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Fig. 1: Brain-ID features serve as the distinctive identity of each subject (ID) regard-
less of appearance (contrast, deformation, corruptions, etc) and quickly adapt to down-
stream tasks – either contrast-independent (anatomy Reconstruction, Segmentation),
or contrast-dependent (Super-Resolution, Bias Field estimation), all through one layer.

Abstract. Recent learning-based approaches have made astonishing ad-
vances in calibrated medical imaging like computerized tomography (CT).
Yet, they struggle to generalize in uncalibrated modalities – notably mag-
netic resonance (MR) imaging, where performance is highly sensitive to
the differences in MR contrast, resolution, and orientation. This pre-
vents broad applicability to diverse real-world clinical protocols. We in-
troduce Brain-ID, an anatomical representation learning model for brain
imaging. With the proposed “mild-to-severe” intra-subject generation,
Brain-ID is robust to the subject-specific brain anatomy regardless of
the appearance of acquired images. Trained entirely on synthetic inputs,
Brain-ID readily adapts to various downstream tasks through one layer.
We present new metrics to validate the intra/inter-subject robustness
of Brain-ID features, and evaluate their performance on four down-
stream applications, covering contrast-independent (anatomy reconstruc-
tion, brain segmentation), and contrast-dependent (super-resolution, bias
field estimation) tasks (Fig. 1). Extensive experiments on six public
datasets demonstrate that Brain-ID achieves state-of-the-art performance
in all tasks on different MR contrasts and CT, and more importantly,
preserves its performance on low-resolution and small datasets. Code is
available at https://github.com/peirong26/Brain-ID.

https://orcid.org/0000-0001-7645-009X
https://orcid.org/0000-0003-3186-244X
https://orcid.org/0000-0002-3947-2860
https://orcid.org/0000-0003-2439-350X
https://orcid.org/0000-0001-7569-173X
https://github.com/peirong26/Brain-ID


2 P. Liu et al.

1 Introduction

Magnetic resonance imaging (MRI) enables in vivo noninvasive imaging of the
human brain with exquisite and tunable soft-tissue contrast [8]. Recent machine
learning methods have achieved great improvements in faster and more accurate
MRI analysis [27], such as segmentation [18,32,42,47], registration [3,49,55,64],
super-resolution [52, 53], and connectivity studies [45]. However, most existing
MRI analysis methods are specific to certain MR contrast(s) and require near-
isotropic acquisitions. Therefore, models face sharp performance drops when
voxel size and anisotropy increase, or are being used for a different contrast than
training [57]. This reduces model generalizability and results in duplicate training
efforts. Resorting to synthetic data, recent contrast-agnostic models [4, 25, 27,
28, 36, 39, 40] achieve impressive results and largely extend model applicability.
However, these models are only applicable to the tasks they were trained for.

Meanwhile, task-agnostic foundation models in computer vision and natural
language processing have witnessed remarkable success, along with the fast de-
velopments of large-scale datasets [2,7,10,14,34]. However, due to different acqui-
sition/processing protocols and privacy requirements across institutions, large-
scale medical imaging datasets require significantly more effort than natural
imaging/language. Thus, medical foundation models are not as well developed.
MONAI [11] includes a pre-trained model zoo, yet all are highly task-oriented
and sensitive to contrasts. Zhou et al. [66] constructed a medical foundation
model, designed for eye and systemic health condition detections from retinal
scans, and only works on the modalities of color fundus photography and opti-
cal coherence tomography. Lately, generalist biomedical AI systems [44, 50, 54]
have shown great potential in biomedical tasks under vision-language context,
e.g., (visual) question answering, image classification, radiology report genera-
tion and summarization. However, they have not explored the challenging vision
tasks such as reconstruction, segmentation, super-resolution, and registration.

We introduce Brain-ID, a contrast-agnostic feature representation approach
trained on synthetic inputs, that can adapt to various tasks through one layer.

1) We introduce an on-the-fly, intra-subject data generator capable of sythesiz-
ing any contrast, with a mild-to-severe corruption strategy (Fig. 2, Sec. 3.2).
Unlike real-world datasets constrained by the images acquired per subject,
Brain-ID learns in a much more expansive and diverse space.

2) We design a feature representation learning framework guided by the unique
anatomy of each subject. We validate that Brain-ID’s high-resolution fea-
tures are consistently robust to the superficial perturbations of an image’s
appearance (Sec. 4.2). Straightforward one-layer adaptions are further pre-
sented to adapt Brain-ID features to downstream tasks (Sec. 3.3).

3) We evaluate Brain-ID on both contrast-independent (anatomy reconstruc-
tion, brain segmentation) and contrast-dependent (super-resolution, bias
field estimation) tasks, across six public datasets (≈ 8,000 images) including
MR (T1w, T2w, FLAIR) and CT. Brain-ID achieves state-of-the-art per-
formance on all tasks (Tab. 2), and further maintains its high performance
on low-resolution images (Fig. 6) and limited-size datasets (Fig. 7).
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2 Related work

Feature Representation in Medical Imaging As mentioned in Sec. 1, gen-
eral feature representation learning in medical imaging can be more challenging
than in the natural image domain, due to limited data availability. Xu et al. [62]
introduced a multiple-instance learning model for feature representation, but
it only applies to histopathology image classification. You et al. [65] presented
CVRL, a semi-supervised representations approach designed for image segmen-
tation, but it requires CT to extract anatomical information. SAM [63] encodes
anatomical information in feature embeddings, which has shown to be effective
for registration [38]. However, same as CVRL, SAM only works on CT. Brain-
Print [56] is a compact and discriminative representation of brain morphology,
which is specifically designed for cortical surface analyses. To our best knowl-
edge, CIFL [15] is the only existing work on learning contrast-agnostic and task-
independent brain feature representations. CIFL relies on contrastive learning
alone, and is insufficient to outperform task/contrast-specific supervised models
in downstream applications as shown by our experiments (Tab. 2).

