are computationally e xpensiv e, and man y cheaper alternativ es (such as lognormal random fields) 
fail to reproduce accurate statistics of the smaller, non-linear scales. In this work, we present PSI-GAN (power-spectrum-informed 

generativ e adv ersarial network), a machine learning model that tak es a tw o-dimensional lognormal dark matter density field 

and transforms it into a more realistic field. We construct PSI-GAN so that it is continuously conditional, and can therefore 
generate realistic realizations of the dark matter density field across a range of cosmologies and redshifts in z ∈ [0 , 3]. We train 

PSI-GAN as a generative adversarial network on 2 000 simulation boxes from the Quijote simulation suite. We use a no v el 
critic architecture that utilizes the power spectrum as the basis for discrimination between real and generated samples. PSI-GAN 

shows agreement with N -body simulations o v er a range of redshifts and cosmologies, consistently outperforming the lognormal 
approximation on all tests of non-linear structure, such as being able to reproduce both the power spectrum up to wavenumbers 
of 1 h Mpc −1 , and the bispectra of target N -body simulations to within ∼5 per cent. Our impro v ed ability to model non-linear 
structure should allow more robust constraints on cosmological parameters when used in techniques such as simulation-based 

inference. 

Key words: methods: statistical – software: simulations – (cosmology:) dark matter – (cosmology:) large-scale structure of 
Universe. 
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 I N T RO D U C T I O N  

he standard model of cosmology, known as Lambda cold dark mat-
er ( � CDM; see e.g. Peebles 1993 ), describes a Universe consisting
f CDM, ordinary matter (baryons), and includes the existence of
 cosmological constant � associated with dark energy. � CDM
a v ours that the relative abundance of dark matter is approximately
ve times that of baryonic matter, making it the predominant form of
atter throughout the Universe (Bertone & Hooper 2018 ). The model

escribes a Universe in which galaxies form along and trace the
osmic web structure formed by dark matter, consisting of filaments
hat connect clusters and surround voids. Although the gravitational
ffects of dark matter have been observed in many different ways,
he nature of dark matter itself remains a mystery (see e.g. Bertone &
ait 2018 , and references therein). 
N -body simulations are a common tool used to analyse the origin

nd evolution of the cosmic web structure formed by dark matter
see e.g. Efstathiou et al. 1985 ; Springel 2005 ; Springel et al. 2005 ,
021 ; Boylan-Kolchin et al. 2009 ; Villaescusa-Navarro et al. 2020 ,
 E-mail: prabh.bhambra.12@ucl.ac.uk 

c  

e  

i  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
021 ). In its simplest form, running an N -body simulation involves
nitializing a number of massive particles in a cubic box of fixed
omoving dimensions, imposing periodic boundary conditions, and
hen allowing gravity to act on the particles through its gravita-
ional potential (go v erned by the Poisson equation; Springel et al.
021 ). The initial conditions of the N -body simulation are often
pproximated by a Gaussian random density field and, starting
rom these initial conditions, the positions and velocities of each
article are updated iteratively over a series of time-steps until
oday ( z = 0). 

There e xist man y different implementations of N -body simula-
ions with differing complexity and accuracy. Direct methods, in
hich the force on each particle with respect to every other particle

s calculated for each time-step, are extremely computationally
 xpensiv e, and so approximations are used to reduce the time taken
o run a simulation. These approximations include tree code methods
Barnes & Hut 1986 ), fast-multipole methods (Greengard & Rokhlin
987 ), particle-mesh methods (Hockney & Eastwood 1988 ), adaptive
esh refinement (Berger & Oliger 1984 ; Bryan et al. 2014 ), and

ombinations such as TREE-PM (see e.g. Springel 2005 ; Springel
t al. 2021 ). Despite the impro v ements in speed due to these approx-
mations, N -body simulations are still computationally e xpensiv e to
© 2024 The Author(s). 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0003-2185-0293
http://orcid.org/0000-0002-9836-2661
mailto:prabh.bhambra.12@ucl.ac.uk
https://creativecommons.org/licenses/by/4.0/


PSI-GAN 3139 

r
t
o  

m
i

i
p
r  

2  

e  

a
v
G
fi
m  

v  

m
o  

T  

l
s  

o  

t
m
s

a
M
G  

a
(  

f
a
s  

O  

2

a
l
S  

(
l
l
(  

w

a  

c
r  

m
t
v

t  

r  

t
w  

e  

s
s
L

r  

a  

c  

t  

s
t
s

 

d  

d
s
w  

w  

p  

i
W  

s  

G

2

I
N  

h
(  

(  

m  

b
c  

e  

h
d  

T  

c
a  

z  

c

m
T  

δ

δ

w  

d

v  

t

δ

Table 1. The limits and fiducial values for each cosmological 
parameter in the Quijote simulation’s Latin hypercube suite. 

Parameter Limits Fiducial value 

�m 

[ 0 . 1 , 0 . 5 ] 0.3175 
�b [ 0 . 03 , 0 . 07 ] 0.049 
h [ 0 . 5 , 0 . 9 ] 0.6711 
n s [ 0 . 8 , 1 . 2 ] 0.9624 
σ8 [ 0 . 6 , 1 . 0 ] 0.834 
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un and require access to high-performance computing systems. The 
ime and computing resources required to run a sufficient number 
f N -body simulations limits our ability to study the nature of dark
atter and the Universe through techniques such as simulation-based 

nference (Cranmer, Brehmer & Louppe 2020 ). 
When a significantly large number of simulations is required, 

t is common to resort to cheaper approximations. One such ap- 
roximations for describing dark matter fields is to use a lognormal 
andom field (see e.g. Coles & Jones 1991 ; Perci v al, Verde & Peacock
004 ; Xavier, Abdalla & Joachimi 2016 ; Clerkin et al. 2017 ; Tessore
t al. 2023 ). A lognormal random field can be easily obtained from
 given Gaussian random field, and can be entirely described by 
ery few parameters: the mean μ and variance σ 2 of the associated 
aussian random field, and a shift parameter λ. A lognormal random 

eld also demonstrates a skew, which is useful in modelling the 
atter o v erdensity field, giv en that it varies from values of −1 in

oids to values in the range of ∼10 7 in clusters. These properties
ake lognormal random fields a useful approximation of the matter 
 v erdensity field. Ho we ver, as discussed in Xavier et al. ( 2016 ) and
essore et al. ( 2023 ), its low computational complexity comes with

imitations. Lognormal random fields are able to reproduce a power 
pectrum to a high level of accuracy as the power spectrum relies
nly on the amplitudes of Fourier modes. Ho we v er, the y are unable
o reproduce accurate statistics that rely on the phases of Fourier 

odes, which contain much of the information regarding non-linear 
tructure (Coles 2008 ). 

