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Abstract

The classification of Fano varieties up to deformation is a longstanding open prob-

lem. The Fanosearch program is an approach to Fano classification which uses

mirror symmetry to translate the geometric classification question into a combi-

natorial problem. Under mirror symmetry, deformation classes of 𝑛-dimensional

Fano varieties conjecturally correspond to mutation classes of rigid maximally mu-

table Laurent polynomials in 𝑛 variables. In this thesis, we use this correspondence

to better understand the birational classification of Fano varieties, by asking the

question:

Is there a combinatorial condition on pairs of Laurent polynomials that

is equivalent to their mirror Fano varieties being related by a blow-up?

We introduce a new method of constructing a Fano mirror to a given Laurent poly-

nomial, using constructions from the Gross–Siebert program. Our new construction

is more complicated than previous approaches, but is more conceptual and applies

in significantly greater generality – in particular, it does not rely on a construction of

the Fano as a complete intersection inside a toric variety. In the case that two given

Laurent polynomials satisfy a particular combinatorial relationship, both mirror

schemes produced by our method can be related by a birational map.

We prove that the mirrors to the two Laurent polynomials 𝑓 = 𝑥+ 𝑦+1/𝑥𝑦 and

𝑔 = 𝑥 + 𝑦 + 𝑥𝑦 + 1/𝑥𝑦 produced by our new construction are related by a birational

morphism 𝑋𝑔 → 𝑋 𝑓 . We show moreover that the restriction of this morphism to

the general fibres of the families𝑋𝑔 and𝑋 𝑓 gives the blow-up of the projective plane

P2 in a single point.
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Fano varieties are fundamental building blocks in algebraic geometry, both in the

birational classification of algebraic varieties and as a rich source of explicit examples

and constructions. After bounding the complexity of the singularities allowed, there

are finitely many deformation classes of Fano variety in each dimension, and their

classification – finding a ‘Periodic Table of shapes’ – is a longstanding open problem.

On the other hand, a set of ideas coming from string theory, called Mirror Sym-

metry, has had a remarkable impact on mathematics. Mirror Symmetry expresses

an equivalence between type IIA and type IIB string theory: in mathematical terms,

it implies that the enumerative geometry of a space 𝑋 is equivalent to the complex

geometry of a different space 𝑋̌ called the mirror to 𝑋.

The main idea behind the Fanosearch program is to use Mirror Symmetry to

understand the Fano classification problem. Mirror symmetry induces a conjectural

correspondence between deformation classes of Fano varieties and mutation classes

of certain Laurent polynomials. In this thesis I explore how combinatorial changes

to the Laurent polynomials result in birational transformations of their Fano mirrors.

This is an important step towards understanding the mirror correspondence, both

in terms of proving it and in terms of using it to understand the classification of

Fano varieties – i.e., ‘find the groups in the Periodic Table’.

The Fanosearch approach to mirror symmetry has a wealth of examples, but

there are few systematic results about the correspondence. Conversely, the mirror

constructions from the Gross–Siebert program apply in much greater generality,

but their output is complicated to describe, and as such few examples have been

computed. This thesis links the two approaches to mirror symmetry, providing

new methods for describing the relationships between Gross–Siebert mirrors to a

pair of general Laurent polynomials, without needing the full description of their
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coordinate rings.

As well as deepening our conceptual understanding of mirror symmetry, this

new approach has implications for the Fano classification problem. Once the results

have been adapted to higher dimensions, they can be applied to find combinatorial

criteria on pairs of Laurent polynomials in more than two variables which imply

that their mirror Fanos are related by a blow-up map. It is then a manageable

computational task to search for chains of Laurent polynomials linked by the criteria,

mapping out mirror Fano varieties and birational morphisms between them.
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Introduction

0.1 Mirror symmetry and Fano varieties
Fano varieties are fundamental building blocks in algebraic geometry, both in the

birational classification of algebraic varieties [8,32,39,45,46], and as a rich source of

explicit examples and constructions. If we bound the complexity of the singularities

allowed, then there are finitely many Fano varieties in each dimension up to defor-

mation [7,39,40]. Many explicit constructions have been given, but the classification

of (deformation classes of) Fano varieties is a longstanding open problem. Smooth

Fano varieties have been classified up to dimension three. In dimension one, the

only Fano variety is projective space P1. In dimension two, there are the ten del

Pezzo surfaces: P2, P1 × P1 and the blow-up of P2 in up to 8 points [17]. The smooth

three-dimensional Fano varieties were classified by Fano [19], Iskovskikh [36–38]

and Mori–Mukai [47]: there are 105 deformation families. For smooth Fano varieties

in dimensions four and higher, very little is known.

In the setting of the Minimal Model Program, a more natural question is not the

classification of smooth Fano varieties, but rather the classification of Fano varieties

withQ-factorial terminal singularities – calledQ-Fano varieties – up toQ-Gorenstein

deformation. Despite the fundamental importance of this problem, once again very

little is known – even in dimension three.

The main idea behind the Fanosearch program [12,13] is to use Mirror Symme-

try, a set of ideas coming from string theory, to understand the Fano classification

problem. Mirror Symmetry expresses an equivalence between type IIA and type

IIB string theory: that the enumerative geometry of a space 𝑋 is equivalent to the

complex geometry of a different space 𝑋̌ called the mirror to 𝑋. In our context,

enumerative invariants of a Fano variety 𝑋 determine and are determined by the

complex geometry of its mirror 𝑋̌, which is expected to be a cluster variety. One can
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equivalently think of an 𝑛-dimensional cluster variety, plus a distinguished function

on it, as being given by a collection of Laurent polynomials 𝑓 ∈ C[𝑥±1
1 , 𝑥±1

2 , . . . , 𝑥±1
𝑛 ].

Roughly speaking, even though classifying Fano varieties is a hard problem in

geometry, classifying the Laurent polynomials that give ‘mirror partners’ to Fano

varieties turns out to be an easier problem in combinatorics. Mirror Symmetry, at

least in the form that we need it, is still conjectural, but the Fanosearch approach

potentially both reveals the classification of Fano varieties and opens the way to

proving it. The mirror partners to Q-Fano varieties are called maximally mutable

Laurent polynomials (MMLPs).

Conjecture 0.1.1 (see [15]). There is a one-to-one correspondence between 𝑛-dimensional

Q-Fano varieties with terminal locally toric rigid singularities (up to deformation) and rigid

maximally mutable Laurent polynomials in 𝑛 variables (up to an equivalence relation called

mutation).

Let us say more about what it means for a Q-Fano variety 𝑋 to correspond to a

Laurent polynomial 𝑓 under Mirror Symmetry [12]. The regularised quantum period

of 𝑋 is a power series

𝐺̂𝑋 := 1 +
∞∑
𝑘=2

𝑘!𝑐𝑘𝑡𝑘

with coefficients 𝑐𝑘 that are genus-zero Gromov–Witten invariants [6, 41, 42, 44].

These can be thought of intuitively as counts of rational curves of a given degree

𝑘 which pass though a fixed generic point and satisfy certain constraints on their

complex structure. We say a Laurent polynomial 𝑓 is mirror to a Fano variety 𝑋 if

the classical period

𝜋 𝑓 =

∞∑
𝑘=0

coeff1( 𝑓 𝑘)𝑡𝑘

and the regularised quantum period 𝐺̂𝑋 are equal as power series. Here coeff1( 𝑓 𝑘)

denotes the coefficient of the constant term of 𝑓 𝑘 . This numerical relationship

between power series is expected to arise from a geometric relationship between 𝑋

and 𝑓 : if 𝑋 is mirror to 𝑓 then there is expected to be a one-parameter degeneration

with general fibre 𝑋 and special fibre the toric variety 𝑋Σ, where Σ is the spanning

fan of the Newton polytope of 𝑓 .

There are expected to be tens of thousands of deformation classes of both
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smooth Fano fourfolds and Q-Fano threefolds. To understand the classification

problem, therefore, we will need to regard the many deformation classes as forming

a much smaller number of families – namely the families of varieties related by

birational equivalence studied in the Minimal Model Program. A fundamental

example of such a birational equivalence is the blow-up Bl𝑍 : 𝑌 → 𝑋 of 𝑋 in a

subvariety 𝑍. This leads to the motivating question of this thesis:

Is there a combinatorial condition on pairs 𝑓 , 𝑔 of maximally mutable Laurent

polynomials that is equivalent to the mirror Fano varieties 𝑋 𝑓 and 𝑋𝑔 being

related by a blow-up?

A positive answer to this question would make the Fano classification much easier

to understand and work with.1 It would also open up new ways to prove the mirror

correspondence between Fano varieties and Laurent polynomials.

Evidence for a positive answer comes from toric geometry. For a toric variety

𝑋 with fan Σ, the Givental/Hori–Vafa construction gives a Laurent polynomial 𝑓

that is mirror to 𝑋, such that the Newton polytope of 𝑓 is the convex hull of the

primitive generators of the rays ofΣ [20,34]. Applying this to toric varieties 𝑋 and𝑌

such that there is a toric blow-up 𝑌 → 𝑋 reveals a natural relationship between the

corresponding Laurent polynomials 𝑓 and 𝑔. Even for 𝑋 non-toric, the toric variety

𝑋Σ 𝑓
defined by the spanning fan Σ 𝑓 of the Newton polytope of a mirror Laurent

polynomial 𝑓 is expected to occur as the special fiber of a degeneration of 𝑋.

The Givental/Hori–Vafa construction also produces Laurent polynomial mir-

rors to complete intersections inside toric Fano varieties. In these cases, the toric

degenerations 𝑋 to 𝑋Σ can be described in terms of explicit equations via the Przy-

jalkowski method [48] as described in [11]. For certain pairs of Fano complete

intersections, with mirror Laurent polynomials 𝑓 and 𝑔, these equations can be

chosen compatibly to give a morphism of families 𝔛𝑔 → 𝔛 𝑓 , which restricts to a

blowup 𝑋𝑔 → 𝑋 𝑓 on the general fibre, and on the central fibre is given by the toric

morphism 𝑋Σ𝑔 → 𝑋Σ 𝑓
induced by the the map of fans Σ𝑔 → Σ 𝑓 .

However, in order to prove that some combinatorial condition on a general pair

of MMLPs 𝑓 , 𝑔 implies that their mirrors are related by a blowup 𝑋𝑔 → 𝑋 𝑓 , one

1By the mirror Fano variety to a Laurent polynomial 𝑓 in the motivating question, we mean a
general element of the deformation family of varieties 𝑋 with 𝐺̂𝑋 = 𝜋 𝑓 .
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requires a method of recovering Fano varieties from their mirror MMLPs that does

not rely on a construction of the Fano as a complete intersection inside a toric variety.

Thus we need to move beyond existing methods, such as Laurent inversion [14],

which in any case sometimes fail to produce a Q-Fano from its Laurent polynomial

mirror.

0.2 The Gross–Siebert program

Mirror symmetry was originally conceived of as an equivalence between pairs

of Calabi–Yau manifolds [9], rather than Fano manifolds and Landau–Ginzburg

models. The famous conjecture of Strominger–Yau–Zaslow [49] states that a Calabi–

Yau manifold 𝑋 and its mirror partner 𝑋̌ admit dual special Lagrangian torus

fibrations over the same base 𝑋 → 𝐵 ← 𝑋̌. The Gross–Siebert program [5, 10, 21–

27, 30, 31] is a new approach to Mirror Symmetry, born out of an attempt to use

the affine structure on the base 𝐵 of the dual fibrations [33] to give an intrinsic

algebro-geometric construction of the mirror to a variety 𝑋. This bypasses any

need to consider 𝑋 as living inside an ambient toric variety. Gross and Siebert

also show how to extend the SYZ approach from Calabi–Yau manifolds to Fano

varieties, by passing from a Fano variety 𝑋 to a log Calabi–Yau pair (𝑋, 𝐷), where 𝐷

is an anticanonical divisor.

The version of the Gross–Siebert mirror construction that we will use takes a

log Calabi–Yau pair (𝑋, 𝐷) and produces a formal family 𝔛̌ → 𝔖 whose fibres are

mirror to (𝑋, 𝐷). The construction passes through an affine manifold 𝐵 that plays

the role of the base of the SYZ fibration. Here 𝐵 is a real 𝑛-dimensional manifold

with a polyhedral decomposition – the dual intersection complex of the pair (𝑋, 𝐷)

– and carries an affine structure determined by the intersection numbers between

components of𝐷. Codimension-one strata of𝐵 correspond to curve classes in𝑋, and

we can use these classes to glue ‘thickened’ torus charts associated to each chamber

of 𝐵 across the codimension-one strata. The resulting space is an approximation

to the mirror family that we seek, but we need to modify the gluing maps so as to

produce a family with the correct general fibre2. Corrections to the gluing are made

2Another reason to correct the gluing maps is that we want the general fibre to carry a distinguished
basis of functions, called theta functions, indexed by integral points of 𝐵. This is by analogy with mirror
symmetry for toric varieties, where lattice points index sections of appropriate line bundles on the
mirror.
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order by order, using a process called scattering. This subdivides the chambers of 𝐵

using extra codimension one polyhedra called walls, each equipped with a function

that reparametrises the thickened torus chart on either side of the wall. A central

insight of Gross and Siebert is that this extra combinatorial structure is determined

by punctured log Gromov–Witten invariants of the pair (𝑋, 𝐷) – the coefficients

in the wall functions involve counts of log maps into 𝑋 whose tropicalisation is

supported on the wall. In this way, as expected from the duality between type IIA

and type IIB string theory, the enumerative geometry of the pair (𝑋, 𝐷) determines

the complex geometry of the mirror.

The Gross–Siebert approach fits closely with the story of Mirror Symmetry for

Fano varieties: when 𝑋 is Fano variety and 𝐷 is an anticanonical divisor, there is

a distinguished regular function on the mirror family, namely the sum of the the

theta functions corresponding to the primitive integral points on each ray of the

polyhedral decomposition. This function, when restricted to a torus chart, gives a

Laurent polynomial 𝑓 that is mirror to 𝑋 in the sense of Fanosearch: 𝜋 𝑓 = 𝐺̂𝑋 . All

examples of the Gross–Siebert mirror construction for Fano varieties appearing in

the literature to date have taken this perspective.

In contrast, in this thesis we will make use of the Gross–Siebert construction

to ‘cross the mirror’ in the opposite direction. The first step here is to produce a

log Calabi–Yau pair from a maximally mutable Laurent polynomial, as we will now

describe.

0.3 From Laurent polynomials to log Calabi–Yau pairs
Starting with a Laurent polynomial 𝑓 , one can generate a log Calabi–Yau pair (𝑌, 𝐷)

as follows. The Newton polytope of 𝑓 determines a polarized toric variety. Note

this is the toric variety defined by the normal fan Σ′, as opposed to the spanning fan

Σ considered above. The integral points on Newt 𝑓 represent a basis for the ring of

sections of the polarizing line bundle, and this allows us to consider 𝑓 as a regular

function on 𝑌Σ′. Pairing 𝑓 with the section corresponding to the origin yields a

rational map [ 𝑓 : 1] : 𝑌Σ′ d P1 which is resolved by blowing up finitely many times

on the toric boundary. Let 𝑌 → 𝑌Σ′ be this resolution, and 𝐷 be the strict transform

of the toric boundary. The pair (𝑌, 𝐷) is log Calabi–Yau, and the general fibre of the

family produced by the Gross–Siebert mirror construction is expected to be 𝑋 \ 𝐸
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where 𝑋 is the Fano variety mirror to 𝑓 and 𝐸 is a smooth anticanonical divisor.

0.4 The main result
In this thesis we focus on producing and comparing the Gross–Siebert mirrors of

the maximally mutable Laurent polynomials

𝑓 := 𝑥 + 𝑦 + 1
𝑥𝑦

and 𝑔 := 𝑥 + 𝑦 + 1
𝑥𝑦
+ 𝑥𝑦, (1)

which are mirror to the del Pezzo surfaces P2 and its blowup in a single point Blpt P2.

(We know that 𝑓 is a mirror to P2, and that 𝑔 is a mirror to Blpt P2, because they are

both toric varieties, but this will play no role in what follows.)

In Chapters 4 and 5, we apply Gross–Siebert mirror symmetry to the log Calabi–

Yau pairs determined by 𝑓 and 𝑔. This produces two families, 𝔛̌ 𝑓 → 𝔖 and 𝔛̌𝑔 → 𝔖,

with general fibres isomorphic to P2 and Blpt P2 respectively. The main result of this

thesis is the construction, directly from 𝑓 , 𝑔 and Gross–Siebert mirror symmetry, of

a map of families

𝔛̌𝑔 𝔛̌ 𝑓

𝔖

which in the general fibre is the blowup of P2 in a point. See Theorem 5.2.2 for

details.

0.5 Conjectures and future directions
In this thesis we prove the result for the pair of Laurent polynomials 𝑓 , 𝑔 given in (1)

above. However, since Gross–Pandharipande–Siebert’s ‘tropical vertex’ construc-

tion [24] of the Gross–Siebert mirror can be applied to any rigid maximally mutable

Laurent polynomial 𝐹 ∈ C[𝑥± , 𝑦±], we expect that the result generalises to pairs of

rigid MMLPs which satisfy certain combinatorial conditions.

Definition 0.5.1 (The perturbed scattering diagram𝔇pert( 𝑓 , 𝑔)). Suppose that 𝑓 , 𝑔 ∈

C[𝑥± , 𝑦±] are rigid maximally mutable Laurent polynomials such that

(i) Newt 𝑓 ⊂ Newt 𝑔.

(ii) There is a unique edge 𝐸pert ⊂ Newt 𝑓 contained in the interior of Newt 𝑔.
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For each edge 𝐸 ⊂ Newt 𝑔 that intersects 𝐸pert, let 𝐸 𝑓 denote the segment of 𝐸

which is an edge of Newt 𝑓 . Let 𝑙𝐸 denote the lattice length of 𝐸, and let 𝑣𝐸 denote

the inward-pointing primitive normal vector 𝐸, where 𝐸 is any edge of Newt 𝑓 or

Newt 𝑔. Let ℎ𝐸 denote the height of 𝐸 above the origin with respect to 𝑣𝐸. We define

the initial scattering diagram associated to 𝑓 and 𝑔 as follows:

𝔇0
pert( 𝑓 , 𝑔) :=


(
R≥0𝑣𝐸 , (1 + 𝑡𝐸,𝑖𝑧𝑣𝐸 )

) ������ 𝐸 ⊂ Newt 𝑔 s.t. 𝐸 ⊂ Newt 𝑓 ,

𝑖 ∈ {1, . . . , 𝑙𝐸/ℎ𝐸}


∪


(
R≥0𝑣𝐸 , (1 + 𝑡𝐸,𝑖𝑧𝑣𝐸 )

)
,(

𝑣𝐸pert + R≥0𝑣𝐸 , (1 + 𝑡𝐸,𝑗𝑧𝑣𝐸 )
)

���������
𝐸 ⊂ Newt 𝑔 s.t. 𝐸 ∩ 𝐸pert ≠ ∅,

𝑖 ∈ {1, . . . , 𝑙𝐸 𝑓 /ℎ𝐸},

𝑗 ∈ {(𝑙𝐸 𝑓 /ℎ𝐸) + 1, . . . , 𝑙𝐸/ℎ𝐸}


∪


(
𝑣𝐸pert + R≥0𝑣𝐸 , (1 + 𝑡𝐸,𝑖𝑧𝑣𝐸 )

) ������ 𝐸 ⊂ Newt 𝑔 s.t. 𝐸 ⊂ Newt 𝑔 \Newt 𝑓 ,

𝑖 ∈ {1, . . . , 𝑙𝐸/ℎ𝐸}


We define the perturbed scattering diagram associated to 𝑓 and 𝑔 to be the result of

scattering of the initial scattering diagram:

𝔇pert( 𝑓 , 𝑔) := Scatter
(
𝔇0

pert( 𝑓 , 𝑔)
)
.

This generalises the construction of 𝔇pert for the Laurent polynomials in (1), given

in equation (4.3), whose initial scattering diagram is pictured in Figure 4.1.

Conjecture 0.5.2. Let 𝑓 , 𝑔 ∈ C[𝑥± , 𝑦±] be rigid maximally mutable Laurent polynomials

with Newton polytopes that satisfy the following conditions:

(i) Newt 𝑓 ⊂ Newt 𝑔.

(ii) There is a unique edge 𝐸pert ⊂ Newt 𝑓 contained in the interior of Newt 𝑔.

(iii) There is an open neighborhood 𝑈 ⊂ R2 about the origin such that 𝑈 ∩ 𝔇pert( 𝑓 , 𝑔)

only contains lines passing through the origin.

Then there is an 𝔖-birational morphism 𝜋 : 𝔛̌𝑔 → 𝔛̌ 𝑓 between the mirror families to 𝑔 and

𝑓 . If, moreover,

(iv) the complement Newt 𝑔 \Newt 𝑓 is a triangle,

then the morphism 𝜋 of families over 𝔖 is, in the general fibre, a blowup in a single point.
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This blowup 𝜋 can be seen on the level of local charts on 𝔛̌ 𝑓 and 𝔛̌𝑔 as formal

schemes over Spf k⟦𝑡⟧ – here explicit equations for the local charts 𝔘𝑖 = Spec𝑅𝑖 are

given by the affine geometry of 𝐵 and the scattering determined by 𝑓 and 𝑔. In

order to construct the morphism 𝜋 the general fibres of the families, however, it is

necessary to algebraise the formal schemes. Once they are considered as schemes

over Spec k⟦𝑡⟧, the rings 𝑅𝑖 no longer define affine charts on 𝔛̌ 𝑓 and 𝔛̌𝑔 . Therefore,

in order to prove Conjecture 0.5.2, we need to either:

1. understand affine charts on 𝔛̌ 𝑓 and 𝔛̌𝑔 as schemes over Spec k⟦𝑡⟧, or

2. generalise the more abstract argument in Chapter 5 to this setting.

While the second of these options is likely to be easier, the first would be more

satisfactory in terms of giving a direct link between the combinatorial relationship

between 𝑓 and 𝑔 and the birational relationship between their mirrors. Moreover,

the first option will generalise more easily to higher dimensions.

Looking further into the future, we hope to generalise Conjecture 0.5.2 to

Laurent polynomials in more than two variables (i.e. mirrors of higher-dimensional

Fano varieties). This will require developments in the theory of punctured log

Gromov–Witten invariants. The mutation class of a rigid MMLP in more than two

variables is not uniquely determined by its Newton polytope, so the statement of the

conjecture needs to take the coefficients of the Laurent polynomials into account.

Furthermore, the higher-dimensional log Calabi–Yau pair associated to a Laurent

polynomial in more than two variables has a more complicated toric model than

those considered in Argüz and Gross’s HDTV theorem [5], so we need to extend

their work to cover the case where the hyperplanes in the boundary of the toric

model are non-reduced. We also need to establish higher-dimensional analogues

of the results in Section 4.1.1 which allow us to control the scattering process.

Conjecture 0.5.2 can be interpreted in terms of the Gromov–Witten theory of

the mirror Fano varieties as follows. The difference 𝑔 − 𝑓 between the two Laurent

polynomials in the conjecture contribute to the extra terms in the difference of their

respective periods 𝜋𝑔 − 𝜋 𝑓 . In terms of the Gromov–Witten theory of the mirrors

𝑋 𝑓 and 𝑋𝑔 , these extra terms in the difference of the regularised quantum periods

𝐺̂𝑋𝑔 − 𝐺̂𝑋 𝑓
correspond to the extra curve classes that arise in the blow-up 𝑋𝑔 → 𝑋 𝑓 .
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The criteria (i)-(iii) almost capture the entire classification of smooth Fano sur-

faces – so far we have been able to find pairs of Laurent polynomials mirror to

the eight of the nine pairs smooth del Pezzo surfaces related by the blow-up in a

point (all except the pair dP2 → dP1). In [10, Section 7], Carl–Pumperla–Siebert

give another set of constructions of the affine manifolds underlying the mirrors to

the del Pezzo surfaces. For the five toric del Pezzo surfaces, it is clear to see which

choices of rigid MMLPs relates relate the mirror construction of this thesis to the

constructions in [10]. Carl–Pumperla–Siebert’s constructions of the wall structures

underlying mirrors to lower-degree del Pezzo surfaces [10, Construction 7.15] are

given by adding more singularities to the affine manifold associated to the blow-up

of P2 in three points. Studying how the toric degenerations associated to these

constructions relate to the toric degenerations associated to rigid MMLPs will shed

light on how [10, Construction 7.15] relates to our Conjecture 0.5.2, and may lead to

natural generalisations.

0.6 Outline of the thesis

We will now describe the contents of the rest of the thesis in more detail.

Chapter 1

We begin with an introduction to wall structures, the combinatorial objects that

underlie the mirror constructions of the Gross–Siebert program. In particular, we

describe how to construct a scheme from the data of a finite wall structure on

an affine manifold, following the conventions of [23]. Every wall structure that we

consider as part of a mirror construction is, in fact, infinite, so we also need to handle

infinite wall structures. In the final section of the chapter, we introduce the notion of

a compatible system of wall structures – that is, a notion of infinite wall structure that is

general enough to encompass every case we need – and describe how a compatible

system of wall structures gives rise to a formal scheme. Grothendieck’s Existence

Theorem gives general conditions under which formal schemes can be algebraised,

and we apply this to describe a class of compatible systems of wall structures that

produce algebraisable formal schemes.
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Chapter 2

In this chapter, we introduce two types of wall structure that we will use in the con-

struction of the mirror to a log Calabi–Yau pair (𝑌, 𝐷). One of these is the canonical

wall structure 𝔇can associated to (𝑌, 𝐷), as defined by Gross–Siebert in [29, 31]. The

other is the algorithmic wall structure associated to (𝑌, 𝐷) in the presence of a toric

model (see Definition 2.3.1). This wall structure arises from a scattering diagram,

called the HDTV scattering diagram [5], in a way that generalises a construction of

Gross–Hacking–Keel [21, Chapter 3]. We prove that the schemes constructed from

each of these wall structures are isomorphic over a sublocus of the base, called

the Gross–Siebert locus. Furthermore, we describe how to compactify the mirror

families, by truncating the corresponding wall structures. We begin the chapter by

defining scattering diagrams in two dimensions.

Chapter 3

Here we apply the theory we set up in Chapters 1 and 2 to construct what we call

the Gross–Siebert mirror 𝔛𝐹 to a rigid maximally mutable Laurent polynomial 𝐹 in

two variables. In order to do this, we construct the log Calabi–Yau pair (𝑌𝐹 , 𝐷𝐹)

associated to 𝐹, and describe the two wall structures associated to (𝑌𝐹 , 𝐷𝐹) in terms

of 𝐹. Additionally, we give canonical truncations of the wall structures – these

produce a compactification 𝔛𝐹 of the formal mirror family 𝔛𝐹, which is necessary

for it to be algebraisable. Throughout the chapter, we apply the construction to the

Laurent polynomials in (1), comparing the results of each stage of the construction

for 𝑓 and 𝑔 as we go.

Chapter 4

Here we relate the mirror families to 𝑓 and 𝑔 of (1) by constructing an intermediate

mirror family 𝔛∼ that admits morphisms to both 𝔛 𝑓 and 𝔛𝑔 . The scheme 𝔛∼ is

constructed from the wall structure associated to a three-dimensional log Calabi–

Yau pair (𝑌̃, 𝐷̃) that is the total space of a degeneration of (𝑌𝑔 , 𝐷𝑔). The HDTV

scattering diagram which determines this algorithmic wall structure turns out to

be equivalent to the cone over 𝔇pert (see Definition 0.5.1).

In Section 4.1 we show that the scattering process in 𝔇pert is compatible with

the HDTV scattering diagrams associated to 𝑓 and 𝑔: we prove that condition (iii)

from Conjecture 0.5.2 holds for 𝔇pert, so that the HDTV diagram for 𝑓 includes
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include // zoom out //

Figure 1: The relationship between the HDTV scattering diagram for 𝑓 , the scatter-
ing diagram 𝔇pert, and the HDTV scattering diagram for 𝑔

(after an appropriate change of variables on wall functions) into 𝔇pert. Taking the

asymptotic version of 𝔇pert (‘zooming out’) yields the HDTV diagram for 𝑔 – see

Figure 1.

In order to translate the relationships between the scattering diagrams to rela-

tionships between the mirror families, we need a wall structure 𝔇 𝑓↔𝑔 determined

by 𝔇pert. Since our goal is to construct morphisms between the compactified mirrors,

we need 𝔇 𝑓↔𝑔 to be truncated in such a way that is compatible with the truncations

of the wall structures producing the compactifications 𝔛 𝑓 and 𝔛𝑔 . In Section 4.2

we construct this wall structure, 𝔇 𝑓↔𝑔 , and use it to define the intermediate mirror

family 𝔛∼.

The three schemes𝔛∼, 𝔛 𝑓 and𝔛𝑔 are families over different bases. In Section 4.3

we construct morphisms from the bases of 𝔛 𝑓 and 𝔛𝑔 to the base of 𝔛∼. In order for

these morphisms to be well defined, it is necessary to restrict further to a sublocus

of the Gross–Siebert locus, which we call the extended Gross–Siebert locus. To finish

the construction of the morphisms

𝔛∼

𝔛 𝑓 𝔛𝑔 ,

(2)

we also prove some general results about wall structures which are not written

down in the literature.

Chapter 5

In the final chapter, we show that the morphisms in (2) are birational, and that

the generic fibres of the three families are smooth. After restricting to a general

one-parameter subscheme Spec k⟦𝑡⟧ of the base, we show that the generic fibre of
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𝔛 𝑓 is P2
k((𝑡)), and the generic fibres of 𝔛∼ and 𝔛𝑔 are both isomorphic to Blpt P

2
k((𝑡)).



Chapter 1

Constructions of the Gross–Siebert

program I: schemes from wall structures

1.1 Overview

In this chapter we describe, in abstract terms, the construction of a scheme start-

ing from the combinatorial data of a wall structure on an affine manifold, without

reference to mirror symmetry. We follow the conventions of Gross–Hacking–Keel,

giving what is essentially a summary of Chapters 1–4 of their paper [23].

Given an 𝑛-dimensional Calabi–Yau manifold 𝑈 := 𝑌 \ 𝐷, the base 𝐵 of the

special Lagrangian torus fibration 𝑓 : 𝑈 → 𝐵 of SYZ mirror symmetry can be

described combinatorially, as an 𝑛-dimensional affine manifold with singularities

with a polyhedral decomposition 𝒫. This is the polyhedral affine pseudomanifold

(𝐵,𝒫) defined in Section 1.2.1. In Chapter 2 we will see that 𝐵 is constructed from

the pair (𝑌, 𝐷) by tropicalising the divisorial log structure on 𝑌 induced by 𝐷 – for

a toric variety 𝑌 with its toric boundary 𝐷, this just corresponds to taking the fan.

The mirror to 𝑈 is expected to admit a dual torus fibration over 𝐵, by the SYZ

conjecture. In the Gross–Siebert program the mirror is constructed from 𝐵, by con-

sidering cells of the polyhedral subdivision 𝒫 of 𝐵 to be the moment polytopes of

a toric degeneration – the scheme 𝔛 is constructed as a smoothing over Spec k[𝑄]/𝐼

of the union of toric varieties 𝑋0 whose moment polytopes are given by 𝒫, where

𝑄 is a monoid containing the effective curve classes of 𝑌 and 𝐼 ⊂ k[𝑄] is an ideal.

This degeneration is constructed locally by considering the upper convex hull of

a 𝑄-valued convex piecewise linear function on 𝐵 which respects the polyhedral

decomposition: the open affine chart on the interior of a maximal cell in the poly-
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hedral decomposition of 𝐵 gives a relative torus Spec(k[𝑄]/𝐼) × G𝑛𝑚 , and the kink

𝜅 ∈ 𝑄 of the piecewise affine function over a codimension one cell of the polyhedral

decomposition determines the smoothing of the transverse intersection between

two varieties

𝑉

(
𝑌𝑍 − 𝑡𝜅

𝑛−1∏
𝑖

𝑋
𝑚𝑖

𝑖

)
⊂ Spec k[𝑄]/𝐼 × A2

𝑌,𝑍 × (G
𝑛−1
𝑚 )𝑋𝑖 .

Here the numbers 𝑚𝑖 ∈ Z, as well as the gluings of these charts, are determined by

the affine structure on 𝐵. The correct notion of convex piecewise affine function,

and the naïve gluing construction given above, are defined in Section 1.2.2. The

result is a flat scheme 𝔛◦ over Spec k[𝑄]/𝐼, but this only gives a deformation of 𝑋0

away from the codimension two strata of the toric varieties unless the pair (𝑌, 𝐷) is

toric.

The mirror to 𝑈 is an affine variety with its complex structure determined

by counts of curves on 𝑈 – there are global functions 𝜗𝐷𝑖 on 𝑈 associated to the

components of 𝐷, which are given on the local charts by expressions of the form∑
𝛽∈𝑄

𝑛𝛽𝑡
𝛽𝑧𝑚𝛽 (1.1)

where𝑚𝛽 ∈ Λ𝐵 is an integral tangent vector on𝐵 and 𝑛𝛽 is, roughly speaking, a count

of curves on𝑌 intersecting𝐷𝑖 in a certain way. In order for these global functions to

be well defined on 𝔛◦, some modifications to the gluing of the charts must be made.

These modifications (the ‘instanton corrections’ in the symplectic heuristic) are

given by a subdivision of 𝒫 along codimension one sets 𝔡 ⊂ 𝐵 which are decorated

with functions 𝑓𝔡 ∈ (k[𝑄]/𝐼)[Λ𝐵] that determine birational transformations of the

relative torus on either side of 𝔡:

𝑧𝑚 ↦−→ 𝑧𝑚 𝑓
⟨𝑚,𝑛𝔡⟩
𝔡

,

where 𝑛𝔡 ∈ Λ⊥ is the primitive normal vector to 𝔡. These modifications to (𝐵,𝒫)

are called wall structures; they are defined in Section 1.2.3.

Sections 1.3 and 1.4 are devoted to laying out the combinatorial conditions on

a wall structure 𝒮 necessary to define a scheme 𝔛 which is a flat deformation of



1.2. Wall structures 26

𝑋0, filling in the codimension two locus. In the case that the wall structure 𝒮 is

consistent, the integral tangent vectors 𝑚 ∈ Λ𝐵 determine theta functions 𝜗𝑚 of the

form (1.1), which form a k[𝑄]/𝐼-module basis of Γ(𝔛◦ ,𝒪𝔛◦). In Section 1.5, a partial

compactification 𝔛 ⊃ 𝔛◦ is constructed via the algebra of theta functions associated

to a consistent wall structure 𝒮.

In the final section of this chapter, we introduce the notion of a compatible system

of wall structures to explicitly link the abstract definition of finite wall structures,

which define schemes over Spec k[𝑄]/𝐼 for some ideal 𝐼 ⊂ k[𝑄], with the notion of

wall structure that actually appears in the Gross–Siebert mirror constructions. A

compatible system is a series of wall structures which defines a formal scheme over

Spf �k[𝑄]. Under certain conditions, this formal scheme is algebraisable, and we can

use the construction from Section 1.5.2 to define a scheme over Spec �k[𝑄].
1.2 Wall structures
1.2.1 The affine manifold

Below we define the affine manifold 𝐵 with polyhedral decomposition 𝒫, as given

in Construction 1.1.1 of [23] which forms the basis of the setup for the construction

of 𝔛.

Definition 1.2.1 (The polyhedral affine pseudomanifold (𝐵,𝒫)). Let𝒫 be an integral

affine polyhedral complex. That is, 𝒫 is a category consisting of a set of integral

polyhedra together with a set of integral affine maps 𝜔 → 𝜏 identifying 𝜔 with a

face of 𝜏. Assume that any proper face of 𝜏 ∈ 𝒫 occurs as the domain of an element

of hom(𝒫)with target 𝜏. Define a topological space

𝐵 := lim−−→
𝜏∈𝒫

𝜏

and suppose that the pair (𝐵,𝒫) satisfies the following conditions:

1. For each 𝜏 ∈ 𝒫 the map 𝜏→ 𝐵 is injective.

2. The intersection of any two cells 𝜏 ∈ 𝒫 is a cell of 𝒫, where by abuse of

notation a cell is considered to be both an element of 𝒫 and a subset of 𝐵.

3. Every cell of𝒫 is contained in an 𝑛-dimensional cell, so 𝐵 is of pure dimension

𝑛.
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4. Every (𝑛−1)-cell is contained in one or two 𝑛-cells, making 𝐵 a manifold with

boundary away from the cells of codimension 2.

5. If 𝜏 ∈ 𝒫 is a cell of codimension 2 or higher, then any point 𝑥 ∈ Int𝜏 has a

neighbourhood basis in 𝐵 consisting of open sets𝑉 such that𝑉\𝜏 is connected.

The vertices, edges and maximal cells of 𝒫 are the 0-,1- and 𝑛-cells respectively.

The boundary 𝜕𝐵 consists of the (𝑛 − 1)-cells contained in only one maximal cell,

𝜌 ∈ 𝒫[𝑛−1]
𝜕

. An interior cell 𝜏 ∈ 𝒫int is a cell not contained in the boundary.