Contrast-invariant Learning for MR Images MRI scans acquired across
sites vary substantially in contrasts, resolutions, orientations, etc. When given
a new dataset, heterogeneity leads to duplicate training efforts for approaches
that are sensitive to specific combinations of MR contrast, resolution, or orienta-
tion. Classical brain segmentation models used Bayesian inference for contrast-
robustness [20,37], which requires a long processing time and struggles with low
or anisotropic resolutions [27, 46]. Recently, there have been works using syn-
thetic data to achieve contrast-invariance in tasks like image segmentation [4,36],
registration [25], super-resolution [28], and skull-stripping [26]. However, all the
above-mentioned methods are trained in a task-specific manner, their features
therefore cannot be readily applied to other domains.

3 Brain-ID: Learning Anatomy-specific Brain Features

As discussed in Sec. 1, the main challenges to obtain a general and robust feature
representation for MR images lie in (i) the practical restrictions of building large-
scale datasets with diverse contrasts; and (ii) the nature of most medical imaging
models that are task-oriented and specific to data type (contrast, resolution,
orientation, etc). We aim to learn a brain feature representation that is:
(i) Robust : features should be robust to each subject’s distinct anatomy, unaf-
fected by variations in poses/deformations, contrasts, resolutions, or artifacts.
(ii) Expressive: features should also exhibit high expressiveness, containing rich
information that facilitates easy and effective adaptation to diverse downstream
tasks, eliminating the necessity for extensive training data.

We first introduce Brain-ID’s data generator (Sec. 3.1) and training frame-
work (Sec. 3.2) to achieve the above two aims. Then, we present our one-layer
solutions for adapting Brain-ID features to downstream tasks that could be
either dependent or independent of the contrast of input images (Sec. 3.3).
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Fig. 2: Brain-ID’s data generator on the fly. Given the brain segmentation labels of
a subject, we randomly generate a deformation field, and synthesize intra-subjecct
samples featuring various contrast intensities and corruption levels (Sec. 3.1).

3.1 Enrich the Intra-subject Learning Space

A good representation relies on large-scale data, however, different acquisition
protocols, processing pipelines, and privacy requirements across institutions make
large-scale data less accessible and require significantly more effort [1, 17, 48].
Moreover, for each subject, there are usually only limited acquired scans avail-
able. This lack of data consistency is a significant barrier to obtaining a ro-
bust, contrast-invariant feature representation. Brain-ID avoids these barriers
through the use of synthetic data.

To generate images with complex brain structures, we start with brain seg-
mentation labels of anatomical structures (L in Fig. 2). The generatation consists
of three steps, (i) deformation generation, (ii) contrast synthesis, and (iii) data
corruption (including lower resolution resampling). For simplicity, Θ denotes the
parameter group of the generation process described below.
Deformation Generation We first generate a random deformation field (ϕ|θϕ)
consisting of an affine transformation and a non-linear displacement field:

ϕ|θϕ = T |θϕ ◦ A|θϕ , (1)

where A|θϕ denotes an affine transformation matrix which includes linear (ro-
tation, scaling, shearing) transformation and translation, T |θϕ refers to a non-
linear displacement field computed as the integration of a stationary velocity
field (SVF) that is smooth and invertible everywhere and thus preserves the
topology of the brain anatomy [28]. θϕ ∈ Θ controls the transformation ranges.
MR Contrast Synthesis Then, we synthesize images (I(x), x ∈ Ω) by ran-
domly “painting” intensities on the segmentation maps according to their brain
structure labels (l ∈ L). Specifically, the regional intensities are generated by
separately sampling a Gaussian distribution on each labeled region:{

I(x) ∼ N (µl, σl) , l ∈ L ,

µl ∼ N (0, 1 | θµ, θl) , σl ∼ N (0, 1 | θσ, θl) ,
(2)

where µl and σl refer to the mean and standard deviation of each segmentation
label l, and are independently sampled from Gaussian distributions at each voxel,
with θl, θµ, θσ ∈ Θ controlling the shifts and scales of their values.
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Alg. 1: Pseudocode for Brain-ID

# F : feature extraction network
# L: linear activation layer
# {Θi}N1 : generation params (contrast, resolution, ...)
1 for (L, T ) in loader: # load 1 subject sample
2 # generate subject-level deformation field
3 ϕ = get_random_deformation() via Eq. (1)
4 # generate N intra-subject samples
5 intra_samples = []
6 for (i, Θi) in enumerate

(
{Θi}N1

)
:

7 Si = random_generate(L |ϕ, Θi)
8 intra_samples.append(Si)
9 # formulate all samples to a mini-batch

10 x = concat(intra_samples)
11 F = F(x) # feature extraction
12 # subject-robustness enforcement via Eq. (3)
13 loss = L(L(F), T )
14 loss.backward()

Fig. 3: Brain-ID’s contrast-agnostic anatomical representation learning framework.