Recently, machine learning (ML) methods have been used to 
pproximate N -body simulations. Rodr ́ıguez et al. ( 2018 ) and 
ustafa et al. ( 2019 ) used generative adversarial networks (GANs; 
oodfellow et al. 2020 ) to emulate slices of N -body simulations

nd weak lensing convergence maps, respectively. Perraudin et al. 
 2019 ) and Feder, Berger & Stein ( 2020 ) extended this approach
rom two-dimensional slices to three-dimensional simulation boxes, 
nd showed that GANs are able to reproduce the large-scale and 
mall-scale features of N -body simulations. He et al. ( 2019 ) and de
liveira et al. ( 2020 ) trained U-Nets (Ronneberger, Fischer & Brox
015 ) to learn the non-linear growth of cosmic structure. 
More recently, Piras, Joachimi & Villaescusa-Navarro ( 2023 ) used 

 U-Net in a GAN framework to emulate N -body simulations by 
earning how to transform a corresponding lognormal approximation. 
hirasaki & Ikeda ( 2023 ) similarly used a U-Net in a Cycle GAN
an unpaired image-to-image method; Zhu et al. 2017 ) framework to 
earn unpaired translation from lognormal approximations of weak 
ensing mass maps to non-Gaussian counterparts. Boruah et al. 
 2024 ) de veloped ne w network layers in order to generate full-sky
eak lensing mass maps from lognormal approximations. 
While useful, very few methods consider the impact of cosmology 

nd redshift on the structure of the cosmic web. Piras et al. ( 2023 )
onsidered cosmology and redshift dependence for a simplified low- 
esolution case; ho we ver, this dependence was not built into the
odel. Jamieson et al. ( 2023 ) encode cosmology dependence into 

heir U-Net-based model to output non-linear displacements and 
elocities of N -body simulation particles based on their linear inputs. 

In this paper, we aim to impro v e lognormal approximations 
hrough the use of ML techniques, across a range of cosmologies and
edshifts. We build upon the work of Piras et al. ( 2023 ) by extending
heir approach to fully capture cosmology and redshift dependence, 
ith the long-term goal of integrating our work into GLASS (Tessore

t al. 2023 ). Our approach starts from the Quijote N -body simulation
uite (Villaescusa-Navarro et al. 2020 ), which contains 2 000 N -body 
imulation boxes with cosmologies sampled from a five-dimensional 
atin hypercube. The simulation suite includes snapshots at five 
edshifts as well as the initial conditions, which we use to create
 data set of pairs of lognormal and N -body slices. We train a
onditional U-Net in a GAN in order to learn an image-to-image
ranslation between the domains. Our no v el method uses the power
pectrum of the generated emulation to inform the network during 
raining and guide it towards reproducing the structure of N -body 
imulations across all scales. 

Our paper is structured as follows. In Section 2 , we describe the
ata used from the Quijote simulations. In Section 3 , we describe the
ata generation procedure used to obtain a corresponding lognormal 
lice for each N -body simulation slice, our model architecture, as 
ell as our training, validation, and testing methods. In Section 4 ,
e present the results of our method, including e v aluating model
erformance within the domain of the training data, as well as testing
ts ability to interpolate within the cosmology and redshift spaces. 

e conclude in Section 5 with a summary of our work, as well as
uggestions for future work needed to meet our long-term goal of
LASS integration. 

 DA  TA :  SIMULA  T I O N S  A N D  MA  TTER  FIELDS  

n this work, we use the Quijote simulation suite (Villaescusa- 
avarro et al. 2020 ). We specifically use simulations from the Latin
ypercube, in which the values of the matter density parameter 
 �m 

), the baryon density parameter ( �b ), the Hubble parameter
 h ), the scalar spectral index ( n s ), and the root mean square of the
atter fluctuations in spheres of radius 8 h 

−1 Mpc ( σ8 ) are varied
y sampling from a five-dimensional Latin hypercube. We only 
onsider massless neutrinos, and a constant value for the dark energy
quation of state parameter w = −1 (i.e. a constant � ). This Latin
ypercube contains 2000 standard simulations, each containing 512 3 

ark matter particles in a box with comoving length of 1000 h 

−1 Mpc .
he limits of the Latin hypercube are shown in Table 1 along with the
orresponding fiducial values. We utilize both the initial conditions 
t z = 127 of each simulation, as well as snapshots at redshifts
 ∈ { 0 , 0 . 5 , 1 , 2 , 3 } , thus forming a data set spanning a range of
osmologies and redshifts. 

For each simulation, we convert the particles’ positional infor- 
ation to a continuous field through a mass assignment scheme. 
hroughout this work, we will consider the matter o v erdensity field
( x ), defined as 

( x ) = 

ρ( x ) 
ρ̄

− 1 , (1) 

here ρ( x ) is the matter density at each position x , and ρ̄ is the mean
ensity in the simulation box. 
We consider a three-dimensional regular grid with N 

3 = 512 3 

oxels. The interpolation of the overdensity field over the grid is
hen obtained by e v aluating the continuous function, 

˜ ( x ) = 

∫ 
d 3 x ′ 

(2 π) 3 
W ( x − x ′ ) δ( x ′ ) , (2) 
MNRAS 536, 3138–3157 (2025) 
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here W ( x ) is the weight function that describes the number of
rid points, per dimension, to which each particle is assigned. We
tilize the piecewise cubic spline interpolation scheme (Chaniotis &
oulikakos 2004 ; Sefusatti et al. 2016 ) in which the weight function

s symmetric, positively defined, and separable such that W ( x ) =
 1D ( x 1 /H ) W 1D ( x 2 /H ) W 1D ( x 3 /H ), with H being the grid spacing,

nd W 1D being the unidirectional weight function: 

 1D ( s) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
6 (4 − 6 s 2 + 3 | s| 3 ) if 0 ≤ | s| < 1 , 
1 
6 (2 − | s| ) 3 if 1 ≤ | s| < 2 , 

0 otherwise . 

(3) 

 M E T H O D  

he goal of this work is to be able to train a model that can transform
wo-dimensional lognormal o v erdensity fields into more realistic
 v erdensity fields with statistics that match those of the Quijote
atin hypercube across redshifts and cosmologies. In order to do this,
e first create a data set containing pairs of two-dimensional slices
f the Quijote Latin hypercube and their corresponding lognormal
ounterpart (Section 3.1 ), we then train a machine learning model to
pply this transformation (Sections 3.2 and 3.3 ), and finally validate
he model using a set of statistical metrics (Section 3.4 ). 

.1 Data generation 

n order to create the required data set, we obtain n = 16 slices
or each three-dimensional simulation box by slicing each box
long a chosen axis such that each slice has a depth of 32 pixels.
e reduce the dimensions of the slices from three to two by

aking the depth-wise mean. The depth of each slice is then given
y 1 000 /n h 

−1 Mpc = 62 . 5 h 

−1 Mpc , which was chosen to be
ower than the approximate depth of matter shells in GLASS (von

ietersheim-Kramsta et al. 2024 ). A shallower depth ensures that
ore small-scale structure remains in the slices, thus making it more

ifficult to model. Successfully reproducing slices of this depth will
nsure that PSI-GAN will also be able to reproduce slices of a greater
epth. While the matter shells in GLASS have varying depth, we
eave incorporating this depth dependence into the model to future
ork. Our training data spans all of the 2 000 cosmologies in the
uijote Latin hypercube at redshifts of z ∈ { 0 , 0 . 5 , 1 , 2 , 3 } , resulting

n 16 × 2 000 × 5 = 160 000 slices. 
In order to generate corresponding lognormal counterpart to each

lice we follow the procedure outlined by Piras et al. ( 2023 ). While
 brief description will be provided here we direct the reader to Piras
t al. ( 2023 ) for a more detailed description of this procedure. 

