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SUMMARY
Gut microbiota (GM) alterations have been implicated in autism spectrum disorder (ASD), yet the specific
functional architecture remains elusive. Here, employing multi-omics approaches, we investigate stool
samples from two distinct cohorts comprising 203 children with mild ASD or typical development. In our
screening cohort, regression-based analysis for metabolomic profiling identifies an elevated g-aminobuty-
ric acid (GABA) to glutamate (Glu) ratio as a metabolic signature of ASD, independent of age and gender. In
the validating cohort, we affirm the GABA/Glu ratio as an ASD diagnostic indicator after adjusting for geog-
raphy, age, gender, and specific food-consuming frequency. Integrated analysis of metabolomics, 16S
rRNA sequencing, and metagenomics reveals a correlation between overrepresented Escherichia and dis-
rupted GABA metabolism. Furthermore, we observe social behavioral impairments in weaning mice trans-
planted with E. coli, suggesting a potential link to ASD symptomatology. Collectively, these findings
provide insights into potential diagnostic and therapeutic strategies aimed at evaluating and restoring
gut microbial neurotransmitter homeostasis.
INTRODUCTION

Autism spectrum disorder (ASD), characterized by impaired so-

cial interaction, repetitive behavior, and stereotyped interests,

poses significant challenges to social adaptability in affected in-

dividuals.1 With a global prevalence recently estimated at 1%–

2%,2 ASD imposes a substantial social burden. Early interven-

tion is widely acknowledged as crucial for positive outcomes,3

yet diagnosing ASD in young children remains challenging due
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to the disorder’s heterogeneous symptomatology and limited

expressive capacities in verbal and nonverbal communication.4

The need for effective laboratory-based indices to elucidate

ASD etiology and track its development is pressing.

Recent research has drawn attention to the potential role of

gut microbiota (GM) in ASD pathogenesis. From the discovery

of ASD-featured GM dysbiosis5,6 to the observed alleviation of

autistic symptoms through healthy GM transplantation,7,8 accu-

mulating evidence underscores the significance of GM in ASD. A
uary 21, 2025 ª 2024 The Authors. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Clinical characteristics of subjects with ASD and TD

Screening cohort

p value

Validating cohort

p valueASD TD ASD TD

Subjects (n) 56 67 – 40 40 –

Average age (years) 5.05 (1.43) 4.58 (1.01) 0.13b 5.08 (1.42) 4.25 (1.15) 0.360b

Male proportion (%) 91.1 56.7 <0.001c 82.5 42.5 <0.001c

Severity (CARSa) 34.63 (2.72) – – 34.1 (10.17) – –

Constipation (%) 42.86 26.87 0.085c 37.5 30 0.637c

Delivery (caesarean %) 39.29 38.81 1.000 27.5 12.5 0.161c

Data are presented as ‘‘mean (SD),’’ unless otherwise stated.
aCARS, Childhood Autism Rating Scale.
bp value = Wilcoxon rank-sum test between groups.
cp value = Chi-Square test between groups.
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comprehensive analysis of GM characteristics associated with

ASD at various levels is essential for identifying novel diagnostic

biomarkers and therapeutic targets.

Despite significant efforts to characterize an ASD-specific GM

structure in recent years, findings from various studies have

demonstrated inconsistency and, at times, contradiction. For

instance, a systematic review outlined a concurrent decrease in

the abundances of Bifidobacterium, Blautia, Dialister, Prevotella,

Veillonella, and Turicibacter in patientswith ASD,9 while according

to a recent large-scale study, most of these genera remained un-

changed in abundances, andBifidobacteriumwas even increased

in ASD.10 This variability may arise from diverse covariates across

studies, such as age, gender, geography, diet, antibiotic or prebi-

otic administration, and stool consistency. Except for these

well-known confounders, altered GM composition was found to

be linked to autistic behavioral issues,11 which may conversely

contribute to idiosyncratic dietary preferences and impact

GM.12 These findings suggest that ASD subtypes, typically cate-

gorized by severity, and other relevant factors should be taken into

account during participant recruitment and data analysis.

Microbial metabolites form a dynamic network that contributes

to the homeostasis of both the GM community and the host.13,14

A recent analysis, utilizing multiple omics databases, has uncov-

ered similarities between gut microbial metabolism and human

brain metabolism in individuals with ASD.15 This finding under-

scores the importance of exploring potential GM-host interac-

tions via dissecting microbial metabolic profiles in ASD. While

much of the evidence regarding the significance of microbial me-

tabolites in ASD has stemmed from animal studies, compounds

such as short-chain fatty acids (SCFAs), neurotransmitters, and

bile acids (BAs) have been shown to influence social behavior

by affecting energy metabolism, immune responses, and neuro-

activity.14,16 For instance, exposure to propionic acid has been

linked to the development of autistic-like behaviors in rats,17 while

our research, along with that of others, has demonstrated that

indole-3-propionic acid supplementation can alleviate social def-

icits in mouse models.18,19 However, the metabolic signature of

GM in autistic children remains inadequately characterized. Pre-

vious attempts using metagenomics have identified metabolic

abnormalities in autistic GM related to genetic pathways involved

in neurotransmitter synthesis10,20–22 and detoxification.23 Never-

theless, the levels of the relevant metabolites were often unmen-
2 Cell Reports Medicine 6, 101919, January 21, 2025
tioned or unvalidated biochemically in these studies. Establishing

a core ASD-associated metabolic profile of GM necessitates a

cross-examination of evidence through multi-omics analyses.

Meanwhile, concomitant verification in animal experiments would

further reveal the role of GM dysbiosis in autistic symptoms.

In this study, we conducted multi-omics analyses to thor-

oughly examine metabolic, functional, and taxonomic changes

in the GM of individuals with mild ASD compared to those with

typical development (TD). We analyzed stool samples from 203

participants across both a screening and a validating cohort.

The regression-based metabolomics analysis, after adjusting

for covariates, revealed a significant increase in the ratio of

g-aminobutyric acid (GABA) to glutamate (Glu) in individuals

with ASD. These findings established the increment of the

GABA/Glu ratio as a metabolic signature in the screening cohort

and as an independent indicator for ASD diagnosis in the vali-

dating cohort. Through an integrated analysis of metabolomics,

16S rRNA sequencing, and metagenomics, we identified an

overrepresentation of the Escherichia genus, which was linked

to abnormal GABA metabolism in the GM of individuals with

ASD. Notably, experimental transplantation of E. coli into wean-

ing mice induced social deficits, a hallmark of ASD.

RESULTS

Participant recruitment, sampling, and confounder
identification
We focused on mild cases of ASD, which represent the predom-

inant demographic globally in this patient population.24–26

Further, our study was methodically designed in two distinct

phases to effectively screen and validate the core microbial sig-

natures associated with ASD. Herein, in the screening phase, we

recruited a cohort of 123 children (56 ASD and 67 TD) from a

dedicated ASD institute and adjacent communities (Table 1,

screening cohort). The recruitment strategy in this phase was

tailored to ensure homogeneity in environmental factors and de-

mographic distribution among participants. A Childhood Autism

Rating Scale evaluation verified that all subjects with ASD were

indeed mild cases. To broaden the geographical diversity of

our study, we formed a validating cohort, comprising 40 subjects

with mild ASD from multiple institutes, along with geography-

matched subjects with TD (Table 1, validating cohort).



Table 2. Logistic regression analysis for identifying confounding

factors

Factors B Wald p value OR

Screening cohort age 0.30 4.06 0.044 1.35

gender �2.05 15.02 0.000 0.13

batch �0.60 1.24 0.265 0.55

constipation �0.71 3.42 0.064 0.49

delivery �0.02 0.00 0.957 0.98

stool

consistency

�0.73 3.31 0.069 0.48

Validating cohort city �0.20 0.20 0.653 0.82

gender �1.59 9.79 0.002 0.21

age 0.33 3.54 0.060 1.39

delivery �0.11 0.06 0.813 0.89

stool

consistency

�0.09 0.19 0.665 0.91

constipation �0.98 2.69 0.101 0.38

whole grain 0.08 0.36 0.547 1.08

fruits �0.38 4.75 0.029 0.68

vegetables �0.48 7.88 0.005 0.62

dark vegetables �0.38 5.38 0.020 0.69

dairy products �0.23 2.20 0.138 0.80

beans �0.43 3.51 0.061 0.65

fungi and algae �0.59 4.56 0.033 0.55

fish �0.43 2.19 0.139 0.65

animal liver 0.64 2.06 0.151 1.89

sugar-

sweetened

beverage

0.16 0.55 0.458 1.17

fried foods 0.25 0.85 0.358 1.28

western fast

food

0.48 2.50 0.114 1.61

breakfast �0.29 2.19 0.139 0.75

snacks �0.02 0.02 0.881 0.98
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In both the screening and validating cohorts, most participants

were preschoolers aged 3 to 5 years, with a comparable mean

age between the ASD and TD groups. The ASD groups displayed

significantly higher male proportions compared to the TD

groups. Both cohorts demonstrated comparable rates of consti-

pation and caesarean births between the two groups.