Resolution Simulation and Data Corruption Given a deformed, contrast-
synthesized image (I), we adopt the standard data corruption pipeline [27], which
further augments images with different levels of resolution and scanning artifacts
that are commonly found in real-world clinical protocols.

As illustrated in Fig. 2, we are able to generate an infinite number of vari-
ations from a single subject with its unique brain anatomy. Generating images
with randomized contrast/resolution/orientation on the fly for each subject enor-
mously enriches the learning space for a robust representation, and helps focus
the learning on intrinsic subject-specific features rather than superficial aspects
of images that depend on acquisition parameters and conditions.

3.2 Extract Robust and Expressive Subject-specific Features

As mentioned above, we would like Brain-ID features to be robust to intra-
subject variations and expressive to potential downstream tasks. In this section,
we introduce Brain-ID’s learning framework to achieve the two goals.
Intra-subject Data Generation In order to learn a feature representation
that is distinctive to each subject and robust to varying MR contrasts, we ob-
serve that enriching intra-subject samples leads to better performance (Tab. 3).
Specifically, instead of including multiple subjects for a mini-batch during each
training iteration as in usual practice, Brain-ID focuses on maximizing the intra-
subject variance to improve the subject-robustness of resulting features. As de-
scribed in Alg. 1 (line 4-10), for each training iteration, after randomly select-
ing a subject and generating its deformation, Brain-ID generates a mini-batch
of intra-subject samples ({S1, . . . , SN}) with randomly synthesized contrasts,
resolutions and corruptions (Sec. 3.1). As will be introduced below, Brain-ID
collects losses from all intra-subject samples and conducts back-propagation at
once, to encourage the subject-specific robustness of its learned features.

We set the intra-subject samples within a mini-batch to have random con-
trasts and “mild-to-severe”, increasing level of corruptions (Fig. 3 (left)), to max-
imize the intra-subject variance while ensuring the stability of the training pro-
cess against extreme corruption levels. (In Sec. 4.5, we compare various data
generation designs, and provide insights on preventing unstable training.)
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Anatomy-guided Feature Representation A richer learning space helps im-
prove the representation robustness against the variance of sample appearances,
but not enough for extracting expressive features. For example, a mapping that
projects all inputs to zero is perfectly robust, but does not provide useful infor-
mation for potential downstream tasks. Therefore, proper guidance is crucial for
feature representation as well. In CIFL [15], the authors use a contrastive loss
on feature channels to encourage a more discriminative feature representation.
However, this method is insufficient, given the extremely complex nature of the
human brain anatomy (See comparisons in Sec. 4). Instead, we propose to use
the standard T1w high-resolution structural MR contrast for brain morphome-
try, i.e., MP-RAGE (magnetization-prepared rapid gradient-echo), as the unique
anatomy target to guide Brain-ID’s feature representation learning.

As shown in Fig. 3, a feature extraction backbone (F) first maps the in-
put mini-batch of intra-subject generated samples, {S1, . . . , SN}, to their cor-
responding feature space, {F1, . . . , FN}. A linear activation layer (L) then
projects the features to the current subject’s standard contrast (MP-RAGE)
space, T . The training loss is obtained by summing over the anatomy recon-
struction loss of all intra-subject samples in the current mini-batch:

L =
∑N

i
|L(Fi)− T |+ λ |∇L(Fi)−∇T | , λ ∈ R+ , (3)

where T , as the high-resolution, unique anatomy target for all intra-subject sam-
ples, encourages the similarities of the features extracted from the same subject
via reconstruction (1st term) and gradient difference (2nd term) L1 loss. Brain-ID
uses MP-RAGE as the learning target, which formulates both super-resolution
and contrast-synthesis problems, and encourages a richer feature representation.
(Sec. 4.5 provides further insights on how different choices of anatomy guidance
would affect the resulting features’ properties.)

3.3 Adapting Brain-ID to Downstream Tasks by One Layer

With the intra-subject data generation and anatomy-guided feature learning de-
sign introduced in Sec. 3.2, a well-trained Brain-ID model is able to extract
robust, high-resolution anatomical features from images with varying deforma-
tions, contrasts, resolutions, and artifacts. To minimize the modifications, we
propose straightforward one-layer solutions adapting Brain-ID features to vari-
ous brain imaging applications. We later demonstrate that the simple adaptions
are effective enough for Brain-ID to achieve state-of-the-art performance across
all downstream tasks (Sec. 4.3), even for small datasets (Sec. 4.4).
Contrast-independent Tasks For tasks where the output should be inde-
pendent of the input MR contrast, e.g., brain segmentation, we simply add an
additional layer following Brain-ID features (F), and fine-tune the model:

L = task_loss_func
(
L(F), T

)
, (4)

where L and T refer to the task-specific activation layer and the contrast-
independent ground truth, respectively.
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Contrast-dependent Tasks Since Brain-ID features are contrast-agnostic
and robust to artifacts, for tasks relevant to the input’s contrast/quality, e.g.,
super-resolution, we concatenate the input image (I) that contains the origi-
nal contrast information with its high-resolution Brain-ID features along the
channel dimension, before forwarding into the task-specific activation layer:

L = task_loss_func
(
L(F⊕ I), T

)
, (5)

where L and T refer to the task-specific activation layer and the ground truth.