We start by measuring the two-dimensional power spectrum of
ach slice P ( k). In order to generate a lognormal random field
ith the given measured power spectrum, we follow Coles & Jones

 1991 ) and Perci v al et al. ( 2004 ). We then convert P ( k) to the matter
orrelation function ξLN ( r), and calculate the corresponding Gaussian
orrelation function: 

G = ln [ 1 + ξLN ( r) ] . (4) 

e convert this Gaussian correlation function back to Fourier space
o obtain a Gaussian power spectrum P G ( k). 

A zero-mean Gaussian field is entirely defined by its power
pectrum that depends only on the absolute values of the Fourier
oefficients; therefore, the Fourier phases can be uniformly sampled
n the interval [0 , 2 π ) in order to create a realization of a Gaussian
andom field (Chiang & Coles 2000 ; Coles & Chiang 2000 ; Watts,
NRAS 536, 3138–3157 (2025) 
oles & Melott 2003 ). Ho we ver, as we aim to generate Gaussian
andom fields δG with high correlations to each given N -body slice,
e instead use the set of phases from the corresponding slice of

he initial conditions at z = 127. The lognormal field δLN is then
alculated by e v aluating 

LN = exp 
(
δG − σ 2 

G / 2 
)

(5) 

or each grid point, where σG 

is the standard deviation of the Gaussian
eld. For these operations, we used the PYTHON package NBODYKIT

Hand et al. 2018 ). 
There are two limitations to this method due to the fact that we

re measuring the power spectrum from a grid. First, due to relying
nly on the simulation boxes for the measured power spectrum, we
re only able to surv e y a limited range of k ∈ [0 . 025 , 1] h Mpc −1 .
n order to access larger scales, we use CLASS (Blas, Lesgour-
ues & Tram 2011 ) to generate a theoretical power spectrum for
 ∈ [10 −5 , 0 . 025] h Mpc −1 and concatenate this with the measured
ower spectrum. 
Secondly, we observe a discrepancy in the power spectrum of the

enerated lognormal field and the measured power spectrum from the
uijote slice. This can be attributed to correlations in phases being

ntroduced when converting the Quijote initial conditions (obtained
y second-order Lagrangian perturbation theory) to a density field.
e correct for this discrepancy by iteratively re-scaling P G ( k),
hich is used to generate the lognormal field δLN . Each iteration

nvolves generating a lognormal field from P G ( k) as per equation
 5 ), measuring its power spectrum P LN ( k), calculating the ratio of
 LN ( k) to the target power spectrum P ( k) at each k, and then rescaling
 G ( k) by this ratio at each value of k. This process is iterated through
ntil P LN ( k) matches the target power spectrum P ( k) to within a
.1 per cent discrepancy at all values of k. 
We are left with a data set of pairs of lognormal and Quijote

lices ( δLN and δNB ), which we split into a number of sets. We firstly
eserve all slices across all redshifts of cosmologies #1586 and #815
randomly selected) as part of the test set in order to test model
erformance on unseen cosmologies. As we only have snapshots at
ertain redshifts, we create an additional set of lognormal slices at
edshift z ∈ { 0 . 25 , 0 . 75 } for cosmology #663 (which we will refer
o as our ‘fiducial’ cosmology from now on, as it is the closest
osmology in our data set to the Quijote fiducial cosmology) in
rder to test the model’s ability to interpolate between redshifts.
e follow the previously outlined procedure for producing these

ognormal slices. Ho we v er, as we hav e no Quijote snapshots at these
edshifts (and are therefore unable to measure a power spectrum),
e create a ‘measured’ power spectrum by linearly interpolating

he power spectrum at each value of k between redshift snapshots.
urthermore, we reserve 512 randomly chosen slices at each redshift
s part of a test set to assess model performance on cosmologies and
edshifts within the training set. 10 per cent of the remaining data
et is used for validation, with the other 90 per cent being used for
raining. Table 2 summaries these six sets of data used in the training,
alidating, and testing of our model. 

.2 Model ar chitectur e 

e train a Wasserstein GAN with gradient penalty (WGAN-GP;
rjo vsk y, Chintala & Bottou 2017 ; Gulrajani et al. 2017 ) consisting
f a generator ( ∼2 . 06 × 10 7 parameters) and a critic ( ∼2 . 59 × 10 7 

arameters). In a traditional GAN, the generator and critic are
dversarially trained in tandem in order to produce generated data
hat is identical to real data. Our approach builds physics into the
ritic of the GAN to constrain the generator to produce data that
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Table 2. A summary of the data sets used in training, validating, and testing our model. 

Set name Description Cosmology Redshift 

Interpolate cosmology test set #1 Testing on reserved cosmology, unseen during 
training process 

Simulation #1586 z ∈ 

{ 0 , 0 . 5 , 1 , 2 , 3 } 
Interpolate cosmology test set #2 Testing on reserved cosmology, unseen during 

training process 
Simulation #815 z ∈ 

{ 0 , 0 . 5 , 1 , 2 , 3 } 
Interpolate redshift test set Testing interpolation between redshifts Simulation #663 z ∈ { 0 . 25 , 0 . 75 } 
Randomly split test set Testing within the domain of the training data 

using randomly chosen slices at each z 
Randomly selected from all simulations 
(excluding #1586 and #815) 

z ∈ 

{ 0 , 0 . 5 , 1 , 2 , 3 } 
Validation set Validating the model using 10 per cent of the 

remaining slices not used for testing 
All simulations (excluding #1586 and 
#815) 

z ∈ 

{ 0 , 0 . 5 , 1 , 2 , 3 } 
Training set Training the mode with 90 per cent of the 

remaining slices not used for testing 
All simulations (excluding #1586 and 
#815) 

z ∈ 

{ 0 , 0 . 5 , 1 , 2 , 3 } 
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s physically consistent with the target domain. A full schematic 
f the PSI-GAN framework can be found in Fig. 1 . In this figure,
e demonstrate how an emulation can be generated by feeding a 

ognormal density field, along with its associated cosmology and 
edshift, into the generator. This framework is trained via a loss
unction which depends on the output of our physics-informed critic, 
hich takes as inputs either an emulated or N -body map, its asso-

iated power spectrum, its associated cosmology and redshift, and 
nally the power spectrum of the corresponding lognormal density 
eld. 
Details regarding the computation blocks used to construct PSI- 

AN along with the construction of the generator itself can be found
n Appendix A , while the construction of the critic is shown in
ig. 2 . The critic consists of two paths, a convolutional path and a
ower spectrum path (shown in orange and blue, respectively). The 
onvolutional path takes an input image (with cosmology and redshift 
mbeddings) and processes it using a pre-trained ResNet-50 model 
He et al. 2016 ) to obtain a feature representation of the input. 1 The
ower spectrum path takes the power spectrum of the input image and
ompares this to the power spectrum of the corresponding lognormal 
ap via an elementwise subtraction. Both the feature representation 

nd the power spectrum comparison are concatenated and then fed 
nto a linear classifier, along with another set of cosmology and 
edshift embeddings. 