During sampling, stool consistency was strictly controlled via

collecting corn-on-cob-like and sausage-like fecal samples

(Table S1), which are classified as normal as per the Bristol Stool

Chart. In the screening cohort, a procedure of repeated sampling

was performed for subsequent multiple-omics measurements.

The first sampling collected 123 stool samples (ASD = 56, TD =

67), while the second sampling yielded 102 samples (ASD = 50,

TD = 52) since 21 participants were lost to follow-up. In the vali-

dating cohort, 80 stool samples (ASD = 40, TD = 40) were

collected.

To identify potential covariates associated with ASD diag-

nosis in the screening cohort, we performed a single-factor lo-

gistic regression analysis considering age, gender, sampling
batch, mode of delivery, constipation condition, and stool con-

sistency as independent variables. We found that age and

gender were significantly associated with ASD diagnosis (Ta-

ble 2; Figure S1A).

Given the importance of dietary habits as a major confounder

in microbiome studies of ASD,9 we collected additional dietary

information in the validating cohort using a detailed question-

naire on weekly food consumption.27,28 Our subsequent sin-

gle-factor logistic regression analysis included residential city,

gender, age, mode of delivery, constipation condition, and spe-

cific food consumption frequency as independent variables, with

ASD diagnosis as the dependent variable. Notably, we observed

distinct patterns between the two groups regarding gender and

the consumption of specific foods, including fruits, vegetables,

dark vegetables, fungi, and algae, which were associated with

ASD diagnosis (Table 2).

Imbalanced metabolism of microbial GABA as an age-
and gender-independent signature of ASD
To investigate the metabolic characteristics of GM in ASD, we

first determined a total of 32 well-documented metabolites

(Table S2, first sampling), including 10 neurotransmitters, 7

SCFAs, and 15 BAs that are broadly applicable to ASD symp-

tomatology based on literature or clinical inference.29 Formetab-

olomics analysis, we utilized the first sampling from our

screening cohort (Figure 1A, first sampling). To minimize analytic

bias caused by confounders in the cohort, we applied the inverse

normal transformation (INT) method30 to achieve normally

distributed metabolite levels adjusted for age and gender. Sub-

sequent analysis using partial least-squares discriminant anal-

ysis (PLS-DA) revealed a clear separation of the metabolite pro-

files between individuals with ASD and TD (Figure 1B).

Employing a threshold of p < 0.05, false discovery rate

(FDR) < 0.1, and variable importance in projection > 1, we iden-

tified 6 differential metabolites: GABA, norepinephrine, dihy-

droxyphenylalanine, histidine, acetic acid, and glycolithocholic

acid (Figure 1C). Notably, the most significant change among

these differential metabolites was an increased level of GABA

in individuals with ASD (Figure 1D).

To delve deeper into the alterations in GABA metabolism, we

analyzed the second sampling from our screening cohort,

focusing specifically on metabolites involved in GABA meta-

bolism (Figure 1A, second sampling). We selected 10 metabo-

lites, involved in GABA synthesis and decomposition, and

applied the INT method to normalize the levels of these metabo-

lites, adjusting for age and gender (Table S2, second sampling).

PLS-DA plots demonstrated a clear separation of the metabolite

profiles between the two groups (Figure 1E). Importantly, in

keeping with the results from the first sampling, subjects with

ASD exhibited a significant augment of GABA, along with

notable declines in Glu, glutamine (Gln), and fumarate,

compared to TD controls (Figure 1F). These results suggested

a complex, ASD-specific fluctuation in GABA metabolism.

To comprehensively encapsulate this metabolic trait, we calcu-

lated the ratios of GABA to Glu and Glu to Gln using data from our

first sampling. These ratios serve to recapitulate the dynamics of

GABA metabolism (Table S2, ratios). Additionally, to capture key

features of microbial metabolism in ASD from a broader range,
Cell Reports Medicine 6, 101919, January 21, 2025 3



Figure 1. Imbalanced gut microbial GABA and Glu metabolism as an age- and gender-independent signature of ASD

(A) Workflow of experimental design for the screening cohort.

(B) Gut microbial metabolic profiling from the first sampling based on PLS-DA, revealing significant distinctions between the ASD (n = 56) and TD (n = 67) groups.

PERMANOVA p value is shown.

(C) Significantly altered metabolites in the ASD group (n = 56) compared with the TD group (n = 67).

(D) GABA is identified as the most significantly changed metabolite among the differential metabolites.

(E) GABA-associated metabolic profiling from the second sampling based on PLS-DA plots, distinguishing between the ASD (n = 50) and TD (n = 52) groups.

PERMANOVA p value is shown.

(F) Significantly altered GABA-associated metabolites in the ASD group (n = 50) compared with the TD group (n = 52).

(G) Indices representing specific metabolism balances compared between the ASD (n = 56) and TD (n = 67) groups.

In all violin plots, data are presented as metabolite INT data after adjusting confounders, and the horizontal line represents the median value in each group.

Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; Student’s t test.

Abbreviations: DSM-5, diagnostic and statistical manual of mental disorders, fifth edition; CARS, Childhood Autism Rating Scale; ASD, autism spectrum

disorder; TD, typical development; GC, gas chromatography; LC, liquid chromatography; MS, mass spectrometry; SCFAs, short-chain fatty acids; BAs, bile

acids; PLS-DA, partial least-squares discriminant analysis; VIP, variable importance for the projection; GABA, g-aminobutyric acid; DOPA, dihydrox-

yphenylalanine; HA, histidine; NE, noradrenaline; GLCA, glycolithocholic acid; AA, acetic acid; Glu, glutamate; Gln, glutamine; INT, inverse normal trans-

formation; PERMANOVA, permutational multivariate analysis of variance.
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we also computed various ratios representing multiple metabolic

pathways using the samedatasets, including dopamine to norepi-

nephrine or dihydroxyphenylalanine in tyrosine metabolism, sero-

tonin to 5-hydroxyindole-3-acetic acid in tryptophan metabolism,

and secondary to primary BAs in BA metabolism. Upon

comparing all these ratios between ASD and TD groups, we iden-

tified the GABA/Glu ratio as the sole potential biomarker for ASD
4 Cell Reports Medicine 6, 101919, January 21, 2025
(Figure 1G). This is particularly noteworthy as GABA and Glu are

the primary inhibitory and excitatory neurotransmitters in the ner-

vous system, and their imbalance is known to trigger neuropsychi-

atric disorders.31 Thus, the observed imbalance in gut microbial

GABA metabolism, evidenced by an elevated GABA/Glu ratio,

presents a distinctive metabolic signature of ASD that is indepen-

dent of age and gender.
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Microbial GABA/Glu ratio as an independent indicator
for ASD diagnosis
To validate the ASD-specificmetabolic alterations identified in our

initial screening and to enhance geographical diversity of the

study population, we established a new, geographically distinct

cohort, referred to as the validating cohort (Figure 2A). Logistic

regression analysis in this cohort indicated that gender and the

consumption of specific foods, such as fruits, vegetables, dark

vegetables, fungi, and algae, emerged as significant confounders

associated with ASD diagnosis in this cohort (Figure 2B).

We then conducted metabolomics analysis with a focus on

neurotransmitter metabolites, detecting a total of 21 metabolites,

including GABA, Glu, and Gln (Table S3). To control for potential

confounders such as geography, age, gender, and dietary habits,

we applied the INT method to normalize metabolite levels. PLS-

DA plots revealed distinct metabolomic profiles between the

ASD and TD groups (Figure 2C). Notably, the ASD group consis-

tently exhibited elevated levels of both GABA and the GABA/Glu

ratio (Figure 2D), corroborating findings from the screening phase.

Furthermore, to assess the clinical diagnostic utility of the mi-

crobial GABA/Glu ratio for ASD, we performed a receiver oper-

ating characteristic analysis. The GABA/Glu ratio demonstrated

strong diagnostic potential with an area under the curve of 0.759

(Figure 2E). Collectively, these results indicate that the microbial

GABA/Glu ratio is a reliable and independent biomarker for ASD

diagnosis.

Elevated GABA/Glu ratio linked to ASD-associated GM
dysbiosis characterized by increased Escherichia/
Shigella abundance
To ferret out the underlying differences in GM composition be-

tween individuals with ASD and TD, alongside alterations in mi-

crobial GABA metabolism, we applied 16S rRNA gene

sequencing on fecal samples from the screening cohort (Fig-

ure 3A). Using relative abundances of the bacterial taxa, we con-

ducted both b-diversity and a-diversity analyses. Principal coor-

dinates analysis based on b-diversity analysis delineated distinct

GM profiles in the ASD group compared to the TD group (Fig-

ure 3B). However, in a-diversity analysis, both the Chao index

(indicative of community richness) and the Shannon index (indic-

ative of community diversity) showed comparable levels be-

tween the two groups (Figure 3C).