4 Experiments

We demonstrate the two properties of Brain-ID as claimed in Sec. 3. (i) Ro-
bustness (Sec. 4.2): we propose “canonical” and “atlas-registered” features to
assess the intra/inter-subject feature robustness; (ii) Expressiveness (Sec. 4.3):
we evaluate the performance of adapting Brain-ID features to various brain
imaging applications. We further challenge Brain-ID with reduced-size datasets
to explore its ability when limited real data is available for training (Sec. 4.4).

4.1 Datasets, Metrics and Implementation Details

Datasets For Brain-ID features pre-training, we use 2045 3D segmentations
(“anatomies”, or IDs) from the public ADNI dataset [30]. For downstream evalu-
ation, we use six public datasets covering T1w and T2w MRI, FLAIR MRI, and
CT: ADNI [30], ADNI3 [60], HCP [19], ADHD200 [9], AIBL [23], OASIS3 [35].
Metrics We evaluate individual tasks from different aspects. For feature sim-
ilarity measurements, we use L1 distance, and (MS-)SSIM (multi-scale struc-
tural similarity) [41, 58, 59]. For reconstruction and super-resolution, we use L1,
PSNR (peak signal-to-noise ratio) and (MS-)SSIM. For segmentation, we use Dice
scores. For bias field estimation, we use the normalized L2 distance (norm-L2)
to avoid possible arbitrary scalings from nonuniformity correction [16].
Implementation Details As a general feature representation model, Brain-ID
can use any backbone to extract brain features. For fairer comparison, we adopt
the same five-level 3D UNet [47] (with 64 feature channels in the last layer) as
utilized in state-of-the-art models we compare with in Sec. 4.3. During feature
pre-training (Sec. 3.2), a linear regression layer is added for anatomy supervision.
For downstream adaptions, A task-specific adaption layer is added (Sec. 3.3).

4.2 Intra/Inter-subject Feature Robustness

In this section, we examine the robustness of Brain-ID features, i.e., the 64
features from the last layer. For comparable and reproducible results, we use our
data generator (Sec. 3.1) to prepare (deform and corrupt) 1000 testing samples
from 100 randomly selected subjects in ADNI [30] (T1w) testing set, with 10
intra-subject samples for each subject.
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Fig. 4: (a) Intra-subject and (b) inter-subject robustness of Brain-ID features.

We compare our features with CIFL [15] which is, to our best knowledge,
the only similar work to Brain-ID, that also aims to learn contrast-agnostic
brain features. Note the original CIFL method has only experimented on 2D
images, and does not have our intra-subject data generation design. For a fairer
comparison, we trained CIFL with its contrastive-learning design, while using the
same data generator and network architecture as Brain-ID.

Intra-subject Feature Robustness Ideally, Brain-ID features computed
from the same subject should be structurally identical, regardless of their ap-
pearances (contrast, resolution, noises, etc). To assess the intra-subject feature
robustness, we first define their corresponding “canonical” features.
“Canonical” Features. We compute ϕ−1, the inverse of S’ generated deformation
as in Eq. (1), and map back each sample’s (S) Brain-ID features (F = F(S |ϕ))
to their original domain without any deformation:

F−1 = ϕ−1 ◦ F(S |ϕ) . (6)



Brain-ID 9

Table 1: Evaluations on intra/inter-subject feature robustness.

Mode Method L1 (↓) SSIM (↑) MS-SSIM (↑)

Intra CIFL [15] 0.122 (±0.031) 0.511 (±0.298) 0.531 (±0.367)
Brain-ID 0.011 (±0.001) 0.858 (±0.041) 0.921 (±0.008)

Inter CIFL [15] 0.230 (±0.039) 0.552 (±0.240) 0.524 (±0.291)
Brain-ID 0.014 (±0.013) 0.843 (±0.044) 0.913 (±0.011)

As shown in Fig. 4-(a), for the same subject (ID-i), although the inputs
(row) are processed by varying deformations and corruptions, their Brain-ID’s
“canonical” features are of similar looking along each feature channel (column).
In Tab. 1, we quantify the feature similarity: For each testing subject, we first
generate a sample without any deformation or corruption and use its Brain-ID
feature as the gold-standard reference for all other “canonical” features computed
from intra-subject samples that may have different levels of deformation and
corruptions. The final results are obtained by scores averaged over all 64 feature
channels of all the intra-subject samples.
Inter-subject Feature Robustness We further assess the feature robustness
among anatomies, based on the assumption that features from different subjects
should ideally be structurally similar, once being registered to a common domain.
“Atlas-registered” Features. We register [43] features (F = F(S |ϕ)) from all
subjects to a common brain atlas [21,22]:

F = ψS→A ◦ F(S |ϕ) , (7)

where ψS→A denotes the mapping from S to the atlas, A.
As shown in Fig. 4-(b), even though the input samples (row) from different

subjects have varying anatomical structures, after being registered to a com-
mon domain, their “atlas-registered” Brain-ID features still appear consistent
(column). In Tab. 1, we further provide quantitative results of the structural
similarity measured between features from different subjects. Similar to Sec. 4.2,
we randomly select a testing subject and generate a sample without any defor-
mation or corruption. We use its “atlas-registered” Brain-ID feature as the gold
standard for all “atlas-registered” features computed from other samples that
may have different levels of deformation and corruption. The final results are
obtained by scores averaged over all samples of the 100 testing subjects.