GANs for image synthesis often use a purely feature-based 
etwork for the critic, ho we ver using a fully-convolutional critic 
esulted in the generator altering the power spectrum of its input when
ttempting to generate a more realistic output. The power spectrum 

ath was then added to the critic in order to guide the generator
owards not altering the power spectrum. As a lognormal input to 
he generator has a matching power spectrum to its corresponding 

-body slice, any deviation away from this would be indicative of
 generated map. The power spectrum path is constructed such that 
t calculates an elementwise difference between the lognormal and 
mulated power spectra. This is then fed into the classification head 
o aid the critic in differentiating emulated images as any significant 
eviation from the lognormal power spectrum can be used to easily 
dentify an emulation, thus aiding the critic in achieving its goal. 
his in turn forces the generator to learn how to maintain the power
pectrum of its input so that it can successfully ‘fool’ the critic. This
 A pretrained ConvNeXt-T (Liu et al. 2022 ) model was also investigated as 
n option; ho we ver, this resulted in an increase in training time by a factor of 
2. The initial results also indicated poor performance due to the ConvNeXt- 
 model immediately down-sampling the input by a factor of 4, thus placing a 

imit on how well small-scale features can be backpropagated to the generator. 

t  

2

i
m
c

nformation is also able to be backpropagated through the critic and
enerator networks to ensure that the generator is trained to capture
eatures at all scales. 

This approach was fa v oured o v er the more traditional method of
dding a power spectrum term directly to the loss function as the
oss function was found to be extremely sensitive to the weighting
f this additional term, often resulting in non-convergent training. 
etermining the optimal value of this weighting would require a 
rute-force hyperparameter search, which would be less efficient 
han our method of introducing a power spectrum path to the critic
nd allowing the network to learn the optimal balance between 
he power spectrum path and the convolutional path. The addition 
f the power spectrum path introduces 256 × 256 = 65 536 extra
arameters to the network, which is computational insignificant in 
omparison to both the size of the whole PSI-GAN network, as
ell as the alternative of adding a power spectrum term to the loss

unction and running a hyperparameter search in order to optimize its
eighting. 
Both the generator and the critic are trained in tandem in order

o minimize the loss function L train , which we choose to be the
tandard WGAN-GP formulation with an additional term equating 
o the l 2 norm between out generated map and the target N -body
lice: 

 train = L G + L NB + L GP + L pixel , (6) 

here each component of the training loss is given by 

 G = E G ( δLN ) [ C( G ( δLN ))] , (7) 

 NB = −E δNB [ C( δNB )] , (8) 

 GP = λgp E ˆ δ

[ (||∇ ˆ δC( ̂ δ) || 2 − 1 
)2 
] 
, (9) 

 pixel = λpixel || G ( δLN ) − δNB || 2 2 , (10) 

here G and C are the generator and critic networks, respectively,
LN and δNB are lognormal and N -body simulation slices, ̂  δ represents 
 linear combination of G ( δLN ) and δNB , 2 E represents the expectation
 v er a sample, || · || 2 represents the l 2 norm, and λgp and λpixel are
yperparameters used to control the amount of regularization from 

he gradient penalty and l 2 norm between the generated output and
MNRAS 536, 3138–3157 (2025) 

 Specifically, ˆ δ = αδNB + (1 − α) G ( δLN ) with α ∼ U (0 , 1), where U (0 , 1) 
ndicates the uniform distribution between 0 and 1. This linear combination 

eans that we constrain the gradient norm to be 1 only along lines that 
onnect real and f ak e data (Gulrajani et al. 2017 ). 
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Figure 1. A schematic showing the full construction of the PSI-GAN framework. Data that are part of the initial data set are coloured in blue, while data that 
are calculated by the PSI-GAN framework are coloured in red. All computational steps are coloured in purple. Note that the critic takes in either an emulated 
map or an N -body map as an input (along with their associated power spectrum), which is indicated by dashed lines. The internal structure of the critic is also 
shown, and can be seen in more detail in Fig. 2 . 
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he target. We set λgp = 10 and λpixel = 100; ho we v er, we leav e the
ptimization of these hyperparameters to future work. 
The addition of L pixel to what is otherwise the standard WGAN-

P loss function was moti v ated by Piras et al. ( 2023 ), who found
his term to aid in generating emulations with accurate statistics
ut inef fecti ve in producing structure correlated with target N -body
imulations. 

.3 Training 

e train using the Adam optimizer (Kingma & Ba 2014 ) with a base
earning rate α = 10 −4 , and decay parameters ( β1 , β2 ) = (0 . 5 , 0 . 9).
ollowing Heusel et al. ( 2017 ), we increase the learning rate for the
ritic by a factor of f = 3 while using the base rate for the generator.
e allow the model to train for an initial period of three epochs,

fter which we half the learning rate after every epoch where the
alidation loss increases. We also employ gradient clipping to clamp
he magnitude of the gradients to a maximum value of 1 000. The
radient penalty term in the loss function should act to keep gradients
lose to unity; ho we ver, there is a warm up period until it is able to
ave its intended effect. Clipping the gradients was found to be useful
n a v oiding o v erflo w errors before the gradient penalty took ef fect. 

We train using a batch size of 6, and use randomized data
ugmentation techniques when compiling a batch. The same data
ugmentations were applied both δLN and δNB and consist of 

(i) horizontal and vertical flips, 
(ii) horizontal and vertical translations of x, y ∈ [0 , 512) pixels, 
NRAS 536, 3138–3157 (2025) 
(iii) rotations of θ ∈ { 0 , π/ 2 , π, 3 π/ 2 } . 
We use 32-bit floating point precision for numerical stability.
 single epoch of training and validation takes ∼15 hours on a

ingle NVIDIA A100 Tensor Core GPU, and we train for 10 epochs.
raining time is significantly inflated as the critic requires the power
pectrum to be calculated for each generated sample in the data set.
o we ver, we accelerate this computation by using a parallelized GPU

mplementation. We also pre-compute power spectra for all δLN and
NB in our data set so that they do not need to be calculated during
raining. Once trained, the generator can process 512 lognormal slices
n ∼2 min on similar hardware. 

.4 Validation and testing 

e validate and test our model using a range of summary statistics
hat will be described in this section. We save the model after
ach training epoch, and select the best model using a weighted
um of the absolute percentage error across the summary statistics
excluding the bispectrum and reduced matter bispectrum, due to the
omplexity of their calculation). We weight the summary statistics
uch that the power spectrum has a weighting seven times that of the
ther statistics in order to bias our model selection towards a model
hat reproduces an accurate power spectrum. We also add redshift-
ependent weighting to the validation loss, with redshift z = 0
 xamples being giv en double the weighting of all other redshifts.
his is to bias model selection towards a model that performs well
t low redshifts. To test the model, we quantitatively compare these
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Figure 2. A schematic showing the construction of our critic. The power spectrum path, convolutional path, and classification head are outlined and labelled 
in blue, orange, and green, respectiv ely. We also pro vide information, in parentheses, regarding the dimensions for both the inputs (blue) and outputs (red) in 
roman font, and the hyperparameters of each layer in italics. Dimensions are quoted in the ‘batch, channels, ∗’ convention, where ∗ represents any number of 
latent dimensions and B is used as a placeholder for the batch dimension of all inputs and outputs. All convolutional layers use circular padding in order to 
maintain the height and width of the input, and GELU represents the Gaussian Error Linear Unit (Hendrycks & Gimpel 2016 ). The conditioning block is used 
to inform the network of the cosmology and redshift of the emulation, and is defined in Appendix A . 
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ummary statistics for the lognormal slices, generated slices, and 
-body slices in each of the test sets described in Table 2 . 