We define the discriminant locus Δ, a codimension two subset of 𝐵. See [23,

Construction 1.1.1] for a description of a choice of Δ. In this thesis however, we may

simply assume that Δ is the union of the codimension two cells in 𝒫. We endow

𝐵0 := 𝐵 \ Δ with an affine structure compatible with the given affine structure on

the cells. It suffices to provide an integral 𝒫-piecewise linear embedding 𝜓𝜌 for

every codimension one interior cell 𝜌 ∈ 𝒫[𝑛−1]
int , with pair of adjacent maximal cells

𝜎, 𝜎′ ∈ 𝒫

𝜓𝜌 : 𝜎 ∪ 𝜎′ −→ R𝑛 ,

well-defined up to GL𝑛(Z).

We refer to the data of the pseudomanifold 𝐵, the discriminant locus Δ, the

polyhedral decomposition 𝒫 and the compatible integral affine structure on 𝐵0 as

the polyhedral affine pseudomanifold, and denote it by (𝐵,𝒫).

Notation 1.2.2. We denote by Λ the sheaf of integral tangent vectors on 𝐵0, and its

stalk at a point 𝑥 ∈ 𝐵0 by Λ𝑥 . For a cell 𝜏 ∈ 𝒫 we will denote the sheaf of integral

tangent vectors to 𝜏 by Λ𝜏. Suppose that 𝑥 is an interior point of 𝜏, and that 𝜏 is of

codimension one in the cell 𝜎 ⊃ 𝜏. We denote by Λ𝜎,𝜏 the subgroup of Λ𝑥 given by

integral tangent vector which point into 𝜎 from 𝑥.

Construction 1.2.3 (The central fibre 𝑋0). For each 𝜏 ∈ 𝒫, let 𝑋𝜏 be the toric variety

associated to the polyhedron 𝜏. Each integral affine map 𝜔→ 𝜏 identifying 𝜔 with

a face of 𝜏 induces a closed embedding of toric varieties 𝑋𝜔 ↩−→ 𝑋𝜏. We define the

variety

𝑋0 := lim−−→
𝜏∈𝒫

𝑋𝜏.

It is a union of 𝑛-dimensional toric varieties corresponding to the maximal cells of
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𝒫, intersecting each other in their toric boundaries according to the integral affine

maps of 𝒫.

Figure 1.1: A polyhedral affine manifold 𝐵 � R2, with a polyhedral complex 𝒫

given by the fan Σ, subdividing R2 into three cells. The codimension
one cells are the rays generated by (−1, 0), (0,−1) and (1, 1) ∈ Λ � N2.
The toric variety associated to (𝐵,𝒫) is the union of three copies of A2,
intersecting each other along their coordinate hyperplanes.

1.2.2 The convex piecewise affine function

We define a multi-valued convex piecewise affine function on 𝐵0.

Definition 1.2.4 (Toric monoid). A finitely generated, integral, saturated monoid 𝑄

such that 𝑄gp is torsion-free is a toric monoid.

Definition 1.2.5 (𝑄gp-valued multivalued piecewise affine function). A 𝑄gp-valued

piecewise affine function on an open set𝑈 ⊆ 𝐵0 is a continuous map

𝑈 −→ 𝑄
gp
R

which restricts to a 𝑄gp
R -valued integral affine function on each maximal cell of 𝒫.

Denote the sheaf of 𝑄gp-valued piecewise affine functions on 𝐵0 by 𝒫𝒜(𝐵, 𝑄gp),

and denote the sheaf of 𝑄gp-valued integral affine functions on 𝐵0 by𝒜 𝑓 𝑓 (𝐵, 𝑄gp).

The sheaf of 𝑄gp-valued multivalued piecewise affine (MPA-) functions on 𝐵0 is defined

to be

ℳ𝒫𝒜(𝐵, 𝑄gp) := 𝒫𝒜(𝐵, 𝑄gp)/𝒜 𝑓 𝑓 (𝐵, 𝑄gp).
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Remark 1.2.6. To define a 𝑄gp-valued MPA function 𝜑 ∈ ℳ𝒫𝒜(𝐵, 𝑄gp), it suffices

to define local representatives 𝜑𝜌 on the open neighbourhood around each interior

codimension one cell 𝜌 ∈ 𝒫. These are 𝑄gp-valued piecewise affine functions

𝜑𝜌 : 𝜎 ∪ 𝜎′ −→ 𝑄
gp
R

where 𝜎 and 𝜎′ are the maximal cells containing 𝜌. If a maximal cell 𝜎 contains

interior codimension one cells 𝜌 and 𝜌′, the restriction of the difference (𝜑𝜌 − 𝜑𝜌′)|𝜎
is an integral affine function on 𝜎.

Definition 1.2.7 (Kink of an MPA-function). Suppose that (𝐵,𝒫) is a polyhedral

affine pseudomanifold, 𝑄 is a toric monoid, and that 𝜑 ∈ ℳ𝒫𝒜(𝐵, 𝑄gp). Let 𝜌 be

an interior codimension one cell in 𝒫, contained in maximal cells 𝜎 and 𝜎′, and let

𝑥 ∈ Int 𝜌. Define 𝛿 ∈ Λ̌𝑥 to be the quotient map

𝛿 : Λ𝑥 −→ Λ𝑥/Λ𝜌 � Z,

where the signs are fixed so that 𝛿 is non-negative on Λ𝜎′,𝜌. Let 𝜑𝜌 be the unique

representative of 𝜑 on 𝜎 ∪ 𝜎′ such that 𝜑𝜌 |𝜎 is identically zero. Considering 𝜑𝜌 as a

piecewise affine function on Λ𝑥 , there exists 𝜅𝜌 ∈ 𝑄gp such that

𝜑𝜌 |𝜎′ = 𝜅𝜌 · 𝛿.

Note that the value 𝜅𝜌 is independent of the choice of orientation of 𝜎 and 𝜎′. We

call 𝜅𝜌 ∈ 𝑄gp the kink of 𝜑 along 𝜌.

Remark 1.2.8 (MPA-functions determined by their kinks across codimension one

cells). We see that a 𝑄gp-valued MPA-function 𝜑 ∈ ℳ𝒫𝒜(𝐵, 𝑄gp) is completely

determined by the data of its kinks 𝜅𝜌 across every interior codimension one cell

𝜌 ∈ 𝒫[𝑛−1]
int .

Definition 1.2.9 (Convex MPA-function). A 𝑄gp-valued MPA-function 𝜑 on 𝐵 is

convex if the kink 𝜅𝜌(𝜑) of 𝜑 along 𝜌 is contained in𝑄 for every interior codimension

one cell 𝜌 ∈ 𝒫[𝑛−1]
int .

Example 1.2.10. Let (𝐵,𝒫) be the polyhedral affine manifold (R2 ,Σ) shown in Fig-

ure 1.1. Let 𝑄 = N𝜅 ⊕ N𝑎 ⊕ N𝑏 � N3. Then the convex MPA-function 𝜑 on (𝐵,𝒫)
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with kink 𝜅 across each of the three codimension one cells in 𝒫 has a single-valued

representative given by

𝜑(𝑥, 𝑦) =


0 if (𝑥, 𝑦) ∈ R≥0(0,−1) + R≥0(−1, 0)

𝜅𝑥 if (𝑥, 𝑦) ∈ R≥0(0,−1) + R≥0(1, 1)

𝜅𝑦 if (𝑥, 𝑦) ∈ R≥0(−1, 0) + R≥0(1, 1).

Construction 1.2.11 (The 𝑄gp
R -torsor B𝜑 → 𝐵). Let (𝐵,𝒫) be a polyhedral affine

pseudomanifold, 𝑄 a toric monoid and 𝜑 a piecewise affine function on 𝐵. Let

B𝜑 := 𝐵 × 𝑄gp
R . We endow B𝜑 with the following integral affine structure. There is

a polyhedral decomposition of B𝜑 coming from 𝒫:

Σ𝜑 := {𝜏 ×𝑄gp
R | 𝜏 ∈ 𝒫}

Let 𝑈𝜌 = 𝜎 ∪ 𝜎′ with 𝜎, 𝜎′ ∈ 𝒫max and 𝜌 = 𝜎 ∩ 𝜎′ ∈ 𝒫
[𝑛−1]
int . Putting together the

affine charts 𝜓𝜌 on𝑈𝜌 and the piecewise linear function 𝜑𝜌 we define integral affine

charts on B𝜑

𝑈𝜌 ×𝑄gp
R −→ R

𝑛 ×𝑄gp
R

(𝑥, 𝑞) ↦−→ (𝜓𝜌(𝑥), 𝑞 + 𝜑𝜌(𝑥))

Remark 1.2.12 (𝜑 is a section of the torsor). The projection map 𝜋 : B𝜑 −→ 𝐵 is

integral affine and we have a section 𝜑 : 𝐵 −→ B𝜑, making B𝜑 a 𝑄gp
R -torsor.

Definition 1.2.13 (The sheaf of monoids 𝒫+). Let (𝐵,𝒫) be a polyhedral affine

pseudomanifold, 𝑄 a toric monoid, 𝜑 a 𝑄-valued convex piecewise affine function

on 𝐵, with B𝜑 the 𝑄gp
R -torsor constructed in Construction 1.2.11. Let ΛB𝜑 be the

system of integral tangent vectors on B𝜑 and define a locally constant sheaf of

abelian groups on 𝐵0,

𝒫 := 𝜑∗ΛB𝜑

which has fibres Z𝑛 ×𝑄gp
R . Define 𝒫+ ⊂ 𝒫 to be the subsheaf with sections over an
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open set𝑈 ⊆ 𝐵0 given by 𝑝 ∈ 𝒫(𝑈) such that, under the canonical identification

Γ(Int 𝜎,𝒫) = Λ𝜎 ×𝑄gp ,

we have that

𝑝 |Int 𝜎 ∈ Λ𝜎 ×𝑄 for any 𝜎 ∈ 𝒫max, and

𝑝 |Int 𝜎 ∈ Λ𝜎,𝜌 ×𝑄 for any 𝜎 ∈ 𝒫max such that 𝜎 ∩ 𝜕𝐵 = 𝜌 ∈ 𝒫[𝑛−1] with 𝜌 ⊂ 𝑈.

Remark 1.2.14. The sheaf 𝒫 fits into the canonical exact sequence

0 // 𝑄gp // 𝒫 𝜋∗ // Λ𝐵
// 0.

where 𝑄gp is the constant sheaf with stalk 𝑄gp on 𝐵0, and 𝜋∗ is the homomorphism

induced by the affine projection 𝜋 : B𝜑 → 𝐵.

Notation 1.2.15. Let 𝐼 ⊂ k[𝑄] be an ideal and let 𝔪 :=
√
𝐼 be the radical ideal of 𝐼.

We assume that 𝔪 contains the kinks 𝜅𝜑(𝜌) of the MPA-function 𝜑 for all interior

codimension-one cells 𝜌 ∈ 𝒫. In all the examples we consider in this thesis, 𝔪 is

generated by a monoid ideal in 𝑄 – we will conflate the two notions of ideals in the

monoid and ideals in the associated semigroup ring.

We now use the sheaf of monoids 𝒫+ to define a deformation of the union

of toric varieties 𝑋0 associated to (𝐵,𝒫) over Spec k[𝑄]/𝐼, where 𝐼 is an ideal of

k[𝑄] such that
√
𝐼 = 𝔪. The total space of the deformation will be described in

Construction 1.2.16 with affine charts given by the stalks of

k[𝒫+]/ℐ

where ℐ is the ideal sheaf 𝐼 · k[𝒫+], and the gluing morphisms are induced by

parallel transport.

First, let us describe the stalks 𝒫+𝑥 and the effects of parallel transport more

explicitly. For 𝑥 ∈ Int 𝜎, an interior point of a maximal cell 𝜎 ∈ 𝒫max, the stalk of

𝒫+ at 𝑥 is

𝒫+𝑥 = Λ𝑥 ×𝑄,
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and for 𝑥 ∈ Int 𝜌, 𝜌 ∈ 𝒫[𝑛−1]
𝜕

, the stalk of 𝒫+ at 𝑥 is

𝒫+𝑥 = Λ𝜎,𝜌 ×𝑄.

When 𝑥 ∈ Int 𝜌 is an interior point of an interior codimension one cell 𝜌 ∈ 𝒫
[𝑛−1]
int ,

the stalk at 𝑥 has the following description:

𝒫+𝑥 =
(
Λ𝜌 ⊕ N𝑍+ ⊕ N𝑍− ⊕ 𝑄

)
/(𝑍+ + 𝑍− = 𝜅𝜌),

where 𝜅𝜌 ∈ 𝑄 is the kink of the convex piecewise affine function 𝜑 across 𝜌. By our

assumptions 𝜌 is the intersection of two maximal cells 𝜎 and 𝜎′; fix an ordering of

𝜎 and 𝜎′ and a tangent vector 𝜉 ∈ Λ𝑥 pointing into 𝜎 and generating Λ𝜎/Λ𝜌. Then

parallel transport in 𝒫 along a path from 𝑥 ∈ Int 𝜌 to 𝑦 ∈ Int 𝜎 induces the map

𝔱𝜎,𝜌 : 𝒫+𝑥 −→ 𝒫+𝑦

(𝜆𝜌 , 𝑎𝑍+ , 𝑏𝑍− , 𝑞) ↦−→ (𝜆𝜌 + (𝑎 − 𝑏)𝜉, 𝑞 + 𝑏𝜅𝜌)

and parallel transport along a path from 𝑥 to 𝑦′ ∈ Int 𝜎′ induces the map

𝔱𝜎′,𝜌 : 𝒫+𝑥 −→ 𝒫+𝑦′

(𝜆𝜌 , 𝑎𝑍+ , 𝑏𝑍− , 𝑞) ↦−→ (𝜆𝜌 + (𝑎 − 𝑏)𝜉, 𝑞 + 𝑎𝜅𝜌),

whereas parallel transport along a path completely contained in a cell 𝜏 simply

induces the identity map

𝒫+𝑥 −→ 𝒫+𝑦 .

Construction 1.2.16 (The uncorrected Mumford degeneration). The rings given by

the stalks of k[𝒫+]/ℐ, together with the isomorphisms and localisation homomor-

phisms induced by parallel transport, form a category of k[𝑄]/𝐼-algebras. Taking

Spec of this category defines a category of affine schemes and open embeddings.

There exists (see Section 2.3 in [23]) a separated scheme over Spec k[𝑄]/𝐼 which is

isomorphic to the colimit of this category of schemes. Since parallel transport along

a path contained in the interior of a cell 𝜏 ∈ 𝒫 induces the identity map on stalks
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of 𝒫+, this scheme admits a finite open cover{
Spec𝑅𝜏

��� 𝜏 ∈ (
𝒫max ∪𝒫

[𝑛−1]
)}
,

where 𝑅𝜏 is defined to be the stalk of k[𝒫+]/ℐ at an interior point of 𝜏. There are

three types of rings 𝑅𝜏: one type corresponding to each of the three cases

𝜏 ∈ 𝒫max , 𝜏 ∈ 𝒫[𝑛−1]
int or 𝜏 ∈ 𝒫[𝑛−1]

𝜕
.

We describe 𝑅𝜏 more explicitly in each case: when 𝜏 is a maximal cell 𝜎 ∈ 𝒫max, we

have

𝑅𝜎 := (k[𝑄]/𝐼) [Λ𝜎]. (1.2)

When 𝜏 is a boundary cell 𝜌𝜕 ∈ 𝒫[𝑛−1]
𝜕

,

𝑅𝜕
𝜌 := (k[𝑄]/𝐼) [Λ𝜎,𝜌], (1.3)

where 𝜎 is the unique maximal cell containing 𝜌. Parallel transport from an interior

point of 𝜌𝜕 to an interior point of 𝜎 induces the localisation homomorphism

𝜒𝜕
𝜎,𝜌 : 𝑅𝜕

𝜌 −→ 𝑅𝜎 (1.4)

canonically defined by the inclusion Λ𝜎,𝜌 ⊆ Λ𝜎. Finally, when 𝜏 is an interior cell of

codimension one 𝜌 ∈ 𝒫[𝑛−1]
int , we have

𝑅𝜌 := (k[𝑄]/𝐼) [Λ𝜌][𝑍+ , 𝑍−]/(𝑍+𝑍− − 𝑧𝜅𝜌) (1.5)

where 𝜅𝜌 is the kink of the MPA-function 𝜑 across 𝜌. The maps induced by parallel

transport from 𝜌 into its adjacent chambers 𝜎 and 𝜎′, 𝔱𝜎,𝜌 and 𝔱𝜎′,𝜌, define the

localisation homomorphisms

𝜒𝜎,𝜌 : 𝑅𝜌 −→ 𝑅𝜎 and 𝜒𝜎′,𝜌 : 𝑅𝜌 −→ 𝑅𝜎′ . (1.6)

Recall that we consider 𝑍+ to be pointing into 𝜎 and 𝑍− to be pointing into 𝜎′, so

that 𝜒𝜎,𝜌 identifies 𝑅𝜎 with (𝑅𝜌)𝑍+ and 𝜒𝜎′,𝜌 identifies 𝑅𝜎′ with (𝑅𝜌)𝑍− . In other
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words, the maps are defined by the canonical inclusion of Λ𝜌 into Λ𝜎, together with

𝜒𝜎,𝜌 : 𝑍+ ↦−→ 𝑧𝜉 𝜒𝜎′,𝜌 : 𝑍+ ↦−→ 𝑧𝜉𝑧𝜅𝜌

𝑍− ↦−→ 𝑧−𝜉𝑧𝜅𝜌 𝑍− ↦−→ 𝑧−𝜉

where 𝜉 ∈ Λ𝑥 points into 𝜎 and generates Λ𝑥/Λ𝜌 � Z, for some point 𝑥 ∈ Int 𝜌.

Here we use the identifications Λ𝜎′ � Λ𝑥 � Λ𝜎 given by the chart on 𝐵0,

𝜓𝜌 : 𝜎 ∪ 𝜎′ −→ R𝑛 .

Example 1.2.17. Let us consider the uncorrected Mumford degeneration of Con-

struction 1.2.16 given by the piecewise linear function 𝜑 from Example 1.2.10. The

central fibre 𝑋0 is three copies of A2 glued along their coordinate hyperplanes, as

described in the caption to Figure 1.1. Since 𝜑 only takes values in N𝜅 ↩→ 𝑄, we

may restrict the family to one-parameter family over the base A1 � Spec k[N𝜅].

Then the affine charts Spec𝑅𝜌, where 𝜌 runs through the three codimension one

cells, are smoothings of 𝑋0 about the corresponding strata, away from the central

intersection point of all three planes. However, since 𝜑 is single-valued in this case,

the smoothing can be extended over the central point. The general fibre here is a

copy of the algebraic torus G2
𝑚 .

Notation 1.2.18 (Monomials on 𝐵0). We write the monomial 𝑧𝑝 ∈ k[𝒫+𝑥 ] associated

to 𝑝 ∈ 𝒫+𝑥 as 𝑡𝑞𝑧𝑚 , where 𝑞 ∈ 𝑄 and 𝑚 := 𝜋∗(𝑝) ∈ Λ𝑥 is the tangent vector of the

monomial, where 𝜋∗ is the second map of the short exact sequence

0 // 𝑄gp // 𝒫 𝜋∗ // Λ𝐵
// 0

defined in Remark 1.2.14.

Example 1.2.19. Let 𝜑 be the N3-valued MPA-function on (R2 ,Σ) defined in Exam-

ple 1.2.10. If we denote k[Λ] � k[𝑥± , 𝑦±], with 𝑥 = 𝑧(1,0) and 𝑦 = 𝑧(0,1), then we

have

k[𝒫+𝑃 ] = k[𝑡
𝜅 , 𝑡𝑎 , 𝑡𝑏 , 𝑥± , 𝑦±] � k[N3 ⊕ Z2]

for every interior point 𝑃 ∈ 𝐵0.
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1.2.3 Wall structures

Definition 1.2.20 (Wall structure). A wall on a polyhedral affine pseudomanifold

(𝐵,𝒫) equipped with a piecewise affine function 𝜑 is a codimension one rational

polyhedral subset

𝔡 ⊆ 𝜎 ∈ Σmax such that 𝔡 ⊈ 𝜕𝐵,

equipped with a wall function

𝑓𝔡 =
∑
𝑝∈𝒫+𝑥

𝜋∗(𝑝)∈Λ𝔡

𝑐𝑝𝑧
𝑝 ∈ k[𝒫+𝑥 ]

for some interior point 𝑥 ∈ Int 𝔡. By parallel transport inside 𝜎 we require that

𝑝 ∈ 𝒫+𝑦 for all 𝑦 ∈ 𝔡 \ Δ when 𝑐𝑝 ≠ 0. We also require that1

𝑓𝔡 ≡


1 mod 𝔪 when 𝔡 has codimension zero

𝑓𝜌 mod 𝔪 otherwise, for some 𝑓𝜌 ∈ k[𝑄][Λ𝜌].

Here the codimension 𝑘 ∈ {0, 1} of a wall 𝔡 is defined as the codimension of the

minimal cell of 𝒫 containing 𝔡. Walls of codimension one are also referred to as

slabs, denoted 𝔟.

A wall structure on (𝐵,𝒫) is a set𝒮 of walls which induces a rational polyhedral

decomposition 𝒫𝒮 refining 𝒫; the codimension one cells of 𝒫𝒮 are subsets of the

elements of

|𝒮| :=
⋃
𝔡∈𝒮

𝔡 ∪
⋃

𝜌∈𝒫[𝑛−1]

𝜌.

A maximal cell 𝔲 of 𝒫𝒮 is called a chamber of the wall structure. A chamber 𝔲 with

dim(𝔲 ∩ 𝜕𝐵) = 𝑛 − 1 is called a boundary chamber - all other chambers are called

interior chambers. Two chambers are adjacent if dim(𝔲 ∩ 𝔲′) = 𝑛 − 1. A cell 𝔧 ∈ 𝒫𝒮

of codimension two is called a joint. If a joint is contained in the boundary 𝜕𝐵

it is called a boundary joint, otherwise an interior joint. We define the codimension

𝑘 ∈ {0, 1, 2} of a joint 𝔧 to be the codimension of the smallest cell of 𝒫 containing 𝔧.

1In a more general setting, where the discriminant locus Δ is not required to lie inside the codi-
mension two locus of (𝐵,𝒫), there would be additional compatibility conditions on the choice of the
functions 𝑓𝜌: see [23, (2.10)].
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−1 𝑦
−1

Figure 1.2: A wall structure 𝒮 on the polyhedral affine pseudomanifold (R2 ,𝒫)
equipped with piecewise linear function 𝜑 from Example 1.2.10, with
each of the five walls labelled with their wall function, and the three
slabs shown in bold.

Definition 1.2.21 (Equivalence of wall structures). Given two wall structures 𝒮 and

𝒮
′ on a polyhedral affine pseudomanifold with a piecewise affine function (𝐵,𝒫, 𝜑),

we define

𝑓𝑥 :=
∏
𝑥∈𝔡∈𝒮

𝑓𝔡 and 𝑓 ′𝑥 :=
∏

𝑥∈𝔡′∈𝒮′
𝑓𝔡′

for points 𝑥 ∈ 𝐵 which are not contained in the discriminant locus Δ, nor any joint

of 𝒮 or 𝒮′. Let 𝐼 be a monoid ideal of 𝑄 such that
√
𝐼 = 𝔪. We say that the two wall

structures are equivalent (modulo 𝐼) if

𝑓𝑥 ≡ 𝑓 ′𝑥 mod 𝐼

for all such points 𝑥 ∈ 𝐵.

Remark 1.2.22 (Trivial modifications to 𝒮). Several trivial modifications can be

made to a wall structure 𝒮 without changing its equivalence class. In particular, we

can make the following assumptions to simplify the construction of the family 𝔛.

1. 𝒮 = 𝒫
[𝑛−1]
𝒮

. In other words, the interior of a wall does not intersect the interior

of any other wall.

2. For any wall 𝔡 ∈ 𝒮, Int 𝔡 ∩ Δ = ∅.

3. For any chamber𝔲of𝒫𝒮, there is at most one𝜌 ∈ 𝒫[𝑛−1]
𝜕

with dim(𝔲∩𝜌) = 𝑛−1.
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1.3 Local construction of the family

In this section we describe the local charts and gluing data allowing construction of

𝔛◦ ⊂ 𝔛, the family over Spec k[𝑄]/𝐼 which defines a deformation of 𝑋0 away from

the codimension two locus.

1.3.1 Corrections given by the wall structure

Construction 1.3.1 (Local charts on the degeneration). Given a wall structure 𝒮 on

a polyhedral affine pseudomanifold (𝐵,𝒫), and an 𝔪-primary ideal 𝐼 ⊂ k[𝑄], we

define the following three types of affine scheme Spec𝑅 over Spec k[𝑄]/𝐼 associated

to 𝒮. First, for any chamber 𝔲 define the ring

𝑅𝔲 := 𝑅𝜎 = (k[𝑄]/𝐼)[Λ𝜎] (1.7)

where 𝜎 ∈ 𝒫max is the unique maximal cell containing 𝔲. Second, if 𝔲 is a boundary

chamber, we define the subring

𝑅𝜕
𝔲 := 𝑅𝜕

𝜌 ⊆ 𝑅𝔲 (1.8)

where 𝜌 is the unique codimension one boundary cell contained in 𝔲. The third ring

is a deformation of𝑅𝜌 from Construction 1.2.16 associated to any slab 𝔟 ⊆ 𝜌 ∈ 𝒫[𝑛−1]

of the wall structure:

𝑅𝔟 := (k[𝑄]/𝐼)[Λ𝜌][𝑍+ , 𝑍−]/(𝑍+𝑍− − 𝑓𝔟𝑧𝜅𝜌), (1.9)

where we have that 𝑅𝔟/𝔪 = 𝑅𝜌. We also define gluing morphisms between the

affine charts Spec𝑅𝔲, Spec𝑅𝜕
𝔲 and Spec𝑅𝔟. First, we note that the rings come with

localisation homomorphisms as in Construction 1.2.16:

𝜒𝔟,𝔲 : 𝑅𝔟 −→ 𝑅𝔲 and 𝜒𝜕
𝔲 : 𝑅𝜕

𝔲 −→ 𝑅𝔲. (1.10)

The first of these localisation homomorphisms 𝜒𝔟,𝔲 is defined by the inclusion

Λ𝜌 ⊆ Λ𝜎 and

𝑍+ ↦−→ 𝑧𝜉 , 𝑍− ↦−→ 𝑧−𝜉 𝑓𝔟𝑧
𝜅𝜌
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for some choice of generator 𝜉 of Λ𝜎/Λ𝜌; the second localisation morphism 𝜒𝜕
𝔲

is just equal to 𝜒𝜕
𝜎,𝜌 (1.4), induced by the inclusion Λ𝜎,𝜌 ⊆ Λ𝜎. We now introduce

additional non-trivial isomorphisms of𝑅𝜎 coming from the codimension zero walls.

For a codimension zero wall 𝔡 separating the chamber 𝔲 and 𝔲′, we define the wall-

crossing automorphism

𝜃𝔡 : 𝑅𝔲 −→ 𝑅𝔲′ , 𝑧𝑝 ↦−→ 𝑓
⟨𝑛𝔡 ,𝜋∗(𝑝)⟩
𝔡

𝑧𝑝 , (1.11)

where 𝑛𝔡 is defined to be a generator of Λ⊥
𝔡
⊆ Λ̌𝑥 , for some 𝑥 ∈ Int 𝔡, such that

⟨𝑛𝔡 , 𝑚⟩ ≥ 0 when 𝑚 ∈ Λ𝑥 points into 𝔲. Note that this map does indeed define an

isomorphism of rings when we consider 𝑓𝔡 to be invertible by reduction modulo 𝐼.

Definition 1.3.2 (Consistency in codimension zero). Let 𝒮 be a wall structure on a

polyhedral affine pseudomanifold (𝐵,𝒫) equipped with a piecewise linear function

𝜑, and suppose that 𝔧 is a codimension zero joint of 𝒮. Let 𝔡1 , . . . , 𝔡𝑟 be the walls

containing 𝔧, taken in cyclic order, with each 𝔡𝑖 contained in the chambers 𝔲𝑖 and

𝔲𝑖+1 (where the indices of the chambers are taken modulo 𝑟). Since the codimension

of 𝔧 is zero, each chamber 𝔲𝑖 is contained in the unique maximal cell 𝜎 ∈ 𝒫max

containing 𝔧. Therefore, there is an automorphism of 𝑅𝜎,

𝜃𝔡𝑖 : 𝑅𝔲𝑖 −→ 𝑅𝔲𝑖+1 ,

as defined in (1.11) for each 𝔡𝑖 . We say that 𝔧 is consistent if

𝜃 := 𝜃𝔡𝑟 ◦ · · · ◦ 𝜃𝔡1 = Id

as an automorphism of 𝑅𝜎. The wall structure 𝒮 is consistent in codimension zero if

every codimension zero joint of 𝒮 is consistent.

Definition 1.3.3 (Consistency in codimension one). Let 𝒮 be a wall structure on a

polyhedral affine pseudomanifold (𝐵,𝒫) equipped with a piecewise linear function

𝜑, and suppose that 𝔧 is an interior joint of 𝒮 of codimension one. Let 𝜌 be the

unique codimension one cell of 𝒫 containing 𝔧, and 𝜎, 𝜎′ the unique maximal cells

containing 𝜌. Since 𝔧 ⊈ 𝜕𝐵 there are unique slabs 𝔟1 , 𝔟2 ⊂ 𝜌 with 𝔧 = 𝔟1 ∩ 𝔟2. Denote

the codimension zero walls containing 𝔧 by 𝔡1 , . . . , 𝔡𝑟 ⊂ 𝜎 and 𝔡′1 , . . . , 𝔡
′
𝑠 ⊂ 𝜎′, such
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that

𝔟1 , 𝔡1 , . . . , 𝔡𝑟 , 𝔟2 , 𝔡
′
1 , . . . , 𝔡

′
𝑠

is a cyclic ordering of all the walls containing 𝔧. There are localisation homomor-

phisms

𝜒𝔟𝑖 ,𝜎 : 𝑅𝔟𝑖 −→ 𝑅𝜎 , 𝜒𝔟𝑖 ,𝜎′ : 𝑅𝔟𝑖 −→ 𝑅𝜎′

defined as in (1.10), and the compositions of wall crossings on either side of 𝜌

𝜃 := 𝜃𝔡𝑟 ◦ · · · ◦ 𝜃𝔡1 and 𝜃′ := 𝜃𝔡′1
◦ · · · ◦ 𝜃𝔡′𝑠

give automorphisms of 𝑅𝜎 and 𝑅𝜎′ respectively. We say that 𝔧 is consistent if

(𝜃 × 𝜃′) ((𝜒𝔟1 ,𝜎 , 𝜒𝔟1 ,𝜎′)(𝑅𝔟1)) = (𝜒𝔟2 ,𝜎 , 𝜒𝔟2 ,𝜎′)(𝑅𝔟2).

In this case there is a well-defined isomorphism

𝜃𝔧 : 𝑅𝔟1 −→ 𝑅𝔟2 (1.12)

which is induced by 𝜃 × 𝜃′, since the map

(𝜒𝔟𝑖 ,𝜎 , 𝜒𝔟𝑖 ,𝜎′) : 𝑅𝔟𝑖 −→ 𝑅𝜎 × 𝑅𝜎′

is injective. We say the wall structure 𝒮 is consistent in codimension one if every

codimension one joint is consistent.

Proposition 1.3.4 (The local construction of𝔛◦). Let𝒮 be a wall structure on a polyhedral

affine pseudomanifold (𝐵,𝒫) equipped with a piecewise linear function 𝜑. If𝒮 is consistent

in codimensions zero and one, then there exists a unique scheme 𝔛◦ flat over Spec (k[𝑄]/𝐼)
with open embeddings of the affine schemes

Spec𝑅𝔲 , defined (1.7) for every chamber 𝔲,

Spec𝑅𝜕
𝔲 , defined (1.8) for every boundary chamber 𝔲,

Spec𝑅𝔟 , defined (1.9) for every slab 𝔟,
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that are compatible with the isomorphisms

𝜃𝔡 : Spec𝑅𝔲′ −→ Spec𝑅𝔲 and

𝜃𝜕
𝔡

: Spec𝑅𝜕
𝔲′ −→ Spec𝑅𝜕

𝔲 , defined (1.11) for every codimension zero wall 𝔡,

𝜃𝔧 : Spec𝑅𝔟2 −→ Spec𝑅𝔟1 , defined (1.12) for every codimension one joint 𝔧,

and compatible with the open embeddings

Spec𝑅𝔲 ↩−→ Spec𝑅𝔟 , defined (1.10) for every slab 𝔟 ⊂ 𝔲,

Spec𝑅𝔲 ↩−→ Spec𝑅𝜕
𝔲 , defined (1.8) for every boundary chamber 𝔲.

Proof. This is Proposition 2.4.1 in [23]. □

Proposition 1.3.5 (The central fibre of 𝔛◦ is 𝑋0). The reduction of 𝔛◦ modulo 𝔪 is

canonically isomorphic to the complement of the codimension two strata in 𝑋0.

Proof. This is Proposition 2.4.4 in [23]. □

1.4 The algebra of theta functions
The goal of this section is to define a canonical set of global functions 𝜗𝑚 on 𝔛◦

indexed by the integral tangent vectors on 𝐵. These ‘theta functions’ are given

locally by sums of monomials coming from piecewise linear paths on 𝐵 which

interact with the wall structure 𝒮, called broken lines.

The expression for 𝜗𝑚 on the chart Spec𝑅𝔲 is a sum of monomials associated to

broken lines with endpoint in the chamber 𝔲. If the expression for 𝜗𝑚 on different

charts Spec𝑅𝔲′ is compatible with the gluing maps between charts, then 𝜗𝑚 is well-

defined as a global function. In this case, we say that the wall structure is consistent.

Here we define broken lines and notion of consistency of a wall structure more

precisely.

1.4.1 Broken lines

The theta functions will be indexed by the asymptotic monomials of 𝐵.

Definition 1.4.1 (Asymptotic monomials on (𝐵,𝒫)). Let (𝐵,𝒫) be a polyhedral

affine pseudomanifold equipped with a piecewise affine function 𝜑. Suppose that
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𝜏 ∈ 𝒫 and 𝑥 ∈ Int 𝜏. An asymptotic monomial on 𝜏 is a monomial

𝑧𝑚 ∈ k[𝒫+𝑥 ]

where 𝑚 ∈ Λ𝜏 such that

𝜏 + R≥0𝑚 ⊆ 𝜏.

By abuse of notation we also refer to 𝑚 as the asymptotic monomial. An asymptotic

monomial on (𝐵,𝒫) is an asymptotic monomial on any 𝜏 ∈ 𝒫.

We would like to be able to propagate monomials across all of 𝐵, but parallel

transport of a monomial across a slab is not necessarily well defined. However,

we can define a notion of parallel transport across slabs for monomials that point

away from the slab. We therefore consider monomials 𝑚 ∈ Λ𝐵 to be propagating in

direction −𝑚.

Definition 1.4.2 (Change of chambers morphisms). Suppose 𝔲 and 𝔲′ are two adja-

cent chambers. If both chambers are contained in the same cell 𝜎 ∈ 𝒫max, they are

separated by a codimension zero wall. In this case, we define the change of chambers

morphism 𝜃𝔲′,𝔲 to be the isomorphism between 𝑅𝔲 and 𝑅𝔲′ given by the wall-crossing

automorphism (1.11) defined in Construction 1.3.1.

𝜃𝔲,𝔲′ := 𝜃𝔡 : 𝑅𝔲 −→ 𝑅𝔲′ (1.13)

When𝔲 and𝔲′ are separated by a slab 𝔟, there is no well-defined ring homomorphism

from 𝑅𝔲 to 𝑅𝔲′ which factors through 𝑅𝔟. There is, however, a subring of 𝑅𝔲,

𝑅𝔟
𝔲 := (k[𝑄]/𝐼) [Λ𝜌][𝜒𝔟,𝜎(𝑍+)] ⊆ 𝑅𝔲 ,

on which the localisation homomorphism 𝜒𝔟,𝜎 is invertible. We define the change

of chambers morphism 𝜃𝔲′,𝔲 in this case to be

𝜃𝔲,𝔲′ = 𝜃𝔟 : 𝑅𝔟
𝔲 −→ 𝑅𝔲′ (1.14)
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which is the ring homomorphism given by

𝜒𝔟,𝜎(𝑍+) ↦−→ 𝜒𝔟,𝜎′(𝑍−)−1 · 𝑓𝔟 · 𝑧𝜅𝜌

and the canonical inclusion Λ𝜌 ⊆ Λ𝜎′.

Definition 1.4.3 (Broken lines for 𝒮 on (𝐵,𝒫)). Let 𝒮 be a wall structure on a

polyhedral affine pseudomanifold (𝐵,𝒫) equipped with a piecewise linear function

𝜑. Consider a proper continuous map with image disjoint from any joints of 𝒮

𝛽 : (−∞, 0] −→ 𝐵0

with image disjoint from the joints of 𝒮, such that there exists a sequence

−∞ = 𝑡0 < 𝑡1 < · · · < 𝑡𝑟 = 0

corresponding to points on the path with 𝛽(𝑡𝑖) ∈ |𝒮| for 𝑖 ∈ {1, . . . , 𝑟 − 1}, such

that 𝛽 |(𝑡𝑖 ,𝑡𝑖+1) is a non-constant affine map with image in 𝐵 \ |𝒮|. To each domain

of linearity (𝑡𝑖−1 , 𝑡𝑖) assign a monomial 𝑎𝑖𝑧𝑚𝑖 ∈ k[𝒫+
𝛽(𝑡)] satisfying the following

conditions:

1. 𝑎𝑖 ∈ k[𝑄]/𝐼 and −𝑚𝑖 = 𝛽′(𝑡) for 𝑡 ∈ (𝑡𝑖−1 , 𝑡𝑖).