In both intra/inter-subject aspects, Brain-ID outperforms CIFL by a large
margin, which validates its feature robustness against deformations, contrasts,
resolutions, artifacts (intra-subject), and anatomies (inter-subject).

4.3 Downstream Evaluation

Following the standard evaluation protocol for representation learning [12], we
fine-tune Brain-ID features for downstream tasks through one-layer (Sec. 3.3).
Models We compare the downstream performance of Brain-ID features with:
(i-ii) SAMSEG [13,46] and FastSurfer [24] (only works on T1w), state-of-the-art
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Fig. 5: Qualitative comparisons on downstream tasks of reconstruction (Recon), super-
resolution (SR), and segmentation (Seg), between Brain-ID, the baseline SCRATCH, and
the state-of-the-art methods CIFL [15], SynthSR [27] (Recon and SR), SAMSEG [13] (Seg).
The visualized testing examples are taken from: AIBL-FLAIR [23] for Recon, AIBL-
T1w [23] for SR, and OASIS-CT [35] for Seg. The mint circles highlight some details.

classical and machine-learning-based brain segmentation models, respectively;
(iii) SynthSR [27], state-of-the-art, contrast-agnostic T1w synthesis model. We
also provide fine-tuned SynthSR (SynthSR-FT) results for further comparison;
(iv) SCRATCH: a baseline with the same data generation/architecture as Brain-ID,
yet trained from scratch. SCRATCH is used to validate Brain-ID’s effectiveness.
(v) CIFL [15]: a baseline with the same data generation/architecture as Brain-ID
and SCRATCH, yet initialized with CIFL’s pre-trained features. We use CIFL to
demonstrate the superiority of Brain-ID’s anatomy-guided representation.

Contrast-independent Applications
- Anatomy Reconstruction/Contrast Synthesis As one of the most com-
mon types of MRI scans, T1w MR images highlight the differences between gray
and white matter, and are mostly often utilized to image the anatomy of the
brain, spinal cord, bones and joints [51]. For each dataset, we train models to
reconstruct their T1w MRI counterparts with the L1 loss.
- Brain Segmentation For each dataset, we use SynthSeg [4] to obtain the
segmentation labels with 30 brain anatomical regions [20], as the gold standard
segmentation target. We train our compared models to predict the brain seg-
mentation labels, with the soft dice loss and cross-entropy loss [4].

As shown in Fig. 5, Brain-ID clearly outperforms CIFL and SCRATCH in the
reconstruction task. As highlighted by the mint circles, it reveals the anatomy
details and produces more fine-grained results than the strong state-of-the-art
method SynthSR [27]. Brain-ID also achieves better segmentation results, es-
pecially in the smaller and more challenging regions. Quantitative comparisons
are in Tab. 2, where Brain-ID obtains the best scores across most metrics. No-



Brain-ID 11

Table 2: Comparisons of Brain-ID with state-of-the-art approaches on downstream
applications. (“train/test” refers to the number of subjects in the training/testing set.)

Modality
(Contrast)

Dataset
(Train/Test)

Method Reconstruction Segmentation Super-resolution (from 3 / 5 / 7 mm) Bias Field
L1 (↓) PSNR (↑) SSIM (↑) MS-SSIM (↑) Dice (↑) PSNR (↑) SSIM (↑) MS-SSIM (↑) norm-L2 (↓)

MR

(T1w)

ADNI [30]

(1841/204)

SAMSEG [13] - - - - 0.795 - - - -
FastSurfer [24] - - - - 0.803 - - - -
SynthSR [27] 0.014 26.78 0.980 0.980 - 27.01 / 25.81 / 21.79 0.977 / 0.943 / 0.857 0.981 / 0.968 / 0.869 -
SynthSR-FT 0.010 29.54 0.984 0.920 0.825 30.46 / 28.03 / 23.91 0.979 / 0.960 / 0.898 0.985 / 0.973 / 0.900 0.051
CIFL [15] 0.013 26.97 0.973 0.961 0.820 30.12 / 27.21 / 23.80 0.978 / 0.912 / 0.887 0.979 / 0.950 / 0.842 0.053
SCRATCH 0.011 27.54 0.979 0.957 0.816 30.29 / 27.94 / 24.57 0.975 / 0.959 / 0.920 0.982 / 0.964 / 0.866 0.056
Brain-ID 0.012 33.82 0.993 0.989 0.837 31.30 / 28.62 / 24.68 0.983 / 0.961 / 0.928 0.987 / 0.980 / 0.947 0.048

HCP [19]

(808/87)

SAMSEG [13] - - - - 0.810 - - - -
FastSurfer [24] - - - - 0.819 - - - -
SynthSR [27] 0.033 22.13 0.854 0.901 - 22.21 / 20.83 / 19.93 0.848 / 0.802 / 0.747 0.899 / 0.864 / 0.789 -
SynthSR-FT 0.025 27.11 0.935 0.917 0.810 25.90 / 25.45 / 25.10 0.889 / 0.872 / 0.831 0.919 / 0.911 / 0.889 0.052
CIFL [15] 0.029 26.42 0.932 0.913 0.804 25.98 / 25.11 / 23.99 0.930 / 0.883 / 0.871 0.936 / 0.927 / 0.880 0.059
SCRATCH 0.023 27.32 0.923 0.909 0.792 26.69 / 26.41 / 25.05 0.932 / 0.896 / 0.848 0.942 / 0.930 / 0.892 0.069
Brain-ID 0.020 27.47 0.957 0.929 0.843 29.70 / 27.90 / 26.12 0.957 / 0.901 / 0.883 0.973 / 0.938 / 0.890 0.047