.4.1 Pixel counts histogram 

e bin the pixel values of the lognormal, generated, and N -body 
lices into a histogram of 64 equally sized bins. The ranges that
hese bins span differ depending on redshift, and were qualita- 
ively chosen in order to ensure that all bins have a count of
t least 10 pixels in order to a v oid divide-by-zero errors when
omputing relative differences. It can be seen in Section 4 that
he lognormal approximation differs significantly from the target 

-body distribution, while our model aims to impro v e o v er the
ognormal. 

.4.2 Peak counts histogram 

e use peak counts to assess whether the model has learned the
on-Gaussian features of the N -body field. A peak is defined as a
ixel with a higher value than all of its eight surrounding pixels.
MNRAS 536, 3138–3157 (2025) 
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e bin peak count values into a histogram of 64 equally sized bins
n order to compare non-Gaussian information between different

odels. Similarly to the pixel counts histogram, the ranges of these
ins differ by redshift and were chosen in order to a v oid divide-by-
ero errors when calculating errors. Peak count statistics have been
hown to carry significant cosmological information, especially in
osmic shear studies (Pires, Leonard & Starck 2012 ; Lin & Kilbinger
015a , b ; Kacprzak et al. 2016 ; Lin, Kilbinger & Pires 2016 ; Martinet
t al. 2018 ; Shan et al. 2018 ; Harnois-D ́eraps et al. 2021 ; Z ̈urcher
t al. 2022 ; Harnois-Deraps et al. 2024 ). 

.4.3 Phase difference distribution 

he phases of Fourier modes are an important measure of non-
inearity in the cosmic web. While a Gaussian field exhibits ran-
omized phases, non-linear structure growth introduces correlations
nto the phases. While the power spectrum relies only on Fourier
mplitudes, it has been shown that the phases carry substantial
nformation regarding the structure of the matter o v erdensity field
Coles 2008 ) thus making phase statistics extremely important in
nalysing the cosmic web. 

Man y methods e xist to quantify phase statistics, including calcu-
ating the entropy of Fourier phases and measuring the distribution
f phases (see e.g. Chiang & Coles 2000 ; Coles & Chiang 2000 ;
atsubara 2003 ; Watts et al. 2003 ; Matsubara 2007 ). We focus

n the probability distribution of phase differences as described by
atts et al. ( 2003 ), in which the authors define a quantity D k given

y 

 k = � k+ 1 − � k , (11) 

hich measures the difference in the phases of adjacent Fourier
odes (in a single dimension) k and k + 1. This can be extended to
 two-dimensional field by calculating a set of D k in two orthogonal
irections. Watts et al. ( 2003 ) find that the distribution of these phase
ifferences P ( D) can be described by a von Mises distribution: 

 ( D) = 

1 

2 πI 0 ( κ) 
e −κcos ( D−μ) , (12) 

here μ is the mean angle which varies from sample to sample, κ
s a parameter that describes the level of non-linearity, and I 0 is a
odified Bessel function of order zero. 
In order to measure P ( D) for a dark matter o v erdensity map, we

in the phase differences into histograms of 64 equally spaced bins
hich we use to assess whether the model has correctly learned
on-linear growth through phase statistics. 

.4.4 Power spectrum 

lthough the lognormal input to the model and the target N -body
imulation have the same power spectrum, we cannot ensure that our
odel does not significantly alter it. In order to assess whether the

ower spectrum has been significantly changed, we use the estimator 

ˆ 
 ( k ) = 

1 

N modes ( k ) 

∑ 

| k |= k 

| δ( k ) | 2 , (13) 

here δ( k ) is the Fourier transform of the matter o v erdensity δ( x ),
he summation is performed o v er all k vectors with a magnitude of
, and N modes ( k) is the number of modes in each k bin. 
NRAS 536, 3138–3157 (2025) 
.4.5 Bispectrum 

ince the power spectrum is unable to capture any informa-
ion regarding Fourier phases, we can use the matter bispectrum
( k 1 , k 2 , k 3 ) to quantify non-linear structure. The bispectrum can be

een as a three-point counterpart to the power spectrum (Sefusatti
t al. 2006 ). The bispectrum for a two-dimensional field is defined
y the relation: 

 δ( k 1 ) δ( k 2 ) δ( k 3 ) 〉 = (2 π) 2 δD ( k 1 + k 2 + k 3 ) B( k 1 , k 2 , k 3 ) , (14) 

here k i = | k i | , all k i vectors are in the plane of the two-dimensional
lice, δD ( ·) indicates the Dirac delta function, and 〈·〉 represents an
xpectation value over all Fourier space. 

We also assess the reduced matter bispectrum Q ( k 1 , k 2 , k 3 ) (see
.g. Scoccimarro 2000 ): 

 ( k 1 , k 2 , k 3 ) = 

B( k 1 , k 2 , k 3 ) 

P ( k 1 ) P ( k 2 ) + P ( k 1 ) P ( k 3 ) + P ( k 2 ) P ( k 3 ) 
. (15) 

We measure the bispectra and reduced matter bispectra based on
n estimator of the binned bispectrum (Coulton & Spergel 2019 ;
oulton et al. 2019 ). Bispectra can be measured along different

riangle configurations, and it is important to consider many config-
rations when using the bispectrum as a statistical tool in order to
reak degeneracies when inferring cosmological parameters (Berge,
mara & Refregier 2010 ). Therefore, we measure the bispectra

nd reduced bispectra using multiple configurations of ( k 1 , k 2 ) ∈
 0 . 05 , 0 . 2 , 0 . 4 , 0 . 6 } h Mpc −1 , which span both regular configurations
nd squeezed bispectra configurations. In Section 4 , we report PSI-
AN ’s performance for only two of these configurations: ( k 1 , k 2 ) =

0 . 4 , 0 . 4) h Mpc −1 and ( k 1 , k 2 ) = (0 . 4 , 0 . 6) h Mpc −1 ; ho we ver, our
ull set of tests show that PSI-GAN ’s performance is similar o v er all
onfigurations tested. 

 RESULTS  

isual inspection shows that PSI-GAN is able to accurately reproduce
he structure of the cosmic web across all redshift bins. Fig. 3 shows
 set of examples for simulation #663, our ‘fiducial’ cosmology. 

In addition, Fig. 4 shows example maps at redshift z = 0 for
ur ‘fiducial’ cosmology, as well as extreme values of the �m 

, σ8 

ubspace. Table 3 shows the values for the chosen cosmologies. 
Although PSI-GAN was trained with the goal of reproducing

ccurate statistics, we also see some correlations in structure between
SI-GAN emulations and N -body simulations. This emerges as

he GAN framework aims to reproduce maps matching N -body
imulations starting from correlated lognormal maps. Ho we ver, for
he applications we are interested in, we mainly care about summary
tatistics, and therefore choose to assess the model’s performance by
ow well it is able to reproduce those, as opposed to assessing any
pparent structure correlation. 