2. 𝑎1 = 1 and 𝑧𝑚1 is an asymptotic monomial of (𝐵,𝒫).

3. For all 𝑖 ∈ {1, . . . , 𝑟−1} the monomial 𝑎𝑖+1𝑡
𝑚𝑖+1 is a summand of the expression

for the image of 𝑎𝑖𝑧𝑚𝑖 under the change of chambers morphism at 𝛽(𝑡𝑖),

𝜃𝔲𝑖+1 ,𝔲𝑖 (𝑎𝑖𝑧𝑚𝑖 ) =
∑
𝑗

𝑎 𝑗𝑧
𝑚𝑗 .

We say the data of the map 𝛽 together with the monomials {𝑎𝑖𝑧𝑚𝑖 | 1 ≤ 𝑖 ≤ 𝑟} is a

(normalized) broken line for 𝒮 with asymptotic monomial 𝑧𝑚1 and endpoint 𝛽(0).

Remark 1.4.4. There are finitely many (normalized) broken lines with asymptotic

monomial 𝑧𝑚 and fixed endpoint 𝑝 ∈ 𝐵.
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𝑦

𝑡𝜅𝑦

𝑦

𝑡 𝜅+
𝑎
𝑥 −1
𝑦

𝑡 2𝜅+
𝑎
𝑥 −1
𝑦

𝑦

𝑡𝜅+𝑎+𝑏𝑥−1

Figure 1.3: Three broken lines with asymptotic monomial 𝑦 on the wall structure
𝒮 from Figure 1.2, with the image of each domain of linearity labelled
with the monomial it carries.

Definition 1.4.5 (Theta function). We define a theta function for an asymptotic mono-

mial 𝑚 on (𝐵,𝒫) and a general point 𝑝 contained in a chamber 𝔲 of a wall structure

𝒮 to be the sum

𝜗𝑚(𝑝) :=
∑
𝛽

𝑎𝛽𝑧
𝑚𝛽 ∈ 𝑅𝔲 ,

where the sum runs over all broken lines for 𝒮 with asymptotic monomial 𝑚 and

end point 𝑝, and we define the associated monomial by

𝑎𝛽𝑧
𝑚𝛽 := 𝑎𝑟𝑧

𝑚𝑟 . (1.15)

Definition 1.4.6 (Consistency in codimension two). Let 𝒮 be a wall structure on a

polyhedral affine pseudomanifold (𝐵,𝒫) equipped with a piecewise linear function

𝜑, and suppose that 𝔧 be a joint of codimension two. We define a new polyhedral

affine pseudomanifold (𝐵𝔧 ,𝒫𝔧), where

𝒫𝔧 :=
{
(Λ𝜏,𝔧)R | 𝔧 ⊆ 𝜏 ∈ 𝒫

}
,

where the inclusions of cells (Λ𝜏,𝔧)R ↩−→ (Λ𝜏′,𝔧)R are induced by the inclusions 𝜏 ↩−→

𝜏′ ∈ 𝒫, and the affine structure on 𝐵𝔧 is the one induced by the affine structure on
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𝐵. We define the wall structure on (𝐵𝔧 ,𝒫𝔧) induced by 𝒮,

𝒮𝔧 :=
{(
(Λ𝔡,𝔧)R , 𝑓𝔡

) �� (𝔡, 𝑓𝔡) ∈ 𝒮 and 𝔧 ⊆ 𝔡
}
.

Then 𝒮𝔧 is the local model for 𝒮 near 𝔧, all of whose chambers are cones containing

the codimension two jointΛ𝔧,R, which is the only joint of𝒮𝔧. We say that 𝔧 is consistent

if for any asymptotic monomial 𝑚 of (𝐵𝔧 ,𝒫𝔧), the theta functions 𝜗𝑚(𝑝)

1. do not depend on the choice of 𝑝 ∈ 𝔲 ∈ (𝒫𝔧)𝒮𝔧
, and

2. are compatible with the change of chambers morphisms for adjacent chambers

𝔲, 𝔲′ ∈ (𝒫𝔧)𝒮𝔧
. That is,

𝜃𝔲′,𝔲 (𝜗𝑚(𝑝)) = 𝜗𝑚(𝑝′) ∈ 𝑅𝔲′

where 𝑝 ∈ 𝔲, 𝑝′ ∈ 𝔲′, and 𝜃𝔲′,𝔲 is defined in (1.13) and (1.14).

Definition 1.4.7 (Consistency). A wall structure 𝒮 is consistent if every joint 𝔧 ∈ 𝒫𝒮

is consistent.

Example 1.4.8. The wall structure pictured in Figure 1.2 is consistent.

Theorem 1.4.9 (Consistency implies counts of broken lines are global functions on

𝔛◦). Let 𝒮 be a consistent wall structure on a polyhedral affine pseudomanifold (𝐵,𝒫)

equipped with a piecewise linear function 𝜑. Let 𝔛◦ be the corresponding flat scheme over

k[𝑄]/𝐼, as defined in Proposition 1.3.4.

Then for each asymptotic monomial 𝑚 (Definition 1.4.1) there exists a function 𝜗𝑚 ∈

Γ(𝔛◦ ,𝒪𝔛◦) which restricts on 𝑅𝔲 to the theta function

𝜗𝑚(𝑝) :=
∑
𝛽

𝑎𝛽𝑧
𝑚𝛽

for each chamber 𝔲, where the sum runs over all broken lines for𝒮 with asymptotic monomial

𝑚 and ending at a general point 𝑝 ∈ 𝔲. Moreover, the 𝜗𝑚 form a k[𝑄]/𝐼-module basis of

Γ(𝔛◦ ,𝒪𝔛◦):

Γ(𝔛◦ ,𝒪𝔛◦) = 𝑅(𝒮) :=
⊕
𝑚

(k[𝑄]/𝐼) · 𝜗𝑚 (1.16)

Proof. This is Theorem 3.3.1 in [23]. □



1.4. The algebra of theta functions 45

Lemma 1.4.10 (Structure constants of the algebra of theta functions). Let 𝒮 be a

consistent wall structure on a polyhedral affine pseudomanifold (𝐵,𝒫) equipped with a

piecewise linear function 𝜑. Let 𝔛◦ be the corresponding flat scheme over k[𝑄]/𝐼, as defined

in Proposition 1.3.4.

For any two asymptotic monomials 𝑚1 , 𝑚2, the product of the corresponding theta

functions has expansion

𝜗𝑚1𝜗𝑚2 =
∑
𝑚

𝛼𝑚(𝑚1 , 𝑚2) · 𝜗𝑚 , (1.17)

where the coefficients are of the form

𝛼𝑚(𝑚1 , 𝑚2) =
∑

(𝛽1 ,𝛽2)∈𝑇𝑚(𝑚1 ,𝑚2)
𝑎𝛽1𝑎𝛽2 . (1.18)

Here 𝑎𝛽𝑖 is the monomial in k[𝑄]/𝐼 associated to 𝛽𝑖 by (1.15), and 𝑇𝑚(𝑚1 , 𝑚1) is the set of

pairs of broken lines (𝛽1 , 𝛽2) such that

1. 𝛽𝑖 has asymptotic monomial 𝑚𝑖 .

2. 𝛽1 and 𝛽2 have the same endpoint 𝑝 ∈ 𝔲, a general point for both asymptotic monomials

𝑚1 and 𝑚2.

3. The pair of broken lines satisfy the balancing condition 𝑚𝛽1 + 𝑚𝛽2 = 𝑚 ∈ Λ𝔲, where

𝑚𝛽𝑖 ∈ Λ𝔲 is the tangent vector associated to 𝛽𝑖 by (1.15).

Proof. This is Theorem 3.5.1 in [23]. □

1.4.2 Convexity

Consistency of a boundary joint is implied by the following notion of convexity.

Checking convexity is simpler than checking consistency, and we will make use of

this in Chapters 3 and 4.

Definition 1.4.11 (Convexity). Suppose that 𝔧 ⊂ 𝜕𝐵 is a boundary joint of a wall

structure𝒮 on a polyhedral affine pseudomanifold (𝐵,𝒫). Let𝒮𝔧 be the local model

for 𝒮 near 𝔧, as defined in Definition 1.4.6. Since 𝔧 is a polyhedral subset of 𝐵 of

codimension two, there is an affine submersion

𝜋 : 𝐵𝔧 −→ R2
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that contracts 𝔧 to the origin. By extending the base ring k[𝑄] to k[𝑄 ⊕ Λ𝔧], we may

consider wall functions 𝑓𝔡 for walls of 𝒮𝔧 as wall functions for 𝜋(𝔡), and therefore

define a wall structure𝜋(𝒮𝔧)on𝜋(𝐵𝔧). Broken lines 𝛽 ⊂ 𝐵𝔧 with asymptotic monomial

not in Λ𝔧 and endpoint 𝑝 correspond one to one with broken lines in 𝜋(𝐵𝔧) with

endpoint 𝜋(𝑝).

The image 𝜋(𝐵𝔧) will be a cone in R2. Let 𝑚0 ∈ Λ𝜋(𝜕𝐵𝔧) be the primitive vector

pointing away from the origin along one edge of the cone, and consider a broken

line 𝛽 ⊂ 𝜋(𝐵𝔧)with asymptotic monomial𝑚0. It will cross the walls contained in the

interior of the cone 𝜋(𝐵𝔧) in succession; assume that, as 𝛽 crosses 𝜋(𝔡) ⊂ Int 𝜋(𝐵𝔧),

it bends maximally away from the boundary 𝜋(𝜕𝐵𝔧). Let 𝑎𝛽𝑧𝑚𝛽 be the monomial

associated to the last possible domain of linearity of 𝛽 – after it has bent across

maximally many of the interior walls of 𝜋(𝐵𝔧). If

R≥0𝑚𝛽 ⊈ Int 𝜋(𝐵𝔧)

unless 𝑎𝛽 = 0 ∈ k[𝑄]/𝐼, we say that the wall structure 𝒮 is convex at the joint 𝔧.

1 + 𝑡𝑎𝑦−1

𝔧

𝑡𝑎𝑥−1

𝑥−1𝑦

Figure 1.4: A neighbourhood of a convex boundary joint 𝔧 in a two-dimensional
wall structure, and two broken lines with asymptotic monomial 𝑥−1𝑦 ∈
k[𝑥−1𝑦, 𝑥] � k[Λ𝔧]. The single interior wall containing 𝔧 is labelled
with its wall function, and the two broken lines are labelled with the
monomials associated to the last domain of linearity. The upper broken
line is bent maximally away from the boundary.

Proposition 1.4.12 (Convexity implies consistency). If 𝒮 is convex at a boundary joint

𝔧, then 𝔧 is consistent.

Proof. This is [23, Proposition 3.2.5]. □



1.5. The global construction of the family 47

1.5 The global construction of the family
When the wall structure 𝒮 is conical, the scheme 𝔛 is affine and can be constructed

as Spec of the algebra of theta functions. When the wall structure is not conical, we

use it to construct a line bundle 𝔏◦ on 𝔛◦, which restricts on 𝑋0 to the ample line

bundle given by the polytopes. This line bundle is constructed as the inverse of the

line bundle (𝔏◦)−1, whose total space is constructed as an affine scheme over 𝔛◦, by

truncating the cone over 𝒮. Then the partial compactification of 𝔛◦ is constructed

by taking Proj of the graded algebra of theta functions on (𝔏◦)−1.

1.5.1 The affine case

Theorem 1.5.1 (Open embedding of affine 𝔛◦ → Spec𝑅). Suppose that 𝒮 is a conical

consistent wall structure on a polyhedral affine pseudomanifold (𝐵,𝒫) equipped with a

piecewise linear function 𝜑 - that is, every cell 𝜏 ∈ 𝒫𝒮 is a cone. Then the theta functions

𝜗𝑚 freely generate 𝑅(𝒮) := Γ(𝔛◦ ,𝒪𝔛◦) as a k[𝑄]/𝐼-module, and the induced canonical

morphism

𝔛◦ −→ 𝔛 := Spec𝑅(𝒮)

is an open embedding restricting to 𝑋◦0 −→ 𝑋0 modulo 𝔪.

Proof. This is Proposition 3.4.2 in [23]. □

1.5.2 The projective case

Definition 1.5.2 (Cone over a polyhedron). Let 𝜎 ⊆ R𝑛 be an integral polyhedron.

The cone over 𝜎 is defined to be

C𝜎 := R≥0 · (𝜎 × {1}) ⊆ R𝑛 × R.

Remark 1.5.3. If the polyhedron 𝜎 is unbounded, then 𝜎 = 𝜎0 + 𝜎∞ where 𝜎0 is

bounded and 𝜎∞ is a cone, which is uniquely determined for 𝜎. In this case

C𝜎 = R≥0 · (𝜎0 × {1}) + 𝜎∞ × {0}

where the two Minkowski summands only intersect in the origin 𝑂 ∈ R𝑛+1. We call

𝜎∞ the asymptotic cone or tail cone of 𝜎.

Definition 1.5.4 (Cone over a polyhedral affine manifold). The cone over the polyhedral
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C𝐵 ∩ {ℎ = 0}

𝐵 × {ℎ = 1}

Figure 1.5: The segment {0 ≤ ℎ ≤ 1} of the cone over a two-dimensional polyhedral
affine manifold 𝐵 with four maximal cells and one bounded cell of
dimension one. Here the codimension one cells of C𝐵 are filled in
grey, with the codimension one cells of 𝐵 × {1} shown in black, and the
codimension one cells of C𝐵 ∩ {ℎ = 0} shown in gray.

affine pseudomanifold (𝐵,𝒫) is the topological space

C𝐵 := lim−−→
𝜏∈𝒫

C𝜏

with polyhedral decomposition C𝒫 := {C𝜏 | 𝜏 ∈ 𝒫} and affine structure on C𝐵0 ⊆

C𝐵 \ CΔ defined by the charts

C𝜓 : C𝑈 \ {𝑂} −→ R𝑛+1

(𝑥, ℎ) ↦−→ (ℎ · 𝜓(𝑥), ℎ)

associated to each chart 𝜓 : 𝑈 → R𝑛 on 𝐵0.

Definition 1.5.5 (Cone over a wall structure). Let 𝒮 be a wall structure on a polyhe-

dral affine pseudomanifold (𝐵,𝒫) equipped with a piecewise linear function 𝜑. We

define the cone over 𝒮 as follows. First, we note that 𝜑 induces a piecewise linear

function on (C𝐵,C𝒫)with kinks given by

𝜅C𝜌(C𝜑) := 𝜅𝜌(𝜑).

Given a wall (𝔡, 𝑓𝔡) ∈ 𝒮, let 𝑎 ∈ N \ {0} be the index of the image of ΛC𝔡 in Z under
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the map

ΛC𝔡 −→ Z

induced by projection to the height of the cone. Since 𝑓𝔡 ∈ 1 + 𝔪, where 𝔪 is a

nilpotent ideal in k[𝑄]/𝐼, there exists a unique element ( 𝑓𝔡)1/𝑎 ∈ 1 + 𝔪 such that(
( 𝑓𝔡)1/𝑎

) 𝑎
= 𝑓𝔡. We define the cone over 𝒮 as

C𝒮 :=
{(

C𝔡, 𝑓
1/𝑎
𝔡

) ��� (𝔡, 𝑓𝔡) ∈ 𝒮}
.

Lemma 1.5.6 (Consistency of cone over wall structure). Let 𝒮 be a wall structure on

polyhedral affine pseudomanifold (𝐵,𝒫) equipped with a piecewise affine function 𝜑. If 𝒮 is

consistent, then C𝒮 is a consistent wall structure on (C𝐵,C𝒫) equipped with the function

C𝜑.

Proof. This is Proposition 4.2.6 in [23]. □

Theorem 1.5.7 (Open embedding 𝔛◦ → Proj 𝑆). Let 𝒮 be a consistent wall structure on

a polyhedral affine pseudomanifold (𝐵,𝒫) equipped with a piecewise linear function 𝜑. Let

𝔛◦ and 𝔜◦ be the flat k[𝑄]/𝐼-schemes associated to 𝒮 and C𝒮 respectively by Proposition

1.3.4, and let

𝑅(𝒮) = Γ(𝔛◦ ,𝒪𝔛◦), 𝑅(C𝒮) = Γ(𝔜◦ ,𝒪𝔜◦)

be the k[𝑄]/𝐼-algebras constructed in Theorem 1.4.9. The algebras have canonical k[𝑄]/𝐼-

module bases of sections 𝜗𝑚 for asymptotic monomials on 𝐵 and C𝐵 respectively.

Then the following holds.

1. The ring 𝑅(C𝒮) is a Z-graded 𝑅(𝒮)-algebra, with degree zero part 𝑅(C𝒮)0 = 𝑅(𝒮).

2. There is a canonical embedding

𝔛◦ −→ 𝔛 := Proj𝑅(C𝒮)

of 𝔛◦ as an open dense subscheme in 𝔛. Moreover, 𝔛 is the unique flat extension of 𝑋0

from k[𝑄]/𝔪 to k[𝑄]/𝐼 which contains 𝔛◦ as an open subscheme and is proper over

Spec𝑅(𝒮).

3. 𝑅(C𝒮) =
⊕

𝑑∈N Γ(𝔛,𝒪𝔛(𝑑)), the homogeneous coordinate ring of (𝔛,𝒪𝔛(1)).

Proof. This is Theorem 4.3.2 in [23]. □
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1.6 Compatible systems of wall structures

Definition 1.6.1 (Compatible system of wall structures). Let (𝐵,𝒫) be a polyhedral

affine pseudomanifold equipped with a 𝑄-valued MPA-function 𝜑. Let 𝔇 be a set

of wall structures 𝒮𝐼 on (𝐵,𝒫, 𝜑), indexed by 𝔪-primary ideals 𝐼 ⊂ k[𝑄]. We will

call 𝔇 a compatible system of wall structures if we have

𝒮𝐼 ≡ 𝒮𝐼′ mod 𝐽

for any 𝔪-primary ideal 𝐽 containing 𝐼 and 𝐼′. If each wall structure 𝒮𝐼 is consistent

modulo 𝐼 we say that 𝔇 is a compatible system of consistent wall structures.

A compatible system of wall structures on (𝐵,𝒫) is morally an infinite collection

of walls that form polyhedral subdivisions of 𝒫 modulo each 𝔪-primary ideal 𝐼 –

that is, there are only finitely many walls 𝔡 with wall function 𝑓𝔡 nontrivial modulo

𝐼. The reason we do not simply define wall structures with wall functions 𝑓𝔡 as

elements of �k[𝑄][Λ𝑥] is that taking the completion with respect to 𝔪 does not

commute with the localisation maps induced by parallel transport on 𝐵. In the rest

of this thesis we will, however, abuse notation by letting 𝔇/𝐼 := 𝒮𝐼 for a compatible

system of wall structures 𝔇 = {𝒮𝐼 |
√
𝐼 = 𝔪}.

Construction 1.6.2 (The formal family). Let (𝐵,𝒫) be a polyhedral affine pseu-

domanifold equipped with a 𝑄-valued MPA-function 𝜑, and let 𝐼 ⊂ k[𝑄] be an

𝔪-primary ideal. Let 𝔇 be a compatible system of consistent wall structures on

(𝐵,𝒫, 𝜑). Let 𝔛𝐼 := Proj𝑅(C𝒮𝐼) be the flat scheme over Spec k[𝑄]/𝐼 associated to 𝒮𝐼

via Theorem 1.5.7. For any ideal 𝐽 ⊂ 𝐼 we have

𝒮𝐼 ≡ 𝒮𝐽 mod 𝐼 ,

so in particular 𝔛𝐼 is the pullback of 𝔛𝐽 via Spec k[𝑄]/𝐼 → Spec k[𝑄]/𝐽. We can

therefore define a formal scheme

𝔛̂ := colim√
𝐼=𝔪

𝔛𝐼 ,
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which is a formal flat family over

Spf �k[𝑄] := colim√
𝐼=𝔪

Spec k[𝑄]/𝐼.

Here �k[𝑄] is the completion of k[𝑄]with respect to the maximal ideal 𝔪.

Lemma 1.6.3 (Algebraising the family). If 𝐵 is bounded, then the formal family

𝔛̂ −→ Spf �k[𝑄]
is algebraisable. That is, there exists a family

𝔛 −→ Spec �k[𝑄]
such that 𝔛 ×Spec �k[𝑄] Spec k[𝑄]/𝐼 is isomorphic to 𝔛𝐼 for any 𝔪-primary ideal 𝐼.

Proof. The construction of 𝔛𝐼 in the the proof of [23, Theorem 4.3.2] involves an

invertible sheaf whose restriction to 𝔛𝔪 is ample. By the Grothendieck Existence

Theorem [18, III 5.4.5] it follows that 𝔛̂ is algebraisable (see [35]). □

Remark 1.6.4. Alternatively, we can consider the algebraisation of 𝔛̂ (when 𝐵 is

bounded) to be given by taking Proj of the �k[𝑄]-algebra

𝑅(C𝔇) :=
⊕

𝑚∈C𝐵(Z)

�k[𝑄] · 𝜗𝑚 , (1.19)

where the theta functions are now formal variables whose product is given, modulo

each 𝔪-primary ideal 𝐼, by the formula in Lemma 1.4.10. This is only a well-

defined algebra because for each pair 𝑚1 , 𝑚2 ∈ C𝐵(Z), there are only finitely many

asymptotic monomials 𝑚 ∈ C𝐵(Z) such that 𝛼𝑚(𝑚1 , 𝑚2) ≠ 0. That is, the expression

for 𝜗𝑚1𝜗𝑚2 is polynomial in the 𝜗𝑚’s.



Chapter 2

Constructions of the Gross–Siebert

program II: sources of wall structures

In this Chapter we introduce two main constructions of a compatible system of wall

structures𝔇 associated to a log Calabi–Yau pair (𝑌, 𝐷): we define the canonical wall

structure 𝔇can in Section 2.2 and the algorithmic wall structure 𝛼𝔇(𝑌Σ ,𝐻) in Section 2.3.

We show that the formal schemes produced by these two compatible systems wall

structures are in fact the same when restricted to a sublocus of the base, called the

Gross–Siebert locus. In Section 2.4 we introduce an auxiliary construction of a wall

structure, which enables us to further compactify the mirror family 𝔛.

In Section 2.1, we introduce the concept of scattering diagrams in two dimensions.

This is closely related to the notion of wall structure, discussed in Section 1.2.3,

except that:

1. We work on R2 rather than a polyhedral affine pseudomanifold. In particular,

there is no polyhedral decomposition involved and there are no singularities

in the affine structure. As a result, the notion of consistency, which in this

context we call compatibility, is equivalent to consistency in codimension zero.

2. Wall functions are regarded as living in an 𝔪-adic completion of k[𝑄], rather

than in k[𝑄]/𝐼 for some 𝔪-primary ideal 𝐼. Scattering diagrams can contain

infinite numbers of rays and lines (the analogues of walls) as long as there

only finitely many modulo 𝐼 for every 𝔪-primary ideal 𝐼.

These technical differences, although small, are important. The conventions

adopted when defining scattering diagrams allow us to make streamlined argu-

ments about an algorithmic scattering process, in which an initial scattering diagram
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is iteratively refined to produce a compatible scattering diagram. The conventions

when defining wall structures, on the other hand, are better adapted to the con-

struction of mirror families by gluing local charts.

As we will see below, any scattering diagram determines a compatible system

of wall structures on 𝑀R. Furthermore, a key result of the Gross–Siebert program

is that the canonical wall structure for a log Calabi–Yau pair – which gives rise to

the mirror family – can be obtained from a scattering diagram (see Remark 2.1.2

below). Although the canonical wall structure can be infinite and complicated, the

initial scattering diagram involved is finite and straightforward to describe.

2.1 Scattering diagrams
In this section we define scattering diagrams on 𝑀R where 𝑀 � Z2. There is also

a notion of scattering diagram in higher dimensions [28], and an analogue of the

Kontsevich–Soibelman Lemma, Theorem 2.1.8, is known to hold for those higher-

dimensional scattering diagrams that are formed of widgets – see [5, Theorem 5.6].

However, since the only higher dimensional scattering diagrams appearing in this

thesis are cones over two dimensional scattering diagrams, it isn’t necessary to

define higher dimensional scattering here. See [5] for a detailed discussion.

Definition 2.1.1 (Scattering diagram). Let 𝑀 = Z2 and 𝑄 be a monoid with map

𝑟 : 𝑄 → 𝑀. Let 𝔪𝑄 = 𝑄 \𝑄×, and �k[𝑄] denote the completion of k[𝑄]with respect

to the monomial ideal 𝔪𝑄 . A ray or a line is a pair (𝔡, 𝑓𝔡) such that

• 𝔡 ⊂ 𝑀R is given by 𝔡 = 𝑝 + R≥0𝑚 if 𝔡 is a ray and 𝔡 = 𝑝 + R𝑚 if 𝔡 is a line,

where 𝑝 ∈ 𝑀R and 𝑚 ∈ 𝑀R \ {0}.

• 𝑓𝔡 ∈�k[𝑄].
• 𝑓𝔡 ≡ 1 mod 𝔪𝑄 .

• 𝑓𝔡 = 1 +∑
𝑞 𝑐𝑞𝑧

𝑞 where the sum is over either 𝑞 ∈ 𝑄 such that 𝑟(𝑞) ∈ R≥0𝑚, or

𝑞 ∈ 𝑄 such that −𝑟(𝑞) ∈ R≥0𝑚.

If 𝔡 is a ray we say that 𝔡 is incoming if 𝑟(𝑞) ∈ R≥0𝑚 for all 𝑞 with 𝑐𝑞 ≠ 0, and

that 𝔡 is outgoing ray if −𝑟(𝑞) ∈ R≥0𝑚 for all 𝑞 with 𝑐𝑞 ≠ 0.

A scattering diagram for the data 𝑟 : 𝑄 → 𝑀 is a set of rays and lines such that

for every power 𝑘 > 0, there are only a finite number of (𝔡, 𝑓𝔡) ∈ 𝔇 such that 𝑓𝔡 . 1
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mod 𝔪𝑘
𝑄

. We denote by Sing(𝔇) the set of codimension 2 cells in the the polyhedral

decomposition of 𝑀R induced by the scattering diagram 𝔇.

Remark 2.1.2. A scattering diagram 𝔇 for the data 𝑟 : 𝑄 → 𝑀 induces, for each

𝔪𝑄-primary ideal 𝐼, a wall structure 𝒮𝐼 on the polyhedral affine manifold 𝑀R. Here

the𝑄-valued MPA-function 𝜑 is zero, walls are obtained from rays or lines (𝔡, 𝑓𝔡) by

replacing 𝑓𝔡 by 𝑓𝔡 mod 𝐼, and we discard any walls such that 𝑓𝔡 ≡ 1 mod 𝐼. This

leaves only finitely many walls in𝒮𝐼 . By abuse of notation, we define the compatible

system of wall structures

𝔇 =

{
𝒮𝐼

���√𝐼 = 𝔪𝑄

}
,

and refer to both rays and lines as walls of 𝔇.

We say a ray or line 𝔡 passes through a point 𝑝 ∈ 𝑀R if 𝑝 lies in the interior of the

support of 𝔡. If 𝔡 is an outgoing ray and 𝑝 is the boundary point of the support of

𝔡, we say that 𝔡 emanates from 𝑝.

Remark 2.1.3. Definition 2.1.1 generalises to higher dimensions as one would ex-

pect: the walls 𝔡 are polyhedral subsets of 𝑀R of codimension one (here 𝑀 � Z𝑛),

and every monomial 𝑧𝑞 appearing with non-zero coefficient in the associated wall

function 𝑓𝔡 ∈ �k[𝑄] has 𝑟(𝑞) ∈ Λ𝔡 ⊂ 𝑀. The definition of a general scattering

diagram can be found in [28] or [5].

Definition 2.1.4 (Path ordered product). Let 𝛾 : [0, 1] → 𝑀R \ Sing(𝔇) be a path

whose endpoints are not contained in 𝔇 and such that all intersections with any ray

or line of 𝔇 are transverse. We define the path ordered product

𝜃𝛾,𝔇 : �k[𝑄] −→�k[𝑄]
of 𝔇 along 𝛾 as follows. For each 𝑘 > 0 the set

{0 < 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛 < 1} := {𝑡 ∈ [0, 1] | 𝛾(𝑡) ∈ 𝔡 ∈ 𝔇 such that 𝑓𝔡 . 1 mod 𝔪𝑘
𝑄}

is finite as 𝔇 is a scattering diagram. For each 𝑡𝑖 such that 𝛾(𝑡𝑖) ∈ 𝔡, define

𝜃𝑘
𝔡,𝑛𝔡

: k[𝑄]/𝔪𝑘
𝑄 −→ k[𝑄]/𝔪

𝑘
𝑄
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by

𝑧𝑞 ↦−→ 𝑧𝑞 𝑓
⟨𝑛𝔡 ,𝑟(𝑞)⟩
𝔡

where 𝑛𝔡 ∈ 𝑁 = 𝑀∨ is primitive, annihilates the tangent space to 𝔡, and is chosen

with the sign convention

⟨𝑛𝔡 , 𝛾′(𝑡𝑖)⟩ < 0.

We define

𝜃𝑘𝛾,𝔇 = 𝜃𝑘
𝔡𝑠 ,𝑛𝑠
◦ · · · ◦ 𝜃𝑘

𝔡1 ,𝑛1
.

The product does not depend on any choices, since 𝑡𝑖 = 𝑡𝑖+1 implies that 𝔡𝑖 ∩ 𝔡𝑖+1

must be a one-dimensional cell in 𝑀R, and one can see easily 𝜃𝑘
𝔡𝑖 ,𝑛𝑖

commutes with

𝜃𝑘
𝔡𝑖+1 ,𝑛𝑖+1

. Therefore we can define the 𝛾-ordered product

𝜃𝛾,𝔇 = lim
𝑘→∞

𝜃𝑘𝛾,𝔇.

Remark 2.1.5. Consider the following automorphism of �k[𝑄]
exp

(
log( 𝑓𝔡) 𝜕𝑛𝔡

)
,

where 𝑛𝔡 is a primitive normal vector to 𝔡. Here 𝜕𝑛 ∈ Hom(𝑀,�k[𝑄]) = �k[𝑄] ⊗ 𝑁 is

the log derivation defined by 𝑛 ∈ 𝑁 = 𝑀∨:

𝜕𝑛(𝑧𝑞) = ⟨𝑛, 𝑟(𝑞)⟩𝑧𝑞

and exp(𝜃) is an automorphism of �k[𝑄] for any 𝜃 ∈ 𝔪𝑄

(�k[𝑄] ⊗ 𝑁)
, defined by

exp(𝜃)(𝑔) = Id(𝑔) +
∞∑
𝑖=1

𝜃𝑖(𝑔)
𝑖! .

We note that

𝜃𝑘
𝔡,𝑛𝔡
≡ exp

(
log( 𝑓𝔡) 𝜕𝑛𝔡

)
mod 𝔪𝑘

𝑄

when 𝑛𝔡 is chosen with respect to 𝛾with the same sign convention as in the definition



2.1. Scattering diagrams 56

1 + 𝑎𝑥−1

1
+
𝑏
𝑦
−1

1 +
𝑎𝑏
𝑥
−1 𝑦
−1

Figure 2.1: A consistent scattering diagram for the data 𝑟 : 𝑄 = N2 ⊕ 𝑀 → 𝑀 with
two lines and one ray. Here 𝑟 is the canonical projection and k[𝑄] is
denoted k[𝑎, 𝑏, 𝑥± , 𝑦±].

of 𝜃𝑘𝛾,𝔡, and so path ordered products can always be written in the form

𝜃𝛾,𝔇 ≡ exp

(∑
𝑖

𝑐𝑖𝑧
𝑞𝑖𝜕𝑛𝑖

)
modulo 𝔪𝑘

𝑄

where 𝑛𝑖 ∈ 𝑟(𝑞𝑖)⊥ and 𝑐𝑖 ∈ 𝑘. The set of automorphisms of �k[𝑄] with such an

expression form a group, introduced in [28] and discussed in [24] as the tropical

vertex group.

Definition 2.1.6. A scattering diagram 𝔇 is compatible if

𝜃𝛾,𝔇 = Id

for all loops 𝛾 for which 𝜃𝛾,𝔇 is defined.

Remark 2.1.7. If a scattering diagram 𝔇 is compatible, then the induced wall struc-

ture 𝒮 from Remark 2.1.2 is consistent. Indeed, every joint of 𝒮 is of codimension

zero, so the conditions for consistency of 𝒮 are equivalent to the conditions for

compatibility of 𝔇.

Theorem 2.1.8 (Kontsevich–Soibelman [43]). Let 𝔇 be a scattering diagram. There

exists a compatible scattering diagram Scatter(𝔇) containing 𝔇 such that Scatter(𝔇) \𝔇

consists only of rays.
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Proof. By definition, 𝔇 is compatible modulo 𝔪𝑄 . Construction 4.1.2 gives an

algorithm for constructing a scattering diagram Scatter𝑘(𝔇) which is compatible

modulo𝔪𝑘+1
𝑄

and contains Scatter𝑘−1(𝔇), the scattering diagram compatible modulo

𝔪𝑘
𝑄

containing 𝔇. The algorithm only adds outgoing rays to Scatter𝑘−1(𝔇) to obtain

Scatter𝑘(𝔇). □

Definition 2.1.9. Two scattering diagrams 𝔇 and 𝔇′ for the same data 𝑟 : 𝑄 → 𝑀

are equivalent if

𝜃𝛾,𝔇 = 𝜃𝛾,𝔇′

for every curve 𝛾 for which both sides are defined.

Remark 2.1.10. Scatter(𝔇) is unique up to equivalence of scattering diagrams. We

refer to the application of the functor Scatter to a scattering diagram 𝔇 as scattering

and the application of Scatter𝑘 as scattering to order 𝑘.

The following Lemma is proved in Section 4.1.1.

Lemma 2.1.11. Scattering is functorial up to equivalence in the following sense.

Suppose 𝑄 and 𝑃 are two monoids equipped with maps 𝑟 : 𝑄 → 𝑀 and 𝑠 : 𝑃 → 𝑀,

and 𝜑 : 𝑄 → 𝑃 is a morphism of monoids such that there exists an automorphism

𝛼 ∈ 𝐺𝐿2(Z) of 𝑀R such that 𝑠 ◦ 𝜑 = 𝛼 ◦ 𝑟. Then define

𝜑(𝔇) := {(𝛼(𝔡), 𝜑̂( 𝑓𝔡)) | (𝔡, 𝑓𝔡) ∈ 𝔇}

where 𝜑̂ : �k[𝑄] −→ k̂[𝑃] is the ring homomorphism induced by 𝜑. Then Scatter(𝜑(𝔇)) is

equivalent to 𝜑(Scatter(𝔇)).

2.2 The canonical wall structure
In this section we define the canonical wall structure associated to a log Calabi–

Yau pair (𝑌, 𝐷) in terms of its punctured invariants (see [2] for a definition). We

follow the notations and conventions of [31], simplifying where possible to restrict

the definitions and constructions to a smaller set of log Calabi–Yau pairs which

contains all the examples of this thesis.

Definition 2.2.1 (Log Calabi–Yau pair). Let 𝑌 be a non-singular variety and 𝐷 ⊂ 𝑌

a simple normal crossings divisor. The divisor 𝐷 induces a divisorial log structure
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on 𝑌 which is log smooth over the log point Spec k. We say the pair (𝑌, 𝐷) is log

Calabi–Yau if the logarithmic canonical class 𝐾𝑌 +𝐷 is numerically equivalent to an

effective Q-divisor supported on 𝐷.

Remark 2.2.2. In general (see [31]) the polyhedral affine pseudomanifold underlying

the canonical wall structure depends on the presentation

𝐾𝑌 + 𝐷 ≡Q
∑
𝑗

𝑎 𝑗𝐷𝑗 ,

where 𝑎 𝑗 ≥ 0 and the 𝐷𝑗 are the irreducible components of 𝐷. In this thesis, we will

further assume that 𝑎 𝑗 = 0 for all 𝑗. This will allow us to simplify the definition of

the polyhedral affine pseudomanifold.

Remark 2.2.3. In addition, we assume that the stratum

𝐷𝑗1 ∩ · · · ∩ 𝐷𝑗𝑘

is connected or empty for every 𝑗1 , . . . , 𝑗𝑘 . This is already true for the examples

considered in this thesis, but can also be achieved in general via a log étale birational

modification of 𝑌 [31]. We further assume that there exists at least one zero-

dimensional stratum.

The tropicalisation of the log scheme given by (𝑌, 𝐷) is defined in [1]. When

we make the above assumptions, it has the following description.

Construction 2.2.4 (Tropicalisation of the log Calabi–Yau pair). Given a log Calabi–

Yau pair (𝑌, 𝐷) satisfying the above assumptions, the tropicalisation Σ(𝑌) is given

by the dual intersection complex of 𝐷 = 𝐷1 + . . . + 𝐷𝑟 . More precisely, it is the

polyhedral cone complex in Div𝐷(𝑌)∗R

Σ(𝑌) :=

∑
𝑗∈𝐽
R≥0𝐷

∗
𝑗

������ 𝐽 ⊆ {1, . . . , 𝑟},⋂𝑗∈𝐽 𝐷𝑗 ≠ ∅
 .