Subsequently, to identify specific bacterial genera associated

with ASD, we harnessed Microbiome Multivariable Association

with LinearModels 2 (MaAsLin2)32 and linear discriminant analysis

effect size (LEfSe) tool. Adjusting for age and gender, MaAsLin2

revealed 10 genera significantly associated with ASD diagnosis

(Figure 3D; Table S4). LEfSe, which operates independently of

confounders, identified 26 differentially abundant genera between

the ASD and TD groups (Figure S1B). Notably, both methods

consistently determined several genera, including Escherichia/

Shigella, Megamonas, Megasphaera, Sarcina, Allisonella, Weis-

sella, and Veillonella, as significantly associated with ASD. These

findings, in keeping with previous reports,10,33 support the pres-

ence of distinct microbial community alterations in individuals

with ASD.

Next, we investigated the potential link between GM dysbio-

sis and the imbalanced GABA metabolism. We assessed the
aforementioned 7 differential genera between the ASD and

TD groups using Pearson correlation analysis. After adjusting

for age and gender, we identified two genera significantly

correlated with the GABA/Glu ratio, including Escherichia/

Shigella and Megasphaera (Figure 3E). Intriguingly, among

these, Escherichia/Shigella is the only known genus capable

of producing GABA in the human gut,34 implying that the

elevated GABA/Glu ratio may be biologically linked to the over-

representation of Escherichia or Shigella in individuals

with ASD.

Considering individual variability in fecal samples, which

may obscure the bona fide traits of GM dysbiosis in ASD, we hy-

pothesized that a deteriorated GABA/Glu metabolic imbalance

might render suchdysbiotic featuresmore evident. Consequently,

we divided subjects with ASD into quartiles based on the GABA/

Glu ratio (25% = �0.34; 50% = 0.32; 75% = 1.05) relative to the

baseline levels in TD counterparts, and then sought to draw out

the concomitant changes in GM composition. This included eval-

uating the Chao and Shannon indices and the relative abundance

of Escherichia/Shigella at play. Strikingly, individuals with ASD in

the top quartile of the GABA/Glu ratio exhibited the most pro-

nounced GM dysbiosis, with significantly elevated abundance of

Escherichia/Shigella (Figure 3F). Together, these findings suggest

that an imbalance in microbial GABA/Glu metabolism is closely

associated with GM dysbiosis in ASD, particularly with the over-

representation of Escherichia/Shigella.

Imbalanced GABA metabolism associated with overall
hypofunction of the GM community in ASD
To elucidate the molecular mechanism underlying GM dysbiosis

associated with imbalanced GABA metabolism, we conducted

metagenomic analysis and pertinent quantitative polymerase

chain reaction (qPCR) validation on fecal samples (Figure 4A).

We selected a subset of 7 subjects with ASD with relatively high

GABA/Glu ratios (hASD, mean GABA/Glu = 1.172 ± 0.523) and

8 age- and gender-matched subjects with TD with normal

GABA/Glu ratios near baseline (nTD, mean GABA/Glu =

�0.437 ± 0.697) from our screening cohort. A third round of fecal

samplingwas collected from these participants,whowere allmale

and between the ages of 3 and 5 years (Figure 4A).

Subsequently, we compared the structural and functional

traits of the GM between the two groups. Bacterial taxonomy

analysis confirmed a distinct structural alteration (Figure 4B),

alongside significant declines in both richness and diversity of

GM in children with hASD compared to their neurotypical peers

(Figure 4C). Strikingly, Kyoto Encyclopedia of Genes and Ge-

nomes pathway analysis revealed that multiple molecular path-

ways related to cellular metabolism and homeostasis exhibited

significantly decreased abundances. Specifically, these

signaling categories included protein processing, longevity

regulation, the tricarboxylic acid (TCA) cycle, and the meta-

bolism of Glu, aspartate, alanine, and histidine (p < 0.05,

FDR < 0.1) (Figure 4D). These disruptions in energy and amino

acid metabolism, proteostasis, survival, and growth suggest a

compromised viability of the GM in hASD.

Given that the GM inhabits a dynamic environment with

various extracellular stressors, such as oxidative stress, which

influence microbial viability and community structure, we
Cell Reports Medicine 6, 101919, January 21, 2025 5



Figure 2. Gut microbial GABA/Glu ratio as

an independent indicator associated with

ASD diagnosis

(A) Workflow of experimental design for the vali-

dating cohort.

(B) Logistic regression identifies 5 confounders

associated with ASD diagnosis in the validating

cohort (ASD vs. TD = 40 vs. 40).

(C) Neurotransmitter profiling based on PLS-DA

plots, revealing significant distinctions between

the ASD (n = 40) and TD (n = 40) groups.

PERMANOVA p value is shown.

(D) The validating cohort exhibits an increase in

GABA and GABA/Glu ratio in the ASD group

(n = 40) compared with the TD group (n = 40).

(E) ROC analysis demonstrates GABA/Glu ratio as

a potent indicator for ASD diagnosis in the vali-

dating cohort.

In all violin plots, data are presented as metabolite

INT data after adjusting confounders, and the

horizontal line represents themedian value in each

group. Statistical significance: ****p < 0.0001;

Student’s t test.

Abbreviations: OR, odds ratio; ROC, receiver

operating characteristic; AUC, area under the

curve.
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compared the abundances of several stress-response genes be-

tween the two groups. Our analysis revealed a significant in-

crease in the abundance of genes like gor, gpx, sod1, and

katG in the hASD group (Figure S2, abundance; Table S5). These

genes encode enzymes involved in detoxifying superoxide and

hydrogen peroxide, key intracellular processes triggered under

extracellular stress conditions.35–37 This increase in stress-

response gene expression suggests an overload of oxidative

stress in the GM, potentially reflecting an impaired intestinal

environment. To further investigate the link between these

stress-related changes and GABA metabolism, we performed

a Pearson correlation analysis between the GABA/Glu ratio

and the stress-response gene abundances. Notably, we

observed significant correlations between the stress-response

genes and the GABA/Glu ratio (Figure S2, coefficient), suggest-

ing that aberrant GABAmetabolism may indicate a stressed and

dysfunctional GM community.

Among the identified ASD-associated pathways, the category

of Glu, aspartate, and alanine metabolism comprised a series of

enzyme-encoding genes involved in GABA metabolism regula-

tion, such as gabT (GABA aminotransferase) and gabD (succi-

nate semialdehyde dehydrogenase) for GABA degradation, as

well as gltD (Glu synthase) and purF (amidophosphoribosyltrans-

ferase) for the synthesis of Glu and Gln, respectively. To further
6 Cell Reports Medicine 6, 101919, January 21, 2025
reveal the molecular basis of the imbal-

anced GABA metabolism in ASD-linked

GM, we analyzed the abundances of

these genes (Figure 4E, (1) abundance).

We found significant increases in gabT

and gabD, concomitant with significant

decreases in gltD and purF in hASD rela-

tive to nTD. Given that the transcription of
gabT and gabD is GABA dependent in microbes, such as spe-

cies of Escherichia and Bacillus,38,39 our results suggests that

adequate supplies of microbial GABA ensure GABA consump-

tion in the GM community of individuals with ASD. Furthermore,

other genes involved in metabolic interactions among Glu,

aspartate, and alanine, including aspB, argG, asdA, and ala,

consistently declined in hASD. Further, Pearson correlation anal-

ysis revealed that most of these aforementioned genes were

significantly correlated with the GABA/Glu ratio after adjusting

for age and gender (Figure 4E, (1) coefficient). These molecu-

lar-level results are consistent with our metabolomic findings of

an increased GABA/Glu ratio, confirming that the microbial

GABA metabolism was disrupted in individuals with ASD.

Overrepresentation of Escherichia possibly contributed
to the aberrant GABA metabolism in ASD
To better understand the role of Escherichia in GABA meta-

bolism, we mapped the metagenomics results against the Viru-

lence Factor Database, which includes known bacterial factors

involved in the colonization of host intestinal epithelium,

microbe-host communication, and reciprocal responses. We

identified a panel of 21 available E. coli-specific adhesins known

to facilitate bacterial colonization of the intestinal epithelium.40

By comparing the abundances of these adhesins between the



Figure 3. Elevated GABA/Glu ratio is asso-

ciated with altered structural dysbiosis of

GM in ASD

(A) Workflow depicting samples from the screening

cohort utilized for 16S rRNA sequencing.

(B) PCoA plots based on microbial b-diversity,

illustrating significant distinctions in the gut micro-

bial component between the ASD (n = 50) and TD

(n = 55) groups. PERMANOVA p value is shown.