ADNI3 [60]

(298/33)

SAMSEG [13] - - - - 0.769 - - - -
FastSurfer [24] - - - - 0.796 - - - -
SynthSR [27] 0.023 23.60 0.928 0.909 - 23.13 / 22.40 / 22.27 0.921 / 0.907 / 0.876 0.903 / 0.892 / 0.871 -
SynthSR-FT 0.021 27.11 0.950 0.969 0.820 27.95 / 27.34 / 26.18 0.920 / 0.913 / 0.890 0.922 / 0.890 / 0.879 0.134
CIFL [15] 0.028 28.52 0.961 0.970 0.819 27.81 / 27.10 / 26.32 0.900 / 0.877 / 0.864 0.812 / 0.793 / 0.769 0.102
SCRATCH 0.033 27.28 0.957 0.963 0.816 27.99 / 27.37 / 26.63 0.893 / 0.889 / 0.876 0.794 / 0.785 / 0.753 0.128
Brain-ID 0.021 29.89 0.966 0.976 0.843 30.17 / 28.23 / 26.89 0.962 / 0.923 / 0.892 0.973 / 0.921 / 0.883 0.093

ADHD200 [9]

(865/96)

SAMSEG [13] - - - - 0.784 - - - -
FastSurfer [24] - - - - 0.801 - - - -
SynthSR [27] 0.035 21.67 0.882 0.853 - 21.42 / 21.13 / 21.41 0.876 / 0.846 / 0.809 0.851 / 0.831 / 0.805 -
SynthSR-FT 0.016 26.90 0.917 0.905 0.812 28.55 / 27.43 / 25.94 0.880 / 0.859 / 0.823 0.860 / 0.845 / 0.811 0.110
CIFL [15] 0.013 28.69 0.932 0.921 0.810 28.11 / 26.12 / 25.11 0.865 / 0.848 / 0.831 0.828 / 0.800 / 0.789 0.109
SCRATCH 0.011 31.55 0.986 0.985 0.796 29.41 / 27.89 / 26.58 0.858 / 0.847 / 0.814 0.853 / 0.845 / 0.827 0.113
Brain-ID 0.011 32.48 0.996 0.996 0.847 29.50 / 28.56 / 26.87 0.898 / 0.862 / 0.811 0.887 / 0.850 / 0.823 0.107

AIBL [23]

(601/67)

SAMSEG [13] - - - - 0.799 - - - -
FastSurfer [24] - - - - 0.802 - - - -
SynthSR [27] 0.026 22.95 0.916 0.912 - 22.57 / 21.82 / 21.78 0.917 / 0.892 / 0.856 0.906 / 0.893 / 0.869 -
SynthSR-FT 0.014 29.89 0.941 0.922 0.810 29.15 / 27.89 / 26.77 0.932 / 0.906 / 0.878 0.927 / 0.900 / 0.871 0.118
CIFL [15] 0.011 30.12 0.938 0.925 0.816 29.46 / 27.97 / 26.73 0.907 / 0.889 / 0.870 0.891 / 0.872 / 0.857 0.094
SCRATCH 0.011 30.53 0.932 0.913 0.814 29.43 / 28.10 / 26.82 0.900 / 0.886 / 0.863 0.884 / 0.870 / 0.853 0.128
Brain-ID 0.009 33.73 0.972 0.963 0.851 29.75 / 28.58 / 27.09 0.957 / 0.922 / 0.890 0.975 / 0.956 / 0.937 0.088

MR

(T2w)

HCP [19]

(808/87)

SAMSEG [13] - - - - 0.782 - - - -
SynthSR [27] 0.034 21.46 0.833 0.885 - - - - -
SynthSR-FT 0.028 26.10 0.894 0.898 0.755 28.43 / 25.36 / 22.10 0.942 / 0.851 / 0.801 0.977 / 0.892 / 0.798 0.140
CIFL [15] 0.036 25.12 0.891 0.879 0.787 28.26 / 25.78 / 21.73 0.959 / 0.893 / 0.797 0.982 / 0.906 / 0.742 0.138
SCRATCH 0.038 24.99 0.873 0.866 0.756 28.12 / 24.52 / 21.58 0.945 / 0.863 / 0.783 0.980 / 0.893 / 0.738 0.136
Brain-ID 0.016 28.10 0.934 0.935 0.805 30.26 / 26.11 / 24.10 0.959 / 0.902 / 0.832 0.987 / 0.953 / 0.912 0.136

AIBL [23]

(272/30)