Construction 2.2.5 (The integral affine structure). We now let 𝒫 = Σ(𝑌) and define

an integral affine structure on 𝐵 =
⋃

𝜎∈𝒫 𝜎 as follows. For each codimension one

cone 𝜌 ∈ Σ(𝑌) such that 𝜌 = 𝜎 ∩ 𝜎′ for 𝜎, 𝜎′ ∈ Σ(𝑌)max, we define a chart 𝜓𝜌 :
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𝜎 ∪ 𝜎′ −→ R𝑛 . Say that

𝜌 =

𝑛−1∑
𝑘=1
R≥0𝐷

∗
𝑗𝑘
, 𝜎 =

𝑛∑
𝑘=1
R≥0𝐷

∗
𝑗𝑘
, 𝜎′ =

𝑛−1∑
𝑘=1
R≥0𝐷

∗
𝑗𝑘
+ R≥0𝐷

∗
𝑗′𝑛

and pick two bases 𝑒1 , ..., 𝑒𝑛−1 , 𝑒𝑛 and 𝑒1 , ..., 𝑒𝑛−1 , 𝑒
′
𝑛 for R𝑛 such that

𝑒𝑛 + 𝑒′𝑛 = −
𝑛−1∑
𝑘=1
(𝐷𝑗𝑘 · 𝑌𝜌)𝑒𝑘 ,

where 𝑌𝜌 is the curve defined by the stratum of the intersection complex given by

𝜌. Then define the chart 𝜓𝜌 by

𝐷∗𝑗𝑘 ↦−→ 𝑒𝑘 ∀𝑘 ∈ {1, ..., 𝑛}

and 𝐷∗
𝑗′𝑛
↦−→ 𝑒′𝑛 ,

and note that it is well-defined up to an element of GL𝑛(Z).

Remark 2.2.6. Under our assumptions, Σ(𝑌) contains an 𝑛-dimensional cone, and

therefore the tropicalisation of (𝑌, 𝐷) defines a polyhedral affine pseudomanifold

in the sense of Definition 1.2.1. See Proposition 1.3 in [31].

Construction 2.2.7 (The monoid 𝑄). We fix a finitely generated monoid 𝑄 ⊆ 𝑁1(𝑌)

such that

1. 𝑄 contains the classes of all stable maps to 𝑌,

2. 𝑄 is saturated, and

3. 𝑄× = 𝑁1(𝑌)tors.

In the examples considered in this thesis, 𝑁1(𝑌)will be torsion-free, and so the third

condition implies that the monoid 𝑄 is sharp. This set of conditions on the choice

of monoid 𝑄 is a simplification of the conditions given in [30, Basic Setup 1.6] – in

this section we only describe the canonical wall structure in the absolute case.

Construction 2.2.8 (The multivalued piecewise affine function). We define 𝜑 ∈

ℳ𝒫𝒜(𝐵, 𝑄gp) to be the unique MPA-function such that, for every codimension
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one cell 𝜌 ∈ Σ(𝑌), the kink across 𝜌 is

𝜅𝜌 = [𝑌𝜌] ∈ 𝑁1(𝑌).

𝜔
𝑠

𝐺

𝐿

𝐸

𝜔𝐿

𝜔𝐸

Figure 2.2: A family of tropical curves Γ(𝐺) −→ 𝜔 = R≥0. The graph 𝐺 over each
interior point has two vertices, an edge 𝐸 and a leg 𝐿.

Definition 2.2.9 (Tropical type). Recall that the tropicalisation of a log stable curve is

a graph 𝐺, which has a vertex for each irreducible component, an edge between two

vertices for each point of intersection of irreducible components, and a leg (an edge

with a single vertex) for each punctured or marked point. A function 𝑔 : 𝑉(𝐺) → N

assigns a genus to each component of the log stable curve.

Let 𝜔 be a rational polyhedral cone and 𝐶 be a family of curves over 𝑊 =

Spec k[𝑆𝜔], where 𝑆𝜔 is the semigroup consisting of the integral points of 𝜔∨. The

tropicalisation of 𝐶 → 𝑊 is a morphism of cone complexes Γ(𝐺) → 𝜔 which is a

family of graphs with𝐺 being the fibre over each interior point of 𝜔. For each vertex

𝑣 ∈ 𝑉(𝐺) there is a copy of 𝜔, 𝜔𝑣 ∈ Γ(𝐺), and for each edge or leg 𝐸 ∈ 𝐸(𝐺) ∪ 𝐿(𝐺)

there is a cone 𝜔𝐸 ⊂ 𝜔 × R≥0. See Figure 2.2 for an example.

Now consider the tropicalisation of a punctured log map with domain 𝐶 →

𝑊 = Spec k[𝑄] and target 𝑌. By functoriality of tropicalisation this is a family of

tropical maps: a morphism of cone complexes

Σ(𝐶) ℎ //

��

Σ(𝑌)

Σ(𝑊) = 𝜔 = 𝑄∨R≥0
.
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The type of this family of tropical maps is the data 𝝉 = (𝐺, 𝜎, 𝑢, 𝛽), where

• 𝐺 is the fibre over an interior point of 𝜔,

• 𝜎 : 𝑉(𝐺)∪𝐸(𝐺)∪𝐿(𝐺) −→ Σ(𝑌) sends 𝑥 to the minimal cone containing ℎ(𝜔𝑥),

• 𝑢 : 𝐸(𝐺) ∪ 𝐿(𝐺) −→ Λ𝐵 sends 𝐸 to its contact order, the image ℎ((0, 1)) ∈ Λ𝜎(𝐸)

of (0, 1) ∈ Λ𝜔𝐸 = Λ𝜔 ⊕ Z,

• 𝛽 : 𝑉(𝐺) −→ 𝑁𝐸(𝑌) assigns a curve class to each vertex – the class of the

image of the associated component of 𝐶.

The dimension of a type 𝝉 is the dimension of the base cone 𝜔. We say that 𝝉 is

balanced if for each vertex 𝑣 ∈ 𝑉(𝐺) with 𝜎(𝑣) ∈ 𝒫 a cone of codimension zero or

one, we have ∑
𝑖

𝑢(𝐸𝑖) = 0, (2.1)

where the sum runs over all edges and legs incident to 𝑣.

Remark 2.2.10. Note that 𝑢 records the contact order of the points associated to

each edge or leg of 𝐺. See [2, Definition 2.17] for the definition of the contact order

of a punctured map at a point.

Definition 2.2.11 (Wall type). A wall type is a balanced tropical type 𝝉 of dimension

dim𝑌 − 2, with only vertices of genus 0 and a single leg 𝐿out whose associated cone

𝜔𝐿 = 𝜏out has codimension one image ℎ(𝜏out) ⊂ Σ(𝑌).

Construction 2.2.12 (The canonical wall structure 𝔇can). Denote by 𝔇can the set of

pairs

(𝔡, 𝑓𝔡) :=
(
ℎ(𝜏out), exp(𝑘𝜏𝑁𝝉𝑡

𝛽𝑧−𝑢)
)
, (2.2)

where 𝑁𝝉 := deg[ℳ𝝉(𝑌)]virt counts families of punctured maps to 𝑌 whose tropi-

calisation is of wall type 𝝉. The wall 𝔡 itself is swept out by the image of the leg of

the tropicalisation, and the exponent −𝑢 ∈ Λ𝐵 is the contact order of the single leg

𝑢(𝐿out). The term 𝑘𝝉 is a positive integer defined as

𝑘𝝉 := |Λℎ(𝜏out)/ℎ∗(Λ𝜏out)|

where ℎ∗ is the morphism Λ𝜏out → Λ𝜎 induced by ℎ |𝜏out . The curve class 𝛽 ranges

over values in 𝑄.
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Remark 2.2.13. Strictly speaking, the collection of pairs (𝔡, 𝑓𝔡) defined in (2.2) do

not form a wall structure in the sense of Definition 1.2.20; the functions 𝑓𝔡 live in

the completion of k[𝒫+𝑥 ]with respect to the maximal ideal 𝔪 = 𝑄 \𝑄×, and there are

infinitely many polyhedral subsets of the form ℎ(𝜏out).

However, if 𝐼 is an 𝔪-primary ideal then there are only finitely many such

functions 𝑓𝔡 which are non-trivial modulo 𝐼. Thus 𝔇can defines a compatible system

of wall structures in the sense of Definition 1.6.1, similarly to a scattering diagram

(see Remark 2.1.2). We abuse notation by referring as 𝔇can to both the compatible

system of wall structures and wall structure obtained by truncating 𝑓𝔡 modulo 𝐼.

2.3 Algorithmic construction of the canonical wall structure
We now describe a construction of the canonical wall structure via scattering, fol-

lowing Argüz–Gross [5], in the setting where our log Calabi–Yau pair (𝑌, 𝐷) has a

toric model.

Definition 2.3.1 (Toric model associated to a log Calabi–Yau pair). Consider a log

Calabi–Yau pair (𝑌, 𝐷)where 𝑌 is obtained by a blow-up

Bl𝐻 : 𝑌 −→ 𝑌Σ

of a smooth toric variety 𝑌Σ associated to a complete fan Σ in R𝑛 , where the centre

of the blow-up 𝐻 is a union of general smooth hypersurfaces in the toric boundary,

𝐻 =

𝑠⋃
𝑖=1

𝑠𝑖⋃
𝑗=1

𝐻𝑖 𝑗

and 𝐻𝑖 𝑗 ⊂ 𝐷𝑖 meets each toric stratum of 𝐷𝑖 transversally. Here the 𝐷𝑖 are distinct

toric divisor components in𝑌Σ. The divisor𝐷 ⊂ 𝑌 is taken to be the strict transform

of the toric boundary 𝐷Σ ⊂ 𝑌Σ. We call the data (𝑌Σ , 𝐻) a toric model for (𝑌, 𝐷).

Remark 2.3.2. The term toric model is sometimes used to refer to the toric model

of a log birational modification (𝑌̃, 𝐷̃) of (𝑌, 𝐷). The logarithmic Gromov–Witten

theories of (𝑌̃, 𝐷̃) and (𝑌, 𝐷) coincide [3], so their canonical wall structures are

equivalent. When (𝑌, 𝐷) is a Looĳenga pair, there exists a log birational modification

admitting a toric model. In this thesis, we only refer to toric models of a given pair

(𝑌, 𝐷) in the stricter sense of Definition 2.3.1.
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In the rest of this chapter and the next, it will be useful to fix the following

notation.

Notation 2.3.3. Suppose that (𝑌, 𝐷) is a log Calabi–Yau pair with a toric model

(𝑌Σ , 𝐻). The existence of a toric model means that (𝑌, 𝐷) satisfies the assumptions in

Remarks 2.2.2 and 2.2.3. Constructions 2.2.4 and 2.2.5 therefore give us a polyhedral

affine pseudomanifold (𝐵,𝒫). The log Calabi–Yau pair (𝑌Σ , 𝐷Σ) also satisfies the

assumptions – the associated polyhedral affine manifold is (𝑀R ,Σ), where 𝑀 � Z𝑛

denotes the lattice containing Σ.

Let 𝐷𝑖 ⊂ 𝑌Σ be the toric divisor component associated to the ray 𝜌𝑖 ∈ Σ as

above, and more generally let 𝑌𝜏 ⊂ 𝑌Σ be the toric stratum associated to the cell

𝜏 ∈ Σ. Denote by 𝐷 𝑖 and 𝑌𝜏 the proper transforms of 𝐷𝑖 and 𝑌𝜏 under the blow-up

Bl𝐻 : 𝑌 → 𝑌Σ. Then𝐷 ⊂ 𝑌 has the following expression as the sum of its irreducible

components:

𝐷 =

𝑟∑
𝑖=1

𝐷 𝑖 ,

where 𝑟 ≥ 𝑠. Moreover, the dual intersection complexes of 𝐷 and 𝐷Σ are the

same. Therefore, there is a canonical piecewise linear map of polyhedral affine

pseudomanifolds

𝜈 : 𝐵→ 𝑀R (2.3)

given by the piecewise linear identification of 𝒫 with Σ. For any cell 𝜏 ∈ Σ, denote

its pre-image by

𝜏 := 𝜈−1(𝜏) ∈ 𝒫. (2.4)

The stratum 𝑌𝜏 ⊂ 𝑌 corresponding to 𝜏 ∈ 𝒫 is equal to 𝑌𝜏.

Construction 2.3.4 (The HDTV scattering diagram). Given a log Calabi–Yau (𝑌, 𝐷)

with a toric model (𝑌Σ , 𝐻) as above, we construct a scattering diagram as follows.

Fix a monoid

𝑃 :=
〈
(𝑚𝑖 , 𝑒𝑖 𝑗)

�� 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑠𝑖
〉
⊂ 𝑀 ⊕

𝑠⊕
𝑖=1
N𝑠𝑖 ,

where𝑚𝑖 is the primitive generator of the ray 𝜌𝑖 corresponding to the component𝐷𝑖

of the toric boundary of 𝑌Σ that contains 𝐻𝑖 𝑗 , and 𝑒𝑖 𝑗 is the generator corresponding
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to the (𝑖 𝑗)-th standard basis element of
⊕

𝑖 N
𝑠𝑖 . For each 𝐻𝑖 𝑗 , fix a polynomial

𝑓𝑖 𝑗 := 1 + 𝑡𝑖 𝑗𝑧𝑚𝑖 ,

where 𝑡𝑖 𝑗 := 𝑧𝑒𝑖 𝑗 , and define a scattering diagram

𝔇𝑖 𝑗 :=
{(
𝜌, 𝑓

𝑌𝜌 ·𝐻𝑖 𝑗
𝑖 𝑗

) ��� 𝜌 ∈ Σ[𝑛−1] such that 𝜌𝑖 ⊂ 𝜌
}
,

where the intersection product 𝑌𝜌 · 𝐻𝑖 𝑗 is evaluated on 𝐷𝑖 . Now define

𝔇(𝑌Σ ,𝐻) := Scatter ©­«
𝑠⋃
𝑖=1

𝑠𝑖⋃
𝑗=1

𝔇𝑖 𝑗
ª®¬ .

The compatible scattering diagram 𝔇(𝑌Σ ,𝐻) exists by Theorem 5.6 in [5].

Construction 2.3.5 (The HDTV scattering diagram determines the canonical wall

structure). In [5, Section 6], Argüz and Gross construct a wall structure Υ(𝔇(𝑌Σ ,𝐻))

on (𝐵,𝒫) from the data of the toric model. On the support of the scattering

diagrams/wall structures, their map Υ is given by the canonical piecewise linear

map 𝜈−1 : 𝑀R → 𝐵. The key result of the paper [5, Theorem 6.1] is that Υ(𝔇(𝑌Σ ,𝐻))

is equivalent to the canonical wall structure 𝔇can associated to (𝑌, 𝐷).

Construction 2.3.6 (The affine mirror family). Given a log Calabi–Yau pair (𝑌, 𝐷)

with toric model (𝑌Σ , 𝐻), the canonical wall structure𝔇can is a conical wall structure.

Therefore Theorem 1.5.1 applies and mirror family can be constructed by taking Spec

of the algebra of theta functions associated to 𝔇can:

𝔛(𝔇can/𝐼) := Spec𝑅(𝔇can/𝐼).

We can then define the canonical mirror family to (𝑌, 𝐷) via Construction 1.6.2:

𝔛(𝔇can) := colim√
𝐼=𝔪𝑄

𝔛(𝔇can/𝐼). (2.5)

This is a formal scheme over Spf �k[𝑄], where 𝑄 is the monoid from Construc-

tion 2.2.7.

One of the advantages of working with 𝔇(𝑌Σ ,𝐻) rather than 𝔇can is of course that
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the initial scattering diagram determining 𝔇(𝑌Σ ,𝐻) is finite and simple to describe.

However, another useful property of 𝔇(𝑌Σ ,𝐻) is its support 𝑀R, which is a flat affine

manifold that is independent of the geometry of the log Calabi–Yau pair, rather

than the affine pseudomanifold 𝐵, whose singularities are determined by intersec-

tion numbers on (𝑌, 𝐷). In Chapter 4 we will need to relate the wall structures

associated to different log Calabi–Yau pairs (𝑌𝑓 , 𝐷 𝑓 ) and (𝑌𝑔 , 𝐷𝑔) in order to con-

struct morphisms between their mirror families. Relating the two wall structures is

much easier if the same affine manifold supports both. Instead of working with the

canonical wall structure, therefore, for each pair (𝑌, 𝐷)we will work with a different

wall structure 𝛼𝔇(𝑌Σ ,𝐻) that is supported on (𝑀R ,Σ).

The rest of this section will be devoted to defining the wall structure 𝛼𝔇(𝑌Σ ,𝐻),

and proving that, after restricting to a sublocus in the base of the formal family, the

associated formal scheme 𝔛(𝛼𝔇(𝑌Σ ,𝐻)) is isomorphic to the canonical mirror family.

This generalises the approach of Gross, Hacking and Keel, who prove consistency

of 𝔇can for two-dimensional log Calabi–Yau pairs in [21] by showing that 𝔛(𝔇can)

and 𝔛(𝛼𝔇(𝑌Σ ,𝐻)) are isomorphic over the Gross–Siebert locus, which we define below.

Definition 2.3.7 (The Gross–Siebert locus). Suppose that (𝑌, 𝐷) is a log Calabi–Yau

pair with a toric model (𝑌Σ , 𝐻). We define a monoid

𝑄gs := Bl∗𝐻(𝑁𝐸(𝑌Σ)) ⊕ 𝐸, (2.6)

where 𝑁𝐸(𝑌Σ) = 𝑁𝐸(𝑌Σ)R ∩𝑁1(𝑌) is the monoid of integral points in the Mori cone

and 𝐸 ⊂ 𝑁1(𝑌) is the lattice generated by the classes of the exceptional curves of

the blow-up 𝑌 → 𝑌Σ. The maximal ideal 𝔪gs ⊂ 𝑄gs is now equal to 𝑄gs \ 𝐸, and we

denote the completion of the associated ring with respect to 𝔪gs by

𝑅gs := �k[𝑄gs]. (2.7)

We use the term Gross–Siebert locus to refer to either of the schemes Spec𝑅gs or

Spec𝑅gs/𝐽, where 𝐽 is an 𝔪gs-primary ideal, and also use the same term to refer to

the formal scheme Spf𝑅gs.

Remark 2.3.8 (The Gross–Siebert locus as a subscheme of the base). Let 𝑄 be a

sharp monoid associated to (𝑌, 𝐷) as in Construction 2.2.7. The monoid 𝑁𝐸(𝑌Σ)
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is a convex cone generated by the classes of the one-dimensional toric strata, and

𝐸 is generated by the classes of the exceptional curves over a general point in each

component of 𝐻, so the monoid 𝑄gs is finitely generated. Moreover, 𝑄gs contains

𝑁𝐸(𝑌), and so we may assume, by shrinking 𝑄 if necessary, that

(i) 𝑄 ⊂ 𝑄gs, and

(ii) 𝐸 ∩𝑄 is a face of 𝑄.

It follows from (i) and (ii) that 𝑄 ⊕ 𝐸 = 𝑄gs. If 𝐼 ⊂ 𝑄 is an 𝔪-primary ideal, where

𝔪 is the maximal ideal of 𝑄, then 𝐼 ⊕ 𝐸 is an 𝔪gs-primary ideal in 𝑄gs. Thus we

may think of the Gross–Siebert locus Spec𝑅gs/(𝐼 ⊕ 𝐸) as a subscheme of Spec𝑅#/𝐼,

where

𝑅# := �k[𝑄] (2.8)

is the completion of k[𝑄] with respect to 𝔪. More concretely, there is a diagram of

rings
𝑅gs/(𝐼 ⊕ 𝐸)

𝑅′/(𝐼 ⊕ 𝐸 ∩𝑄) 𝑅#/𝐼 ,

(2.9)

where 𝑅′ is the completion of k[𝑄] with respect to 𝔪gs ∩ 𝑄. In order to view the

family over the Gross–Siebert locus as a subfamily of the canonical mirror family

𝔛(𝔇can), we will use the fact (see Lemma 2.3.10 below) that 𝔛(𝔇can) is the pullback

of a formal family over 𝑅′ via the horizontal map in the diagram above.

Construction 2.3.9 (The algorithmic wall structure 𝛼𝔇(𝑌Σ ,𝐻)). Suppose that (𝑌, 𝐷)

is a log Calabi–Yau pair with a toric model (𝑌Σ , 𝐻), and suppose that 𝑄 is a monoid

for (𝑌, 𝐷) as in Construction 2.2.7, and 𝑃 is the monoid defined for the toric model

as in Construction 2.3.4. There is a single-valued piecewise linear function

𝜓Σ : 𝑀R −→ 𝑁1(𝑌Σ) ⊗Z R, (2.10)

such that the kink across 𝜌 ∈ Σ[𝑛−1] is the curve class represented by the toric

stratum 𝑌𝜌 ⊂ 𝑌Σ (see [5, Lemma 2.9]). Therefore, there is a 𝑄gp-valued single-



2.3. Algorithmic construction of the canonical wall structure 67

valued piecewise linear function 𝜓 on 𝑀R, defined by

𝜓 := Bl∗𝐻 ◦𝜓Σ : 𝑀R −→ 𝑄
gp
R .

This function has kink across each codimension one cell of Σ given by

𝜅𝜌(𝜓) = Bl∗𝐻[𝑌𝜌].

Since 𝜓 is a single-valued function on an affine manifold with no singularities, it

induces the constant sheaf 𝒫𝜓 on 𝑀 with fibre 𝑀 ⊕𝑄gp, as in Definition 1.2.13, and

we can define a subsheaf of monoids

𝒫+𝜓 := {(𝑚,𝜓(𝑚) + 𝑞) | 𝑚 ∈ 𝑀, 𝑞 ∈ 𝑄gs}

with respect to the monoid 𝑄gs defining the Gross–Siebert locus in Definition 2.3.7

above. We define a morphism of monoids

𝛼 : 𝑃 −→ 𝒫+𝜓 , (𝑚𝑖 , 𝑒𝑖 𝑗) ↦−→ (𝑚𝑖 ,𝜓(𝑚𝑖) − 𝐸𝑖 𝑗)

which clearly restricts to the identity on 𝑀, and thus induces a consistent scattering

diagram

𝛼𝔇(𝑌Σ ,𝐻) :=
{
(𝔡, 𝛼∗( 𝑓𝔡))

�� (𝔡, 𝑓𝔡) ∈ 𝔇(𝑌Σ ,𝐻)}
for the data 𝒫+ → 𝑀, via Lemma 2.1.11. Moreover, the scattering diagram 𝛼𝔇(𝑌Σ ,𝐻)

gives a system of compatible wall structures on the polyhedral affine manifold

(𝑀R ,Σ) equipped with the convex piecewise-linear function 𝜓, with respect to 𝔪gs.

Lemma 2.3.10. Both 𝔇can and 𝛼𝔇(𝑌Σ ,𝐻) are compatible systems of wall structures with

respect to the ideal𝔪gs ⊂ 𝑄gs. That is, for each𝔪gs-primary ideal 𝐽, 𝔇can/𝐽 and 𝛼𝔇(𝑌Σ ,𝐻)/𝐽

are wall structures.

For two-dimensional log Calabi–Yau pairs, this lemma is a consequence of [21,

Lemma 3.16 and Theorem 3.33]. Below we prove the lemma for HDTV scattering

diagrams 𝔇(𝑌Σ ,𝐻) satisfying the following assumption, which covers every case

treated in this thesis.
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Assumption 2.3.11. Let𝔇(𝑌Σ ,𝐻) be the HDTV scattering diagram associated to a toric

model (𝑌Σ , 𝐻) for a log Calabi–Yau pair. We assume that there exists an 𝔪𝑃-primary

ideal 𝐼 ⊂ 𝑃, and that for every maximal cone 𝜎 ∈ Σ there exists a convex cone 𝜏 ⊂ 𝑀

such that

(i) 𝜏 ∩ 𝜎 = 0, and

(ii) if 𝑎𝑝𝑧𝑝 ∈ k[𝑃] is a monomial summand of a wall function 𝑓𝔡 for some wall

(𝔡, 𝑓𝔡) ∈ 𝔇(𝑌Σ ,𝐻) such that 𝔡 ⊂ 𝜎, then 𝑟(𝑝) ∈ 𝑀 is contained in 𝜏 unless 𝑧𝑝 is

trivial modulo 𝐼.

Note that all HDTV scattering diagrams of dimension two automatically satisfy

this assumption, as every wall in 𝔇(𝑌Σ ,𝐻) \
⋃

𝔇𝑖 𝑗 is an outgoing ray emanating from

the origin. For the three-dimensional HDTV scattering diagram 𝔇(𝑌Σ̃ ,𝐻̃) constructed

in Section 4.2.1, Assumption 2.3.11 holds as a consequence of Claims 4.1.13 and 4.1.14

– for more details see the proof of Lemma 4.3.5 in the case 𝔇 = 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃).

Proof of Lemma 2.3.10 under Assumption 2.3.11. Fix an 𝔪gs-primary ideal 𝐽 ⊂ 𝑄gs.

We prove that 𝛼𝔇(𝑌Σ ,𝐻)/𝐽 is a wall structure. Since the collection of walls Ψ𝔇can

defined in Construction 2.3.15 is a wall structure modulo 𝐽 if and only if 𝔇can/𝐽 is a

wall structure, it then follows from Lemma 2.3.16 that𝔇can/𝐽 is also a wall structure.

It suffices to show that

(i) For every wall (𝔡, 𝑓𝔡) ∈ 𝔇(𝑌Σ ,𝐻), the infinite sum of monomials 𝛼∗( 𝑓𝔡) is a

polynomial modulo 𝐽.

(ii) There are finitely many walls (𝔡, 𝑓𝔡) ∈ 𝔇(𝑌Σ ,𝐻) such that 𝛼∗( 𝑓𝔡) . 1 mod 𝐽.

Since there are finitely many maximal cells 𝜎 ∈ Σ, it suffices to prove these statements

after replacing 𝔇(𝑌Σ ,𝐻) with 𝔇(𝑌Σ ,𝐻) ∩ 𝜎. For statement (i), it suffices to show that

there are only finitely many monomials 𝑡𝛽𝑧𝑚 ∈ k[𝑄gs⊕𝑀] that appear with nonzero

coefficient in a wall function 𝛼∗( 𝑓𝔡) for some 𝔡 ∈ 𝔇(𝑌Σ ,𝐻)∩𝜎 and are nontrivial modulo

𝐽. Here 𝛼∗ is determined on 𝜎 by the representative for 𝜓 which is zero on 𝜎. If 𝑡𝛽𝑧𝑚

appears in 𝛼∗( 𝑓𝔡) then

𝑡𝛽𝑧𝑚 = 𝛼∗
©­«

𝑠∏
𝑖=1

𝑠𝑖∏
𝑗=1

(
𝑡𝑖 𝑗𝑧

𝑚𝑖
) 𝑎𝑖 𝑗ª®¬
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for some collection 𝑎𝑖 𝑗 ∈ N. Let 𝐼𝜎 := {𝑖 ∈ [𝑠] | 𝜌𝑖 ⊂ 𝜎}, where [𝑠] = {1, . . . , 𝑠}. We

have 𝛼∗(𝑡𝑖 𝑗) = 𝑡−𝐸𝑖 𝑗 ∉ 𝔪gs for all 𝑖 ∈ 𝐼𝜎. Since every kink of 𝜓 is contained in 𝔪gs, we

have 𝛼∗(𝑡𝑖 𝑗) ∈ 𝔪gs for all 𝑖 ∈ [𝑠] \ 𝐼𝜎. There exists an 𝑁 ∈ N such that (𝔪gs)𝑁 ⊂ 𝐽, so

∑
𝑖∈[𝑠]\𝐼𝜎

𝑠𝑖∑
𝑗=1

𝑎𝑖 𝑗 ≤ 𝑁,

which means that the area containing

∑
𝑖∈[𝑠]\𝐼𝜎

𝑠𝑖∑
𝑗=1

𝑎𝑖 𝑗𝑚𝑖 (2.11)

is bounded. Unless 𝑡𝛽𝑧𝑚 is the image of one of the finitely many monomial appear-

ing in 𝔇(𝑌Σ ,𝐻)/𝐼, we must have 𝑚 ∈ 𝜏 by Assumption 2.3.11. Here 𝜏 is a convex cone

that depends only on 𝜎, and so ∑
𝑖∈𝐼𝜎

𝑠𝑖∑
𝑗=1

𝑎𝑖 𝑗

is also bounded, otherwise 𝑚 cannot be contained in 𝜏. □

Construction 2.3.12 (The algorithmic family 𝔛(𝛼𝔇(𝑌Σ ,𝐻))). The finite wall structure

𝛼𝔇(𝑌Σ ,𝐻)/𝐽 is conical for all 𝔪gs-primary ideals 𝐽, and so by Theorem 1.5.1 it defines

an affine scheme

𝔛(𝛼𝔇(𝑌Σ ,𝐻)/𝐽) := Spec𝑅(𝛼𝔇(𝑌Σ ,𝐻)/𝐽)

over Spec𝑅gs/𝐽. Via Construction 1.6.2, we can associate to the system of wall

structures 𝛼𝔇(𝑌Σ ,𝐻) a formal family

𝔛
(
𝛼𝔇(𝑌Σ ,𝐻)

)
:= colim√𝐽=𝔪gs 𝔛(𝛼𝔇(𝑌Σ ,𝐻)/𝐽)

over the Gross–Siebert locus Spf𝑅gs.

Remark 2.3.13 (The canonical mirror family over the Gross–Siebert locus).

Lemma 2.3.10 above implies that the canonical family 𝔛(𝔇can) over Spf𝑅# is ac-

tually the pullback of a formal family over Spf𝑅′ via the horizontal morphisms

in (2.9). That is,

𝔛(𝔇can/(𝐽 ∩𝑄)) := Spec𝑅(𝔇can/(𝐽 ∩𝑄))
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is a scheme over Spec𝑅′/(𝐽 ∩𝑄) for all 𝔪gs-primary ideals 𝐽 ⊂ 𝑄gs, and

𝔛(𝔇can/𝐼) = 𝔛
(
𝔇can/(𝐼 ⊕ 𝐸 ∩𝑄)

)
×Spec𝑅′/(𝐼⊕𝐸∩𝑄) Spec𝑅#/𝐼

for all 𝔪-primary ideals 𝐼. The canonical family over the Gross–Siebert locus Spf𝑅gs

can then be viewed as a subfamily of 𝔛(𝔇can) via the vertical maps in (2.9):

𝔛(𝔇can/𝐽) := Spec𝑅(𝔇can/𝐽)

=𝔛(𝔇can/(𝐽 ∩𝑄)) ×Spec𝑅′/(𝐽∩𝑄) Spec𝑅gs/𝐽

for all 𝔪gs-primary ideals 𝐽, and

𝔛gs(𝔇can) := colim√𝐽=𝔪gs 𝔛(𝔇can/𝐽).

Theorem 2.3.14 (The mirror families are isomorphic over the Gross–Siebert locus).

Let (𝑌, 𝐷) be a log Calabi–Yau pair with toric model (𝑌Σ , 𝐻). Then the schemes𝔛gs(𝔇can/𝐽)

and 𝔛(𝛼𝔇(𝑌Σ ,𝐻)/𝐽) are isomorphic over the Gross–Siebert locus Spec𝑅gs/𝐽 for all 𝔪gs-

primary ideals 𝐽.

Proof. In Construction 2.3.15 we construct a map Ψ of the canonical wall structure

𝔇can, restricted to the Gross–Siebert locus. By Lemma 2.3.16, Ψ𝔇can is a compatible

system of wall structures on (𝑀R ,Σ,𝜓)which is equivalent to 𝛼𝔇(𝑌Σ ,𝐻). In particular,

Ψ𝔇can is consistent and 𝑅(Ψ𝔇can/𝐽) = 𝑅(𝛼𝔇(𝑌Σ ,𝐻)/𝐽).

By Lemma 2.3.17, the map of wall structures Ψ induces isomorphisms of fam-

ilies over Spec𝑅gs/𝐽 between 𝔛◦(𝛼𝔇(𝑌Σ ,𝐻)/𝐽) and 𝔛◦(𝔇can/𝐽), where 𝔛◦ denotes the

family constructed by gluing local charts in Proposition 1.3.4. We therefore have an

isomorphism of (𝑅gs/𝐽)-algebras

Γ
(
𝔛◦(𝔇can/𝐽),𝒪𝔛◦(𝔇can/𝐽)

)
−→ Γ

(
𝔛◦(𝛼𝔇(𝑌Σ ,𝐻)/𝐽),𝒪𝔛◦(𝛼𝔇(𝑌Σ ,𝐻)/𝐽)

)
(2.12)

induced by Ψ.

By Theorem 1.5.1, these are freely generated by the theta functions 𝜗𝑚 , indexed

by asymptotic monomials on (𝐵,𝒫) and (𝑀R ,Σ) respectively. However, since both

polyhedral affine pseudomanifolds are conical, the asymptotic monomials are in

bĳection with the integral points. Therefore, the piecewise linear map 𝜈 : 𝐵 →
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𝑀R (2.3) induces a bĳection between asymptotic monomials of (𝐵,𝒫) and (𝑀R ,Σ)

given by

𝐵(Z) ∋ 𝑚 ↦−→ 𝜈(𝑚) ∈ 𝑀.

In fact, the isomorphisms (2.12) are given by

𝜗𝑚 ↦−→ 𝜗𝜈(𝑚).

by Corollary 2.3.19. These isomorphisms therefore define an isomorphism of the

completions of algebras with respect to 𝔪gs. □

Construction 2.3.15 (The wall structure Ψ𝔇can). Let (𝑌, 𝐷) be a log Calabi–Yau pair

with toric model (𝑌Σ , 𝐻). Then 𝜈 : 𝐵 → 𝑀R (2.3) induces a map on the support of

𝔇can – for any wall (𝔡, 𝑓𝔡) ∈ 𝔇can, we simply define

Ψ(𝔡) := 𝜈(𝔡). (2.13)

By [5, Theorem 6.1], we can assume that the wall (𝔡, 𝑓𝔡) ∈ 𝔇can is the image of some

wall (𝔡′, 𝑓𝔡′) ∈ 𝔇(𝑌Σ ,𝐻) under the map Υ from Construction 2.3.5. The definition of

the wall function 𝑓𝜈(𝔡) depends on whether (𝔡′, 𝑓𝔡′) is an incoming or outgoing wall

of 𝔇(𝑌Σ ,𝐻).

The restriction of 𝜈 to a maximal cell 𝜎 ∈ 𝒫 is a linear map; moreover, it is

a linear isomorphism of smooth cones, since 𝑌Σ is a smooth toric variety. Thus 𝜈

induces a canonical isomorphism of integral tangent spaces

𝜈∗ : Λ𝜎 −→ 𝑀. (2.14)

Recall the ‘canonical’ MPA-function 𝜑 on (𝐵,𝒫) defined in Construction 2.2.8 – we

now consider 𝜑 to be taking values in𝑄gs ⊃ 𝑄. Let𝒫+𝜑 be the sheaf of monoids on 𝐵

associated to 𝜑 via Definition 1.2.13, and let 𝒫+𝜓 be the sheaf on 𝑀R defined in Con-

struction 2.3.12. Following the notation of Definition 1.2.13, we fix a representative

𝜑0 such that 𝜑0 |𝜎 is the zero function. This gives the canonical identification(
𝒫+𝜑

)
𝑥
� Λ𝜎 ×𝑄gs.
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for any interior point 𝑥 ∈ Int 𝜎, along with an induced isomorphism of monoids

𝜇𝜎 :
(
𝒫+𝜑

)
𝑥

∼−−→
(
𝒫+𝜓

)
𝑥

(2.15)

given by

(𝑚, 𝑝) ↦−→ (𝜈∗(𝑚), 𝜓 |𝜎(𝜈∗(𝑚)) + 𝑝).

Denoting the induced isomorphism of algebras by (𝜇𝜎)∗, we define

Ψ( 𝑓𝔡) := (𝜇𝜎)∗( 𝑓𝔡) (2.16)

for all walls

(𝔡, 𝑓𝔡) ∈ Υ ©­«𝔇(𝑌Σ ,𝐻) \ ©­«
𝑠⋃
𝑖=1

𝑠𝑖⋃
𝑗=1

𝔇𝑖 𝑗
ª®¬ª®¬ such that 𝔡 ⊂ 𝜎.

Now suppose that (𝔡, 𝑓𝔡) ∈ 𝔇can is the image of an incoming wall of 𝔇(𝑌Σ ,𝐻), so

(𝔡, 𝑓𝔡) ∈ Υ
(
𝔇𝑖 𝑗

)
for some 𝔇𝑖 𝑗 . Then (by [5, (6.2)]) (𝔡, 𝑓𝔡) takes the form (𝜌, 𝑓𝜌), where

𝜌 ∈ Σ is a codimension one cell containing the ray 𝜌𝑖 ∈ Σ, and

𝑓𝜌 =

𝑌𝜌 ·𝐻𝑖 𝑗∏
𝑘=1

(
1 + 𝑡𝐸𝑖 𝑗 𝑧−𝑚𝑖

)
.