(C) Microbial a-diversity analysis indicates compa-

rable Chao and Shannon indices between the ASD

(n = 50) and TD (n = 55) groups.

(D) MaAsLin2 analysis identifies 10 GM genera

significantly associated with ASD diagnosis after

adjusting age and gender (ASD vs. TD = 50 vs. 55).

***p < 0.001 and ****p < 0.0001; MaAsLin2.

(E) Boxplots depict the relative abundances of

GABA/Glu ratio-associated genera (top). Heatmap

displays the Pearson correlation (r score) between

GMgenera and GABA/Glu ratio (bottom). *p < 0.05;

Pearson correlation analysis.

(F) Indices of Chao and Shannon, along with the

relative abundance of Escherichia/Shigella, in each

quartile of autistic subjects categorized based on

their GABA/Glu ratio.

In all boxplots, the horizontal line represents the

median value, and the whiskers extend from the

minimum to the maximum values in each group.

Wilcoxon rank-sum test is used in boxplots.

Abbreviations: PCoA, principal coordinates anal-

ysis; MaAsLin, microbiome multivariable associa-

tion with linear models; GM, gut microbiome.
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hASD and nTD groups, we determined that 7 molecules, such as

P fimbriae, S fimbriae, and F1C fimbriae, were significantly

increased in the hASD group (Figure 4E, (2) abundance). Notably,

the abundances of each of these molecules were significantly

associated with the GABA/Glu ratio after adjusting for age and

gender (Figure 4E, (2) coefficient), implying that microbial

GABA/Glu ratio was influenced by the colonization status of Es-

cherichia species. The remaining adhesins exhibited an

ascending trend in abundance, though not statistically signifi-

cant (Table S6).

To establish a potential Escherichia-GABA axis, we analyzed

the relative abundances of the genera Escherichia and Shigella,

which could not be distinguished individually by 16S rRNA gene

sequencing. The abundance of Escherichia in subjects with
Cell Reports M
hASD was consistently higher than in

nTD controls, whereas the relative abun-

dance of Shigella remained very low in

both groups (Figure 4F). To consolidate

that Escherichia could contribute to

GABA production, we examined the key

enzymes involved in the microbial

GABA-producing pathway through

qPCR, focusing on the genus-specific

glutamate decarboxylase (GAD) genes,

gadA and gadB. Both genes showed

significantly increased abundances in Es-

cherichia (Figure 4G).
Taken together, these findings suggest that overrepresenta-

tion of Escherichia may give rise to excess GABA via the gad

genes, thereby contributing to the elevated GABA/Glu ratio in

children with ASD.

Bacterial challenge with E. coli elicited social deficits in
mice associated with altered GABA metabolism
To elucidate the impact of GM dysbiosis, characterized by over-

representation of Escherichia, on host behavior, we conducted

an E. coli challenge experiment on male C57BL6/J mice. To

investigate the GABA production by E. coli in vitro, we first

tested the capacity of a commercial non-pathogenic E. coli

strain to produce GABA from Glu. We genetically engineered

the E. coli strain to knock out either gadA, gadB, or both genes
edicine 6, 101919, January 21, 2025 7



Figure 4. GABA/Glu imbalance is associ-

ated with excessive GABA production and

overgrown Escherichia in ASD

(A) Autistic subjects with relatively high GABA/Glu

ratio (hASD) and age-, gender-matched subjects

with TD with normal GABA/Glu ratio (nTD) are

selected from the screening cohort for meta-

genomics and qPCR.

(B and C) Compared to the nTD group (n = 8), the

hASD group (n = 7) shows (B) distinguished GM

structure (PERMANOVA p value is shown) with

(C) significantly decreased Chao and Shannon

indices.

(D) KEGG analysis shows a significant decline in

abundances of multiple viability-associated path-

ways in the hASD group (n = 7) compared with the

nTD group (n = 8).

(E) (1) GABA-metabolism-associated genes iden-

tified by KEGG analysis and their association with

the GABA/Glu ratio; (2) E. coli-specific adhesins

identified by VFDB analysis and their association

with the GABA/Glu ratio. *p < 0.05, **p < 0.01;

Pearson correlation analysis.

(F) Overrepresented Escherichia and Shigella in

the hASD group (n = 7) compared with the nTD

group (n = 8).

(G) qPCR results demonstrate that gene abun-

dances of Escherichia-specific gadA and gadB

are significantly increased in the hASD group

(n = 7) compared with the nTD group (n = 8).

In all boxplots, the horizontal line represents the

median value, and the whiskers extend from the

minimum to the maximum values in each group.

Statistical significance: **p < 0.01 and ***p < 0.001;

Wilcoxon rank-sum test.

Abbreviations: KEGG, Kyoto Encyclopedia of

Genes and Genomes; VFDB, Virulence Factor

Database.
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(Figure 5A). Subsequently, we measured the GABA levels of the

wild-type and knockout strains using a GABA assay kit. Our re-

sults showed that the knockout strains exhibited significantly

reduced GABA levels compared to the wild-type strain (Fig-

ure 5B), confirming the gad-dependent GABA production by

E. coli.

In the subsequent in vivo experiments, wild-type E. coli was

administered intragastrically from post-natal days 21 to 25

(P21–P25) to mimic the situation of Escherichia overgrowth in

preschoolers (Figure 5C). After a 7-day colonization period,

qPCR of fecal microbiome DNA demonstrated a substantial in-
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crease in the abundance of E. coli (Fig-

ure 5D) and the Escherichia-specific gad

genes (Figure 5E) resulting from the

E. coli challenge.

Furthermore, the three-chamber test

(Figure 5F) revealed normal social prefer-

ence (Figure 5G) but a significant deficit in

social recognition (Figure 5H) in the

E. coli-challenged group, suggesting a

substantial reduction in social activity

caused by the E. coli transplantation.
Supporting this, subsequent tests of reciprocal social interaction

(Figure 5I) depicted that the time spent interacting with a stranger

mouse was significantly decreased in the E. coli-challenged

group (Figure 5J).

In the open field test (Figure 5K), grooming times were compa-

rable between the two groups (Figure 5L), suggesting no repeti-

tive behavior in the E. coli-challenged group, as also observed in

the marble-burying test (Figure S3A). Comparisons of time spent

in the center (Figure 5M), traveling distance (Figure 5N), and

mean velocity (Figure 5O) showed no significant differences be-

tween the two groups. In addition, other behaviors, including



Figure 5. Challenge of E. coli in the gut

leads to social deficiencies in mice

(A) Experimental workflow for in vitro assays: ge-

netic modification of E. coli and GABA quantifi-

cation.

(B) Comparative analysis of GABA levels in culture

media of wild-type (n = 3), KO-gadA (n = 3), KO-

gadB (n = 3), and KO-gadA/gadB (n = 3) E. coli

strains.

(C) In vivo experimental schema: administration of

wild-type E. coli strain in mice followed by a series

of behavioral assessments. Comparative analyses

are conducted between the E. coli-challenged

group (n = 10) and the PBS group (n = 10).

(D and E) The E. coli-challenged group shows

significantly increased relative abundances of

(D) gut E. coli and (E) E. coli-specific gad

compared to the PBS group.

(F) Diagram of three-chamber test (TCT).

(G and H) The E. coli-challenged group shows

(G) normal social preference and (H) deficits in

social recognition.

(I) Diagram of reciprocal social interaction (RSI).

(J) The E. coli-challenged group shows signifi-

cantly decreased sniffing time with a stranger

mouse compared to the PBS group.

(K) Diagram of open field test (OFT).

(L–O) The E. coli-challenged group shows com-

parable (L) time of grooming, (M) time spent in the

center, (N) traveling distance, and (O) mean ve-

locity to the PBS group.

In all boxplots, the horizontal line represents the

median value, and the whiskers extend from the

minimum to the maximum values in each group.

Statistical significance: ***p < 0.01 and ****p <

0.001; Wilcoxon rank-sum test.

Abbreviations: PBS, phosphate-buffered saline;

NOR, novel object recognition task; EPM,

elevated plus maze; MBT, marble-burying test;

CFU, colony-forming unit.
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novel object recognition (Figure S3B) and elevated plus maze

(Figure S3C), remained unchanged in the E. coli-challenged

group. These findings indicate a specific role of E. coli in regu-

lating social behaviors, independent of anxiety, recognition

memory abnormalities, or alterations in locomotor activity.

DISCUSSION

Our findings of an elevated microbial GABA/Glu ratio in children

with mild ASD are partially supported by previous metabolomics

studies, which reported increased levels of carboxyethyl GABA10

and decreased a-ketoglutarate,22 respectively. These com-

pounds are intermediate metabolites in the synthesis of GABA

and Glu, respectively. We also noted that some studies have
Cell Reports M
otherwise observed lower fecal GABA

levels in individuals with ASD, although

these findings lacked statistical signifi-

cance.41,42 These discrepancies could

arise from confounding factors, smaller

sample size, or inconsistent participant
stratification. In this study, we strengthened our analytical rigor

by employing two distinct cohorts: a geographically unified

screening cohort and a geographically diverse validating cohort.