.1 Randomized test set 

ig. 5 shows the results of all eight test metrics for our randomized
est set for redshift z = 0. On the top panel for each metric, we show
he mean value av eraged o v er 64 examples of the N -body simulation,
he PSI-GAN emulation, and the lognormal approximation. On the
ottom panel, we show the relative difference with respect to the
-body simulation for each model. We include uncertainties only on

he bottom panel for the sake of visual clarity. 
In addition, in Fig. 6 , we show the relative differences averaged

 v er 64 examples for each model, for all redshifts when compared
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Figure 3. A set of examples for our ‘fiducial’ cosmology, showing lognormal random fields (left), PSI-GAN generated emulations (centre), and N -body 
simulations (right) for all redshift bins. 
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Figure 4. A set of examples for our ‘fiducial’ cosmology and extreme values of the �m 

, σ8 subspace (as defined in Table 3 ), showing lognormal random fields 
(left), PSI-GAN generated emulations (centre), and N -body simulations (right) for redshift z = 0. 
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o N -body simulations. We also display the relative differences for
he lognormal approximation for comparison. We show all redshift
napshots on the top two panels; ho we ver, we only show redshift
 = 0 on the remaining panels for visual clarity. 
NRAS 536, 3138–3157 (2025) 
PSI-GAN shows an impro v ement o v er the lognormal approxima-
ion with the sole exception of the power spectrum. The lognormal
pproximation was designed to have an identical power spectrum
o the N -body simulation, so this was an expected result. Ho we ver,
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Table 3. The cosmologies used to demonstrate PSI-GAN ’s emulations in 
Fig. 4 . 

Cosmology �m 

�b h n s σ8 

‘Fiducial’ 0.3223 0.04630 0.7015 0.9607 0.8311 
Low �m 

, low σ8 0.1663 0.04783 0.6173 1.1467 0.6461 
Low �m 

, high σ8 0.1289 0.06325 0.7293 1.1537 0.9489 
High �m 

, low σ8 0.4599 0.04055 0.7287 0.8505 0.7011 
High �m 

, high σ8 0.4423 0.03533 0.8267 1.0009 0.9151 
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e can say that the power spectrum path in the critic of PSI-GAN
as ef fecti ve in constraining the po wer spectrum so that it was not

ltered by more than ∼5 per cent. Initial trials of an GAN using a
ully convolutional critic (i.e. without the power spectrum path) saw 

ifferences in the power spectrum between the emulation and the 
-body simulation of ∼20 per cent. Thus, we can be confident that

ur critic architecture is ef fecti ve in maintaining the power when
ransforming a lognormal random field. 

We see agreement to within ∼5 per cent for all metrics, with the
xception of the pixel counts at low values of ln (1 + δ). This is
ue to the baseline count for the N -body simulation being very low
 ∼10 2 ), and thus making the relati ve dif ferences sensiti ve to small
hanges in pixel counts. We also believe that this issue is partially
aused by the model’s architecture more easily modelling higher 
alues of ln (1 + δ) due to the use of the GELU acti v ation function
Hendrycks & Gimpel 2016 ), which is more e xpressiv e at positive
alues. 

.2 Redshift interpolation 

ig. 7 displays similar results to Fig. 5 , but for our redshift
nterpolation test at z = 0 . 25. On the bottom panel, we show the
elati ve dif ference with respect to a v alue interpolated between the
wo adjacent redshift snapshots ( z = 0 and z = 0 . 5) as we have no

-body snapshot to act as the ground truth. 
It can be seen that PSI-GAN impro v es on the lognormal approxi-
ation across all metrics. Although not much can be quantitatively 

aid about the performance of PSI-GAN with respect to the N -body 
napshots, we can qualitatively say that the results lie reasonably 
etween the upper and lower bounds set by the adjacent redshift
napshots (as shown in Fig. 7 ), and within ∼5 per cent of an
nterpolated baseline. We can also see that PSI-GAN ’s metrics 
ntercept the N -body snapshots exactly at cross-over points for the 
ixel counts, peak counts, and phase difference distributions. We 
an also see that the power spectrum does not vary by more than
 per cent from the lognormal approximation at redshift z = 0 . 25,
gain showing the effectiveness of the power spectrum path in PSI- 
AN ’s critic. 
Our second redshift interpolation test at redshift z = 0 . 75 showed

imilar results to the test at z = 0 . 25, but are not shown here for
revity. All metrics showed agreement with N -body simulations 
o within ∼5 per cent, with the power spectrum showing closer 
greement to ∼3 per cent. The only case of the agreement differing
y more than this when the pixel and peak counts histograms were
t a very low baseline value ( ∼10 2 ), where we saw discrepancies of
15 per cent. 

.3 Cosmology interpolation 

ig. 8 displays similar results to Fig. 5 , but for our cos-
ology interpolation test for simulation #1586 at redshift 
 = 0. 
Fig. 9 displays the relative differences for all redshifts tested 
similar to Fig. 6 ). Our second cosmology interpolation test for
osmology #815 showed similar results to those shown for simulation 
1586. 
PSI-GAN shows an impro v ement o v er the lognormal approxima-

ion, again with the sole exception of the power spectrum which was
onstrained so that it was not altered by more than ∼5 per cent. We
o see greater discrepancies in the power spectrum compared to the
revious tests. We believe that this discrepancy can be explained by
he node co v erage o v er cosmology-space when compared to redshift-
pace. 

Redshift is a one-dimensional space which we co v er with fiv e
odes at snapshots of z ∈ { 0 , 0 . 5 , 1 , 2 , 3 } . Ho we ver, cosmology is
 five-dimensional space (i.e. we condition on five cosmological 
arameters) which we co v er with 2 000 nodes. In order to co v er
osmology-space with the same density as we co v er redshift-space,
e would require 5 5 = 3 125 nodes in cosmology space. We are

ignificantly short of this number, requiring 56.25 per cent more 
imulations than are part of the Latin hypercube suite. 

.4 Model analysis through saliency mapping 

aliency mapping is a field of techniques used to produce visual
xplanations of the behaviour of computer vision models (Smilkov 
t al. 2017 ). These explanations take the form of heatmaps which
im to highlight which areas are most important for the model to
each a specific output. These scores are often computed by taking
radients of the output in question with regards to the input image
see e.g. Adebayo et al. 2018 ; Hooker et al. 2019 , for an o v erview of
arious methods used in computer vision). 

Saliency mapping has been explored in astrophysics through a 
ariety of applications such as measuring galaxy bar lengths from 

orphology classification models (Bhambra, Joachimi & Lahav 
022 ), and qualitativ ely inv estigating model behaviour for both
GN classification models (Peruzzi et al. 2021 ) and cosmological 
arameter estimation models (Kacprzak & Fluri 2022 ). 
In order to investigate potential model impro v ements, we perform

aliency mapping on the output of the critic with respect to a PSI-
AN emulation with the hope of disco v ering an y features that may
e tell-tale signs of a certain map being an emulation. We use
MOO THGRAD-SQU ARED (Hooker et al. 2019 ) to visualize which
reas of an emulation are used by the critic to identify it as an
mulation as opposed to an N -body simulation. 