Here 𝑚𝑖 ∈ Λ𝜌𝑖
positively generates 𝜌𝑖 , and 𝐸𝑖 𝑗 is the class of an exceptional curve of

the blow-up Bl𝐻 : 𝑌 → 𝑌Σ over 𝐻𝑖 𝑗 . We then define

Ψ( 𝑓𝜌) := (𝜇𝜎)∗ ©­«
𝑌𝜌 ·𝐻𝑖 𝑗∏
𝑘=1

(
1 + 𝑡−𝐸𝑖 𝑗 𝑧𝑚𝑖

)ª®¬ , (2.17)

for some 𝜎 ∈ 𝒫max containing 𝜌. Note that the direction of the wall has been

flipped before applying (𝜇𝜎)∗ – it is only possible to invert 𝐸𝑖 𝑗 when working over

the Gross–Siebert locus. We define

Ψ𝔇can := {(𝜈(𝔡),Ψ( 𝑓𝔡)) | (𝔡, 𝑓𝔡) ∈ 𝔇can} .

Lemma 2.3.16 (Equivalence of Ψ𝔇can and 𝛼𝔇(𝑌Σ ,𝐻)). Let (𝑌, 𝐷) be a log Calabi–Yau
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pair with toric model (𝑌Σ , 𝐻). Then Ψ𝔇can is a system of consistent wall structures on

(𝑀R ,Σ) equipped with the 𝑄gs-valued piecewise linear function 𝜓. Moreover, Ψ𝔇can and

𝛼𝔇(𝑌Σ ,𝐻) are equivalent.

Proof. Following through the definitions of the maps 𝛼, Υ and Ψ, one can check

that

𝛼((𝔡, 𝑓𝔡)) = Ψ ◦ Υ((𝔡, 𝑓𝔡))

for every wall (𝔡. 𝑓𝔡) ∈ 𝔇(𝑌Σ ,𝐻). It is clear that 𝛼𝔇(𝑌Σ ,𝐻) defines a system of wall

structures on (𝑀R ,Σ) equipped with the convex piecewise linear function 𝜓, and

by functoriality of scattering (Lemma 2.1.11), 𝛼𝔇(𝑌Σ ,𝐻) is a compatible scattering

diagram on 𝑀R. Therefore, it defines a system of consistent wall structures. □

Lemma 2.3.17 (Ψ induces an isomorphism of local mirror families over the

Gross–Siebert locus). Let (𝑌, 𝐷) be a log Calabi–Yau pair with toric model (𝑌Σ , 𝐻).

Let 𝐽 ⊂ 𝑅gs be an 𝔪gs-primary ideal. Let

𝔛◦(𝔇can/𝐽) −→ Spec𝑅gs/𝐽 and 𝔛◦(Ψ𝔇can/𝐽) −→ Spec𝑅gs/𝐽

be the two families constructed from the wall structures 𝔇can and Ψ𝔇can by gluing local

charts, as defined in Proposition 1.3.4. Then the map Ψ defined in Construction 2.3.15

induces an isomorphism

𝔛◦(𝔇can/𝐽)
∼−−→ 𝔛◦(𝛼𝔇(𝑌Σ ,𝐻)/𝐽)

of schemes over Spec𝑅gs/𝐽.

Proof. The map 𝜈 : 𝐵 → 𝑀R (2.3) induces a piecewise linear identification of the

polyhedral subdivisions induced by 𝔇can and Ψ𝔇can which, following the conven-

tions of Notation 2.3.3, is given by

𝒫𝔇can ∋ 𝜏 := 𝜈−1(𝜏) ↦−→ 𝜏 ∈ 𝒫𝔇(𝑌Σ ,𝐻)
.

It is therefore enough to show that there are are isomorphisms of the rings defined

in Construction 1.3.1

𝜇𝔟 : 𝑅
𝔟
−→ 𝑅𝔟 and 𝜇𝔲 : 𝑅𝔲 −→ 𝑅𝔲 (2.18)
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for every slab 𝔟 ∈ 𝒫𝔇(𝑌Σ ,𝐻)
and every chamber 𝔲 ∈ 𝒫𝔇(𝑌Σ ,𝐻)

, such that 𝜇𝔟 and 𝜇𝔲 are

compatible with the localisation homomorphisms (1.10)

𝜒
𝔟,𝔲 : 𝑅

𝔟
−→ 𝑅𝔲 and 𝜒𝔟,𝔲 : 𝑅𝔟 −→ 𝑅𝔲 , (2.19)

and compatible with the wall crossing automorphisms (1.11) across walls of codi-

mension zero

𝜃
𝔡

: 𝑅𝔲 −→ 𝑅𝔲
′ and 𝜃𝔡 : 𝑅𝔲 −→ 𝑅𝔲′ . (2.20)

Let 𝜎 ∈ Σ be the maximal cell containing the chamber 𝔲 ∈ 𝒫Ψ𝔇can . By definition,

𝑅𝔲 = k
[(
𝒫+𝜑

)
𝑥

]
/𝐼 and 𝑅𝔲 = k

[(
𝒫+𝜓

)
𝑥

]
/𝐼 ,

and so the isomorphism of monoids 𝜇𝜎 (2.15) induces an isomorphism

𝜇𝔲 := (𝜇𝜎)∗ : 𝑅𝔲 → 𝑅𝔲.

Moreover, for any pair of adjacent chambers 𝔲, 𝔲′ ⊂ 𝜎 separated by a codimension

zero wall 𝔡 ⊂ 𝜎, we have that

𝑓𝔡 = Ψ( 𝑓
𝔡
) = (𝜇𝜎)∗( 𝑓𝔡)

by definition of Ψ, and we also know that

⟨𝑛
𝔡
, 𝑚⟩ = ⟨𝑛𝔡 , 𝜈∗(𝑚)⟩,

precisely because 𝜈∗ is an isomorphism of lattices. Thus (𝜇𝜎)∗ commutes with

wall-crossing, and so

𝜇𝔲′ ◦ 𝜃𝔡
= 𝜃𝔡 ◦ 𝜇𝔲 (2.21)

as required.

Now suppose that 𝔟 is a slab contained in 𝜌 ∈ Σ[𝑛−1]. Since 𝑌Σ is a smooth toric

variety, the fanΣ is a simplicial cone complex. We can thus assume that 𝜌 is spanned

by rays 𝜌1 , . . . , 𝜌𝑛−1 ∈ Σ, and is contained in the two maximal cells 𝜎+ = 𝜌 + 𝜌+ and

𝜎− = 𝜌 + 𝜌−, where 𝜌+ and 𝜌− are rays in Σ. To see the isomorphism 𝜇𝔟 induced by
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Ψ, we write down the following presentations of 𝑅
𝔟

and 𝑅𝔟.

Let the primitive vectors 𝑚𝑖 , 𝑚+ , 𝑚− ∈ 𝑀 be positive generators of the rays

𝜌𝑖 , 𝜌+ , 𝜌− ∈ Σ respectively, and denote the primitive tangent vectors positively

generating 𝜌𝑖 , 𝜌+ , 𝜌− by 𝑚 𝑖 , 𝑚+, 𝑚−. Fixing a single-valued representative for 𝜑 on

𝜎+ ∪ 𝜎−, we define

𝑋 𝑖 := 𝑧(𝑚 𝑖 ,𝜑(𝑚 𝑖)) , 𝑋+ := 𝑧(𝑚+ ,𝜑(𝑚+)) , 𝑋− := 𝑧(𝑚− ,𝜑(𝑚−))

𝑋𝑖 := 𝑧(𝑚𝑖 ,𝜓(𝑚𝑖)) , 𝑋+ := 𝑧(𝑚+ ,𝜓(𝑚+)) , 𝑋− := 𝑧(𝑚− ,𝜓(𝑚−)).
(2.22)

These are generators ofR
𝔟

and𝑅𝔟 as𝑅gs/𝐽-algebras. By blowing up𝑌 in the curve𝑌𝜌

if necessary, we may assume that only one of the divisors 𝐷𝑖 contains components

of 𝐻. Let 𝑙 ∈ {1, . . . , 𝑛 − 1} be the index of this divisor. We use the fact that

𝔇can ≡ Υ(𝔇(𝑌Σ ,𝐻)) in order to factorise 𝑓𝑥 for 𝑥 ∈ Int 𝔟 as

𝑓𝑥 = 𝑔
𝔟

©­«
𝑠𝑙∏
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∏
𝑘=1

(
1 + 𝑡𝐸𝑙 𝑗 𝑧−𝑚 𝑙

)ª®¬
where 𝑔

𝔟
is the image of outgoing walls of 𝔇(𝑌Σ ,𝐻) under Υ. Then we have

𝑅
𝔟
=

(𝑅gs/𝐽) [𝑋±1 , . . . , 𝑋
±
𝑛−1][𝑋+ , 𝑋−](

𝑋+𝑋− − 𝑡𝑌𝜌

(
𝑛−1∏
𝑖=1

𝑋

(
−𝐷 𝑖 ·𝑌𝜌

)
𝑖

)
𝑔
𝔟

(
𝑠𝑙∏
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∏
𝑘=1

(
1 + 𝑡𝐸𝑙 𝑗𝑋−1

𝑙

))) , (2.23)

where 𝑔
𝔟
∈ (𝑅gs/𝐽)[𝑋±1 , . . . , 𝑋

±
𝑛−1]. Note that the presentation of 𝑅

𝔟
is independent

of the choice of single valued-representative of 𝜑. Using the equivalence of Ψ𝔇can

and Ψ ◦ Υ(𝔇(𝑌Σ ,𝐻)), we can write

𝑓𝑥 ≡ Ψ( 𝑓𝑥) ≡ (𝜇𝜎+)∗(𝑔𝔟) ·
©­«
𝑠𝑙∏
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∏
𝑘=1

(
1 + 𝑡−𝐸𝑙 𝑗 𝑧𝑚𝑙

)ª®¬ mod 𝐽 ,

and so we have

𝑅𝔟 =
(𝑅gs/𝐽)[𝑋±1 , . . . , 𝑋

±
𝑛−1][𝑋+ , 𝑋−](

𝑋+𝑋− − 𝑡Bl∗(𝑌𝜌)
(
𝑛−1∏
𝑖=1

𝑋
(−𝐷𝑖 ·𝑌𝜌)
𝑖

)
𝑔𝔟

(
𝑠𝑙∏
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∏
𝑘=1

(
1 + 𝑡−𝐸𝑙 𝑗𝑋𝑙

))) , (2.24)
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where 𝑔𝔟 = (𝜇𝜎+)∗(𝑔𝔟). With these presentations, the isomorphism 𝜇𝔟 is given by

𝑋 𝑖 ↦→ 𝑋𝑖 , , 𝑋+ ↦→ 𝑋+ , 𝑋− ↦→ 𝑋−. (2.25)

and the identity on 𝑅gs/𝐽. Indeed, using the identities

𝑌𝜌 = Bl∗(𝑌𝜌) −
𝑠𝑙∑
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∑
𝑘=1

𝐸𝑙 𝑗

and

𝐷 𝑖 · 𝑌𝜌 = 𝐷 𝑖 · ©­«Bl∗(𝑌𝜌) −
𝑠𝑙∑
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∑
𝑘=1

𝐸𝑙 𝑗
ª®¬

= Bl∗
(
𝐷 𝑖

)
· 𝑌𝜌 − 𝐷 𝑖 · ©­«

𝑠𝑙∑
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∑
𝑘=1

𝐸𝑙 𝑗
ª®¬

=


𝐷𝑖 · 𝑌𝜌 −

𝑠𝑙∑
𝑗=1
𝑌𝜌 · 𝐻𝑙 𝑗 if 𝑖 = 𝑙

𝐷𝑖 · 𝑌𝜌 if 𝑖 ≠ 𝑙,

we can rewrite the expression in (2.23) via

𝑡𝑌𝜌

(
𝑛−1∏
𝑖=1

𝑋

(
−𝐷 𝑖 ·𝑌𝜌

)
𝑖

)
𝑔
𝔟

©­«
𝑠𝑙∏
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∏
𝑘=1

(
1 + 𝑡𝐸𝑙 𝑗𝑋−1

𝑙

)ª®¬
= 𝑡𝑌𝜌

(
𝑛−1∏
𝑖=1

𝑋
(−𝐷𝑖 ·𝑌𝜌)
𝑖

) ©­«
𝑠𝑙∏
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∏
𝑘=1

𝑡−𝐸𝑙 𝑗𝑋 𝑙
ª®¬ 𝑔𝔟 ©­«

𝑠𝑙∏
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∏
𝑘=1

(
1 + 𝑡𝐸𝑙 𝑗𝑋−1

𝑙

)ª®¬
= 𝑡𝑌𝜌

(
𝑛−1∏
𝑖=1

𝑋
(−𝐷𝑖 ·𝑌𝜌)
𝑖

)
𝑔
𝔟

©­«
𝑠𝑙∏
𝑗=1

𝑌𝜌 ·𝐻𝑙 𝑗∏
𝑘=1

(
1 + 𝑡−𝐸𝑙 𝑗𝑋 𝑙

)ª®¬ .
Finally, we note that

(𝜇𝜎+)∗(𝑋+) = 𝑋+ , (𝜇𝜎−)∗(𝑋−) = 𝑋− , and (𝜇𝜎+)∗(𝑋 𝑖) = (𝜇𝜎−)∗(𝑋 𝑖) = 𝑋𝑖 ,

since the two representatives of 𝜑 involved in the definition of 𝜇𝜎+ and 𝜇𝜎− agree on
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the codimension on cell 𝜌. Therefore we have

𝜒𝔟,𝔲+ ◦ 𝜇𝔟 = 𝜇𝔲+ ◦ 𝜒𝔟,𝔲+
and 𝜒𝔟,𝔲− ◦ 𝜇𝔟 = 𝜇𝔲− ◦ 𝜒𝔟,𝔲−

(2.26)

as required. □

Lemma 2.3.18. The piecewise linear function 𝜈 : 𝐵 → 𝑀R (2.3) induces a bĳection of

broken lines:
broken lines on 𝔇can

with endpoint 𝑝 and

asymptotic monomial 𝑚


←→


broken lines on 𝛼𝔇(𝑌Σ ,𝐻)

with endpoint 𝜈(𝑝) and

asymptotic monomial 𝜈(𝑚)


given by 𝛽 ↦−→ 𝜈 ◦ 𝛽.

Corollary 2.3.19. If 𝑝 ∈ 𝐵 is a general point with 𝜈(𝑝) contained in the chamber 𝔲 ∈

𝛼𝔇(𝑌Σ ,𝐻), then

𝜇𝔲(𝜗𝑚(𝑝)) = 𝜗𝜈(𝑚)(𝜈(𝑝)).

Proof of Lemma 2.3.18. It is clear that 𝜈 ◦ 𝛽 must have endpoint 𝜈(𝑝). Since 𝒫 and Σ

are both conical, the asymptotic monomials are in bĳection with integral points of

𝐵 and 𝑀R respectively. It is clear that the last domain of linearity of 𝜈 ◦ 𝛽 must be

parallel to 𝜈(𝑚).

Suppose that 𝑥 ∈ (∞, 𝑡1) is a point in the last domain of linearity, and let 𝔲 ⊂ 𝜎

be the chamber of 𝔇(𝑌Σ ,𝐻) containing (𝜈 ◦ 𝛽)(𝑥). To consider 𝑧𝜈(𝑚) as a monomial in

𝑅𝔲, one takes the trivialisation of 𝒫+𝜓 corresponding to the choice of single valued

representative of 𝜓 which is identically zero on 𝜎. Then we have

𝜇𝔲(𝑧𝑚) = 𝑧𝜈(𝑚).

It remains to show that bending of a broken line across each wall 𝔡 ∈ 𝛼𝔇(𝑌Σ ,𝐻) is

the same as bending across 𝔡 ∈ 𝔇can. In other words, we need to show that change

of chambers morphisms 𝜃𝔲,𝔲′ and 𝜃
𝔲,𝔲′ of Definition 1.4.2 commute with the local

isomorphisms of rings 𝜇𝔲 and 𝜇𝔲′ defined in the proof of Lemma 2.3.17 above. For

two chambers separated by a codimension zero wall 𝔡, this follows directly from

the compatibility of 𝜇𝔲 with 𝜃𝔡 and 𝜃
𝔡

(2.21). For two chambers 𝔲+ and 𝔲− separated
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by a slab 𝔟, we note that 𝑅𝔟
𝔲+ embeds into 𝑅𝔟 as

𝑅𝔟
𝔲+ � (𝑅

gs/𝐽)[𝑋±1 , . . . , 𝑋
±
𝑛−1][𝑋+] ⊂ 𝑅𝔟

in the notation of (2.24), on which the restriction of 𝜒𝔟,𝔲− is equal to 𝜃𝔲+ ,𝔲− . The

restriction of 𝜇𝔟 to

𝑅𝔟

𝔲+
� (𝑅gs/𝐽)[𝑋±1 , . . . , 𝑋

±
𝑛−1][𝑋+] ⊂ 𝑅𝔟

is equal to 𝜇𝔲+ . Therefore compatibility of the change of chambers morphisms with

local isomorphisms

𝜇𝔲− ◦ 𝜃𝔲+ ,𝔲− = 𝜃𝔲+ ,𝔲− ◦ 𝜇𝔲+

follows from (2.26). □

2.4 Compactifying the mirror family
Remark 2.4.1 (Structure constants in terms of punctured Gromov–Witten invari-

ants). In Construction 2.2.12 the wall functions in the canonical wall structure

𝔇can associated to a log Calabi–Yau pair (𝑌, 𝐷) are defined in terms of punctured

Gromov–Witten invariants. The structure constants (1.17) of the algebra of theta

functions 𝑅(𝔇can) associated to 𝔇can can also be expressed in terms of these invari-

ants. By [31, Theorem 6.1] we can write

𝛼𝑚(𝑚1 , 𝑚2) =
∑
𝐴∈𝑄

𝑁𝐴
𝑚1𝑚2𝑚𝑡

𝐴 ∈ k[𝑄]/𝐼 (2.27)

where the numbers 𝑁𝐴
𝑚1𝑚2𝑚 are certain punctured Gromov–Witten invariants de-

fined in [30, Definition 3.21], counting punctured maps into (𝑌, 𝐷)with curve class

𝐴 and contact orders 𝑚1, 𝑚2 and −𝑚.

Construction 2.4.2 (Adding a boundary to a conical wall structure). Suppose that 𝔇

is a consistent, conical wall structure on (𝐵,𝒫). By Theorem 1.5.1 we have an affine

k[𝑄]/𝐼-family 𝔛(𝔇) := Spec𝑅(𝔇) containing the locally constructed family 𝔛◦(𝔇)

from Proposition 1.3.4, where 𝑅(𝔇) is the algebra of theta functions on 𝔇. Our goal

is to construct a compactification of 𝔛(𝔇).

It is clear that 𝔛◦(𝔇) can be partially compactified by truncating (some of) the
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conical chambers 𝔲 ∈ 𝒫𝔇can , turning them into (partially) bounded chambers which

we will denote by 𝔲. In other words, one "adds a boundary" to the underlying

conical affine pseudomanifold (𝐵,𝒫) to obtain a wall structure 𝔇 on a (partially)

bounded affine pseudomanifold (𝐵,𝒫). The open embedding

𝔛◦(𝔇) ↩→ 𝔛◦(𝔇)

is given by the natural isomorphisms of affine charts

Spec𝑅𝔲

∼−→ Spec𝑅𝔲.

The boundary 𝔛◦(𝔇) \ 𝔛◦(𝔇) is given by the zero set of the ideal

⟨𝑧𝑚 | 𝑚 ∉ Λ𝔟⟩ ⊂ 𝑅𝜕
𝔲
= (k[𝑄]/𝐼) [Λ𝔲,𝔟],

in the boundary chart Spec𝑅𝜕
𝔲

(1.8) – here 𝔟 is the boundary slab contained in 𝔲.

Proposition 1.4.12 implies that the boundary joints of 𝔇 are consistent if their

are convex in the sense of Definition 1.4.11. All interior joints of 𝔇 are joints of 𝔇,

and so adding any boundary to 𝐵 inducing only convex boundary joints in 𝔇 will

result in a consistent (partially) bounded wall structure 𝔇can.

Let us assume that 𝔇 is consistent. As long as the boundary is a rational

polyhedral set, the cone over (𝐵,𝒫) will be an integral affine pseudomanifold. In

this case C𝔇 is a consistent, conical wall structure, and its associated algebra of theta

functions 𝑅(C𝔇) has a natural grading, given by the height of asymptotic monomial

𝑚 ∈ C𝐵(Z) associated to each theta function 𝜗𝑚 . By Theorem 1.5.7 there is a partial

compactification

𝔛◦(𝔇) ↩→ 𝔛(𝔇) := Proj𝑅(C𝔇).

In fact,

Claim 2.4.3. 𝔛(𝔇) is a partial compactification of 𝔛(𝔇).

Proof. Indeed, 𝔇 is conical, so the origin must be contained in 𝔇, and no broken line

on C𝔇 with asymptotic monomial (0, 𝑘) ∈ C𝐵(Z), where 𝑘 ∈ N, may cross a wall in
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C𝔇 before it reaches its endpoint. Therefore we must have

𝜗(0,𝑘) · 𝜗(𝑚,𝑙) = 𝜗(𝑚,𝑘+𝑙)

for any asymptotic monomial (𝑚, 𝑙) ∈ C𝐵(Z), and so there is an isomorphism

𝑅(C𝔇)𝜗(0,1) � 𝑅(𝔇)

given by 𝜗(𝑚,𝑙)/(𝜗(0,1))𝑙 ↦−→ 𝜗𝑚 . □

Since all the walls of 𝔇can are outgoing, Proposition 1.4.12 implies that a trun-

cation 𝔇can is consistent if the boundary is locally convex. We will see that good

truncations of 𝔇can can be obtained from nef divisors in 𝑌 which are supported

on 𝐷. Construction 2.4.5 below is from [30, Construction 1.20] and was motivated

by [22, Section 8.5]. It requires the following lemma – recall that 𝐷 ⊂ 𝑌 is an snc

divisor with connected strata.

Lemma 2.4.4. [30, Corollary 1.14] Suppose that 𝑓 : (𝐶, 𝑥1 , . . . , 𝑥𝑛) → 𝑌 is a punctured

map with contact orders 𝑢1 , . . . , 𝑢𝑛 , where 𝑢𝑖 is an integral tangent vector to a cone 𝜎𝑖 ∈

Σ(𝑌). Then for any divisor 𝐷′ supported on 𝐷, we have

deg 𝑓 ∗𝒪𝑌(𝐷′) =
∑
𝑖

⟨𝑢𝑖 , 𝐷′⟩.

Construction 2.4.5 (The Rees construction). Suppose that 𝐷′ is a nef divisor sup-

ported on 𝐷. Then for a punctured map with three marked points with contact

orders 𝑚1, 𝑚2 and −𝑚 and total curve class 𝐴, we have

0 ≤ 𝐴 · 𝐷′ = ⟨𝑚1 , 𝐷
′⟩ + ⟨𝑚2 , 𝐷

′⟩ − ⟨𝑚, 𝐷′⟩.

Therefore we have

⟨𝑚, 𝐷′⟩ ≤ ⟨𝑚1 , 𝐷
′⟩ + ⟨𝑚2 , 𝐷

′⟩ (2.28)

for any theta function 𝜗𝑚 appearing in the expansion of 𝜗𝑚1 · 𝜗𝑚2 , which gives rise
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to a filtered ring structure on 𝑅(𝔇can). We can thus take the graded Rees algebra

𝑅̃𝐷′(𝔇can) =
⊕
𝑘∈𝑁

⊕
𝑚∈𝐵(Z)
⟨𝑚,𝐷′⟩≤𝑘

(k[𝑄]/𝐼) · 𝜗𝑚𝑋 𝑘 ⊆ 𝑅(𝔇can)[𝑋],

where the grading is given by the power of 𝑋.

Remark 2.4.6 (The truncation 𝔇can induced by 𝐷′). The Rees construction for a

choice of nef divisor 𝐷′ supported on 𝐷 is equivalent to Construction 2.4.2 in the

following sense. Recall that since Σ(𝑌) is conical, the asymptotic monomials are

in bĳection with integral points on 𝐵. Thus the function ⟨−, 𝐷′⟩ induces a Σ(𝑌)-

piecewise linear function

𝜓𝐷′ : 𝐵 −→ R,

where we consider each integral point 𝑚 ∈ 𝜎 ∈ Σ(𝑌) to be a positive tangent vector

on 𝜎. If we define our truncated affine pseudomanifold to be

𝐵 := {𝑏 ∈ 𝐵 |𝜓𝐷′(𝑏) ≤ 1} ,

with corresponding wall structure 𝔇can := 𝔇can ∩ 𝐵, then there is an isomorphism

of graded k[𝑄]/𝐼-algebras

𝑅̃𝐷′(𝔇can) � 𝑅(C𝔇can),

given by 𝜗𝑚𝑋 𝑘 ↦−→ 𝜗(𝑚,𝑘). Note that consistency at the boundary joints of 𝔇can is

implied by (2.28), and C𝐵 is an integral polyhedral affine pseudomanifold if ℎ𝑖 ∈ Q

for all 𝑖 = 1, . . . , 𝑟.



Chapter 3

Mirrors to 𝑓 and 𝑔

We now apply all of this construction in our context: the goal of this chapter is

the construction of a mirror scheme to a given rigid maximally mutable Laurent

polynomial 𝐹. When 𝐹 is a Laurent polynomial in two variables, we show that this

mirror is isomorphic to the scheme constructed from an algorithmic wall structure

as in Construction 2.3.9. This will enable the comparison of mirrors to different

rigid MMLPs in Chapter 4, via comparison of the affine geometry of the initial

scattering diagrams. The methods and constructions in this chapter all apply to a

general rigid MMLP 𝐹 in two variables. We discuss their application to

𝑓 := 𝑥 + 𝑦 + 1
𝑥𝑦

and 𝑔 := 𝑥 + 𝑦 + 1
𝑥𝑦
+ 𝑥𝑦

in examples, and explain where the method can be applied to rigid MMLPs in more

variables in remarks.

The first step is to pass from a Laurent polynomial 𝐹 in two variables to a log

Calabi–Yau pair (𝑌, 𝐷).

3.1 From Laurent polynomials to log Calabi–Yau pairs
Construction 3.1.1 (A toric variety associated to 𝐹, and a line bundle on it). Let

𝐹 ∈ k[𝑥± , 𝑦±] be a Laurent polynomial, and let 𝑃 := Newt 𝐹 be its Newton polytope.

Denote by Σ[𝑃] the normal fan to 𝑃, and let 𝑌Σ[𝑃] denote the corresponding toric

variety. The Newton polytope 𝑃 defines a very ample line bundle on 𝑌Σ[𝑃], with

divisor
∑
𝑖 ℎ𝑖𝐷𝑖 supported on the toric boundary. Here ℎ𝑖 > 0 is the lattice height

of the origin above the facet of 𝑃 corresponding to the toric divisor 𝐷𝑖 .

Construction 3.1.2 (A rational map 𝑌Σ[𝑃] d P1). Observe that both 𝐹 and the unit
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monomial define sections of the line bundle in Construction 3.1.1. Therefore, there

is a rational map 𝑌Σ[𝑃] d P1 defined by [1 : 𝐹].

Construction 3.1.3 (The log Calabi–Yau pair associated to 𝐹). The toric variety𝑌Σ[𝑃]
is in general singular, and the rational map 𝑌Σ[𝑃] d P

1 has basepoints. Let 𝑌 be

the variety obtained from 𝑌Σ[𝑃] by taking the minimal resolution of singularities

and resolving basepoints, and let 𝐷 be the proper transform of the toric boundary

under the resolution of singularities, and the strict transform under the resolution

of basepoints. Then 𝐷 is anticanonical, and the pair (𝑌, 𝐷) is log Calabi–Yau. We

say that (𝑌, 𝐷) is the log Calabi–Yau pair associated to 𝐹.

Remark 3.1.4. Since we are working in two dimensions, the resolution of 𝑌Σ[𝑃] in

Construction 3.1.3 is unique. In higher dimensions, one would need to make a

choice of resolution of the ambient space, and any two minimal choices would be

related by flops. However, since these flops are log birational transformations –

they only affect the boundary of the pair 𝐷 without affecting𝑈 = 𝑌 \𝐷 – the choice

of minimal resolution does not affect the associated canonical wall structure. One

may therefore apply the three constructions above to a rigid MMLP in any number

of variables and obtain a log Calabi–Yau pair.

Henceforth we restrict our attention to Laurent polynomials 𝐹 which are rigid

maximally mutable [15, Definitions 2.5 and 2.6]. This is the class of Laurent poly-

nomials which provides mirrors to smooth del Pezzo surfaces [4], and which, in

higher dimensions, are expected to provide mirrors to 𝑛-dimensional Fano varieties

with terminal locally toric qG-rigid singularities that admit a qG-degeneration with

reduced fibres to a normal toric variety [15, Conjecture 5.1].

Example 3.1.5. The rigid maximally mutable Laurent polynomial

𝐹 =
(1 + 𝑥)4(1 + 𝑦)2

𝑥2𝑦
− 12

is a mirror to the del Pezzo surface 𝑑𝑃2. It has Newton polytope shown in Figure 3.1.

The lattice points in Figure 3.1 are labelled with the coefficient of the corresponding

monomial in 𝐹. Note the binomial coefficients along the edges.



3.1. From Laurent polynomials to log Calabi–Yau pairs 84

1

2

1

4

8

4

6

0

6

4

8

4

1

2

1

Figure 3.1: Newton polytope for a Laurent polynomial mirror to 𝑑𝑃2.

Lemma 3.1.6 below, which is a consequence of Propositions 3.7 and 3.9 in [15],

allows us to describe the log Calabi–Yau pair (𝑌, 𝐷) associated to a rigid maximally

mutable Laurent polynomial 𝐹 more explicitly.

Lemma 3.1.6. Suppose that 𝐹 ∈ k[𝑥± , 𝑦±] is a rigid maximally mutable Laurent polyno-

mial. Then 𝐹 has binomial coefficients along each edge 𝐸 of Newt 𝐹, and the lattice length

𝑙𝐸 of each edge is divisible by its height over the origin ℎ𝐸. Moreover, the rational map

𝑌Σ d P1 associated to 𝐹 via Construction 3.1.2 is resolved by blowing up 𝑛𝐸 := 𝑙𝐸/ℎ𝐸
times in a point on the toric boundary component of 𝑌Σ corresponding to each edge 𝐸.

Proof. Let 𝑃 = Newt 𝐹 be the Newton polytope of a Laurent polynomial 𝐹 ∈ C[𝑥, 𝑦].

Proposition 3.7 in [15] associates to 𝑃 a set of Laurent polynomials with Newton

polytope 𝑃, zero constant term, and fixed mutation graph 𝒢𝑃 . By [15, Proposition

3.9], 𝐹 is maximally mutable if and only if it coincides with the general Laurent

polynomial 𝑓𝑃 associated to 𝑃 by [15, Proposition 3.7].

But by definition of rigidity, 𝐹 is the unique Laurent polynomial with Newton

polytope 𝑃, zero constant term and mutation graph 𝒢𝑃 . Therefore there are no free

parameters in the coefficients of the general 𝑓𝑃 . By [15, Proposition 3.7], the free

parameters in the construction of 𝑓𝑃 are in bĳection with any choice of residual points

(see [15, Definition 3.6]) of 𝑃. Since there are no free parameters, any choice of

residual points must be empty. Therefore there are no 𝑅-cones in the spanning fan

of 𝑃 – that is, the length of any edge of 𝑃 is divisible by its height over the origin.

Given an edge 𝐸 of 𝑃, fix a primitive vector 𝑣𝐸 in the direction of 𝐸 and denote

by 𝑤𝐸 the primitive inward-pointing normal vector to 𝐸. Let 𝑙𝐸 be the length of

𝐸, let ℎ𝐸 be its height over the origin, and define 𝑛𝐸 := 𝑙𝐸/ℎ𝐸. Let 𝐶𝐸 � P1 be

the toric boundary component of the (desingularisation of) 𝑌Σ corresponding to 𝐸.

By [15, Proposition 3.7], 𝐹 = 𝑓𝑃 is mutable with respect to the pair (𝑤𝐸 , (1 + 𝑥𝑣𝐸 )𝑛𝐸 )
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(see [15, Definition 1.6]). This means that, in toric local coordinates (𝑧, 𝑤), where 𝑧

is a local coordinate along 𝐶𝐸, the rational map [1 : 𝐹] takes the form[
𝑤ℎ𝐸 𝑔(𝑧) :

ℎ𝐸∑
𝑖=1

𝑤(ℎ𝐸−𝑖)(1 + 𝑧)(𝑖·𝑛𝐸)𝑔𝑖(𝑧, 𝑤) + 𝑂(𝑤ℎ𝐸 )
]
,

where 𝑔𝑖(𝑧, 𝑤) ∈ k[𝑤⊥𝐸 ]. In these coordinates 𝐶𝐸 is given by the locus 𝑤 = 0.

The basepoints of the rational map 𝑌Σ d P1 occur where 𝐹 and the unit monomial

simultaneously vanish – that is, at the points on the toric boundary where 𝐹 vanishes.

From the expression above, we see that there is a unique zero of 𝐹 on 𝐶𝐸 at 𝑧 = −1,

and that the rational map [1 : 𝐹] is resolved by blowing up 𝑛𝐸 times successively at

𝑧 = −1 on 𝐶𝐸. □

This analysis also makes clear that the resulting variety𝑌 is deformation equiv-

alent to the blow-up of the desingularisation of 𝑌Σ[𝑃] in 𝑛𝐸 distinct general points

on each component 𝐶𝐸 of the toric boundary. One can construct this deformation

by taking a deformation of 𝐹 which has 𝑛𝐸 roots of multiplicity ℎ𝐸 on the toric

boundary component 𝐶𝐸.

Remark 3.1.7. For a rigid MMLP in more than two variables, the base locus of the

map [1 : 𝐹] will be a subvariety of codimension one in the toric boundary of 𝑌Σ[𝑃].

It is not guaranteed to be irreducible or reduced.

Example 3.1.8. In this thesis we will consider the two Laurent polynomials

𝑓 := 𝑥 + 𝑦 + 1
𝑥𝑦

and 𝑔 := 𝑥 + 𝑦 + 𝑥𝑦 + 1
𝑥𝑦
,

which are mirrors to the del Pezzo surfaces P2 and 𝑑𝑃8, the blow-up of P2 in a

point, respectively. We describe their associated log Calabi–Yau pairs (𝑌𝑓 , 𝐷 𝑓 ) and

(𝑌𝑔 , 𝐷𝑔) via Construction 3.1.3 explicitly as follows.

The two Newton polytopes in the lattice 𝑁 � Z2 are shown in Figures 3.2 and

3.3 respectively, with the origin coloured in black.
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Figure 3.2: Newton polytope for 𝑓 =

𝑥 + 𝑦 + 1
𝑥𝑦

Figure 3.3: Newton polytope for 𝑔 =

𝑥 + 𝑦 + 𝑥𝑦 + 1
𝑥𝑦

Since each edge of Newt 𝑓 and Newt 𝑔 has lattice length one, the rational map

to P1 is resolved by blowing up three and four distinct points respectively – one on

each component of the respective toric boundaries of 𝑌Σ[Newt 𝑓 ] and 𝑌Σ[Newt 𝑔].

The toric variety 𝑌Σ[Newt 𝑓 ] is isomorphic to P2/𝜇3 – each vertex of Newt 𝑓

corresponds to one of the three singular points. Each of these points corresponds

to a singular cone in Σ[Newt 𝑓 ], and is resolved by performing the toric blow-ups

determined by adding rays to Σ[Newt 𝑓 ] in the interior of said cone, decomposing

it into three smooth cones. The fan Σ 𝑓 defining the desingularisation of 𝑌Σ[Newt 𝑓 ] is

shown in Figure 3.4. It is a refinement of Σ[Newt 𝑓 ] – the rays in Σ 𝑓 \ Σ[Newt 𝑓 ],

which define the blow-ups desingularising𝑌Σ[Newt 𝑓 ], are shown in grey. The divisor

𝐷 𝑓 ⊂ 𝑌𝑓 has nine components, one corresponding to each ray in Σ 𝑓 .

The toric variety 𝑌Σ[Newt 𝑔] has three singular points, one corresponding to

each vertex of Newt 𝑔 apart from the top right vertex (1, 1). The fan defining the

desingularisation of 𝑌Σ[Newt 𝑔] is shown in Figure 3.5. The divisor 𝐷𝑔 ⊂ 𝑌𝑔 is made

up of eight irreducible components. Both Newton polytopes are reflexive, and

correspond to the anticanonical divisor on the desingularised toric varieties 𝑌Σ 𝑓

and 𝑌Σ𝑔 .

Figure 3.4: The fanΣ 𝑓 , the rays defin-
ing Σ[Newt 𝑓 ] shown in
black

Figure 3.5: The fanΣ𝑔 , the rays defin-
ing Σ[Newt 𝑔] shown in
black
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3.2 The canonical wall structure associated to a Laurent poly-

nomial

Now consider a log Calabi–Yau pair (𝑌, 𝐷) obtained from a rigid maximally mutable

Laurent polynomial 𝐹 as in Construction 3.1.3 above. The canonical wall structure

𝔇can associated to (𝑌, 𝐷) has the following description.