Remarkably, both cohorts consistently demonstrated elevated

levels of GABA and increased GABA/Glu ratios in preschool-

aged children with ASD. This reproducibility across different de-

mographic contexts enhances the reliability of our results and

validates the robustness of ourmetabolomic approach. Addition-

ally, multiple studies, including our own, have highlighted the

reduced activity of Glu metabolism-associated pathways as crit-

ical indicators ofmicrobial functional changes in ASD, particularly

in children around the age of four.22,23,43,44 By integrating our ge-

netic pathway analysis with metabolomic verification, we further

demonstrated an increased GABA supply and a reduction in Glu
edicine 6, 101919, January 21, 2025 9



Article
ll

OPEN ACCESS
synthesis within the ASD-linked GM community. These findings

collectively suggest that imbalanced GABA metabolism is a dis-

tinguishing feature of GM in children with mild ASD.

We observed an overall reduction in GM functionality, here

termed hypofunction, in autistic subjects with an imbalanced

GABA/Glu metabolism. This aligns with growing evidence point-

ing to a suboptimal, inefficient state of ASD-linked GM, including

impaired detoxifying ability, decreased neurotransmitter synthe-

sis, and delayed microbiota maturity.10,21–23,45 GABA plays a

central role in carbon and nitrogen metabolism, as its degrada-

tion through the TCA cycle contributes essential carbon atoms

for cellular metabolism,34 while its synthesis from Gln and Glu

regulates ammonia homeostasis.46 Accordingly, GABA accumu-

lation could reflect a TCA cycle blockade within a compromised

GMcommunity, and an imbalance in GABA/Glumetabolismmay

disrupt ammonia homeostasis, potentially inducing oxidative

stress.47 This is supported by our finding of enriched stress-

response genes in the ASD-linked GM. Moreover, our findings

in the GM may also mirror metabolic processes in the brain, as

a recent study has highlighted a potential parallel between the

microbiome and brain metabolism in patients with ASD.15 Previ-

ous studies have shown that cerebral GABAmetabolism is impli-

cated in the modulation of oxidative stress in the brain,48–50

particularly in regions like the cerebellum and frontal and tempo-

ral lobes,51 serving as a hallmark in children with ASD.52,53

Therefore, GABAmay act as a functional link between the gutmi-

crobiome and brain function. Animal studies have shown that

changes in the GM alterations can affect GABA levels in both

the bloodstream and the brain,54,55 suggesting that shifts in mi-

crobial GABA metabolism may have systemic and neurological

consequences in ASD.

Our results, in line with previous studies, indicate an increased

abundance of the genus Escherichia in individuals with ASD.

Strati et al. reported a link between constipation and distinct

bacterial profiles in autistic and neurotypical subjects, with

constipated autistic individuals exhibiting high levels of Escheri-

chia/Shigella.33 Although not the primary focus of their work, Dan

et al. reported elevated abundance of Escherichia/Shigella in

both the non-constipated ASD group and the overall ASD group

compared to the TD controls.10 More recently, a large-scale clin-

ical study reported an early-life increase in Escherichia abun-

dance in subjects with ASD,56 aligning with the age range of

our cohorts. These consistent observations across studies un-

derscore the potential significance of Escherichia in ASD. Our

investigation extends these findings by linking the Escherichia

overrepresentation to disrupted GABA metabolism. The conver-

sion of Glu to GABA in Escherichia species is known to facilitate

adaptation to acidic environment,57 like the intestinal tract.

Indeed, we found that specific adhesins associated with E. coli

were positively correlated with the GABA/Glu ratio, indicating

an adaptive metabolic response by Escherichia during intestinal

colonization. This link is further supported by findings of signifi-

cantly elevated Escherichia-specific gadA and gadB abundance

in both children with ASD and E. coli-challenged mice. We also

investigated potential relationships between other known

GABA producers (e.g., Bacteroides, Parabacteroides, Bifido-

bacterium, and Lactobacillus)34,58 and GABA metabolism in

our ASD cohort. However, these genera were either reduced or
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unchanged in subjects with ASD and showed no significant as-

sociation with the fecal GABA/Glu ratio (Figure S3A). Addition-

ally, the Bacteroides-specific gad gene exhibited a decreasing

tendency (Figure S3B).

We established an E. coli transplantation experiment in wean-

ing mice to simulate an Escherichia-enriched GM community

similar to that observed in preschoolers with ASD. Notably, the

behavioral phenotype of this mouse model is similar to that

observed in mice with a global deficit of the chd8 gene,59 one

of the major genetic risk factors associated with ASD. Our find-

ings suggest that postnatal factors, such as an Escherichia-en-

riched GM and aberrant GABA metabolism, may play significant

roles in modulating social behaviors. This has important implica-

tions, as targeting gut microbial contributors is likely more

feasible with current medical interventions, especially when cor-

recting genomic mutations remains challenging.

We observed a reduced intake of fiber-rich foods, such as

fruits, vegetables, fungi, and algae, among children with ASD.

This is notable given prior research indicated that low-fiber diets

can promote the overrepresentation of potentially pathogenic

bacterial genera, including Enterobacteriaceae, Escherichia/

Shigella, and Clostridium XIVa.60 Consistent with these findings,

our results demonstrate an increased abundance of Escherichia/

Shigella in children with ASD, suggesting that dietary practices

may contribute to GM dysbiosis. Furthermore, we unveiled a

link between Escherichia overrepresentation and aberrant

GABAmetabolism. Metabolites central to the GABAmetabolism

pathway, such as GABA and succinate, are well recognized for

their influence on host appetite and food preferences.61 This

aligns with prior studies that connect altered GABA metabolism

with atypical feeding behaviors, including diminished post-

weaning feeding, hyperphagia, and heightened hunger-induced

appetite.61 Collectively, these findings suggest a bidirectional

relationship in children with ASD, where the host’s physiological

state not only shapes dietary preferences but is also reciprocally

influenced by changes in GM composition. This intricate inter-

play between diet, microbiota composition, and GABA meta-

bolism may contribute to the complex etiology of ASD and un-

derscores the potential of microbiota-targeted interventions in

managing ASD-related symptoms.

Limitations of the study
Firstly, the sample sizes in our clinical ASD cohorts were rela-

tively modest. This limitation is shared across much of ASD-

related microbiome research globally, where sample sizes often

range from dozens to a few hundred participants, largely due to

challenges in consistent recruitment and the high costs associ-

ated with sequencing. We employed a two-phase study design:

an initial comprehensive screening to delineate the metabolite-

microbiome axis, followed by a validation phase to confirm the

reproducibility of our findings. To enhance the representative-

ness of our ASD cohort in future work, a meta-analysis incorpo-

rating published studies and publicly available datasets could be

valuable. Secondly, although Escherichia species are conceptu-

ally known as GABA producers, we have yet to elucidate the

explicit mechanisms underlying the relationship between gut Es-

cherichia and the GABA metabolism within the entire GM com-

munity, which is worth in-depth investigations in the future.



Article
ll

OPEN ACCESS
Lastly, while our preliminary findings suggest that E. coli trans-

plantation influences social behavior in animal models, addi-

tional research is needed to elucidate these effects. Our conclu-

sions are based on a limited range of behavioral tests, and

broader testing would provide a more comprehensive assess-

ment of the role of E. coli in social behavior regulation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Stools from patients with autism spectrum

disorder and typical development children

This paper N/A

Deposited data

16S RNA sequencing data NCBI SRA BioProject ID: PRJNA1046699

Metabolomics data Metabolights Metabolights ID: MTBLS11524, MTBLS11483

Experimental models: Organisms/strains

E. coli China Center of Industrial

Culture Collection, China

CICC 20658

E. coli DH5a Sangon Biotech B528413

E. coli with KO-gadA This paper N/A

E. coli with KO-gadB This paper N/A

E. coli with KO-gadA/gadB This paper N/A

Oligonucleotides

Primer: 16S rRNA (V3-V4) Forward primers:

ACTCCTACGGGAGGCAGCAG

This paper N/A

Primer: 16S rRNA (V3-V4) Reverse primers:

GGACTACHVGGGTWTCTAAT

This paper N/A

Primer: Escherichia/Shigella-gadA Forward

primers: TAACGGATTTCCGCTCAGA

This paper N/A

Primer: Escherichia/Shigella-gadA Reverse

primers: TCGTTTTGACTCCGCGATAGTA

This paper N/A

Primer: Escherichia/Shigella-gadB Forward

primers: AACGGATTTAAGGTCGGAAC

This paper N/A

Primer: Escherichia/Shigella-gadB Reverse

primers: ACGTTTTGATTCTGCGATAGTG

This paper N/A

Primer: Bacteroides-gad Forward primers:

GTTCAGACAGAATGTTACAACCC

This paper N/A

Primer: Bacteroides-gad Reverse primers:

CATATAAGTGGTAACGAAAGTAGCC

This paper N/A

Primer: gadA test-Forward primers:

ATCAGGTAGGCAAAGAGCTG

This paper N/A

Primer: gadA test-Reverse primers:

GTCACCGCCATTAAAATAGCG

This paper N/A

Primer: gadB test-Forward primers:

GACTGAGCAGGAGCAATTGT

This paper N/A

Primer: gadB test-Reverse primers:

GTGAGCTGCTTAGCTTTACC

This paper N/A

Primer: gadA ssDNA donor: TTTTATTGCCTT

CAAATAAATTTAAGGAGTTCGAATAACATCA

CGTTGTAAAAACCGAATGCCCAACCTT

This paper N/A

Primer: gadB ssDNA donor: TTTTAATGCGAT

CCAATCATTTTAAGGAGTTTAATAACGTTTA

ACGGTAACGGTGTCCCGAAACGAAGC

This paper N/A

Primer: sgRNAgadA-F1: TAGTAAAGGCCAT

TTCTACTATCG

This paper N/A

Primer: sgRNAgadA-R1: AAACCGATAGTA

GAAATGGCCTTT

This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primer: sgRNAgadB-F1: TAGTGCAAGTAAC

GGATTTAAGGT

This paper N/A

Primer: sgRNAgadB-R1: AAACACCTTAAAT

CCGTTACTTGC

This paper N/A

Recombinant DNA

Plasmid: pCasKP-apr Wang et al.62 N/A

Plasmid: pSGKP-spe Wang et al.1 N/A

Plasmid: pSGKP-gadA This paper N/A

Plasmid: pSGKP-gadB This paper N/A

Software and algorithms

R (v3.6.3) R statistical software www.R-project.org/

SPSS (version 22) IBM SPSS Statistics N/A

QIIME 2.0 Bolyen et al.63 https://qiime2.org/

DADA 2.0 Callahan et al.64 https://benjjneb.github.io/dada2/

GraphPad Prism (v9) GraphPad Software N/A

SIMCA 14.1 SIMCA Software N/A

Article
ll

OPEN ACCESS
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical statement
This human gutmicrobiota study was reviewed and approved by the Ethical Committee of The Seventh Affiliated Hospital of Sun Yat-

sen University (No. 2018041901) and Sun Yat-sen Memorial Hospital (No. BAP20240677). Written informed consent was obtained

from the guardians of the participants. Additionally, our animal study was reviewed and approved by the Animal Care and Use Com-

mittee of the Southern University of Science and Technology (Number: SUSTC-2019-155).

Human study design
Participant recruitment

Our study was systematically structured into two distinct phases: the screening phase and the validating phase. In the screening

phase, children with ASD were recruited through ARK Autism & Rehabilitation Institute (Shanxi, China). In the validating phase, in-

dividuals with ASDwere drawn from diverse sources, including ARK Autism & Rehabilitation Institute (Shanxi, China), Shenzhen Hos-

pital (Guangdong, China), and Sun Yat-sen Memorial Hospital (Guangdong, China). Children with TD were included in the study from

kindergartens and communities in proximity to the relevant ASD institutes. Inclusion criteria were set up as follows: 1) three to seven-

teen-year-old children with diagnosed ASD according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition

(DSM-5) and age matched subjects with TD; 2) mild ASD cases assessed as per the CARS. In order to control for the associated

biomedical and environmental confounders that may affect the subsequent analyses, exclusion criteria were set up as follows: 1)

on unbalanced diets (completely refusing or extremely favoring specific staple foods); 2) diagnosed with severe ASD; 3) suffering

from other neurologic or psychiatric disorders including epilepsy, schizophrenia, depression and attention-deficit/hyperactivity dis-

order; 4) suffering from intestinal infectious diseases; 5) antibiotic or probiotic administration within a month before sampling. To

ensure temporal alignment, a questionnaire investigation was conducted with the enrolled children within two weeks preceding

the stool sampling. Information on all participants, including age, gender, city, dietary habit, manner of birth, administration of

drug/healthcare products and common pathological conditions (neurologic, psychiatric and gastrointestinal diseases), were gath-

ered via questionnaire. Finally, two cohorts were recruited: a screening cohort (ASD vs. TD = 56 vs. 67) and a validating cohort

(40 vs. 40) for autistic GM profiling screening and validation.

Fecal sampling principles and specimen consistency

To ensure high-quality samples, fecal sampling was conducted by the guardians of the research participants. They were trained in

basic aseptic techniques, recognition of stool consistency, and the sampling procedure. First, assisted by their guardians, partici-

pants were all required to defecate on a prepared cellulose core diaper to separate feces from urine. Stool consistency of each

excreta was then evaluated using the Bristol Stool Chart. Only corn-on-cob-like (type 3) or sausage-like (type 4) feces, indicative

of normal stool, were sampled. Next, to avoid potential air-borne contamination, the surface part of the feces was not used. Instead,

a sterile sampling scoop was used to withdraw the inner core of the stool. Finally, about 2 g of quality specimen were collected in a

sterile collecting tube. These samples were refrigerated within 30min of collection, and then handed over to one of our staff members

for snap freezing and shipping by dry ice. For biological replicates, each participant’s fecal sampling was performed two to three

times, with a minimum interval of 48 h. The samples were aliquoted and stored at �80�C. They were later subjected to Ultra
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Performance Liquid Chromatography with Tandem Mass Spectrometry (UPLC-MS/MS), Gas Chromatography-Mass Spectrometry

(GC-MS), 16S rRNA gene sequencing, metagenomics or qPCR.

Sample grouping for multi-omics investigation

To mitigate analytical biases arising from random events during sampling, such as emotional fluctuations, subtle changes of daily

diets, and weather variations, we utilized different sample sets from the screening cohort for multi-omics studies. The first sampling

was dedicated to analyzing the metabolic and structural features of the GM and for screening distinct metabolites or taxa. The sec-

ond and third samplings were employed for the functional analysis of changes in autistic GM. Samples from the validating cohort

were specifically used to validate key findings.

Animal study design

Male C57BL/6J mice were housed in a pathogen-free facility under a 12-h light/12-h dark cycle. The 3-week-old male mice (P [post-

natal day] 21) were randomly divided into an experimental group and a control group and then housed separately. Starting from P21,

the experimental group was challenged with wild-type gut commensal E. coli by daily gavage at a dose of 108 per mouse for 5

consecutive days. Meanwhile, phosphate-buffered saline (PBS) was used as placebo in the control group. Subsequently, mice

were housed for another 7 days for E. coli colonization. At P32, fecal samples from mice were collected and all mice were subjected

to behavioral tests. The principles for mouse fecal sampling and storage were similar to those used in human studies. Each mouse

was placed in an individual sterilized box for defecation. During sampling, any urine present was immediately wiped off with an anti-

septic swab. Stool consistency was evaluated as previously described.65 Accordingly, only hard-formed fecal stools, indicative of

normal stool, were collected using sterilized tweezers and stored in tubes. Soft, unformed, or urine-contaminated samples were

discarded.

METHOD DETAILS

Targeted metabolomics
In this study, a thorough metabolomics analysis was performed, which included two distinct rounds in the screening cohort and a

subsequent validation round in the validating cohort. Initially, neurotransmitters, SCFAs, and BAs were analyzed using the first sam-

pling from the screening cohort. Subsequently, the second sampling from this cohort was employed to investigate metabolites spe-

cifically associated with GABA metabolism. In the final phase, samples from the validating cohort were utilized to re-evaluate neuro-

transmitter levels, with the aim of confirming our key findings.

The analytical procedures employed in this study varied according to themetabolites being assessed. Neurotransmitters, BAs, and

metabolites specific to GABA metabolism were analyzed using UPLC-MS/MS, while SCFAs were quantified via GC-MS. To ensure

accuracy, isotope-labeled internal standards (ISs) were utilized for most measurements. However, for the neurotransmitter analysis

in the screening cohort, external standards (ESs) were applied.

Quantification methodologies in this study varied depending on the type of standard used. For ISs, we calculated peak area ratios

(PARs) by dividing the peak areas of the analytes by those of the ISs, enabling absolute quantification based on IS calibration curves.

In contrast, when using ESs, the peak areas of the analytes were corrected relative to the ESs’ peak areas, facilitating relative quan-

tification. All standards employed in this study were sourced from Applied Protein Technology, Shanghai, China.