SMOO THGRAD-SQU ARED extends vanilla saliency (Simonyan, 
edaldi & Zisserman 2013 ), in which the saliency map L 

c is created
y simply taking the gradient of the output with regards to each input
ix el. Vanilla salienc y has been shown to be unstable (Adebayo et al.
018 ) due to gradients exhibiting large fluctuations with respect to
ixel values, which creates excess noise in the resultant saliency 
aps. SMOO THGRAD-SQU ARED aims to impro v e this limitation by

reating N sg visually similar samples of each image by adding a small
mount of Gaussian noise to the original to create each sample,
alculating a saliency map for each sample, and then aggregating 
hese to produce a final saliency map: 

ˆ 
 

c ( x) = 

1 

N sg 

N sg ∑ 

i= 1 

L 

c [ x + N (0 , σ 2 )] 2 , (16) 

here N (0 , σ 2 ) is the probability density function for a Gaussian
istribution with a mean of 0 and a standard deviation of σ 2 . Here, we
dopt the notation used by Hooker et al. ( 2019 ) in which L 

c is a vanilla
aliency map, and ˆ L 

c is the SMOO THGRAD-SQU ARED saliency map 
MNRAS 536, 3138–3157 (2025) 
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Figure 5. A comparison of the statistical tests as described in Section 3.4 for the lognormal approximation (cyan), N -body simulation (grey), and PSI-GAN 

emulation (red) on the randomized test set. The metrics displayed are as follows (from top to bottom, and left to right): pixel counts, peak counts, phase 
dif ference distribution, po wer spectrum, bispectrum with ( k 1 , k 2 ) = (0 . 4 , 0 . 6) h Mpc −1 , reduced bispectrum with ( k 1 , k 2 ) = (0 . 4 , 0 . 6) h Mpc −1 , bispectrum 

with ( k 1 , k 2 ) = (0 . 4 , 0 . 4) h Mpc −1 , and reduced bispectrum with ( k 1 , k 2 ) = (0 . 4 , 0 . 4) h Mpc −1 . The relative performance with respect to the N -body simulation 
can be seen in the bottom panel for each test, along with the respective uncertainties. We show that PSI-GAN outperforms the lognormal approximation across 
all tests with the exception of the power spectrum, in which we see small discrepancies within 5 per cent. 
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Figure 6. A comparison of the relati ve dif ferences in the statistical tests as described in Section 3.4 for the lognormal approximation (grey dashed line with 
looser dash spacing indicating a lower redshift snapshot), N -body simulation (black line), and PSI-GAN emulation (lines coloured with respect to the redshift 
colour at the top of the figure) on the randomized test set. The metrics shown are the same as in Fig. 5 . We show that PSI-GAN outperforms the lognormal 
approximation across all tests with the exception of the power spectrum, in which we see small discrepancies within 5 per cent. Uncertainties are similar to those 
shown in Fig. 5 , but are omitted here for visual clarity. 
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hat results from the squaring and aggregation of the saliency maps for
ach sample x + N (0 , σ 2 ). Throughout this section, we use values
f N sg = 256 and σ = 0 . 2 to control the number of samples, and
he Gaussian noise used in the SMOO THGRAD-SQU ARED algorithm, 
espectively. 

Fig. 10 shows an example at z = 0 of an N -body simulation,
 corresponding emulation produced by PSI-GAN , as well as the 
MOO THGRAD-SQU ARED saliency map, and a difference map. 
We e xamined man y such e xamples in order to visually identify

ny salient features that are highlighted in the saliency maps. 
o we ver, we were unable to find any visual correlation between

he saliency map and the other visualized maps. We assumed that 
his must be because the critic uses extremely small-scale features, 
r long-range correlations (which the human eye is poor at iden-
ifying) in order to differentiate PSI-GAN emulations and N -body 
imulations. 

We also measure the power spectra of the saliency maps in
rder to investigate which scales are the limiting factor in PSI-
AN ’s emulations. Fig. 11 sho ws the po wer spectra for each redshift
in averaged over 64 example maps and normalized such that the
aximum value for each redshift is equal to 1. 
Taking the power spectra of the saliency maps shows us that PSI-

AN performs well o v er all scales. The power spectra show that
ong-range correlations are slightly more present in the saliency 
aps when compared to small-scale features. This indicates that 

SI-GAN struggles to capture large scales in comparison to small 
MNRAS 536, 3138–3157 (2025) 



3150 P. Bhambra et al. 

M

Figure 7. Similar to Fig. 5 , but for the test set for interpolating redshift at z = 0 . 25. As we have no N -body snapshot to act as the ground truth, relative 
differences are displayed with respect to a value interpolated between the two adjacent redshift snapshots. The dashed grey lines show the measured values for 
these snapshots. Also, please note that the grey dashed lines line outside of the range of the y -axis for the relative differences plot of the power spectrum. 
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cales, and that long-range correlations are the limiting factor in our
rchitecture’s ability to accurately emulate the cosmic web. 

We also see peaks at ∼0 . 2 h Mpc −1 corresponding to a value
f 2.5 times the pixel width. This indicates that PSI-GAN exhibits
mall amounts of artefacting at small-scales. Although we do not
NRAS 536, 3138–3157 (2025) 
ave the computational resources to fully diagnose the cause of this,
e believe that it is likely due to the interaction between the scale

actor of 2 up-sampling and down-sampling used in the architecture,
nd the 9 × 9 convolutional filter used in the ConvNeXt blocks (see
ppendix A for further details). The convolutional filter propagates
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Figure 8. Similar to Fig. 5 , but for the test set for interpolating cosmology on simulation #1586 at redshift z = 0. 
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nformation from 4.5 pixels away from the centre point of the central
ixel, leading to the half-integer pixel width artefacting. 
For redshifts z = 2 and z = 3, we also see a sharp peak at
0 . 8 h Mpc −1 . Ho we ver, as this is on the subpixel scale we have

o control o v er it, and we believe that its presence is due to the
nterpolation algorithm used by NBODYKIT when measuring the 
ower spectrum. 
 C O N C L U S I O N S  

n this paper, we used the Quijote simulations to train a machine
earning model ( PSI-GAN ) capable of transforming two-dimensional 
at-sky lognormal random fields of the dark matter o v erdensity
eld into more realistic samples across a continuous redshift and 
osmology space. PSI-GAN takes the form of a generative adversarial 
MNRAS 536, 3138–3157 (2025) 
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Figure 9. Similar to Fig. 6 , but for the test set for interpolating cosmology on simulation #1586. 
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etwork, with a U-Net generator and a no v el critic which uses
he power spectrum of the generated samples as a means for
iscrimination. 
We hav e e xtensiv ely tested PSI-GAN in a broad series of tests

o v ering: the model’s training domain across all redshift ranges,
he model’s ability to interpolate between the given redshift bins,
nd the model’s ability to interpolate between cosmologies at all
edshifts. We observe that PSI-GAN has a closer agreement with N -
ody simulations when compared to the lognormal approximation
cross statistical tests that probe non-Gaussian features (such as
eak counts, phase statistics, and bispectra). PSI-GAN is able to
eproduce the bispectra and peak count distributions of N -body
imulations to ∼5 per cent, while the lognormal approximation
isplays a discrepancy of ∼25 per cent. Due to our no v el critic
rchitecture, PSI-GAN is also able to match the power spectrum of the
arget N -body simulation, with relative differences of ∼5 per cent. 
NRAS 536, 3138–3157 (2025) 
The largest shortcoming of PSI-GAN is its slightly weaker per-
ormance in constraining the power spectrum when tasked with
nterpolating between cosmologies. In our tests, the power spectrum
f samples generated by PSI-GAN showed less agreement with
-body simulations when interpolating between the cosmologies

sed in the Quijote simulations. An approximately ∼50 per cent
reater co v erage of cosmology space should be enough to reduce
his shortcoming; ho we ver, this would require significant resources
o generate. Another potential method of improving this would
e to pre-train the model architecture to be able to reconstruct
ognormal random fields across an e xtensiv e data set before fine-
uning the model to transform lognormal random field to more
ccurate emulations. 