Let Σ be the fan associated to the toric desingularisation of 𝑌Σ[𝑃] from Con-

struction 3.1.1. Note that 𝑃 = Newt 𝐹 defines a line bundle on 𝑌Σ with divisor

𝐷Newt 𝑓 :=
∑
𝜌∈Σ[1]

ℎ𝜌𝐷𝜌 , (3.1)

where 𝐷𝜌 is the toric boundary component of 𝑌Σ corresponding to the ray 𝜌. Here

ℎ𝜌 is the height above the origin of the edge of 𝑃 corresponding to 𝐷𝜌 for any ray

𝜌 ∈ Σ ∩ Σ; and for rays 𝜌 ∈ Σ \ Σ[𝑃] not corresponding to an edge of 𝑃, we define

ℎ𝜌 ∈ N to be the height above the origin of the unique affine hyperplane 𝐻 ⊂ R2

normal to 𝜌 such that 𝐻 intersects the boundary of 𝑃 and 𝜌 points from 𝐻 into 𝑃.

Now considering 𝐹 and the unit monomial to be a sections of this line bundle, let

Bl : 𝑌 −→ 𝑌Σ (3.2)

denote the blow-up resolving the basepoints of [1 : 𝐹] as a rational map 𝑌Σ d P1.

The tropicalisation of the pair (𝑌, 𝐷), defined in Construction 2.2.4, can be

identified with Σ as a polyhedral complex. The affine structure around each ray

𝜌 ∈ Σ is defined by the self-intersection of the component of 𝐷 associated to 𝜌:

see Construction 2.2.5. This affine structure has a unique singularity, at the unique

dimension zero cell of Σ. The𝑄-valued MPA function defined in Construction 2.2.8

has kink across 𝜌 given by the curve class of the divisor component corresponding

to 𝜌. All the walls in 𝔇can are rays emanating from the vertex in Σ, refining the fan

Σ.

Example 3.2.1. Consider the Laurent polynomials 𝑓 and 𝑔 as in our running example

(Example 3.1.8). Every component of both 𝐷 𝑓 and 𝐷𝑔 has self-intersection −2, so

the polyhedral affine pseudomanifolds 𝐵 𝑓 and 𝐵𝑔 have the universal covers shown

in Figures 3.6 and 3.7. Each universal cover consists of the open upper half plane
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with a polyhedral decomposition given by rays generated by (𝑖 , 1) for all 𝑖 ∈ Z. The

deck transformations shift (𝑖 , 1) to (𝑖 + 9𝑛, 1) and (𝑖 + 8𝑛, 1) respectively.

𝜌9 𝜌1 𝜌2𝜌8𝜌7 𝜌3 𝜌4 𝜌5𝜌6𝜌5𝜌4

Figure 3.6: The universal cover of 𝐵 𝑓 , with each ray labelled by the ray 𝜌𝑖 ∈ 𝒫 𝑓 :=
Σ(𝑌𝑓 ) it covers

𝜌8 𝜌1 𝜌2𝜌7𝜌6 𝜌3 𝜌4 𝜌5𝜌5𝜌4𝜌3

Figure 3.7: The universal cover of 𝐵𝑔 with each ray labelled by the ray 𝜌𝑖 ∈ 𝒫𝑔 :=
Σ(𝑌𝑔) it covers

Recall that our log Calabi–Yau pair (𝑌, 𝐷) is obtained from the desingularisation

𝑌Σ by a sequence of infinitely-near (non-toric) blow-ups on boundary components

of 𝑌Σ. Lemma 3.9 in [21] shows that the canonical wall structure is unchanged

if we replace each chain of 𝑛 infinitely-near blow-ups at 𝑝 with the blow-up in 𝑛

distinct general points of the boundary component that contains 𝑝. Note that the

argument in [21, Lemma 3.9] is phrased in terms of relative Gromov–Witten invari-

ants, whereas our canonical scattering diagram is defined in terms of punctured

Gromov–Witten invariants. In this setting, these invariants coincide.

3.3 The algorithmic wall structure

By the discussion above, we can consider the canonical wall structure 𝔇can(𝐹) as-

sociated to a maximally mutable Laurent polynomial 𝐹 to be the canonical wall

structure associated to a log Calabi–Yau pair with a toric model as in the set-up of

Construction 2.3.4. Here the toric model for the log Calabi–Yau pair (𝑌, 𝐷) is given

by (𝑌Σ , 𝐻𝐹), where 𝑌Σ is the desingularisation of the toric variety 𝑌Σ[𝑃] associated to

𝐹, and the centre of the blow-up

𝐻𝐹 :=
⋃
𝑖

𝑛𝑖⋃
𝑗=1

𝐻𝑖 𝑗
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is a union of 𝑛𝑖 = 𝑙𝑖/ℎ𝑖 general points on each component 𝐷𝑖 of the toric boundary

of𝑌Σ, where 𝑙𝑖 is the length of the corresponding edge of Newt 𝐹 and ℎ𝑖 is its height

over the origin – if 𝐷𝑖 does not correspond to an edge of Newt 𝐹 then 𝑛𝑖 = 0. Thus

𝔇can(𝐹) can be defined algorithmically using Constructions 2.3.4 and 2.3.5.

The HDTV scattering diagram from Construction 2.3.4 is simply the result of

scattering of an initial scattering diagram which we will denote by 𝔇init(𝐹):

𝔇(𝑌Σ ,𝐻𝐹) = Scatter (𝔇init(𝐹)) .

This initial scattering diagram simply consists of 𝑛𝑖 incoming rays

𝔡𝑖 𝑗 := (𝜌𝑖 , 1 + 𝑡𝑖 𝑗𝑧𝑚𝑖 ), 𝑗 = 1, . . . , 𝑛𝑖

along each ray 𝜌𝑖 ∈ Σ[𝑃] ∩Σ corresponding to an edge of Newt 𝐹, where 𝑚𝑖 ∈ 𝑀 is

the primitive generator of 𝜌𝑖 .

We denote the canonical mirror family associated to 𝑓 by

𝔛can
𝑓

:= 𝔛(𝔇can).

This is a formal scheme over Spf𝑅#, but when considered as a formal scheme over

the Gross–Siebert locus Spf𝑅gs, it is isomorphic to

𝔛 𝑓 := 𝔛(𝛼𝔇(𝑌Σ ,𝐻 𝑓 )) (3.3)

by Theorem 2.3.14.

Example 3.3.1 (The initial scattering diagrams associated to 𝑓 and 𝑔). Let 𝑓 and

𝑔 be the two Laurent polynomials from our running example (see Examples 3.1.8

and 3.2.1). The initial scattering diagrams for the algorithmic construction of the

canonical wall structures associated to 𝑓 and 𝑔 are pictured below. Henceforth we

will denote the canonical scattering diagrams on (𝐵 𝑓 ,𝒫 𝑓 ) and (𝐵𝑔 ,𝒫𝑔) by 𝔇can( 𝑓 )

and 𝔇can(𝑔), and the algorithmic scattering diagrams on 𝑀R by

𝔇(Σ 𝑓 ,𝐻 𝑓 ) = Scatter(𝔇init( 𝑓 )) and 𝔇(Σ𝑔 ,𝐻𝑔) = Scatter(𝔇init(𝑔)).
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They are scattering diagrams for the data 𝑄𝑎𝑏𝑐 := 𝑀 ⊕ N3 and 𝑄𝑎𝑏𝑐𝑑 := 𝑀 ⊕

N4 respectively, where we denote the associated rings by k[𝑥± , 𝑦±][𝑎, 𝑏, 𝑐] and

k[𝑥± , 𝑦±][𝑎, 𝑏, 𝑐, 𝑑]. We will denote the monoids defining the Gross–Siebert locus

in each case by

𝑄
gs
𝑓

:= Bl∗𝐻 𝑓

(
𝑁𝐸

(
𝑌Σ 𝑓

))
⊕ 𝐸𝑎𝑏𝑐 and 𝑄

gs
𝑔 := Bl∗𝐻𝑔

(
𝑁𝐸

(
𝑌Σ𝑔

))
⊕ 𝐸𝑎𝑏𝑐𝑑 , (3.4)

where the exceptional curves generating the groups 𝐸𝑎𝑏𝑐 and 𝐸𝑎𝑏𝑐𝑑 are indexed by

𝑎, 𝑏, 𝑐 and 𝑑.

1 + 𝑐𝑥−1𝑦−1

1 + 𝑎𝑥2𝑦−1

1 + 𝑏𝑥−1𝑦2

Figure 3.8: The initial scattering dia-
gram 𝔇init( 𝑓 )

1 + 𝑐𝑥−1

1 + 𝑑𝑦−1

1 + 𝑎𝑥2𝑦−1

1 + 𝑏𝑥−1𝑦2

Figure 3.9: The initial scattering dia-
gram 𝔇init(𝑔)

Remark 3.3.2. In general, the log Calabi–Yau pair associated to a rigid MMLP 𝐹 in

more than two variables will not have a toric model in the sense of Definition 2.3.1,

and proving it is deformation equivalent to a pair with a toric model is more

complicated. However, the HDTV construction can be applied if the map [1 : 𝐹] is

resolved by a single blow-up in the base locus 𝐻, which takes the form described in

Definition 2.3.1.

3.4 Compactifying the mirrors
Since the log Calabi–Yau pair (𝑌, 𝐷) constructed from a rigid maximally mutable

Laurent polynomial 𝐹 via Construction 3.1.3 has a toric model (𝑌Σ , 𝐻𝐹), both the

canonical scattering diagram 𝔇can and the algorithmic scattering diagram 𝔇(𝑌Σ ,𝐻𝐹)

are conical wall structures. There is a canonical choice of nef divisor supported

on 𝐷𝐹, in order to compactify the affine mirror families 𝔛(𝔇can) and 𝔛(𝔇(𝑌Σ ,𝐻𝐹)) by
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applying Constructions 2.4.5:

Denote by 𝐷Newt 𝐹 ⊂ 𝑌 the proper transform of the divisor (3.1) of 𝑌Σ defined

by 𝑃 under the non-toric blow-up (3.2).

Lemma 3.4.1. If 𝑓 is rigid maximally mutable, then 𝐷Newt 𝐹 ⊂ 𝑌 is nef divisor supported

on 𝐷.

Proof. We can write

𝐷Newt 𝐹 =
∑
𝜌∈Σ̃[1]

ℎ𝜌𝐷𝜌 ,

where 𝐷𝜌 is the proper transform of the toric boundary stratum 𝐷𝜌 ⊂ 𝑌Σ, and ℎ𝜌 is

defined as asbove in (3.1). Clearly 𝐷Newt 𝐹 · 𝐸 ≥ 0 for any of the exceptional divisors

of the blow-up (3.2). We also claim that 𝐷Newt 𝐹 · 𝐷𝜌 = 0 for all 𝜌 ∈ Σ. The degree

of the restriction of the line bundle (3.1) to the toric boundary stratum 𝐷𝜌 ⊂ 𝑌Σ is

equal to the length 𝑙𝜌 of the corresponding edge of 𝑃 (𝑙𝜌 = 0 when there is no such

edge). Since 𝑌Σ is a toric surface, we have

𝐷𝜌 · 𝐷𝜌′ =


(
𝐷𝜌

)2 if 𝜌 = 𝜌′

1 if 𝜌 and 𝜌′ are adjacent rays in Σ

0 otherwise.

(See [16, Theorem 10.4.4].) Thus we have

𝑙𝜌 = 𝐷𝜌 · 𝐷Newt 𝐹 = ℎ𝜌(𝐷𝜌)2 + ℎ𝜌+ + ℎ𝜌− (3.5)

where 𝜌+ and 𝜌− are the rays adjacent to 𝜌 in Σ. Now 𝐷𝜌 is the proper transform of

𝐷𝜌 blown up in 𝑙𝜌/ℎ𝜌 general points, so

𝐷𝜌 · 𝐷𝜌′ =


(𝐷𝜌)2 = (𝐷𝜌)2 − 𝑙𝜌/ℎ𝜌 if 𝜌 = 𝜌′

1 if 𝜌 and 𝜌′ are adjacent rays in Σ

0 otherwise,

and, putting this together with (3.5), we have

𝐷Newt 𝐹 · 𝐷𝜌 = ℎ𝜌(𝐷𝜌)2 + ℎ𝜌+ + ℎ𝜌− = 0.
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Any curve class on 𝑌 is a positive linear combination of proper transforms of toric

curves in 𝑌Σ and exceptional curves of the blow-up (3.2). □

We may therefore compactify𝔛can
𝐹

by applying the Rees construction (Construc-

tion 2.4.5) with 𝐷Newt 𝐹. Let 𝜓Newt 𝐹 be the piecewise linear function on (𝐵𝐹 ,Σ(𝑌))

defined by 𝐷Newt 𝐹 – it is an integral function defined by its values on the rays of

Σ(𝑌):

𝜓Newt 𝐹(𝑚𝜌) = ℎ𝜌

where 𝑚𝜌 is the primitive generator of 𝜌, and ℎ𝜌 is defined for 𝐷Newt 𝐹 as in (3.1).

Since ℎ𝜌 is strictly positive for all rays 𝜌, the level set of 𝜓Newt 𝐹 forms a bounded

polyhedron. Denote this polyhedron on 𝐵 by

𝐵𝐹 := {𝑚 ∈ 𝐵 |𝜓Newt 𝐹(𝑚) ≤ 1} .

By Remark 2.4.6, the compactification of 𝔛can
𝐹

given by the Rees construction may

equivalently be constructed by applying Construction 2.4.2 with the bounded wall

structure𝔇can given by the truncation of𝔇can by 𝐵𝐹. On𝑀R, the analogous bounded

polyhedron given by the 𝜓Newt 𝐹 ◦ 𝜈−1 is exactly the polar dual polytope to the

Newton polytope of 𝐹,

(Newt 𝐹)∨ := {𝑚 ∈ 𝑀R | ⟨𝑚, 𝑝⟩ ≥ −1 ∀𝑝 ∈ 𝑃 = Newt 𝐹} .

We denote the corresponding bounded wall structure by 𝔇(𝑌Σ ,𝐻𝐹).

Construction 3.4.2 (The compactified mirror to 𝐹). The piecewise linear identifica-

tion (2.3) between (𝐵𝐹 ,𝒫) and (𝑀R ,Σ) preserves the bounded subsets:

𝜈
(
𝐵𝐹

)
= (Newt 𝐹)∨.

Therefore, broken lines on C𝐵𝐹 correspond one-to-one with broken lines on

C(Newt 𝐹)∨ as in Lemma 2.3.18, and so the algebras of theta functions 𝑅(C𝔇can/𝐽)

and 𝑅(C𝔇(𝑌Σ ,𝐻𝐹)/𝐽) are isomorphic over 𝑅gs/𝐽 for all 𝔪gs-primary ideals 𝐽. More-

over, the underlying affine pseudomanifolds are bounded, so the algebras of theta

functions 𝑅(C𝔇can) � 𝑅(C𝔇(𝑌Σ ,𝐻𝐹)) are in fact well-defined as graded 𝑅gs-algebras.
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By Lemma 1.6.3 therefore, we have a family over the Gross–Siebert locus Spec𝑅gs,

𝔛𝐹 := Proj𝑅(C𝛼𝔇(𝑌Σ ,𝐻𝐹)) � Proj𝑅(C𝔇can) (3.6)

which is the algebraisation of a compactification of 𝔛𝐹.

Example 3.4.3 (Compactifying the mirrors to 𝑓 and 𝑔). Let 𝑓 and 𝑔 be the Laurent

polynomials from our running example (see Examples 3.1.8, 3.2.1 and 3.3.1). In these

cases, the Newton polytopes are both reflexive, so 𝐷Newt 𝑓 = 𝐷 𝑓 and 𝐷Newt 𝑔 = 𝐷𝑔 .

The preimage of the level set

{𝑚 ∈ 𝐵 𝑓 |𝜓Newt 𝑓 (𝑚) = 1} ⊂ 𝐵 𝑓

in the universal cover 𝐵̃ 𝑓 (pictured in Figure 3.6) is simply the affine line

{𝑦 = 1} ⊂ R2.

Since every ray (𝔡, 𝑓𝔡) ∈ 𝔇can( 𝑓 ) is outgoing, any broken line propagating along the

boundary of 𝐵 𝑓 which crosses 𝔡 either bends upwards (towards the boundary) or

doesn’t bend at all. It is therefore easy to see consistency at the new boundary joints,

as convexity of 𝔇can( 𝑓 ) follows from convexity of the bounded polyhedron 𝐵 𝑓 . The

universal cover of the boundary defined by the level set where 𝜓Newt 𝑔(𝑚) = 1 looks

exactly the same on 𝐵̃𝑔 .

Since the Newton polytopes of 𝑓 and 𝑔 are both reflexive, their dual polyhedra

are lattice polygons. Figures 3.10 and 3.11 below show the initial scattering dia-

grams defining the bounded algorithmic scattering diagrams 𝔇(Σ 𝑓 ,𝐻 𝑓 ) and 𝔇(Σ𝑔 ,𝐻𝑔)

on the polyhedral affine pseudomanifolds
(
(Newt 𝑓 )∨ ,Σ 𝑓

)
and

(
(Newt 𝑔)∨ ,Σ𝑔

)
re-

spectively.

The compactified mirrors to 𝑓 and 𝑔 are the two families over the respective

Gross–Siebert loci

𝔛 𝑓 := Proj𝑅(C𝛼𝔇(Σ 𝑓 ,𝐻 𝑓 )) −→ Spec𝑅gs
𝑓

and 𝔛𝑔 := Proj𝑅(C𝛼𝔇(Σ𝑔 ,𝐻𝑔)) −→ Spec𝑅gs
𝑔 .
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Figure 3.10: The bounded initial scat-
tering diagram 𝔇init( 𝑓 )

Figure 3.11: The bounded initial scat-
tering diagram 𝔇init(𝑔)



Chapter 4

The intermediate mirror family

The overall goal of this chapter is to construct a third scheme 𝔛∼ which admits

morphisms to both 𝔛 𝑓 and 𝔛𝑔 , after some appropriate changes of the bases. In the

next chapter we will show that the restriction of the morphism 𝔛∼ → 𝔛𝑔 to the

general fibre of 𝔛∼ is an isomorphism, and that the restriction of the morphism

𝔛∼ → 𝔛 𝑓 to the general fibre is the blow-up in a point on the boundary 𝔛 𝑓 \ 𝔛 𝑓 .

The general strategy is as follows. In Section 4.1 we define a third scattering

diagram 𝔇pert on R2, constructed by perturbing the incoming rays in 𝔇init(𝑔). The

diagram 𝔇pert provides a combinatorial link between the two HDTV scattering

diagrams associated to 𝑓 and 𝑔; the main result of Section 4.1, Theorem 4.1.1, boils

down to saying that 𝔇(Σ 𝑓 ,𝐻 𝑓 ) can in some sense be included into 𝔇(Σ𝑔 ,𝐻𝑔).

The next step is turning the scattering diagram 𝔇pert into a wall structure that

can be used to construct the scheme 𝔛∼. In Section 4.2.1 we construct a three-

dimensional wall structure 𝔇(𝑌Σ̃ ,𝐻̃) and an associated family of surfaces 𝔛∼. This

wall structure converts the combinatorial relationship between the HDTV scatter-

ing diagrams 𝔇(Σ 𝑓 ,𝐻 𝑓 ) and 𝔇(Σ𝑔 ,𝐻𝑔), given by 𝔇pert, into a relationship between the

affine mirrors 𝔛 𝑓 and 𝔛𝑔 . We describe this relationship on the level of the local

constructions of the formal schemes: we obtain an inclusion 𝔛◦
𝑓
↩→ 𝔛𝑔 . In Sec-

tion 4.2.2 we construct a four-dimensional wall structure 𝔇 𝑓↔𝑔 , and use it to define

a partial compactification 𝔛∼ of 𝔛∼. Extending the ideas of Theorem 1.5.7, we use

the bi-conical structure of 𝔇 𝑓↔𝑔 to produce two auxiliary schemes 𝔛0,• and 𝔛•,0
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from 𝔇 𝑓↔𝑔 such that there are natural morphisms

𝔛∼

𝔛•,0 𝔛0,•.

(4.1)

In Section 4.3 we define morphisms from the base of 𝔛∼ to the bases of 𝔛 𝑓 and

𝔛𝑔 , such that 𝔛•,0 can be identified with the pullback of 𝔛 𝑓 and 𝔛0,• can be identified

with the pullback of 𝔛𝑔 . That is, the diagram (4.1) extends to a diagram

𝔛∼

𝔛 𝑓 𝔛0,• 𝔛•,0 𝔛𝑔

Spec𝑅egs
𝑓

Spec 𝑅̃egs Spec𝑅gs
𝑔

(4.2)

The morphisms of the bases are not actually well defined until we restrict to a

further sublocus inside the Gross–Siebert locus. This extends the notion of the

Gross–Siebert locus by further extending the monoid 𝑄gs, so we call it the extended

Gross–Siebert locus. The central fibres of the families over the extended Gross–Siebert

locus is not longer toric, but in Section 4.3.2 we show that the schemes themselves

are still well-defined.

4.1 The perturbed scattering diagram

Recall that in Example 3.3.1 we defined 𝑄𝑎𝑏𝑐𝑑 = N4 ⊕ 𝑀, where k[𝑄] is denoted by

k[𝑎, 𝑏, 𝑐, 𝑑, 𝑥±1 , 𝑦±1]. Define another scattering diagram for the same data 𝑄𝑎𝑏𝑐𝑑 →

𝑀 as

𝔇pert := Scatter(𝔇0
pert), (4.3)

where

𝔇0
pert := ({𝔡𝑎 , 𝔡𝑏 , 𝔡𝑐 , 𝔡𝑑}) ,
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and

(𝔡𝑎 , 𝑓𝑎) :=
(
R≥0(2,−1), 1 + 𝑎𝑥2𝑦−1

)
,

(𝔡𝑏 , 𝑓𝑏) :=
(
R≥0(−1, 2), 1 + 𝑏𝑥−1𝑦2

)
,

(𝔡𝑐 , 𝑓𝑐) :=
(
(−1,−1) + R≥0(−1, 0), 1 + 𝑐𝑥−1

)
,

(𝔡𝑑 , 𝑓𝑑) :=
(
(−1,−1) + R≥0(0,−1), 1 + 𝑑𝑦−1

)
.

The initial scattering diagram 𝔇0
pert is shown in Figure 4.1 below. It is equivalent to

a perturbed version of 𝔇init(𝑔), with the bottom left two incoming rays translated

by (−1,−1).

1 + 𝑐𝑥−1

1 + 𝑑𝑦−1

1 + 𝑎𝑥2𝑦−1

1 + 𝑏𝑥−1𝑦2

(0, 0)

(−1,−1)

Figure 4.1: The initial scattering diagram 𝔇0
pert

Theorem 4.1.1. There exists an open neighbourhood𝑈 ⊂ 𝑀R about the origin such that

𝔇pert ∩𝑈

consists of lines through the origin and rays emanating from the origin. Furthermore, it is

equivalent to

𝜙
(
𝔇(Σ 𝑓 ,𝐻 𝑓 ) ∩𝑈

)
,
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where 𝜙 is the morphism of monoids

𝜙 : 𝑄𝑎𝑏𝑐 −→ 𝑄𝑎𝑏𝑐𝑑 (4.4)

given by 𝑎 ↦→ 𝑎, 𝑏 ↦→ 𝑏, 𝑐 ↦→ 𝑐𝑑.

4.1.1 Principles of scattering

In this section we describe a series of facts and techniques for calculating Scatter(𝔇)

given a two-dimensional scattering diagram 𝔇, which we make use of in the proof

of Theorem 4.1.1.

We begin by describing the algorithm which takes as its input Scatter𝑘−1(𝔇),

a scattering diagram which is compatible modulo 𝔪𝑘
𝑄

, and outputs Scatter𝑘(𝔇),

the unique (modulo 𝔪𝑘+1
𝑄

) scattering diagram which contains Scatter𝑘−1(𝔇) and is

compatible modulo𝔪𝑘+1
𝑄

. It forms the inductive step in the proof of the Kontsevich–

Soibelman Lemma (Lemma 2.1.8). In the recreation below algorithm is slightly

modified so that Scatter𝑘(𝔇) is obtained from Scatter𝑘−1(𝔇) by only adding rays 𝔡

such that 𝑓𝔡 . 1 mod 𝔪𝑘+1
𝑄

.

Construction 4.1.2 (A scattering diagram 𝔇𝑘 compatible to order 𝑘 and containing

𝔇𝑘−1). Suppose 𝔇𝑘−1 is compatible to order 𝑘 − 1, that is

𝜃𝛾,𝔇𝑘−1 ≡ Id mod 𝔪𝑘
𝑄

for all loops 𝛾 for which 𝜃𝛾,𝔇𝑘−1 is defined. Let 𝔇′
𝑘−1 be the finite subset of 𝔇𝑘−1

consisting of the walls 𝔡 in 𝔇𝑘−1 such that 𝑓𝔡 . 1 mod 𝔪𝑘+1
𝑄

. Let 𝛾𝑝 be a closed

simple loop around 𝑝 ∈ Sing(𝔇′
𝑘−1), small enough so that it contains no other points

of Sing(𝔇′
𝑘−1). By assumption we can write uniquely

𝜃𝛾𝑝 ,𝔇′𝑘−1
= exp

(
𝑠∑
𝑖=1

𝑐𝑖𝑧
𝑚𝑖𝜕𝑛𝑖

)
where 𝑚𝑖 ∈ 𝑀 \ 0, 𝑛𝑖 ∈ 𝑚⊥𝑖 is primitive and 𝑐𝑖 ∈ 𝔪𝑘

𝑄
, and we know that

𝜃𝛾𝑝 ,𝔇′𝑘−1
≡ 𝜃𝛾𝑝 ,𝔇𝑘−1 mod 𝔪𝑘+1

𝑄 .
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We let

𝔇[𝑝] =
{
(𝑝 + R≥0(−𝑚𝑖), 1 ± 𝑐𝑖𝑧𝑚𝑖 ) | 𝑖 ∈ {1, ..., 𝑠} and 𝑐𝑖 ≡ 0 mod 𝔪𝑘+1

𝑄

}
,

where the sign for each ray is chosen so that its contribution to 𝜃𝛾𝑝 ,𝔇′𝑘−1
is

exp (−𝑐𝑖𝑧𝑚𝑖𝜕𝑛𝑖 )modulo 𝔪𝑘+1
𝑄

, giving

𝜃𝛾𝑝 ,𝔇𝑘−1∪𝔇[𝑝] ≡ Id mod 𝔪𝑘+1
𝑄 .

The set Sing(𝔇′
𝑘−1) is finite since 𝔇′

𝑘−1 is a finite scattering diagram, and so we can

define

𝔇𝑘 = 𝔇𝑘−1 ∪
⋃

𝑝∈Sing(𝔇′
𝑘−1)

𝔇[𝑝].

Any automorphism coming from 𝔇[𝑝] commutes modulo 𝔪𝑘+1
𝑄

with any automor-

phism coming from 𝔇𝑘−1, since 𝑐𝑖 ∈ 𝔪𝑘
𝑄

for all rays

(𝑝 + R≥0𝑚𝑖 , 1 ± 𝑐𝑖𝑧𝑚𝑖𝜕𝑛𝑖 ) ∈ 𝔇[𝑝].

This means that

𝜃𝛾,𝔇𝑘
≡ Id mod 𝔪𝑘+1

𝑄

for all loops 𝛾 for which 𝜃𝛾,𝔇𝑘
is defined, so𝔇𝑘 is compatible to order 𝑘, and has been

obtained from 𝔇𝑘−1 by adding only outgoing rays 𝔡 with nontrivial wall function

modulo 𝔪𝑘+1
𝑄

.

Remark 4.1.3. Note that if 𝑓𝔡 = 1 then 𝜃𝛾,𝔡 = Id, and if two walls 𝔡1 and 𝔡2 share the

same support, then the automorphisms 𝜃𝛾,𝔡1 and 𝜃𝛾,𝔡2 commute. We can therefore

make trivial modifications to 𝔇 without leaving its equivalence class, like removing

a wall 𝔡 with trivial wall function, or replacing a collection of walls 𝔡1 , ..., 𝔡𝑛 with

the same support with a single wall with wall function

𝑓𝔡 =

𝑛∏
𝑖=1

𝑓𝔡𝑖 .
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We will also consider the notion of a line

(𝔩, 𝑓𝔩) = (𝑝 + R𝑚𝔩 , 𝑓𝔩)

passing through a point 𝑝 to be interchangeable with the notion of the union of an

incoming ray to towards 𝑝 and outgoing ray emanating from 𝑝,

(𝔩in , 𝑓𝔩) = (𝑝 + R≥0𝑚𝔩 , 𝑓𝔩) and (𝔩out , 𝑓𝔩) = (𝑝 − R≥0𝑚𝔩 , 𝑓𝔩).

We will say that 𝔩in and 𝔩out are the incoming and outgoing rays contained in 𝔩.

Proof of Lemma 2.1.11. Since Scatter(𝜑(𝔇)) is the unique scattering diagram contain-

ing 𝜑(𝔇)which is compatible to all orders, and 𝜑(Scatter(𝔇)) clearly contains 𝜑(𝔇),

it is enough to show that 𝜑(Scatter(𝔇)) is compatible to all orders. We claim that

𝜃𝛼(𝛾),𝛼(𝔇)(𝑧𝜑(𝑞)) = 𝜑̂
(
𝜃𝛾,𝔇(𝑧𝑞)

)
.

The only thing to show is that

⟨𝑛𝛼(𝔡) , 𝑠 ◦ 𝜑(𝑞)⟩ = ⟨𝑛𝔡 , 𝑟(𝑞)⟩.

This holds because 𝛼 and 𝛼−1 are elements of 𝐺𝐿2(Z), so must preserve primitiv-

ity. This means that 𝑛𝛼(𝔡) ∈ 𝑁 , defined to be the primitive element of 𝑁 which

annihilates 𝜑(𝑚𝔡) = 𝛼(𝑚𝔡) and is negative on (𝛼 ◦ 𝛾)′(𝑡) = 𝛼(𝛾′(𝑡)), precisely equals

𝑛𝔡 ◦ 𝛼−1. Thus

⟨𝑛𝛼(𝔡) , 𝑠 ◦ 𝜑(𝑞)⟩ = ⟨𝑛𝔡 ◦ 𝛼−1 , 𝑠 ◦ 𝜑(𝑞)⟩

= ⟨𝑛𝔡 ◦ 𝛼−1 , 𝛼 ◦ 𝑟(𝑞)⟩

= ⟨𝑛𝔡 , 𝑟(𝑞)⟩.

□

Lemma 4.1.4. Suppose that a scattering diagram 𝔇 for the data 𝑄 = N𝑘 ⊕𝑀 consists of a

set of rays all incoming to a single point

(𝔡𝑖 , 𝑓𝔡𝑖 ) = (𝑝 + R≥0𝑚𝑖 , 1 + 𝑡𝑖𝑧𝑚𝑖 ),
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where 𝑚𝑖 ∈ 𝑀 and 𝑡𝑖 is a generator of the ring k[𝑄] = k[𝑡1 , · · · , 𝑡𝑘 , 𝑥± , 𝑦±].

Then Scatter1(𝔇), the scattering diagram containing 𝔇 and compatible modulo 𝔪2
𝑄

,

is equivalent to the set of lines

(𝔩𝑖 , 𝑓𝔩𝑖 ) = (𝑝 + R𝑚𝑖 , 𝑓𝔡𝑖 ),

each of which is the continuation of the ray 𝔡𝑖 . That is, each line 𝔩𝑖 ∈ Scatter1(𝔇) is the

union 𝔡𝑖 ∪ 𝔡′
𝑖
of a ray 𝔡𝑖 ∈ 𝔇 and the outgoing ray 𝔡′

𝑖
with the same wall function 𝑓𝔡′

𝑖
= 𝑓𝔡𝑖 .

Proof. Consider the path ordered product 𝜃𝛾,𝔇 around the loop 𝛾 about the point 𝑝

modulo 𝔪2
𝑄
= (𝑡1 , · · · , 𝑡𝑘)2

𝜃𝛾,𝔇 = 𝜃𝔡𝑘 ,𝑛𝑘 ◦ · · · ◦ 𝜃𝔡1 ,𝑛1 .

We may consider log( 𝑓𝑖) to be a power series in k[𝑀]⟦𝑡𝑖⟧. Its leading term is 𝑡𝑖𝑧𝑚𝑖

and all other terms are contained in 𝔪2
𝑄

, so we have

𝜃𝛾,𝔇 ≡ exp(𝑡𝑛𝑧𝑚𝑛𝜕𝑛𝑘 ) ◦ · · · ◦ exp(𝑡1𝑧𝑚1𝜕𝑛1)

≡ exp

(
𝑘∑
𝑖=1

𝑡𝑖𝑧
𝑚𝑖𝜕𝑛𝑖

)
mod 𝔪2

𝑄 .

Following Construction 4.1.2 we add the rays

(𝔡′𝑖 , 𝑓𝔡′𝑖 ) = (𝑝 + R≥0(−𝑚𝑖), 1 + 𝑡𝑖𝑧𝑚𝑖 )

to 𝔇 in order to obtain Scatter1(𝔇), as 𝔡′
𝑖
then contributes

𝜃𝔡′
𝑖
,𝑛′
𝑖
≡ exp(𝑡𝑖𝑧𝑚𝑖𝜕−𝑛𝑖 ) ≡ exp(−𝑡𝑖𝑧𝑚𝑖𝜕𝑛𝑖 ) mod 𝔪2

𝑄

to the path ordered product around 𝛾. □

Lemma 4.1.5 (Scattering of two lines). Suppose that an initial scattering diagram 𝔇

consisting of two lines 𝔩1 and 𝔩2 meeting in a single point 𝑝. Then Scatter(𝔇) \𝔇 consists

of outgoing rays contained in the cone spanned by the two outgoing rays (𝔩1out , 𝑓𝔩1) and

(𝔩2out , 𝑓𝔩2) emanating from 𝑝.
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Proof. One can see from Construction 4.1.2 that any outgoing ray

(𝑝 + R≥0(−𝑟(𝑞𝔡)), 1 + 𝑐𝔡𝑧𝑞𝔡)

added to obtain Scatter𝑘(𝔇) must have its exponent 𝑞𝔡 equal a non-negative linear

combination of the exponents 𝑞 𝑖
𝑗
∈ 𝑄 appearing in the wall functions

𝑓𝔩𝑖 = 1 +
∑
𝑗

𝑐 𝑖𝑗𝑧
𝑞 𝑖
𝑗 .

The outgoing rays emanating from 𝑝 which are contained in the two lines are

described by

(𝔩𝑖out , 𝑓𝔩𝑖 ) =
©­«𝑝 + R≥0(−𝑟(𝑞 𝑖1)),

∑
𝑗

𝑐 𝑖𝑗𝑧
𝑞𝑖ª®¬

with 𝑟(𝑞 𝑖
𝑗
) ∈ R≥0(𝑟(𝑞 𝑖1)) for all 𝑘. Thus 𝑟(𝑞𝔡) is contained in the cone spanned by

𝑟(𝑞1
1) and 𝑟(𝑞2

1), so 𝔡 is contained in

𝑝 + R≥0(−𝑟(𝑞1
1) + R≥0(−𝑟(𝑞2

1).

□

Perturbation of a scattering diagram 𝔇 is a useful technique, given in Section 1.4

of [24], for calculating Scatter(𝔇)when Sing(𝔇) contains points with more than two

walls passing through them. The technique relies on the concept of the asymptotic

scattering diagram.

Definition 4.1.6. Given a scattering diagram 𝔇, the asymptotic scattering diagram

𝒮as is obtained from 𝔇 by replacing each ray (𝑝 + R≥0𝑚, 𝑓 ) with the ray (R≥0𝑚, 𝑓 )

emanating from the origin, and replacing each line (𝑝+R𝑚, 𝑓 )with the line (R𝑚, 𝑓 )

passing through the origin.

Remark 4.1.7. Let C𝔇 be the cone over the scattering diagram 𝔇, as defined in

Definition 1.5.5. The slice of the cone at height zero,

C𝔇0 := C𝔇 ∩ (𝑀R × {0})

is clearly equivalent to the asymptotic scattering diagram 𝔇as. Note that here we
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mean equivalence of scattering diagrams in the sense of Definition 2.1.9 – 𝒮as is not

necessarily equivalent to C𝔇0 in the sense of Definition 1.2.21, as the wall functions

may have been modified slightly when taking the cone over 𝔇.

Remark 4.1.8. Compatibility of 𝔇 implies compatibility of 𝒮as. Indeed, if 𝛾 is a

sufficiently large simple loop about the origin containing all the points of Sing(𝔇),

then

𝜃𝛾,𝔇 = 𝜃𝛾,𝒮as .

Construction 4.1.9 (Scattering of more than two lines passing through a point).

Suppose that a scattering diagram consists of a collection of lines

𝔇 = {𝔩1 , · · · , 𝔩𝑛}

which all pass through 𝑝 ∈ 𝑀R. The following method reduces the calculation of

Scatter𝑘(𝔇) to the calculation of Scatter𝑘(𝔇𝑞) for a finite set of scattering diagrams

𝔇𝑞 , each of which consists of only two lines passing through a point. The point is

that the scattering of only two lines meeting in a point is easier to control, using e.g.

Lemma 4.1.5, or Lemmas 4.1.11 and 4.1.12 below.