Sample preparation & extraction
To investigate the levels of different metabolite types, fecal samples were prepared using distinct methods. Neurotransmitter sam-

ples were prepared in pre-cooled acetonitrile containing 1% (v/v) formic acid (FA). Samples for BAs were added to pre-cooled meth-

anol. For metabolites specific to GABAmetabolism, samples were added to a pre-cooled solution of acetonitrile, methanol andwater

(2:2:1, v/v/v). After vortexing, these homogenates were incubated for 20 min at �20�C to precipitate proteins, followed by centrifu-

gation at 14,000 g for 15 min at 4�C. The collected supernatants were then dried under vacuum. Next, the above sample extracts

were in turn redissolved in solutions of acetonitrile in water (1:1, v/v), methanol in water (1:1, v/v), and acetonitrile and methanol in

water (2:2:1, v/v/v), and centrifuged as described above. The supernatants were collected and subjected to UPLC-MS/MS. Fecal

samples for assessing SCFAs were prepared in 15% (v/v) phosphoric acid, and subjected to GC-MS.

UPLC-MS/MS procedure
For neurotransmitters measurement, an Agilent 1290 Infinity UPLC system (Agilent, USA) equipped with an Acquity UPLC BEH C18

column (1.7 mm3 2.1 mm3 100 mm, Waters, Canada) was used to analyze the samples. The samples were put in an auto-sampler

(chromatographic column temperature, 45�C; flow velocity, 300 mL/min). The mobile phase consisted of 0.1% (v/v) ammonium

formate (liquid A) and acetonitrile with 0.1% (v/v) FA (liquid B). A gradient-elution program was set as follows: starting from 90%

B at 0 min, linear gradient was decreased to 40% B over 18 min; then eluent B was returned to 90% within 1 s and maintained

for 5 min. Subsequently, an electrospray ionization (ESI)-triple 5500 quadrupole-linear ion trap (QTRAP)-mass spectrometer (AB

SCIEX, USA) was applied to conduct mass spectrometry (MS) analysis in positive ion mode (ESI+). The ESI+ source conditions

were as follows: ion spray voltage floating (ISVF), 5000 V; ion source gas1 (Gas1), 60; ion source gas2 (Gas2), 60; curtain gas

(CUR), 30; source temperature, 450�C.
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For BAs measurement, a Waters Acquity UPLC I-Class system (Waters, USA) equipped with the Acquity UPLC BEH C18 column

was used to analyze the samples. Samples were put in an auto-sampler (chromatographic column temperature, 45�C; flow velocity,

300 mL/min). Themobile phases were pure water with 0.1% (v/v) FA (liquid A) andmethanol (liquid B). A gradient-elution programwas

set as follows: starting from 60%B at 0 min, linear gradient was increased to 65%B over 6 min and further to 80% Bwithin 5 s; then,

eluent Bwas returned to 90%within 1 s andmaintained for 9min. Subsequently, the 5500QTRAP-mass spectrometer was applied to

conduct MS analysis in negative ion mode (ESI -). The ESI - source conditions were as follows: ISVF, �4500 V; Gas1, 55; Gas2, 55;

CUR, 40; source temperature, 550�C.
To measure metabolites specific to GABA metabolism, the Waters UPLC system was equipped with the same sampler using the

same column conditions as described above for bile acids measurement. Themobile phases were pure water with 1.2% (v/v) ammo-

nium (liquid A) andmethanol with 0.2% (v/v) FA (liquid B). A gradient-elution programwas set as follows: starting from 75%Bat 0min,

linear gradient was first decreased to 62%Bover 10min and further to 40%Bover the next 5min; then, eluent Bwas returned to 75%

within 30 s and held for 17min. Subsequently, the 5500QTRAP-mass spectrometer was applied to conduct MS analysis in both ESI+

and ESI- as described above.

Multiple Reaction Monitoring (MRM) was used for acquisition, detection, and quantification of metabolites in this study. Multi-

Quant software (v3.0.2) was used to extract and correct the peak area and retention times from the chromatograms. The relative con-

tent of each corresponding metabolite was represented by the area of its respective peak.

GC-MS procedure
For SCFA analysis, an Agilent 6890N/5975B GC-MS spectrometer (Agilent, USA) was applied. Samples were added with

4-methylvaleric acid as an internal standard (83 ppm; Thermo Fisher Scientific), and put in an automatic sampler (carrier gas, he-

lium; flow velocity, 1.0 mL/min; injection port temperature, 250�C; split injection, split ratio 10:1; solvent delay, 2.2 min) An HP-

INNOWAX capillary GC column (30 m 3 0.25 mm 3 0.25 mm, Agilent) was used to separate the samples. Temperature program-

ming was as follows: the initial temperature of the column oven was set at 90�C, and then increased to 120�C at a speed of 10�C/
min, to 150�C at 5�C/min and finally to 250�C at 25�C/min, where it was held for 2 min. Subsequently, MS conditions were set as

follows: electron bombardment ionization source; iron source temperature, 230�C; quadrupole temperature, 150�C; electron en-

ergy 70 eV.

Selected Ion Monitoring (SIM) mode was utilized for the detection of SCFAs. The MSD ChemStation software (v2.0) was used to

extract and correct the peak area and retention time from the chromatograms. This allowed for the determination of the relative con-

tent of SCFAs, based on peak areas, and their identification, based on retention times.

Genomic analysis
Extraction of genomic DNA

Bacterial DNAwas extracted from fecal stools using theQIAampDNAStoolMini Kit (QIAGEN, Germany) following themanufacturer’s

instructions. The presence and quality of genomic DNA were then assessed through 1% (w/v) agarose gel electrophoresis.

Bacterial 16S rRNA gene sequencing and annotation

The barcoded primers used to amplify the V3-V4 region of the 16S rRNA gene were 319F/806R.66 The sequencing library was gener-

ated using the NEB NextUltraDNA Library Prep Kit for Illumina (NEB, USA), following the manufacturer’s instructions. Sequencing

was performed on an Illumina HiSeq2500 platform (Illumina, USA). QIIME (v2.0) served as the amplicon read processing pipeline

(https://qiime2.org/).63 Briefly, demultiplexed paired-end reads underwent initial trimming with Trimmomatic67 to remove low-quality

reads (Phred quality score <25, length <187 bp). These trimmed reads were then denoised with DADA264 to eliminate primer

sequence (forward: 27 bp, reverse 30 bp). A phylogenetic tree was generated by FastTree,68 following multiple sequence alignment

andmasking of highly variable positions usingMAFFT.69 Taxonomywas assigned using a pre-trained Naive Bayes classifier70 based

on the pre-created Greengene 13_8 99% identity OTUs.71

Metagenome sequencing and annotation

The sequencing library formetagenome sequencingwas generated using the TruSeqDNASample Prep Kit (Illumina) followingmanu-

facturer. Paired-end sequencing was then performed on the Illumina HiSeq2500 platform. Host sequences were filtered out using

BWA (http://bio-bwa.sourceforge.net) and remained reads were assembled with Megahit (https://github.com/voutcn/megahit).

The annotations for taxonomy, functional pathway and bacterial virulence factors were performed with BLASTP (v2.2.31+). This pro-

cess involved querying against the Non-Redundant Protein Sequence Database (https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/),

KEGG (http://www.genome.jp/kegg/) and the VFDB (http://www.mgc.ac.cn/) respectively.

Quantification of glutamate decarboxylase in genera Escherichia and Bacteroides

Primers were designed against Escherichia- or Bacteroides-specific GAD DNA sequences obtained from the National Center of

Biotechnology Information (NCBI). Two orthologs of gad in Escherichia were detected by Escherichia-gadA-qF/qR and Escheri-

chia-gadB-qF/qR; Bacteroides-specific gad was detected by primer pair Bacteroides-gad-qF/qR. The qPCR reaction mixture for

amplification consisted of 2 mL of Roche Fast Start LightCycler Mastermix, forward and reverse primers (0.5 mM each), 3.2 mM

MgCl2 and nuclease-free water to a final volume of 15 mL. The amplification cycles consisted of incubation at 95�C for 30 s, at

57�C for 30 s, and 72�C for 30 s. Cycle threshold values weremeasured and target gene concentration was analyzed. Standard curve
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generation, qPCR efficiency determination, and gene copy number calculation were performed using the 7500 Fast SystemSDS v1.4

software (Thermo Fisher Scientific).

Gene engineering in E. coli
Microbe strains

The gut commensal strain of E. coli (CICC20658) was purchased from the China Center of Industrial Culture Collection (CICC), China.

Materials and growth conditions
The bacterial strains, plasmids, and primers used in this study are detailed in the key resources table. Escherichia coli strains were

cultured in Luria-Bertani (LB) medium with specific antibiotics at the following concentrations: 30 mg/mL apramycin and 100 mg/mL

spectinomycin.

sgRNA design and plasmid construction
Subgenomic RNAs (sgRNAs), each with a 20-nucleotide (N20) base-pairing region, were designed using CRISPR sgRNA design soft-

ware (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Two sets of oligonucleotides (gadA test-F/gadA test-R and gadB test-F/gadB test-R)

were ligated into the pSGKP-spe plasmid digested by BsaI and then transformed into E. coli DH5a competent cells.