We used saliency mapping techniques to investigate further ar-
hitectural impro v ements to PSI-GAN , which highlighted a slight
eakness in capturing long-range correlations as well as a small issue
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Figure 10. An example showing the dark matter distribution field from an N -body simulation (left) and an emulation generated by PSI-GAN (centre left). 
We use SMOO THGRAD-SQU ARED to produce a saliency map (centre right) visualizing which parts of the emulation were most important for the critic when 
determining whether the emulation was real or fake. We also visualize the difference map (right), showing the differences between the N -body simulation and 
the PSI-GAN emulation. 

Figure 11. The normalized power spectra of SMOO THGRAD-SQU ARED 

saliency maps e v aluated on 64 examples for each redshift snapshot for our 
‘fiducial’ cosmology. Vertical, dashed-grey lines indicate wavenumbers of 
integer multiples of the pixel width. 
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ith pixel-scale artefacting. Increasing the depth of the generator by 
nother step (i.e. including an extra set of down-sample and up- 
ample blocks) should help PSI-GAN model long-range correlations 
etter as the latent space will be more compressed and information 
ill propagate more efficiently across the simulation box. Adding 

dditional ConvNeXt blocks after the first convolution, and before 
he last convolution should aid in modelling small scales and reduce 
rtefacting, as well as reduce the asymmetry between modelling 
e gativ e and positive values of the matter density field as discussed
n Section 4.1 . 

Another architectural change that could impro v e performance is 
o replace the pre-trained ResNet-50 model in the critic with a more
owerful option, such as the EfficientNet (Tan & Le 2019 ) or RegNet
Radosa v ovic et al. 2020 ) architectures. Ho we ver, all of these archi-
ectural changes will lead to a significant increase in training time 
hich would require state-of-the-art hardware (although inference 
ime should remain unchanged). 

To meet our long-term goal of building a full-sky emulator to
ntegrate into GLASS , we will have to extend our work to the sphere.
he Gower Street simulation suite (currently consisting of 791 full- 
ky N -body simulations with varying cosmology; Jeffrey et al. 2024 )
rovides us with a data set for training; ho we ver, it is not as e xtensiv e
s the Quijote simulation suite used in this paper. Nevertheless, we
ee two potential avenues for future work on this problem: graph
eural networks (see e.g. Lam et al. 2022 , for an example pertaining
o meteorology), and rotationally equi v ariant convolutions on the 
phere (see e.g. Ocampo, Price & McEwen 2022 ; Boruah et al.
024 ). 

A R B O N  INTENSITY  STATEMENT  

ll work that went into this paper was tracked via ‘Weights and
iases’, 3 which allows us calculate that we used a total of ∼2 000
PU hours throughout this work. The majority of this was on
VIDIA A100 Tensor Core GPUs, which had a time-averaged 
ower consumption rate of ∼0 . 19 kW (0 . 2 kW during training and
 . 1 kW during validation and testing), thus resulting in a total power
onsumption of ∼380 kW h . 

Using the average carbon intensity of the UK power grid in 2024
measured at ∼120 gCO 2 eq kW 

−1 h −1 ; National Grid ESO 2024 ), we 
stimate that we have emitted a total of ∼45 . 6 kgCO 2 eq as the result
f this work, roughly equi v alent to that of a driving from London to
dinburgh and back ( ∼1 300 km ) in a plug-in hybrid car. 
We have removed the carbon emissions emitted due to this project

rom the atmosphere via the funding of carbon capture schemes 
hrough the Wren Trailblazer Portfolio. 4 
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PPEN D IX  A :  M O D E L  A R C H I T E C T U R E  

ur generator consists of a ConvNeXt-inspired, conditional U- 
et (Ronneberger et al. 2015 ), constructed from the four types 
f computational blocks shown in Fig. A1 . Our ConvNeXt block 
Liu et al. 2022 ) consists of a depthwise separable 9 × 9 convo-
ution followed by two 1 × 1 convolutions, as well as a residual
onnection. This architecture aims to efficiently process the input 
nd share information across long ranges and is used as the main
rocessing block for the generator. The conditioning block is used 
o inject information regarding the redshift and cosmology into 
he network. This is done by simply taking the 6 conditioning 
abels ( z, �m 

, �b , h, n s , σ8 ) and embedding them through a two-
ayered multi-level perceptron. We then expand the dimensions of the 
mbeddings to match that of the input, before finally concatenating 
his with the input. The conditioning block has hyperparameters 
ontrolling the number of hidden and output nodes in the embedding 
etwork, which can be used to compress or expand the dimensions of
he embedded labels. Following the ConvNeXt architecture, we have 
eparated down-sampling and up-sampling operations away from 

he main computational block. The down-sample block consists of 
own-sampling the input using a 2 × 2 convolution with a stride of
, and then processing the result with three sequential ConvNeXt 
locks. The up-sample block tak es tw o inputs, one from the previous
tep in the generator and another from a skip connection. The first
nput is up-sampled via bicubic interpolation with a scale-factor of 
 to match the dimensions of the skip connection. These are then
oncatenated before being processed through a 3 × 3 convolution, 
ollowed by three ConvNeXt blocks. Both the down-sample and 
p-sample blocks have a single parameter that controls the number 
f filters used in the initial convolution in each block. This is used
o control the number of channels in the block’s output. Gaussian
rror linear units (GELU; Hendrycks & Gimpel 2016 ) are used as
cti v ation functions throughout the construction of the network, and
ayer normalization (LayerNorm; Lei Ba, Kiros & Hinton 2016 ) is
sed for normalisation. 
The construction of the generator can be found in Fig. A2 . The

enerator consists of an initial 3 × 3 convolution followed by three
own-sample blocks. We then introduce a bottleneck consisting of 
hree ConvNeXt blocks, before using three up-sample blocks to 
eturn the input to its original resolution. We use a final 1 × 1 convo-
ution to reduce the number channels back to 1. We use conditioning
locks to inject information about redshift and cosmology before 
he initial and final convolutions, as well as before and after the
ottleneck. 
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Figure A1. Schematics showing the four building blocks used in the construction of our generator and critic. We also provide information, in parentheses, 
regarding the dimensions for both the inputs (blue) and outputs (red) in roman font, and the hyperparameters of each layer and block in italics. Dimensions are 
quoted in the ‘batch, channels, ∗’ convention, where ∗ represents any number of latent dimensions and (B, C, H, W) is used as a placeholder for the dimensions 
of two-dimensional inputs and outputs (with any lower-dimensional inputs and outputs following a similar convention). All convolutional layers use circular 
padding in order to maintain the height and width of the input. 
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Figure A2. A schematic showing the construction of our conditional U-Net generator. We also provide information, in parentheses, regarding the dimensions 
for both the inputs (blue) and outputs (red) in roman font, and the hyperparameters of each layer in italics. Dimensions are quoted in the ‘batch, channels, 
∗’ convention, where ∗ represents any number of latent dimensions and B is used as a placeholder for the batch dimension of all inputs and outputs. All 
convolutional layers use circular padding in order to maintain the height and width of the input. 
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