For all 𝑗 ∈ N, the only point in Sing(Scatter𝑗(𝔇)) is 𝑝. Thus Scatter𝑘−1(𝔇) \ 𝔇

contains only outgoing rays emanating from 𝑝 by Construction 4.1.2. Perturb 𝔇 so

that no more than two of the lines 𝔩𝑖 pass through any point in 𝑀R, and denote the

resulting diagram 𝔇̃. Then 𝔇̃as is equivalent to 𝔇 − 𝑝, where

𝔇 − 𝑝 := {(𝔡 − 𝑝, 𝑓𝔡) | (𝔡, 𝑓𝔡) ∈ 𝔇}.

Since (Scatter𝑘(𝔇̃))as contains 𝔇 − 𝑝 and is compatible modulo 𝔪𝑘+1
𝑄

by Remark

4.1.8, it must be equivalent to Scatter𝑘(𝔇 − 𝑝), which clearly equals Scatter𝑘(𝔇) − 𝑝.

Therefore

Scatter𝑘(𝔇) ≡
(
Scatter𝑘(𝔇̃)

)
as
+ 𝑝 mod 𝔪𝑘+1

𝑄 .

It remains to show that Scatter𝑘(𝔇̃) can be obtained only by calculating scattering be-

tween two lines at a time. Following Construction 4.1.2, Scatter1(𝔇̃) is calculated by

considering path ordered products around loops about each 𝑝̃ ∈ Sing(Scatter1(𝔇̃))

separately, and adding rays emanating from the 𝑝̃.
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Now let 𝑘 ≥ 2. We can assume that no more than two rays of Scatter𝑘−1(𝔇̃) pass

through each point in

𝑆𝑘 := Sing(𝔇) ∪ Sing(Scatter1(𝔇)) ∪ · · · ∪ Sing(Scatter𝑘−1(𝔇),

since 𝑆𝑘 is finite and the configuration of the lines of 𝔇̃ has been chosen gen-

erally. Let 𝔮 and 𝔭 be the two rays in Scatter𝑘(𝔇̃) to pass through the point

𝑞 ∈ Sing(Scatter𝑘−1(𝔇̃)). Define

𝔇𝑘[𝑞] :=
{
(𝔡, 𝑓𝔡) ∈ Scatter𝑘({𝔮, 𝔭})

�� 𝔡 emanates from 𝑞
}
\ Scatter𝑘−1(𝔇̃).

Note that the only rays of Scatter𝑘−1(𝔇̃) to intersect a the point 𝑞 other than 𝔮 and

𝔭 must be outgoing rays emanating from 𝑞. Since 𝔇̃ contains only lines, these

outgoing rays emanating from 𝑞 must have arisen as part of the scattering process,

and so are contained in Scatter𝑘−1({𝔮, 𝔭}). In particular,

Scatter𝑘({𝔮, 𝔭}) = Scatter𝑘
({
(𝔡, 𝑓𝔡) ∈ Scatter𝑘−1(𝔇̃)

�� 𝑞 ∈ 𝔡}) ,
and therefore

Scatter𝑘(𝔇̃) ≡ Scatter𝑘−1(𝔇̃) ∪
⋃

𝑞∈Sing(Scatter𝑘−1(𝔇̃))
𝔇𝑘[𝑞].

Remark 4.1.10 (More than two incoming rays to a point). We can apply the method

of Construction 4.1.9 to any initial scattering diagram 𝔇 which consists of only

incoming rays and lines. By Lemma 4.1.4, Scatter1(𝔇) will consist of only lines.

Then one can apply a variant of the Construction, letting Pert(Scatter1(𝔇)) be a

perturbation of Scatter1(𝔇) such that

Scatter𝑘
(
Pert(Scatter1(𝔇))

)
can be calculated only by calculating scattering between two lines at a time.

Then Scatter𝑘(𝔇) is not obtained by taking the asymptotic scattering diagram of

Scatter𝑘
(
Pert(Scatter1(𝔇))

)
, but a variant which is uniquely determined by the po-

sition of the lines in Pert(Scatter1(𝔇)).
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In general, given a finite scattering diagram𝔇, one needs to add infinitely many

outgoing rays to obtain Scatter(𝔇). However, in the proof of Theorem 4.1.1 we will

make use of the following case when Scatter(𝔇) is finite.

Lemma 4.1.11. Let 𝑄 = N2 ⊕ 𝑀. Suppose that an initial scattering diagram 𝔇𝑚1 ,𝑚2

consists of two incoming rays

(𝔡1 , 𝑓𝔡1) = (R≥0𝑚1 , 1 + 𝑎𝑧𝑚1), (𝔡2 , 𝑓𝔡2) = (R≥0𝑚2 , 1 + 𝑏𝑧𝑚2),

where 𝑎 = 𝑧(1,0,0,0), 𝑏 = 𝑧(0,1,0,0), and 𝑚1 , 𝑚2 ∈ 𝑀 form a Z-basis of 𝑀. Then

Scatter(𝔇𝑚1 ,𝑚2) is a finite scattering diagram consisting of two lines and an outgoing

ray

(𝔡1 , 𝑓𝔡1) = (R𝑚1 , 1 + 𝑎𝑧𝑚1),

(𝔡2 , 𝑓𝔡2) = (R𝑚2 , 1 + 𝑏𝑧𝑚2),

(𝔡3 , 𝑓𝔡3) = (R≥0(−𝑚1 − 𝑚2), 1 + 𝑎𝑏𝑧𝑚1+𝑚2).

Proof. When 𝑚1 = 𝑒1 and 𝑚2 = 𝑒2, this example is discussed in detail in [24]. The

condition

𝜃𝛾,Scatter(𝔇𝑒1 ,𝑒2 ) = Id

for a loop 𝛾 about the origin can be easily checked by hand, as 𝛾 crosses a wall only

five times. The scattering diagram 𝔇𝑚1 ,𝑚2 can be obtained from 𝔇𝑒1 ,𝑒2 by applying

𝛼 ∈ 𝐺𝐿2(Z), the automorphism of 𝑀 which sends 𝑒1 ↦→ 𝑚1 , 𝑒2 ↦→ 𝑚2. The result

then follows by Lemma 2.1.11. □

Lemma 4.1.12. Let 𝑄 = N2 ⊕ 𝑀 and denote the generators of 𝑄 by

𝑎 = 𝑧(1,0,0,0) , 𝑏 = 𝑧(0,1,0,0) , 𝑥 = 𝑧(0,0,1,0) , 𝑦 = 𝑧(0,0,0,1).

Suppose the initial scattering diagram 𝔇 consists of two incoming rays

(𝔡1 , 𝑓𝔡1) = (R≥0(−𝑛, 𝑚), 1 + 𝑎𝑥−𝑛𝑦𝑚)

(𝔡2 , 𝑓𝔡2) =
(
R≥0(0,−1), 1 + 𝑏𝑦−1

)
,

where 𝑛 ∈ N and 𝑚 ∈ Z. Then Scatter(𝔇) consists of the two lines which are the
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continuation of the two initial rays, plus a collection of rays contained in the cone

R≥0⟨(𝑛,−𝑚), (𝑛, 𝑛 − 𝑚)⟩.

In particular, if both 𝑛 and 𝑚 are non-negative, then Scatter(𝔇) consists of the contin-

uation of 𝔡1 and 𝔡2, plus a collection of outgoing rays contained in R≥0⟨(𝑛,−𝑚), (1, 1)⟩.

Proof. By Lemma 4.1.4 one adds two outgoing rays

(𝔡′1 , 𝑓𝔡′1) = (R≥0(𝑛,−𝑚), 1 + 𝑎𝑥−𝑛𝑦𝑚)

(𝔡′2 , 𝑓𝔡′2) =
(
R≥0(0, 1), 1 + 𝑏𝑦−1

)
when scattering 𝔇 to order 1, and by Lemma 4.1.5 all the additional outgoing rays

to be added to obtain Scatter(𝔇)will be contained in the cone

R≥0⟨(𝑛,−𝑚), (0, 1)⟩.

Consider a loop 𝛾 which goes about the origin anticlockwise and starts to at a point

just to the right of 𝔡′2. We would like to show that to any order 𝑘 ≥ 1

𝜃𝛾,Scatter𝑘 (𝔇) ≡ exp

(
𝑁𝑘∑
𝑖=1

𝑐𝑖𝑧
𝑚𝑖𝜕𝑛𝑖

)
mod 𝔪𝑘+1

𝑄

where −𝑚𝑖 lies in 𝜎 := R≥0⟨(𝑛,−𝑚), (𝑛, 𝑛 −𝑚)⟩ for all 1 ≤ 𝑖 ≤ 𝑁𝑘 , so that scattering

to order 𝑘+1 only involves adding finitely many outgoing rays in the specified cone.

We claim it suffices to show that

𝜃𝔡2 ,𝑛2 ◦ 𝜃𝔡1 ,𝑛1 ◦ 𝜃𝔡′2 ,𝑛
′
2
= exp ©­«

∑
𝑗∈N

𝑐 𝑗𝑧
𝑚𝑗𝜕𝑛 𝑗

ª®¬
where −𝑚 𝑗 ∈ 𝜎 for all 𝑗 ∈ N. This is because after composing with 𝜃𝛾,𝔡 for any

𝔡 ⊂ 𝜎, the vectors 𝑚𝑖 that appear in the expression

𝜃𝔡,𝑛𝔡 ◦
(
𝜃𝔡2 ,𝑛2 ◦ 𝜃𝔡1 ,𝑛1 ◦ 𝜃𝔡′2 ,𝑛

′
2

)
= exp

(∑
𝑖

𝑐𝑖𝑧
𝑚𝑖𝜕𝑛𝑖

)
must be positive linear combinations of the 𝑚 𝑗 and 𝑚𝔡. Cones are closed under

positive linear combination, and so 𝑚 𝑗 ∈ −𝜎 would imply 𝑚𝑖 ∈ −𝜎. To check that

−𝑚 𝑗 ∈ −𝜎 for all 𝑗 ∈ N, we calculate the images of a basis {𝑦−1 , 𝑥−1} for 𝑀]. Let
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𝑝 = ⟨𝑛𝔡1 ,−𝑒2⟩ and 𝑞 = ⟨𝑛𝔡1 ,−𝑒1⟩. Then 𝑝 is negative, so

𝜃𝔡2 ,𝑛2 ◦ 𝜃𝔡1 ,𝑛1 ◦ 𝜃𝔡′2 ,𝑛
′
2
(𝑦−1) = 𝜃𝔡2 ,𝑛2 ◦ 𝜃𝔡1 ,𝑛1(𝑦−1)

= 𝜃𝔡2 ,𝑛2

(
𝑦−1(1 + 𝑎𝑥−𝑛𝑦𝑚)𝑝

)
= 𝑦−1

(
1 + 𝑎𝑥−𝑛𝑦𝑚(1 + 𝑏𝑦−1)𝑛

)𝑝
,

and

𝜃𝔡2 ,𝑛2 ◦ 𝜃𝔡1 ,𝑛1 ◦ 𝜃𝔡′2 ,𝑛
′
2
(𝑥−1) = 𝜃𝔡2 ,𝑛2 ◦ 𝜃𝔡1 ,𝑛1

(
𝑥−1

(1 + 𝑏𝑦−1)

)
= 𝜃𝔡2 ,𝑛2

(
𝑥−1(1 + 𝑎𝑥−𝑛𝑦𝑚)𝑞−𝑝
(1 + 𝑎𝑥−𝑛𝑦𝑚)−𝑝 + 𝑏𝑦−1

)
=
𝑥−1(1 + 𝑏𝑦−1)

(
1 + 𝑎𝑥−𝑛𝑦𝑚(1 + 𝑏𝑦−1)𝑛

) 𝑞−𝑝(
1 + 𝑎𝑥−𝑛𝑦𝑚(1 + 𝑏𝑦−1)𝑛

)−𝑝 + 𝑏𝑦−1

= 𝑥−1

( (
1 + 𝑎𝑥−𝑛𝑦𝑚(1 + 𝑏𝑦−1)𝑛

) 𝑞−𝑝
1 +∑−𝑝

𝑖=1
(−𝑝
𝑖

)
(𝑎𝑥−𝑛𝑦𝑚)𝑖(1 + 𝑏𝑦−1)𝑖−1

)
.

We see that after multiplying out the brackets in the expressions above, all the

monomials in 𝑥 𝑖𝑦 𝑗 appearing in the resulting rational functions are equal to some

𝑧𝑚 where 𝑚 ∈ −𝜎. The monomials appearing in the Taylor expansions of these

rational functions are positive linear combinations of these 𝑥 𝑖𝑦 𝑗 , and so

𝜃𝔡2 ,𝑛2 ◦ 𝜃𝔡1 ,𝑛1 ◦ 𝜃𝔡′2 ,𝑛
′
2

: 𝑦−1 ↦−→ 𝑦−1
(
1 +

∑
𝑐𝑙𝑧

𝑚𝑙

)
𝑥−1 ↦−→ 𝑥−1

(
1 +

∑
𝑐𝑟𝑧

𝑚𝑟

)
where 𝑚𝑙 , 𝑚𝑟 ∈ −𝜎. Therefore any 𝑚 𝑗 appearing in

𝜃𝔡2 ,𝑛2 ◦ 𝜃𝔡1 ,𝑛1 ◦ 𝜃𝔡′2 ,𝑛
′
2
= exp

(∑
𝑐 𝑗𝑧

𝑚𝑗𝜕𝑛 𝑗

)
must lie in −𝜎. □
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4.1.2 Proof of Theorem 4.1.1

1 + 𝑐𝑥−1

1 + 𝑑𝑦−1

1 + 𝑎𝑥2𝑦−1

1 + 𝑏𝑥−1𝑦2

Figure 4.2: The compatible to order 1 scattering diagram containing 𝔇0
pert,

Scatter1(𝔇0
pert). The rays in the complement of 𝔇0

pert shown in grey.

Proof of Theorem 4.1.1. We start by scattering 𝔇0
pert to order 2. By Lemma 4.1.4 we

have

Scatter1(𝔇0
pert) = 𝔇0

pert ∪
{
(𝔡′𝑎 , 𝑓𝑎), (𝔡′𝑏 , 𝑓𝑏), (𝔡

′
𝑐 , 𝑓𝑐), (𝔡′𝑑 , 𝑓𝑑)

}
where 𝔡′

𝑖
is the outgoing ray extending 𝔡𝑖 to a line.

Following Construction 4.1.2, one must add outgoing rays emanating from the

points in

Sing(Scatter1(𝔇0
pert)) =

{
𝔡𝑎 ∩ 𝔡𝑏 , 𝔡𝑐 ∩ 𝔡𝑑 , 𝔡𝑎 ∩ 𝔡′𝑐 , 𝔡𝑏 ∩ 𝔡′𝑑 , 𝔡

′
𝑐 ∩ 𝔡′𝑏 , 𝔡

′
𝑑 ∩ 𝔡′𝑎

}
.

in order to obtain Scatter2(𝔇0
pert). By Lemma 4.1.11 we add the outgoing rays

(𝔡𝑐𝑑 , 𝑓𝑐𝑑) := ((−1,−1) + R≥0(1, 1), 1 + 𝑐𝑑𝑥−1𝑦−1),

(𝔡𝑎𝑐 , 𝑓𝑎𝑐) := ((2,−1) + R≥0(−1, 1), 1 + 𝑎𝑐𝑥𝑦−1)

and (𝔡𝑏𝑑 , 𝑓𝑏𝑑) := ((−1, 2) + R≥0(1,−1), 1 + 𝑏𝑑𝑥−1𝑦).
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to achieve compatibility around 𝔡𝑐 ∩ 𝔡𝑑, 𝔡𝑎 ∩ 𝔡′𝑐 and 𝔡𝑏 ∩ 𝔡′
𝑑
. By Lemma 4.1.5 the

outgoing rays emanating from 𝔡′𝑐 ∩ 𝔡′
𝑏

and 𝔡′
𝑑
∩ 𝔡′𝑎 which must be added to obtain

Scatter2(𝔇0
pert) point away from the origin. One also adds rays emanating from the

origin to achieve compatibility to order 2 about 𝔡𝑎 ∩ 𝔡𝑏 .

1 + 𝑐𝑥−1

1 + 𝑑𝑦−1

1 + 𝑎𝑥2𝑦−1

1 + 𝑏𝑥−1𝑦2

1 + 𝑐𝑑𝑥−1𝑦−1

1 + 𝑎𝑐𝑥𝑦−1

1 + 𝑏𝑑𝑥−1𝑦

1 + 𝑏𝑐𝑥−2𝑦2

1 + 𝑎𝑑𝑥2𝑦−2

Figure 4.3: A subset of Scatter2(𝔇0
pert), the scattering diagram containing 𝔇0

pert
which is compatible to order 2. The rays in the complement of 𝔇0

pert
shown in grey.

We now note that the collection of rays
{
𝔡′𝑐 , 𝔡

′
𝑑
, 𝔡𝑎𝑐 , 𝔡𝑏𝑑

}
forms a triangle Δ

around the origin with vertices (−1,−1), (−1, 2) and (2,−1). Denote by Δ◦ ⊂ Δ the

interior of this triangle.

Claim 4.1.13. The only walls in Scatter𝔇0
pert which intersect Δ◦ are

• the two incoming rays to the origin 𝔡𝑎 and 𝔡𝑏 ,

• the ray 𝔡𝑐𝑑 propagating through the origin, and

• outgoing rays emanating from the origin.
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Theorem 4.1.1 follows easily from Claim 4.1.13, as any outgoing ray emanating

from the origin is clearly the result of scattering of the three incoming rays to the

origin, 𝔡𝑎 𝔡𝑏 and 𝔡𝑐𝑑. Then

Scatter1(𝔇0
pert) ∩ Δ◦ ≡ 𝜙(Scatter1(𝔇𝐴𝐵𝐶)) ∩ Δ◦ ,

so the theorem follows by Lemma 2.1.11.

It remains to prove Claim 4.1.13: we show that any outgoing ray in

Scatter(𝔇0
pert) \ Scatter2(𝔇0

pert) points away from (or along the boundary of) Δ.

Consider the complement in 𝑀R of the interior of the triangle and the four

incoming rays of 𝔇0
pert. It comprises of four connected components:

𝑀R \
(
Δ◦ ∪𝔇0

pert

)
= 𝑀𝑎𝑏 ⊔𝑀𝑏𝑐 ⊔𝑀𝑐𝑑 ⊔𝑀𝑑𝑎 ,

where 𝑀𝑖 𝑗 denotes the connected component that is bounded by the two incoming

rays 𝔡𝑖 and 𝔡𝑗 in 𝔇0
pert. We prove the following claim by induction on the order of

scattering.

Claim 4.1.14. Any ray 𝔡 in Scatter(𝔇0
pert) intersecting𝑀R\

(
Δ◦ ∪𝔇0

pert

)
has wall function

1 + 𝑐𝔡𝑧𝑞𝔡 , where 𝑐𝔡 ∈ 𝑘 and 𝑞𝔡 ∈ 𝑄 such that

−𝑟(𝑞𝔡) ∈



R(−1, 1) + R≥0(1, 1) if 𝔡 ∩𝑀𝑎𝑏 ≠ ∅

R(0, 1) + R≥0(−1, 0) if 𝔡 ∩𝑀𝑏𝑐 ≠ ∅

R(−1, 1) + R≥0(−1,−1) if 𝔡 ∩𝑀𝑐𝑑 ≠ ∅

R(1, 0) + R≥0(0,−1) if 𝔡 ∩𝑀𝑑𝑎 ≠ ∅

Assuming the statement of the claim holds for Scatter𝑘−1(𝔇0
pert), we show it

holds for Scatter𝑘(𝔇0
pert) one connected component at a time. Here we only treat

𝑀𝑑𝑎 - the arguments for the other components are identical. First, note that all

outgoing rays in

Scatter𝑘(𝔇0
pert) \ Scatter𝑘−1(𝔇0

pert)

which emanate from a point in Δ◦ must emanate from the origin, as the origin is
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the only point in

Sing(Scatter𝑘−1(𝔇0
pert)) ∩ Δ◦.

Any ray emanating from the origin and intersecting 𝑀𝑑𝑎 must lie in the cone

R(1, 0) + R≥0(0,−1)

as specified by Claim 4.1.14. Next, consider an outgoing ray 𝔡 in

Scatter𝑘(𝔇0
pert) \ Scatter𝑘−1(𝔇0

pert)

which emanates from a point 𝑝 ∈ 𝑀𝑑𝑎 ∪
(
𝑀𝑑𝑎 ∩ 𝜕Δ

)
. We claim that 𝔡 satisfies the

condition of Claim 4.1.14. We may assume by Construction 4.1.9 and Remark 4.1.10

that there are exactly two walls of Scatter𝑘−1(𝔇0
pert) passing through 𝑝.

By Lemma 4.1.5, 𝔡 is contained in the cone spanned by the halves of these

two walls which are equivalent to outgoing rays from 𝑝. But by our inductive

assumption, the cone spanned by the two walls passing through to 𝑝 is a subset of

the cone

𝑝 + R(1, 0) + R≥0(0,−1),

so all rays in Scatter𝑘(𝔇0
pert)∩𝑀𝑑𝑎 coming from Scatter𝑘−1(𝔇)[𝑝] satisfy Claim 4.1.14.

This tells us that any new ray intersecting Scatter𝑘(𝔇0
pert)∩𝑀𝑑𝑎 whose generator

does not lie in the cone of the claim must emanate from some point 𝑝 on 𝔡𝑎 or 𝔡𝑑.

Suppose that

𝔡 ∈ Scatter𝑘(𝔇0
pert) \ Scatter𝑘−1(𝔇0

pert)

emanates from 𝑝 ∈ 𝔡𝑎 \ Δ◦ and intersects 𝑀𝑑𝑎 . Assuming there no more than two

walls passing through 𝑝 as before, we can again apply Lemma 4.1.5 to see that 𝔡 is

contained in the cone spanned by 𝔡𝑎 and a ray 𝔡′ ∈ Scatter𝑘−1(𝔇0
pert)which intersects

𝑀𝑎𝑏 . By the inductive assumption, 𝔡′ has its generator −𝑟(𝑞𝔡′) contained in

R(−1, 1) + R≥0(1, 1).
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We can therefore apply the 𝐺𝐿2(Z)-transformation given by the matrix

©­«
−2 1

1 −1
ª®¬
−1

to
(
Scatter𝑘−1(𝔇0

pert) ∩𝑈𝑝

)
and use the functoriality of scattering (Lemma 2.1.11) to

apply Lemma 4.1.12. It shows that 𝔡 lies in the cone

𝑝 + R≥0(−1, 0) − R≥0 (𝑟(𝑞𝔡′)) ⊂ 𝑝 + R≥0(−1, 0) + R≥0(2,−1).

Thus 𝔡 satisfies the statement of Claim 4.1.14. A similar argument will work to show

that any new ray emanating from 𝑝 ∈ 𝔡𝑑 \ Δ◦ and intersecting 𝑀𝑑𝑎 lies in the cone

specified by the claim, although in this case Lemma 4.1.12 applies directly without

needing to apply a 𝐺𝐿2(Z)-transformation and use functoriality of scattering. Thus

all rays 𝔡 in

Scatter𝑘(𝔇0
pert) \ Scatter𝑘−1(𝔇0

pert)

which intersect 𝑀𝑑𝑎 have the form

(𝑝 + R≥0(−𝑟(𝑞𝔡)), 1 + 𝑐𝔡𝑧𝑞𝔡)

where −𝑟(𝑞𝔡) ∈ R≥0(−1, 0) + R≥0(2,−1). Since the statement of Claim 4.1.14 clearly

holds for Scatter2(𝔇0
pert), this completes the proof of Theorem 4.1.1. □

Remark 4.1.15. The application of Lemma 4.1.12 to prove Claim 4.1.14 mirrors

the statement that the boundary joints of 𝛼 𝑓𝔇(Σ𝑔 ,𝐻𝑔) are convex – the product of

scattering of a set of walls, considered as rays propagating in a particular direction,

follows the possible trajectories of broken lines on a wall structure.

4.2 The intermediate wall structure
In order to use Theorem 4.1.1 to relate the mirrors to 𝑓 and 𝑔, we construct a

wall structure from the scattering diagram 𝔇pert. This wall structure will define

a scheme which interpolates between 𝔛 𝑓 and 𝔛𝑔 . The wall structure turns out to

be determined by a three-dimensional log Calabi–Yau pair (𝑌̃, 𝐷̃), equipped with a

toric model that relates the toric models associated to 𝑓 and 𝑔.
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In Subsection 4.2.1 we construct this log Calabi–Yau pair and its Gross–Siebert

mirror. The pair (𝑌̃, 𝐷̃) is in fact the total space of a degeneration of (𝑌𝑔 , 𝐷𝑔) over

(A1 , 0). As a relative log scheme, the pair (𝑌̃, 𝐷̃) therefore has a two-dimensional mir-

ror family𝔛∼, which can be constructed from the canonical wall structure associated

to (𝑌̃, 𝐷̃). The statements about scattering diagrams proved in the previous section

now translate to statements about the schemes defined by the resulting algorithmic

wall structures:

1. The equivalence of scattering diagrams (𝔇pert)as ≡ 𝔇(Σ𝑔 ,𝐻𝑔) implies that 𝔛∼ is

a projective scheme over the affine mirror 𝔛𝑔 (after an appropriate change of

base).

2. Theorem 4.1.1 implies that there is a natural inclusion of the locally-

constructed mirrors 𝔛◦
𝑓
↩→ 𝔛◦∼ (after an appropriate change of base).

We leave the issue of changing the bases of our mirror families to Section 4.3.

Composing the two statements above is enough to see that the mirrors to 𝑓 and

𝑔 are birational: we have a morphism 𝔛◦
𝑓
↩→ 𝔛◦∼ ↩→ 𝔛∼ → 𝔛𝑔 . In order to extend

this birational map to a morphism

𝔛𝑔 −→ 𝔛 𝑓

between the compactified mirrors, however, we need a wall structure with a trunca-

tion that interpolates between the cones over Newt 𝑔 and Newt 𝑓 . In Subsection 4.2.2

we construct this wall structure, called the intermediate wall structure 𝔇 𝑓↔𝑔 , and use

it to define a partial compactification 𝔛∼ of 𝔛∼.

4.2.1 The mirror to (𝑌̃, 𝐷̃)

We define a family of log Calabi–Yau pairs over A1 with general fibre isomorphic

to (𝑌𝑔 , 𝐷𝑔) as follows.

Construction 4.2.1 (The degeneration
(
𝑌̃, 𝐷̃

)
and its toric model). Noting that the

projection

𝑌Σ𝑔 ×A1 −→ A1
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is given by the canonical morphism of fans

Σ𝑔 × R≥0 −→ R≥0 ,

we define a toric blow-up

𝑌Σ̃ −→ 𝑌Σ𝑔 ×A1

by letting Σ̃ be the refinement of the fan Σ𝑔 × R≥0 by the ray R≥0(−1,−1, 1). This is

the blow-up of 𝑌Σ𝑔 × A1 in the torus-fixed point in 𝑌Σ𝑔 × {0} corresponding to the

top right corner of Newt 𝑔. Let

𝜖 : 𝑌Σ̃ −→ A1

be the composition of the blow-up map and the projection to A1. This defines a flat

family over A1 with general fibre 𝑌Σ𝑔 and central fibre consisting of two irreducible

components: one equal to 𝑌Σ 𝑓
and one equal to P2.

If 𝜌 is a ray in Σ𝑔 then

(𝜌, 0) := 𝜌 × {0} ⊂ 𝑀R × R≥0 (4.5)

is a ray in Σ̃. If 𝜌 ≠ R≥0(−1, 0) or R≥0(0,−1), then the toric divisor 𝐷(𝜌,0) ⊂ 𝑌Σ̃ is

isomorphic to P1 × A1, where we identify P1 � 𝐷𝜌 as a toric boundary component

of 𝑌Σ𝑔 . When 𝜌 ∈ Σ𝑔 is equal to R≥0(−1, 0) or R≥0(0,−1), the toric divisor 𝐷(𝜌,0) is

isomorphic to Bl(0,0)(P1 ×A1). We define the collection of hypersurfaces of the toric

boundary

𝐻̃ = 𝐻𝑎 ∪ 𝐻𝑏 ∪ 𝐻𝑐 ∪ 𝐻𝑑 ⊂ 𝐷Σ̃

as follows. Let 𝜌𝑎 := R≥0(2,−1) and 𝜌𝑏 := R≥0(−1, 2), and let

𝐻𝑖 := {𝑝𝑖} ×A1 ⊂ P1 ×A1 � 𝐷(𝜌𝑖 ,0)

for 𝑖 ∈ {𝑎, 𝑏}, where 𝑝𝑖 ∈ P1 � 𝐷𝜌𝑖 is a general point. Let 𝜌𝑐 := R≥0(−1, 0) and

𝜌𝑑 := R≥0(0,−1), and for 𝑖 ∈ {𝑐, 𝑑} let 𝐻𝑖 ⊂ 𝐷(𝜌𝑖 ,0) be a curve isomorphic to A1,

which intersects the exceptional divisor transversely and does not intersect the toric

curves corresponding to codimension one strata in Σ̃ ∩ (𝑀R × {0}). We then define
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𝑥

𝑦

𝑧

Figure 4.4: A schematic version 𝑃 of the moment polytope of 𝑌Σ̃: the normal fan
of 𝑃 is a coarsening of Σ̃, obtained by forgetting the rays generated by
(1, 0, 0), (0, 1, 0), (1,−1, 0), (−1, 1, 0). The four hyperplanes which form
𝐻̃ are shown as grey lines on the corresponding faces of 𝑃.

(
𝑌̃, 𝐷̃

)
to be the three-dimensional log Calabi–Yau pair with toric model

(
𝑌Σ̃ , 𝐻̃

)
.

Note that

𝜖−1(𝑡) � 𝑌𝑔 and 𝜖−1(𝑡) ∩ 𝐷̃ � 𝐷𝑔

for all 𝑡 ≠ 0 ∈ A1.

Lemma 4.2.2. There is an equivalence of three-dimensional scattering diagrams between

the HDTV scattering diagram for the toric model
(
𝑌Σ̃ , 𝐻̃

)
and the cone over the perturbed

scattering diagram:

𝔇(𝑌Σ̃ ,𝐻̃) ≡ C𝔇pert.

Proof. Given a ray 𝜌 ∈ Σ𝑔 , we may define a two-cell of Σ̃ by

𝜌̃ := (𝜌, 0) + R≥0(0, 0, 1), (4.6)

where (𝜌, 0) is the ray in Σ̃ defined in (4.5). Following Construction 2.3.4,

𝔇(𝑌Σ̃ ,𝐻̃) = Scatter

(
4⋃
𝑖=1

𝔇𝑖

)
,
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where

𝔇1 =

{(
𝜌̃𝑎 , 1 + 𝑎𝑧(2,−1,0)

)}
,

𝔇2 =

{(
𝜌̃𝑏 , 1 + 𝑏𝑧(−1,2,0)

)}
,

𝔇3 =

{(
(𝜌𝑐 , 0) + R≥0(−1,−1, 1), 1 + 𝑐𝑧(−1,0,0)

)}
and 𝔇4 =

{(
(𝜌𝑑 , 0) + R≥0(−1,−1, 1), 1 + 𝑑𝑧(0,−1,0)

)}
It is easy to see that the slice of the initial scattering diagram at height 1 equals the

initial scattering diagram defining the perturbed scattering diagram:(
4⋃
𝑖=1

𝔇𝑖

)
∩𝑀R × {1} = 𝔇0

pert.

Taking the cone over 𝔇0
pert does not change the wall functions – for each incoming

ray (𝔡, 𝑓𝔡) ∈ 𝔇0
pert, the map

ΛC𝔡 −→ Z

induced by projection to the height of the cone is surjective, so we have

C𝔇0
pert =

{
(C𝔡, 𝑓𝔡)

��� (𝔡, 𝑓𝔡) ∈ 𝔇0
pert

}
.

Therefore
4⋃
𝑖=1

𝔇𝑖 = C𝔇0
pert ,

and so by uniqueness of scattering we have

𝔇(𝑌Σ̃ ,𝐻̃) = Scatter

(
4⋃
𝑖=1

𝔇𝑖

)
= Scatter

(
C𝔇0

pert

)
= C

(
Scatter

(
𝔇0

pert

))
= C𝔇pert.

□

Notation 4.2.3 (The Gross–Siebert locus and algorithmic wall structure associated

to (𝑌̃, 𝐷̃)). Let 𝑄̃gs denote the monoid defining the Gross–Siebert locus for the log

Calabi–Yau pair
(
𝑌̃, 𝐷̃

)
:

𝑄̃gs := Bl∗
𝐻̃

(
𝑁𝐸

(
𝑌Σ̃

) )
⊕ 𝐸𝑎𝑏𝑐𝑑 , (4.7)



4.2. The intermediate wall structure 117

where here 𝐸𝑎𝑏𝑐𝑑 the subgroup of 𝑁1
(
𝑌̃
)

generated by the exceptional curves over

the hyperplanes 𝐻𝑖 . We carry through the notation for rings that we set up in

Definition 2.3.7 and Remark 2.3.8 – in particular, we let 𝑅̃gs denote the completion

of k[𝑄̃gs] with respect to its maximal ideal 𝔪̃gs. We let 𝜓̃ denote the 𝑄̃gs-valued

piecewise linear function on the polyhedral affine manifold (𝑀R×R≥0 , Σ̃) as defined

in Construction 2.3.12. We denote the algorithmic wall structure associated to (𝑌̃, 𝐷̃)

by 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃).

Construction 4.2.4 (The open intermediate family 𝔛∼). The restriction of the 𝑄̃gs-

valued piecewise linear function 𝜓̃ to the slice 𝑀R×{1} is a piecewise affine function

on the polyhedral affine manifold

(
𝑀R , Σ̃ ∩ (𝑀R × {1})

)
. (4.8)

Applying the steps of Construction 2.3.12 to 𝔇pert and the restriction of 𝜓̃ gives us

a consistent wall structure 𝛼̃𝔇pert on the polyhedral affine manifold (4.8) equipped

with the piecewise affine function 𝜓̃
��
𝑀R×{1} such that

𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) ≡ C𝛼̃𝔇pert. (4.9)

Thus Theorem 1.5.7 applies to 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃). In particular, the algebra of theta functions

𝑆̃ := 𝑅(𝛼̃𝔇(𝑌Σ̃ ,𝐻̃)/𝐽)

is a graded 𝑅̃gs/𝐽-algebra for any 𝔪̃gs-primary ideal 𝐽 ⊂ 𝑄̃gs, so we can define a

formal scheme

𝔛∼ := colim√𝐽=𝔪̃gs Proj 𝑆̃

over Spf 𝑅̃gs.

Remark 4.2.5 (The relative mirror construction). The degeneration 𝑌̃ → A1 satisfies

the relative log Calabi–Yau case described in [31, Section 1.1]; there is a projective log

smooth morphism 𝜖 : 𝑌̃ → A1, where the varieties are considered as log schemes

via the divisorial log structures coming from 𝐷̃ and 0 respectively. The scheme 𝔛∼

produced by Construction 4.2.4 above is the canonical mirror to (𝑌̃, 𝐷̃) as a relative

log Calabi–Yau pair, restricted to the Gross–Siebert locus.
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Construction 4.2.6 (The local construction and affine scheme related to 𝔛∼). By the

equivalence of wall structures (4.9) and Theorem 1.5.7, there is an open embedding

𝔛◦
(
𝛼̃𝔇pert/𝐽

)
↩→ Proj 𝑆̃

over Spec 𝑅̃gs/𝐽. Moreover, there is a natural birational map

Proj 𝑆̃ −→ Spec 𝑆̃0 ,

over Spec 𝑅̃gs/𝐽, where 𝑆̃0 is the zero-graded part of 𝑆̃. Recall the open neighbour-

hood of the origin𝑈 ⊂ 𝑀R from Theorem 4.1.1. Let

𝔛◦
(
(𝛼̃𝔇pert/𝐽) ∩𝑈

)
be the family over Spec 𝑅̃gs/𝐽 defined by gluing local charts defined for all chambers

and slabs intersecting𝑈 . Clearly this family is open and dense in 𝔛◦
(
𝛼̃𝔇pert/𝐽

)
, and

so we have an open embedding

𝔛◦
(
(𝛼̃𝔇pert/𝐽) ∩𝑈

)
↩→ 𝔛◦

(
𝛼̃𝔇pert/𝐽

)
↩→ Proj 𝑆̃.

Remark 4.2.7 (Idea of the proof of the main theorem). In Section 4.3 we will de-

fine a sublocus 𝑇 of the Gross–Siebert locus such that, after changing the base

appropriately, we have isomorphisms of formal schemes

Spf 𝑆̃0 ×Spf 𝑅̃gs 𝑇 � 𝔛𝑔 ×Spf𝑅gs
𝑔
𝑇

and 𝔛◦
(
𝛼̃𝔇pert ∩𝑈

)
×Spf 𝑅̃gs 𝑇 � 𝔛◦𝑓 ×Spf𝑅gs

𝑓
𝑇.

It follows that 𝔛 𝑓 and 𝔛𝑔 are birational; we have a 𝑇-birational map

𝔛◦𝑓 ×Spf𝑅gs
𝑓
𝑇 −→ 𝔛𝑔 ×Spf𝑅gs

𝑔
𝑇. (4.10)

The rest of this section will be devoted to constructing a certain compactification

𝔛∼ of 𝔛∼ which will enable us to extend (4.10) to a birational map between the
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compactifications of the mirrors to 𝑓 and 𝑔,

𝔛∼

𝔛 𝑓 𝔛𝑔

(4.11)

In Chapter 5, analysis of the birational morphisms in (4.11) will show that 𝔛𝑔 is the

blow-up of 𝔛 𝑓 in a point on the boundary 𝔛 𝑓 \ 𝔛 𝑓 .