SAMSEG [13] - - - - 0.763 - - - -
SynthSR [27] 0.033 20.08 0.805 0.831 - - - - -
SynthSR-FT 0.024 22.93 0.815 0.840 0.719 30.15 / 28.09 / 26.92 0.940 / 0.912 / 0.893 0.966 / 0.948 / 0.922 0.200
CIFL [15] 0.022 23.71 0.820 0.839 0.721 29.98 / 27.01 / 25.66 0.931 / 0.899 / 0.861 0.967 / 0.941 / 0.905 0.193
SCRATCH 0.020 22.27 0.849 0.851 0.714 31.91 / 29.20 / 27.35 0.954 / 0.934 / 0.896 0.982 / 0.969 / 0.947 0.197
Brain-ID 0.022 23.99 0.861 0.850 0.782 32.26 / 29.90 / 27.09 0.973 / 0.937 / 0.900 0.988 / 0.971 / 0.948 0.148

MR

(FLAIR)

ADNI3 [60]

(298/33)

SAMSEG [13] - - - - 0.718 - - - -
SynthSR [27] 0.026 22.77 0.919 0.895 - - - - -
SynthSR-FT 0.021 22.34 0.921 0.900 0.753 30.11 / 28.70 / 25.32 0.930 / 0.899 / 0.864 0.948 / 0.910 / 0.878 0.251
CIFL [15] 0.020 21.29 0.911 0.897 0.761 32.72 / 29.00 / 26.99 0.949 / 0.906 / 0.873 0.953 / 0.919 / 0.889 0.237
SCRATCH 0.025 20.80 0.901 0.862 0.759 32.36 / 28.71 / 28.00 0.945 / 0.915 / 0.877 0.941 / 0.936 / 0.917 0.236
Brain-ID 0.017 26.44 0.927 0.892 0.786 32.18 / 30.00 / 28.28 0.959 / 0.921 / 0.883 0.982 / 0.965 / 0.921 0.227

AIBL [23]

(302/34)

SAMSEG [13] - - - - 0.710 - - - -
SynthSR [27] 0.029 21.77 0.902 0.892 - - - - -
SynthSR-FT 0.024 25.80 0.914 0.900 0.735 26.20 / 24.91 / 23.17 0.860 / 0.832 / 0.795 0.933 / 0.910 / 0.894 0.126
CIFL [15] 0.026 27.11 0.901 0.870 0.721 27.72 / 26.85 / 25.99 0.851 / 0.828 / 0.804 0.939 / 0.905 / 0.901 0.109
SCRATCH 0.023 26.84 0.898 0.867 0.720 28.02 / 26.52 / 25.43 0.878 / 0.838 / 0.799 0.943 / 0.901 / 0.891 0.115
Brain-ID 0.019 27.25 0.936 0.912 0.767 28.69 / 27.63 / 26.69 0.949 / 0.906 / 0.866 0.971 / 0.925 / 0.916 0.103

CT
OASIS3 [35]

(795/88)

SAMSEG [13] - - - - 0.701 - - - -
SynthSR [27] 0.041 20.93 0.758 0.786 - - - - -
SynthSR-FT 0.030 23.76 0.797 0.845 0.700 25.30 / 22.18 / 20.35 0.892 / 0.813 / 0.760 0.896 / 0.801 / 0.764 -
CIFL [15] 0.027 24.91 0.819 0.871 0.718 25.99 / 23.70 / 22.83 0.909 / 0.820 / 0.779 0.969 / 0.816 / 0.775 -
SCRATCH 0.025 24.35 0.811 0.872 0.709 26.34 / 23.64 / 22.62 0.905 / 0.818 / 0.770 0.873 / 0.818 / 0.780 -
Brain-ID 0.023 25.49 0.891 0.895 0.765 26.74 / 24.01 / 23.09 0.910 / 0.818 / 0.792 0.974 / 0.824 / 0.799 -

(1) “-” means not applicable: FastSurfer [24] and SAMSEG [13] are for segmentation-only; SynthSR [27] only synthesize T1w MRI; CT does not have bias fields.
(2) SynthSR-FT: SynthSR fine-tuned on each task/dataset, for a fairer comparison.

tably, Brain-ID achieves greater gains over baseline models, SCRATCH and CIFL,
particularly on smaller datasets (e.g., ADNI3-T1/FLAIR, AIBL-FLAIR, where
Brain-ID’s robust and rich features quickly adapt to specific tasks/datasets.

Contrast-dependent Applications We also evaluate Brain-ID on two brain
imaging tasks that are dependent on the input modality/quality.

- Image Super-resolution We use the standard 1mm isotropic images from
all datasets as the ground truth high-resolution target, and follow the strategy
in SynthSR [27] where the input samples are randomly resampled and corrupted
during training. For inference, we downsample the original images into 3mm,
5mm, and 7mm isotropic images as inputs, and evaluate the output quality.
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Fig. 6: SCRATCH, which is well trained on HF T1w scans, produces highly descriptive
features for HF T1w images (1st row), but does not preserve the same high quality
useful for downstream tasks when handling LF (2nd row) or other contrasts (3rd row).

- Bias Field Estimation The bias field is a smooth, low-frequency multiplica-
tive signal that corrupts MRI images, which affects image analysis tasks such as
segmentation or texture analysis [31]. Bias field estimation is often needed as a
pre-processing step to correct corrupted MRI images [16]. We apply randomly
simulated bias fields to the input samples (Sec. 3.1), and train all models with the
L2 loss. During inference, we pre-generate and apply the bias fields on the testing
data for reproducibility, and evaluate the bias field estimation performance.