Generation of gadA and gadB deletion mutants
Deletion Mutants: Nonpolar, markerless, in-frame deletions of gadA and gadB genes were generated using 70bp single-stranded

DNA (ssDNA) repair templates via homologous recombination.62 Electroporation and Selection: The pCasKP-apr plasmid was intro-

duced into wild-type E. coli, with transformants selected using apramycin on LB agar plates. Co-electroporation and Cointegrants:

The plasmids pSGKP-gadA and pSGKP-gadB, along with ssDNA, were co-electroporated into the pCasKP-harboring E. coli strain.

Cointegrants were then selected on LB agar plates containing both apramycin and spectinomycin, which facilitated the selection due

to genome double-strand breaks and subsequent homologous recombination. Colony qPCR Screening: Colony qPCR was used to

identify clones carrying the mutant alleles. Double Mutants: To generate double mutants lacking either gadA or gadB, both plasmids

were removed by incubating the bacteria at 37�C on sucrose plates, allowing colonies to emerge.

Preparation of electrocompetent cells
Wild-type E. coli cells were prepared for electroporation by initially growing them in an overnight culture. Similarly, E. coli cells

harboring the pCasKP plasmid were prepared for electroporation, with the additional step of inducing these cells with L-arabinose.

Electroporation
The electrocompetent E. coli cells were mixed with either the plasmid or the donor template prior to electroporation. Following elec-

troporation, the cells were allowed to recover and then plated on LB agar plates containing specific antibiotics. This selection step

ensured the growth of only those cells that were successfully transformed.

Generation of dual gadA/gadB gene deletion mutants
To create mutants lacking the gadA gene, we employed a curing process on sucrose plates containing spectinomycin. The gadB

deletion mutants were then generated using the same method as previously described.62 This established method was adapted

for the simultaneous deletion of both gadA and gadB genes, resulting in the creation of dual gene deletion mutants.

Assessment of GABA production in E. coli mutants
To evaluate GABA production in wild-type E. coli and its gadA, gadB, and dual gadA/gadB gene deletion mutants, we employed a

GABA assay kit (Shanghai Enzyme-linked Biotechnology Co., Ltd., China). Briefly, bacterial cultures were grown using standard

microbiological techniques. The cells were harvested and lysed, either through sonication or another suitable cell lysis method, to

release intracellular components. For the GABA assay, we adhered to the kit’s protocol, with minor modifications to suit our exper-

imental needs. This included incubating the bacterial lysate in LB liquid medium enriched with glutathione at 37�C, with shaking at

220 rpm, and allowing the incubation to proceed overnight. GABA concentrations were quantified by measuring absorbance at

600 nm using a spectrophotometer and comparing the results to the standard curve provided with the kit.

Quantification of E. coli and Escherichia-specific glutamate decarboxylase
Primers targeting the 16S rDNA sequence of gut commensal E. coliwere designed as previously described.72 For quantifying Escher-

ichia-specific gadA and gadB, we employed the same primers used in the human study. The qPCR procedure was conducted using

the samemethodology as described in the earlier section of this paper, ensuring consistency across both human and animal studies.

Behavioral tests on mice
Video recording during the behavioral tests were performed by EthoVision XT software (Noldus Information Technology, Lees-

burg, USA).
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Three-chamber test
The social preference and social recognition abilities ofmicewere assessedusing a three-chamber apparatus (60340320cm, L xWx

H)aspreviouslydescribed.73,74Briefly, theapparatuswasdivided into three interconnectedchambers,withsmall cagesplaced in the left

and right chambers, while the middle chamber remained empty. For habituation, the test mouse was first placed in the apparatus for

10min. To evaluate social preference, the testmicewere given the option to interact with an age- and gender-matched strangermouse

(Stranger 1) in the left chamber or to stay near the empty cage in the right chamber for the following 10min. For social recognition assess-

ment, a second stranger mouse (Stranger 2) was introduced into the previous empty cage in the right chamber for the final 10 min. The

accumulative time that the test mouse spent in interacting with the empty cage, stranger 1 or stranger 2 was respectively recorded.

Marble-burying test
The repetitive behavior of mice was assessed in a mouse cage (423 243 12 cm, L xW x H) laid with 5 cm-thick corncob bedding as

previously described.75 Briefly, 20 glass beads (each 15mm in diameter) were put into the cage and regularly divided into five rows (4

beads in each row). Then, the test mouse was placed in the cage for 30 min. The number of buried glass beads (being buried more

than 50% of volume) was counted.

Open field test
Grooming, voluntary movement and anxiety behavior of mice were assessed in an open box (40 3 40 3 40 cm, L x W x H) as pre-

viously described.73,76 Briefly, the open box was divided equally into 16 smaller grids and the central 4 grids were set as the central

area (20 3 20 cm). Then, the test mouse was placed in the cage for 10 min. The grooming time of each mouse was recorded artifi-

cially. The speed, traveling distance and the time of each mouse that spent in the central area were calculated.

Novel object recognition
Recognition memory of mice was assessed in a box (40 3 40 3 40 cm, L x W x H) as previously described.73,77 After 10-min habit-

uation in the box, the test mousewas exposed to two identical objects for another 10min. Then, one object was replacedwith a novel

object and the mouse was subsequently allowed to explore the objects for 10 min. The sniffing time at the proximity of each object

within 2 cm or directly in touching the objects was recorded.

Elevated plus maze
The anxiety behavior of mice was assessed in a 1 m height platform consisting of 4 arms (two open arms and two closed arms

crossed together) as previously described.73 The test mouse was initially placed in the central area and their trails were recorded

for 5 min. The accumulative time of the mouse in open arms and closed arms was calculated.

Reciprocal social interaction
As previously reported,78 the test mouse was placed in a new cage and exposed to an age- and gender-matched stranger mouse for

10 min. The time of social interactions between the two mice (e.g., close following, touching, nose-to-nose sniffing, nose-to-anus

sniffing, and crawling over/under each other) was calculated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R statistical software (v4.4.1) (www.R-project.org/) and SPSS (v22).

Confounders determination
Wilcoxon rank-sum test and Chi-square test were used to compare the average of continuous variables and frequency of nominal

variable, respectively, between ASD and TD, with p < 0.05 as significant. Logistic regression was exploited to test the association

between covariates and ASD diagnosis, with p < 0.05 as significant.

Metabolism profiling
INT upon levels and ratios of metabolites was performed to achieve normally distributed data after adjusting for confounders. Stu-

dent’s t test was used to compare the average of continuous variable between ASD and TD. Obtained p-value of metabolites and

ratios were adjusted by the Benjamini-Hochberg (BH) procedure. PLS-DA was exploited to calculate VIP values of metabolites or

ratios via using SIMCA (v14.1). PLS-DA plots were used to draw metabolites profiling of the two groups. The profiling differences

between the two groups were tested by PERMANOVA, with p < 0.05 as significant. Differential metabolites or ratios between the

two groups were determined by employing a threshold of p < 0.05, FDR <0.1 and VIP >1. ROC analysis was exploited to test the

performance of potential markers for ASD.

Microbial profiling
Relative abundances of theGMgenera were analyzed using a-diversity and b-diversity analyseswith QIIME (v2.0). The values of a-di-

versity were presented as the Chao index and Shannon index. The values of b-diversity weremeasured using PCoA. PCoA plots were
e6 Cell Reports Medicine 6, 101919, January 21, 2025

http://www.R-project.org/


Article
ll

OPEN ACCESS
used to draw microbial profiling of the two groups. The profiling differences between the two groups were tested by PERMANOVA,

with p < 0.05 as significant. Comparison of Chao index, Shannon index and microbial relative abundance between the two groups

were conducted via Wilcoxon rank-sum test, with p < 0.05 as significant. Differential genera were determined by the MaAsLin2 and

LEfSe algorithms followed by BH procedure, with p < 0.05, FDR <0.1 as significant. For MaAsLin2, the ‘‘LM (linear model)’’ method

and ‘‘CLR (centered log ratio)’’ normalization were used.32

Genetic profiling
Gene abundance was presented as count, and pathway abundance was calculated by summing relative gene abundances. Differ-

ential genes or pathways between the two groups were determined by Wilcoxon rank-sum test followed by BH procedure, with

p < 0.05, FDR <0.1 as significant.

Integrated analysis
Pearson analysis was utilized to test association betweenmetabolites, ratios, genera, genes or pathways, with p < 0.05 as significant.

Before Pearson analysis, INT was performed to achieve normally distributed data after adjusting for confounders.

ADDITIONAL RESOURCES

No other additional resources.
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