With a simple one-layer adaption (Sec. 3.3), Brain-ID’s contrast-agnostic
anatomical features achieve state-of-the-art performance on contrast-dependent
tasks (Tab. 2, Fig. 5). As shown in Fig. 6, Brain-ID obtains contrast/resolution-
robustness that cannot be achieved by models trained from real images (due to
the limited variability in their appearance), regardless of the backbone choices.
Such robust features greatly improve super-resolution, resulting in higher (MS-
)SSIM scores. Brain-ID’s gains are less obvious for bias field estimation, probably
because the bias field is approximately independent of brain anatomy.

4.4 Practical Value and Broader Impact

Low-resolution data Trained on synthetic images, Brain-ID features are not
only robust to various contrasts/modalities, but also extremely robust to low-
resolution data (Fig. 6) and provide huge potential in clinical MRI (including
big retrospective data [5]) and portable low-field MRI [29].
Small-size Datasets To investigate the effectiveness of Brain-ID features for
limited-size datasets, we assess its performance across all four downstream tasks
on subsets of ADNI3 [60] training set (298 cases originally). As shown in Fig. 7,
we reduce the training set size percentage from 100% to an extreme 10%. With
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Fig. 7: Adapting Brain-ID to small datasets. The horizontal (vertical) axes indicate
training epochs (evaluation scores of corresponding tasks). Results are obtained by
evaluating models collected throughout the epochs, on ADNI3 [60] full testing set.

only 20% of the data (mint line), Brain-ID still achieves better performance
compared to its full-sized baseline, “100%” SCRATCH (yellow line), over all tasks.
30 training samples (10%, blue line) may be at the edge of obtaining acceptable
results for Brain-ID, as the model becomes less stable and the performance
drops occur more frequently – especially for brain segmentation (Fig. 7-(b)).

4.5 Additional Experiments

Choice of Anatomy Guidance We explore other anatomical learning targets
than MP-RAGE (Sec. 3.2): (i) segmentation labels; (ii) both segmentation labels
and MP-RAGE. As shown in Tab. 3, adding segmentation guidance improves
robustness, yet inhibits the feature expressiveness and affects the downstream
performance; we observe features from segmentation guidance produce less high-
frequency texture than Brain-ID, especially within the same-label regions.
Data Generation Design As shown in Tab. 3, training with all mildly-corrupted
samples results in reduced robustness and harms the downstream performance,
yet using all extremely corrupted samples leads to unstable training and model
collapse. Brain-ID uses samples of gradually increased corruptions (Fig. 3 (left)).
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Table 3: Comparison between Brain-ID and its variants.

Model Setup
[Comparison Target]

Feature Robustness (Intra) Downstream (Reconstruction)
SSIM (↑) MS-SSIM (↑) L1 (↓) PSNR (↑) SSIM (↑)

[Representation guidance: supervision target for feature learning]
Segmentation 0.891 0.963 0.029 28.13 0.958
Segmentation + MP-RAGE 0.863 0.940 0.023 29.05 0.964
MP-RAGE (Brain-ID) 0.858 0.921 0.021 29.89 0.966
[Data generation design: corruption levels in intra-subject mini-batches]
All Mild (σnoise = 1, · · · ) 0.792 0.813 0.028 28.30 0.960
All Medium (σnoise = 5, · · · ) 0.831 0.899 0.022 29.67 0.964
All Severe (σnoise = 10, · · · ) N/A N/A N/A N/A N/A
Mild to Severe (Brain-ID) 0.858 0.921 0.021 29.89 0.966
[Mini-batch size: number of intra-subject samples]
2 0.826 0.897 0.025 28.83 0.959
3 0.841 0.902 0.022 29.30 0.962
4 (Brain-ID) 0.858 0.921 0.021 29.89 0.966
5 0.860 0.929 0.021 29.93 0.965

Batch Size Brain-ID computes training loss of all intra-subject samples in a
mini-batch at once (Eq. (3)). We observe that larger batches help improve feature
robustness (Tab. 3), yet do not further enhance the downstream performance.

4.6 Further Discussions

Limitations Although Brain-ID features excel in multiple tasks, they may not
be optimal for tasks not involving voxel-wise prediction, e.g., functional brain
mapping. Further, as Brain-ID generates data exclusively from anatomies, it
tends to struggle with images with extensive pathology. Our future research will
focus on robust representations that are encoded with pathology information.
Data Privacy and Ethics Since Brain-ID features can potentially be used to
reconstruct a high-resolution MRI scan, publicly sharing such features should
be regarded as sharing the original scans from a subject [33]. Therefore, one
should follow the same anonymization protocols as when sharing MRI data for
research [61] – not only the removal of identifiers, but also defacing [6] or skull-
stripping [26] to prevent the 3D reconstruction of faces.

5 Conclusion

We introduced Brain-ID, a contrast-agnostic feature representation learning ap-
proach for brain imaging, which is distinctive to brain anatomy and resilient to
variations in image appearances. Brain-ID is trained on synthetic inputs, and
quickly adapts to downstream tasks through one layer. We validated Brain-ID
features’ robustness, and effectiveness on four downstream applications (recon-
struction, segmentation, super-resolution, bias field estimation), and six pub-
lic datasets, covering MR and CT. Brain-ID achieves state-of-the-art perfor-
mances across all tasks and modalities, it further preserves high performance on
low-resolution and small-size datasets. We believe Brain-ID unlocks the great
potential of robust foundation models, especially for non-calibrated modalities.
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