4.2.2 The intermediate wall structure

Here we will construct a four-dimensional bi-conical wall structure 𝔇 𝑓↔𝑔 , which

we will later use to construct the compactification 𝔛∼.

Construction 4.2.8 (The intermediate wall structure 𝔇 𝑓↔𝑔). Consider the cone over

the algorithmic wall structure for (𝑌̃, 𝐷̃). This is a four-dimensional, conical wall

structure

C𝛼̃𝔇(𝑌Σ̃ ,𝐻̃)

on the polyhedral affine manifold C(𝑀R × R≥0 , Σ̃) equipped with piecewise linear

function C𝜓̃. Since 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) is itself conical, the cone over it is equal to the product

of 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) and R≥0 – that is,

C(𝔡, 𝑓𝔡) = (𝔡 × R≥0 , 𝑓𝔡)

for all walls (𝔡, 𝑓𝔡) ∈ 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃). In particular,

C(𝑀R × R≥0 , Σ̃) �
(
𝑀R × (R≥0)2 , Σ̃ × R≥0

)
and, denoting coordinates on 𝑀R × (R≥0)2 by (𝑥, 𝑦, 𝑡 , 𝑠), we have

C𝜓̃(𝑥, 𝑦, 𝑡 , 𝑠) = 𝜓̃(𝑥, 𝑦, 𝑡).

We construct 𝔇 𝑓↔𝑔 by restricting C𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) to a conical polyhedral subset

𝐵 𝑓↔𝑔 ⊂ 𝑀R × (R≥0)2 ,
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Figure 4.5: The cross section of 𝐵 𝑓↔𝑔 at height (1,1). The cross-sections of incom-
ing walls in CC𝔇pert are shown in black, and the cross-sections of the
remaining codimension-one cells of Σ̃ × R≥0 are shown in grey.

adding in a boundary as follows. We define the two-dimensional slice of 𝐵 𝑓↔𝑔 at

height (𝑎, 𝑏) to be

𝐵 𝑓↔𝑔 ∩ {𝑡 = 𝑎, 𝑠 = 𝑏} := Conv



𝑎(−1,−1) + 𝑏(−1, 0),

𝑎(−1,−1) + 𝑏(0,−1),

(𝑎 + 𝑏)(2,−1),

(𝑎 + 𝑏)(−1, 2)


. (4.12)

Figure 4.5 shows the slice of 𝐵 𝑓↔𝑔 at height (1, 1). The four-dimensional polytope

𝐵 𝑓↔𝑔 is then defined to be the convex hull of the N2-indexed set of these two-

dimensional polyhedra. The intermediate wall structure 𝔇 𝑓↔𝑔 is simply defined as

the restriction of C𝛼̃(𝔇(𝑌Σ̃ ,𝐻̃)) to (𝐵 𝑓↔𝑔 , Σ̃ × R≥0).

Remark 4.2.9 (𝔇 𝑓↔𝑔 is bi-conical). First, let us describe the polyhedral affine mani-

fold (𝐵 𝑓↔𝑔 , Σ̃ × R≥0) in more detail. The four-dimensional cone 𝐵 𝑓↔𝑔 has 6 facets:

one given by 𝐵 𝑓↔𝑔 ∩ {𝑡 = 0}, one given by 𝐵 𝑓↔𝑔 ∩ {𝑠 = 0} and the others given by

the convex hulls, over (𝑎, 𝑏) ∈ N2, of each of the four facets of 𝐵 𝑓↔𝑔 ∩ {𝑡 = 𝑎, 𝑠 = 𝑏}.

Moreover, the polyhedral affine manifold is a cone with respect to both the 𝑡-height
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and the 𝑠-height:

(
𝐵 𝑓↔𝑔 , Σ̃ × R≥0

)
= C

(
𝐵 𝑓↔𝑔 ∩ {𝑡 = 1},

(
Σ̃ ∩ {𝑡 = 1}

)
× R≥0

)
= C

(
𝐵 𝑓↔𝑔 ∩ {𝑠 = 1}, Σ̃ × {𝑠 = 1}

)
Since we defined 𝔇 𝑓↔𝑔 to be the restriction of C𝛼̃𝔇(𝑌Σ̃ ,𝐻̃), the cone over a conical

wall structure, to
(
𝐵 𝑓↔𝑔 , Σ̃ × R≥0

)
, it is easy to see that

𝔇 𝑓↔𝑔 = C
(
𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) ∩ (𝐵 𝑓↔𝑔 ∩ {𝑠 = 1})

)
= C

(
𝔇 𝑓↔𝑔 ∩ {𝑠 = 1}

)
. (4.13)

By Lemma 4.2.2, we can write

𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) = C𝛼̃𝔇pert ,

where 𝛼̃𝔇pert is a consistent wall structure on (𝑀R , Σ̃ ∩ {𝑡 = 1}) equipped with the

(single-valued) piecewise affine function 𝜓̃
��
{𝑡=1}. Therefore, 𝔇 𝑓↔𝑔 is a cone with

respect to the 𝑡-height as well:

𝔇 𝑓↔𝑔 = C
(
(𝛼̃𝔇pert × R≥0) ∩ (𝐵 𝑓↔𝑔 ∩ {𝑡 = 1})

)
.

Lemma 4.2.10 (𝔇 𝑓↔𝑔 is consistent). The wall structure 𝔇 𝑓↔𝑔 on the polyhdral affine

manifold (𝐵 𝑓↔𝑔 , Σ̃×R≥0), equipped with the piecewise linear function C𝜓̃, is consistent in

the sense of Definition 1.4.7.

Proof. By Lemma 1.5.6 and (4.13), it is sufficient to check that 𝔇 𝑓↔𝑔 ∩ {𝑠 = 1} is a

consistent wall structure on the polyhedral affine manifold

(𝐵 𝑓↔𝑔 ∩ {𝑠 = 1}, Σ̃ × {𝑠 = 1})

equipped with piecewise linear function 𝜓̃. Consistency of the interior joints of

𝔇 𝑓↔𝑔 ∩ {𝑠 = 1} follows from the consistency of 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃). By Proposition 1.4.12,

all that is left is to check convexity of the boundary joints. Since 𝐵 𝑓↔𝑔 ∩ {𝑠 = 1}

is a convex polyhedron, any boundary joint not contained in an incoming wall is
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automatically convex. Let 𝔧 be a joint incident to one of the four incoming walls

(
𝔡𝑖 ∩ (𝐵 𝑓↔𝑔 ∩ {𝑠 = 1}), 𝑓𝔡𝑖

)
where 𝑖 ∈ {𝑎, 𝑏, 𝑐, 𝑑}. Then, following the notation of Definition 1.4.11, we have

𝜋
(
(𝔇 𝑓↔𝑔 ∩ {𝑠 = 1})𝔧

)
� (𝔇 𝑓↔𝑔 ∩ {𝑠 = 1, 𝑡 = 1})(𝔧∩{𝑠=1,𝑡=1}).

Convexity of a joint is independent of the piecewise linear function on the

polyhedral affine manifold or the monoid in which it takes values, so convexity of a

joint on𝔇 𝑓↔𝑔∩{𝑠 = 1, 𝑡 = 1} is equivalent to convexity of the same (i.e. set-theoretic

equal) joint on 𝔇pert ∩ (𝐵 𝑓↔𝑔 ∩ {𝑠 = 1, 𝑡 = 1}). The convexity of (𝔧 ∩ {𝑠 = 1, 𝑡 = 1})

on 𝔇pert ∩ (𝐵 𝑓↔𝑔 ∩ {𝑠 = 1, 𝑡 = 1}) follows by Claim 4.1.14. □

Lemma 4.2.11 (𝑅(𝔇 𝑓↔𝑔) is bigraded). Let 𝐽 ⊂ 𝑄̃gs be a 𝔪̃gs-primary ideal. The algebra

of theta functions 𝑅(𝔇 𝑓↔𝑔/𝐽) is bi-graded with respect to the 𝑡-height and 𝑠-height of the

asymptotic monomials.

Proof. In Remark 4.2.9, we showed that 𝔇pert is a conical wall structure with respect

to both the 𝑡-height and the 𝑠-height. It follows that the theta functions on 𝔇 𝑓↔𝑔

are indexed by the integral points of 𝐵 𝑓↔𝑔(Z), and that the ring of theta functions

is graded with respect to both heights. □

Corollary 4.2.12. The limit of the algebras of theta functions 𝑅(𝔇 𝑓↔𝑔/𝐽) along the com-

patible system 𝔇 𝑓↔𝑔 is a bi-graded 𝑅̃gs-algebra

𝑅(𝔇 𝑓↔𝑔) :=
⊕

𝑚∈𝐵 𝑓↔𝑔(Z)
𝑅̃gs · 𝜗𝑚

Construction 4.2.13 (The intermediate family). Denote the bi-graded algebra of

theta functions on 𝔇 𝑓↔𝑔 by 𝑆•,• := 𝑅(𝔇 𝑓↔𝑔), and the (𝑎, 𝑏)-graded piece by 𝑆𝑎,𝑏 .

We define the intermediate family to be

𝔛∼ := Proj
⊕
𝑘∈N

𝑆𝑘,𝑘 . (4.14)
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This is a scheme over Spec 𝑅̃gs, and it is the algebraisation of the formal scheme

colim√𝐽=𝔪̃gs

(
𝔛∼/𝐽

)
over Spf 𝑅̃gs, where for each 𝔪̃gs-primary ideal 𝐽, the scheme

𝔛∼/𝐽 := Proj
⊕
𝑘∈N

𝑆𝑘,𝑘/𝐽

is the pullback of 𝔛∼ via the map Spec 𝑅̃gs/𝐽 → Spec 𝑅̃gs.

Remark 4.2.14 (Local construction of the intermediate family). In the next section

(Lemma 4.3.15) we will prove that⊕
𝑘∈N

𝑆𝑘,𝑘 � 𝑅(𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡}).

It follows from this that 𝔛∼ can be in some sense be locally constructed by charts

defined by a truncation of the wall structure 𝛼̃𝔇pert, given by 𝐵 𝑓↔𝑔∩{𝑠 = 𝑡 = 1} (see

Figure 4.5). More precisely, Theorem 1.5.7 says that there is an open embedding

𝔛◦
(
𝛼̃𝔇pert/𝐽 ∩

(
𝐵 𝑓↔𝑔 ∩ {𝑠 = 𝑡 = 1}

) )
↩→ 𝔛∼/𝐽

of schemes over Spec 𝑅̃gs/𝐽 for any 𝔪̃gs-primary ideal 𝐽. We see that the formal

scheme associated to 𝔛∼ is a compactification of 𝔛∼, the open intermediate family

(𝑌̃, 𝐷̃) defined in Construction 4.2.4.

This concludes the discussion of the relationships between the open mirror

family 𝔛∼ and the affine mirror families 𝔛 𝑓 and 𝔛𝑔 . In the rest of this chapter we

will focus on the compactified mirrors, 𝔛∼, 𝔛 𝑓 and 𝔛𝑔 , without needing to pass to

affine charts. We thus have no more need for the language of formal schemes until

Chapter 5.

The following proposition puts the bi-conical structure of 𝔇 𝑓↔𝑔 to use to con-

struct maps from 𝔛∼ to two more families over Spec 𝑅̃gs.
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Proposition 4.2.15 (Morphisms to Proj 𝑆•,0 and Proj 𝑆0,•). There are natural morphisms

𝔛∼

Proj 𝑆•,0 Proj 𝑆0,•.

(4.15)

of schemes over Spec 𝑅̃gs.

Proof. Let 𝜋𝑡 and 𝜋𝑠 be the canonical projections

Spec 𝑆•,•

Spec 𝑆•,0 Spec 𝑆0,•.

𝜋𝑠 𝜋𝑡

The bi-graded 𝑅̃gs-algebra 𝑆•,• is finitely generated by 𝑆1,0 and 𝑆0,1, and the G2
𝑚-

action on Spec 𝑆•,• is the composition of the action of its first factor on 𝑆0,• and

the second factor on 𝑆•,0. Thus the projections 𝜋𝑡 and 𝜋𝑠 are G2
𝑚-equivariant. The

G2
𝑚-invariant sections of

𝒪Spec 𝑆•,0(𝑘), 𝒪Spec 𝑆0,•(𝑘) and
(
𝜋∗𝑠𝒪(1) ⊗ 𝜋∗𝑡𝒪(1)

)⊗𝑘
,

with linearisations given by the bi-grading on 𝑆•,•, are 𝑆𝑘,0, 𝑆0,𝑘 , and 𝑆𝑘,𝑘 respec-

tively. Noting that

𝑆+,+ = 𝑆•,+ · 𝑆+,• ,

we see that the respective images of the semistable locus of Spec 𝑆•,• under 𝜋𝑠 and

𝜋𝑡 are contained in the semistable loci of Spec 𝑆•,0 and Spec 𝑆0,•. Therefore, 𝜋𝑠 and

𝜋𝑡 induce maps of GIT quotients

Proj
⊕
𝑘∈N

𝑆𝑘,𝑘

Proj
⊕
𝑘∈N

𝑆𝑘,0 Proj
⊕
𝑘∈N

𝑆0,𝑘

𝜋𝑠 𝜋𝑡

as in (4.15). □
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4.3 Morphisms to the mirrors to 𝑓 and 𝑔

In Section 4.3.1 we construct morphisms between the bases of the three families 𝔛∼,

𝔛 𝑓 and𝔛𝑔 , by defining inclusions of the monoids associated to the corresponding log

Calabi–Yau pairs. These morphisms are only defined after extending the monoids

slightly – we call the corresponding sublocus of the base the extended Gross–Siebert

locus.

The problem with this is that the kinks of the MPA-functions 𝜓̃ and 𝜓 𝑓 are no

longer contained in the maximal ideals of the extended monoids. Thus the theory

of Chapter 1 can no longer be applied to the wall structures 𝔇 𝑓↔𝑔 and 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 )

to obtain schemes over the extended Gross–Siebert locus. However, in Section 4.3.2

we prove that the two wall structures satisfy enough conditions in order to define

schemes over the Gross–Siebert locus by taking Proj of the algebra of theta functions.

In Section 4.3.3 we introduce the notion of an asymptotic wall structure in order

to prove that the auxiliary schemes 𝔛0,• and 𝔛•,0 are pullbacks of the mirrors to 𝑓

and 𝑔, as in (4.2). We also show that the intermediate family 𝔛∼ can be constructed

locally by gluing charts on a two-dimensional wall structure induced by 𝔇pert.

4.3.1 Changing the bases of the mirror families

Construction 4.3.1 (Inclusions of monoids). We construct inclusions of the

monoids (3.4) defining the Gross–Siebert locus for (𝑌𝑓 , 𝐷 𝑓 ) and (𝑌𝑔 , 𝐷𝑔) into 𝑄̃gs as

follows. The inclusion of𝑌𝑔 into 𝑌̃ as the general fibre of the family overA1 induces

a morphism of monoids

𝜄𝑔 : 𝑄gs
𝑔 ↩→ 𝑄̃gs (4.16)

given by the natural inclusion

𝑁1
(
𝑌𝑔

)
↩→ 𝑁1

(
𝑌̃
)
.

Although is no natural inclusion of 𝑌𝑓 into 𝑌̃, there is an embedding of the toric

variety 𝑌Σ 𝑓
into 𝑌Σ̃ as one of the two components of the central fibre. We can

therefore define a morphism of monoids

𝜄 𝑓 : 𝑄gs
𝑓
↩→ 𝑄̃gs ⊕

〈
−𝐸̃

〉
, (4.17)
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where

𝐸̃ := Bl∗
𝐻̃
[𝑌R≥0(−1,−1,1)+R≥0(0,0,1)], (4.18)

by letting 𝜄 𝑓 send

Bl∗𝐻 𝑓
[𝑌𝜌] ↦−→


𝐸̃ if 𝜌 = R≥0(−1,−1)

Bl∗
𝐻̃
[𝑌(𝜌,0)+R≥0(0,0,1)] for all other rays 𝜌 ∈ Σ 𝑓

−𝐸𝑎 ↦−→ −𝐸𝑎

−𝐸𝑏 ↦−→ −𝐸𝑏

−𝐸𝑐 ↦−→ 𝐸̃ − (𝐸𝑐 + 𝐸𝑑).

We note that 𝜄 𝑓 is well defined because the generators of the exceptional lattices

𝐸𝑎𝑏𝑐 and 𝐸𝑎𝑏𝑐𝑑 are linearly independent, and the restriction to the other summand

of 𝑄gs
𝑓

is

𝜄 𝑓
��
Bl∗𝐻𝑓

(
𝑁𝐸

(
𝑌Σ 𝑓

)) = Bl∗
𝐻̃
◦ 𝜄∗ ◦

(
Bl𝐻 𝑓 ∗

���
Bl∗𝐻𝑓

(
𝑁𝐸

(
𝑌Σ 𝑓

)) )
where 𝜄∗ : 𝑁𝐸

(
𝑌Σ 𝑓

)
↩→ 𝑁𝐸

(
𝑌Σ̃

)
is induced by the inclusion of toric varieties.

Note that it was necessary to extend the monoid 𝑄̃gs in order for the morphism

𝜄 𝑓 to be well-defined. This motivates the definition of a further sublocus of the base

of the family 𝔛∼:

Definition 4.3.2 (The extended Gross–Siebert locus). We define the monoids

𝑄̃egs := 𝑄̃gs ⊕ ⟨−𝐸̃⟩ and 𝑄
egs
𝑓

:= 𝑄gs
𝑓
⊕ ⟨−𝐸 𝑓 ⟩, (4.19)

where 𝐸̃ ∈ 𝑄̃gs is the curve class defined in (4.18) and

𝐸 𝑓 := Bl∗𝐻 𝑓
[𝑌R≥0(−1,−1)] ∈ 𝑄

gs
𝑓

is the preimage of 𝐸̃ under the map 𝜄 𝑓 . If 𝑄egs denotes either of the monoids

in (4.19), we denote its maximal ideal by 𝔪egs, and the completion of the associated

semigroup ring by

𝑅egs := �k[𝑄egs].
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We use the term extended Gross–Siebert locus to refer either of the schemes Spec𝑅egs

or Spec𝑅egs/𝐺, where𝐺 is an𝔪egs-primary ideal. When necessary, we use the same

term to refer to the formal scheme Spf𝑅egs.

Lemma 4.3.3. The monoid 𝑄egs is a convex cone containing 𝑄gs, the monoid associated

to the Gross–Siebert locus associated to the respective toric models for (𝑌̃, 𝐷̃) and (𝑌𝑓 , 𝐷 𝑓 ).

The invertible elements of 𝑄egs are given by

(𝑄egs)× = 𝐸 ⊕ 𝐿,

where 𝐸 is the lattice in 𝑁1(𝑌) generated by the classes of the blow-up 𝑌 → 𝑌Σ, and 𝐿 � Z

is the lattice generated by the respective curves 𝐸̃ ∈ 𝑁1(𝑌̃) or 𝐸 𝑓 ∈ 𝑁1(𝑌𝑓 ).

Proof. In case of the pair (𝑌̃, 𝐷̃), this is because𝑌R≥0(−1,−1,1)+R≥0(0,0,1) is an exceptional

curve of the blow-up

𝑌Σ̃ −→ 𝑌Σ𝑔 ×A1

defined by the refinement of fans Σ̃→ Σ𝑔 × R≥0. Thus 𝐸̃ generates an extremal ray

of the cone Bl∗
𝐻̃

(
𝑁𝐸

(
𝑌̃
) )

. This ray must lie on the boundary of the cone 𝑄̃gs, since

the lattice 𝐸𝑎𝑏𝑐𝑑 is linearly independent from Bl∗
𝐻̃

(
𝑁𝐸

(
𝑌̃
) )

. Therefore, inverting 𝐸̃

preserves the convexity of 𝑄̃gs, and the lattice 𝐸𝑎𝑏𝑐𝑑 ⊕ ⟨𝐸̃⟩ ≃ Z5 is a face of 𝑄egs.

In the case of (𝑌𝑓 , 𝐷 𝑓 ), convexity is preserved because 𝑌R≥0(−1,−1) is an exceptional

curve of the toric blow-up

𝑌Σ 𝑓
−→ 𝑌Σ𝑔

determined by the refinement of fans Σ 𝑓 → Σ𝑔 , and so 𝐸 𝑓 generates an extremal

ray of the convex cone Bl∗𝐻 𝑓

(
𝑁𝐸

(
𝑌𝑓

) )
. As in the former case, it follows that 𝑄egs

𝑓
is

convex, and that the lattice 𝐸𝑎𝑏𝑐 ⊕ ⟨𝐸 𝑓 ⟩ ≃ Z4 is a face of 𝑄egs
𝑓

. □

Remark 4.3.4 (The extended Gross–Siebert locus as a subscheme of the base). If

𝐽 ⊂ 𝑄gs is an 𝔪gs-primary ideal, then 𝐽 ⊕ 𝐿 is an 𝔪egs-primary ideal in 𝑄egs. The
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diagram of rings (2.9) can thus be extended to a diagram

𝑅egs/(𝐼 ⊕ 𝐸 ⊕ 𝐿)

𝑅′′′/(𝐼 ⊕ 𝐸 ⊕ 𝐿 ∩𝑄gs) 𝑅gs/(𝐼 ⊕ 𝐸)

𝑅′′/(𝐼 ⊕ 𝐸 ⊕ 𝐿 ∩𝑄) 𝑅′/(𝐼 ⊕ 𝐸 ∩𝑄) 𝑅#/𝐼 ,

(4.20)

where 𝑅′′ is the completion of k[𝑄] with respect to the ideal 𝔪egs ∩ 𝑄, and 𝑅′′′ is

the completion of k[𝑄gs]with respect to the ideal 𝔪egs∩𝑄gs. Thus we may think of

the extended Gross–Siebert locus Spec (𝑅egs/(𝐼 ⊕ 𝐸 ⊕ 𝐿)) as a subscheme of the base

Spec𝑅#/𝐼. Moreover, this diagram of rings extends to a diagram of the completions

𝑅egs

𝑅′′′ 𝑅gs

𝑅′′ 𝑅′ 𝑅#.

(4.21)

4.3.2 Wall structures over the extended Gross–Siebert locus

The intermediate wall structure 𝔇 𝑓↔𝑔 does not, strictly speaking, give a compatible

of system wall structures for 𝑄̃egs in the sense of Definition 1.6.1, because the kinks

of 𝜓̃ across three of the codimension one cells in Σ̃ are not contained in 𝔪̃egs.

Similarly, the canonical and algorithmic wall structures associated to (𝑌𝑓 , 𝐷 𝑓 ) do

not give systems of compatible wall structures for 𝑄egs
𝑓

, as the kink of 𝜓 𝑓 across the

ray R≥0(−1,−1) ∈ Σ 𝑓 is not contained in 𝔪
egs
𝑓

.

However, we will see in Construction 4.3.9 that𝔇 𝑓↔𝑔 and 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) still define

schemes over the associated extended Gross–Siebert loci. The following two Lem-

mas establish the properties of 𝔇can( 𝑓 ) and 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) necessary to define families

over the extended Gross–Siebert locus.

Lemma 4.3.5. Let 𝔇 be one of the two compatible systems of wall structures 𝔇can( 𝑓 ) and

𝛼̃𝔇(𝑌Σ̃ ,𝐻̃). Then

(i) For every wall (𝔡, 𝑓𝔡) ∈ 𝔇, the wall function 𝑓𝔡 ∈ 𝑅gs is contained in 𝑅′′′, and so we

can consider it to be an element of 𝑅egs.
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(ii) If 𝐺 ⊂ 𝑄egs is an 𝔪egs-primary ideal, then 𝑓𝔡 ≡ 1 mod 𝐺 for all but finitely many

walls (𝔡, 𝑓𝔡) ∈ 𝔇.

Proof in the case 𝔇 = 𝔇can( 𝑓 ). First we consider 𝔇 = 𝔇can( 𝑓 ). Since there are finitely

many maximal cells 𝜎 ∈ 𝒫, it is enough to show conditions (i) and (ii) hold after

replacing 𝔇 with 𝔇 ∩ 𝜎. To do this, we compare 𝔇 ∩ 𝜎 with Ψ(𝔇 ∩ 𝜎). For each

wall (𝔡, 𝑓𝔡) ∈ 𝔇 ∩ 𝜎, its image under Ψ is a wall function of the scattering diagram

𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ). If the representative of the piecewise-linear function 𝜓 𝑓 on Σ 𝑓 is chosen

to be zero on the maximal cell 𝜈(𝜎), then a monomial 𝑡𝛽𝑧𝑚 ∈ k[𝑄⊕Λ𝜎] ⊂ k[𝑄egs⊕Λ𝜎]

is nontrivial modulo 𝐺 if and only if (𝜇𝜎)∗(𝑡𝛽𝑧𝑚) ∈ k[𝑄 ⊕ 𝑀] ⊂ k[𝑄egs ⊕ 𝑀] is

nontrivial modulo 𝐺. We will say that 𝑡𝛽 appears in a wall function 𝑓𝔡 if 𝛼𝑡𝛽𝑧𝑚 is a

summand of the formal power series 𝑓𝔡 for some 𝛼 ∈ k and𝑚 ∈ Λ𝔡. SinceΨ( 𝑓𝔡) only

differs from (𝜇𝜎)∗( 𝑓𝔡) by at worst a monomial factor contained in k[𝑄egs ⊕ 𝑀] \ 𝐺,

conditions (i) and (ii) hold for 𝔇 ∩ 𝜎 if and only they hold for Ψ(𝔇 ∩ 𝜎). By the

equivalence of scattering diagrams

Ψ𝔇can( 𝑓 ) ≡ 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) ≡ Scatter
(
𝛼 𝑓𝔇init( 𝑓 )

)
,

every monomial appearing as a summand in the formal power series Ψ( 𝑓𝔡) is a

product of multiples of the three monomials

𝑡𝜓 𝑓 (2,−1)−𝐸𝑎 𝑧(2,−1) , 𝑡𝜓 𝑓 (−1,2)−𝐸𝑏 𝑧(−1,2) and 𝑡𝜓 𝑓 (−1,−1)−𝐸𝑐 𝑧(−1,−1) ∈ k[𝑄 ⊕ 𝑀],

where 𝜓 𝑓 is chosen to be zero on 𝜈(𝜎). Therefore any monomial 𝑡𝛽 ∈ k[𝑄] appears

at most finitely many times in finitely many wall functions in Ψ(𝔇 ∩ 𝜎).

It remains to show that only finitely many monomials 𝑡𝛽 ∈ k[𝑄egs] \ 𝐺 appear

in a wall function of 𝔇. Recall from (2.2) that wall functions in 𝔇can are of the form

𝑓𝔡 = exp
(∑

𝑘𝜏𝑁𝝉𝑡
𝛽𝑧−𝑢

)
, (4.22)

where the sum is over all wall types 𝝉 such that ℎ(𝜏out) = 𝔡. Since 𝑌𝑓 is two-

dimensional, we may use the equivalent definition of the canonical wall structure

given in [21], via relative invariants of blowups of (𝑌𝑓 , 𝐷 𝑓 ) rather than punctured

invariants of (𝑌𝑓 , 𝐷 𝑓 ). Thus we may consider the sum to be over curve classes 𝛽, and
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consider 𝑁𝝉 to denote a relative invariant associated to 𝛽 and 𝑘𝜏. If 𝛽 is a multiple of

𝐸𝑖 for 𝑖 ∈ {𝑎, 𝑏, 𝑐}, then 𝔡 is the slab corresponding to the component of 𝐷 𝑓 which

intersects 𝐸𝑖 . Moreover, by [21, Lemma 3.15] the contribution to 𝑓𝔡 from all such

terms is

exp ©­«
∑
𝛽=𝑘𝐸𝑖

𝑘𝜏𝑁𝝉𝑡
𝛽𝑧−𝑢

ª®¬ = (1 + 𝑡𝐸𝑖 𝑧−𝑚𝑖 ),

where 𝑚𝑖 ∈ Λ𝔡 is the primitive tangent vector generating 𝔡 as a cone. Therefore, it

suffices to show that only finitely many monomials 𝑡𝛽 ∈ k[𝑄egs] \ 𝐺 such that 𝛽 is

not a multiple of 𝐸𝑎 , 𝐸𝑏 or 𝐸𝑐 appear in the argument of exp in (4.22).

Every curve class 𝛽 appearing in (4.22) must be contained in 𝑁𝐸(𝑌𝑓 ), as 𝛽 =

𝜋∗𝜙∗[𝐶] for some toric blowup 𝜋 : 𝑌̃𝑓 → 𝑌𝑓 and relative stable map 𝜙 : 𝐶 → 𝑌̃𝑓 .

Recall that there is a chain of blowups

𝑌𝑓
𝑝 // 𝑌Σ 𝑓

𝑞 // 𝑌Σ𝑔 , (4.23)

where 𝑝 = Bl𝐻 𝑓
and 𝑞 is the toric blowup determined by the refinement of fans

Σ 𝑓 ↩→ Σ𝑔 . Note that the class of the exceptional divisor of 𝑞 is [𝑌R≥0(−1,−1)] ∈ 𝑁𝐸(𝑌Σ 𝑓
),

and 𝑝∗[𝑌R≥0(−1,−1)] = 𝐸 𝑓 . The complement of𝔪egs intersects𝑁𝐸(𝑌𝑓 ) in a face, so there

is an ample divisor 𝐻 on 𝑌Σ𝑔 such that

𝑁𝐸(𝑌𝑓 ) \𝔪egs = 𝑁𝐸(𝑌𝑓 ) ∩ (𝑝∗𝑞∗𝐻)⊥.

Since
√
𝐼 = 𝔪egs, there is a bound 𝑛 such that 𝛽 ∈ 𝑁𝐸(𝑌𝑓 ) \ 𝐼 implies 𝛽 · 𝑝∗𝑞∗𝐻 < 𝑛,

and so if 𝑡𝛽 ∈ k[𝑄egs] \ 𝐼 appears in a wall function of 𝔇, there are finitely many

possible values that 𝑞∗𝑝∗𝛽 can take. We claim that given a choice of 𝛼 = 𝑞∗𝑝∗𝛽, there

are only finitely many possible values of 𝛽 which appear in a wall function of 𝔇.

We have

𝛽 = 𝑝∗𝑞∗𝛼 + 𝜆𝑎𝐸𝑎 + 𝜆𝑏𝐸𝑏 + 𝜆𝑐𝐸𝑐 + 𝜆 𝑓 𝐸 𝑓

for some collection of 𝜆𝑖 ∈ Z. For every ray 𝜌 ∈ Σ 𝑓 we have 𝛽 · 𝑌𝜌 ≥ 0, where 𝑌𝜌 is

the strict transform of𝑌𝜌 ⊂ 𝑌Σ 𝑓
. Taking 𝜌 = R≥0(2,−1),R≥0(−1, 2) orR≥0(−1, 0), this

implies that 𝜆𝑎 ,𝜆𝑏 and 𝜆 𝑓 are bounded below for fixed 𝛼. When 𝜌 = R≥0(−1,−1),

then 𝛽 · 𝑌𝜌 = 𝜆𝑐 − 𝜆 𝑓 , so 𝜆𝑐 is bounded below by 𝜆 𝑓 ; in particular 𝜆 𝑓 > 0 implies

𝜆𝑐 > 0. In the proof of [21, Corollary 3.16], Gross–Hacking–Keel show that if any of
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𝜆𝑎 ,𝜆𝑏 ,𝜆𝑐 are positive, then 𝑁𝝉 = 0 unless 𝛽 is a multiple of 𝐸𝑎 , 𝐸𝑏 or 𝐸𝑐 . Therefore

each 𝜆𝑖 is also bounded above, and so there are only finitely many possible values

for 𝛽 given 𝛼 = 𝑞∗𝑝∗𝛽. □

When the dimension of the log Calabi–Yai pair is two, the walls of 𝔇can and

the curve classes appearing in (2.2) are particularly easy to characterise. To prove

Lemma 4.3.5 for the three-dimensional wall structure 𝔇 = 𝛼̃(𝔇(𝑌Σ̃ ,𝐻̃)), however, it is

easier to use the results about the geometry of the scattering diagram 𝔇pert from

Section 4.1.

Proof in the case 𝔇 = 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃). There are ten maximal cells 𝜎 ∈ Σ̃; we show that

conditions (i) and (ii) holds for each subset 𝔇 ∩ 𝜎 separately. The wall functions

live in �k[𝒫𝜓̃], where the completion is taken with respect to the maximal ideal

𝔪gs associated to the Gross–Siebert locus. We identify �k[𝒫𝜓̃] with �k[𝑄gs ⊕ 𝑀] by

choosing the representative of 𝜓̃ to be zero on 𝜎, and consider the wall functions to

be formal power series in �k[𝑄gs ⊕ 𝑀]. We will say that a monomial 𝑡𝛽𝑧𝑚 ∈ k[𝑄egs]

appears in the wall function 𝑓𝔡 if 𝛼𝑡𝛽𝑧𝑚 is a summand of 𝑓𝔡 as a formal power series

for some 𝛼 ≠ 0 ∈ k.

Lemma 4.3.5 follows if there are finitely many monomials 𝑡𝛽𝑧𝑚 ∈ k[𝑄egs] \ 𝐺

which appear in the function 𝑓𝔡 associated to any wall (𝔡, 𝑓𝔡) ∈ 𝔇 ∩ 𝜎. All such

monomials are positive linear combinations of the monomials in the incoming

walls, taking the form ∏
𝑖∈{𝑎,𝑏,𝑐,𝑑}

(
𝑡𝜓̃(𝑚𝑖)−𝐸𝑖 𝑧𝑚𝑖

)𝜆𝑖
(4.24)

for some collection of 𝜆𝑖 ∈ N.

Suppose first that 𝜎 is not contained in R≥0⟨(−1, 0, 0), (0,−1, 0), (0, 0, 1)⟩. Then

𝑚𝑖 ∈ 𝜎 for at most one 𝑗 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, and therefore at most one of the incoming

monomials is not contained in 𝔪egs. Thus the assumption that the monomial (4.24)

is nontrivial modulo 𝐺 bounds 𝜆𝑖 for all 𝑖 ≠ 𝑗. It follows that the area containing∑
𝑖≠𝑗 𝜆𝑖𝑚𝑖 is bounded. Moreover, we know by Claims 4.1.13 and 4.1.14 that there

exists a (non-strictly) convex cone 𝜏 ⊂ 𝑀 such that

1. 𝜎 ∩ 𝜏 = {0} and

2. all monomials 𝑡𝛽𝑧𝑚 appearing in 𝑓𝔡 for some 𝔡 ⊂ 𝜎 have 𝑚 ∈ 𝜏, apart from the
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(at most one) incoming ray contained in 𝜎.

The second condition implies
∑
𝑖 𝜆𝑖𝑚𝑖 ∈ 𝜏. However, since

∑
𝑖≠𝑗 𝜆𝑖𝑚𝑖 is bounded

and 𝑚 𝑗 ∈ 𝜎, the value of 𝜆 𝑗 must be bounded.

Now suppose that 𝜎 ⊂ R≥0⟨(−1, 0, 0), (0,−1, 0), (0, 0, 1)⟩. This time only 𝜓̃(𝑚𝑎)

and 𝜓̃(𝑚𝑏) are contained in𝔪egs. In the case 𝜎 = R≥0⟨(−1, 0, 0), (0,−1, 0), (−1,−1, 1)⟩,

the same argument as above shows that all the 𝜆𝑖 are bounded. In the case

𝜎 = R≥0⟨(0,−1, 0), (−1,−1, 1), (0, 0, 1)⟩, the cone 𝜏 = R≥0⟨(1, 0, 0), (−1, 0, 0), (0, 1, 0)⟩

contains all tangent vectors 𝑚 ∈ 𝑀 for which a monomial 𝑡𝛽𝑧𝑚 appears in 𝑓𝔡 for

some 𝔡 ⊂ 𝜎, apart from the two monomials appearing in the functions af the two

incoming walls contained in 𝜎:

𝛼̃(𝔡𝑑 , 𝑓𝔡𝑑 ) =
(
R≥0⟨(0,−1, 0), (−1 − 1, 1)⟩, 𝛼̃∗(1 + 𝑑𝑧(0,−1,0))

)
and 𝛼̃(𝔡𝑐𝑑 , 𝑓𝔡𝑐𝑑 ) =

(
R≥0⟨(−1 − 1, 1), (0, 0, 1)⟩, 𝛼̃∗(1 + 𝑐𝑑𝑧(−1,−1,0))

)
.

The same argument as in the previous cases implies that if the monomial (4.24)

is nontrivial modulo 𝐺 and
∑
𝑖 𝜆𝑖𝑚𝑖 ∈ R≥0⟨(1, 0, 0), (0, 1, 0)⟩ ⊂ 𝜏, then the 𝜆𝑖 are

bounded. However, Claims 4.1.13 and 4.1.14 imply that any monomial 𝑡𝛽𝑧𝑚 ap-

pearing in a wall function in 𝜎 with 𝑚 ∈ R≥0⟨(−1, 0, 0), (0, 1, 0)⟩ must be either

(a) a product of multiples of 𝛼̃∗(𝑑𝑧(0,−1,0)) and a monomial 𝑡𝛽′𝑧𝑚′ appearing in 𝑓𝔡

for some 𝔡 ⊂ R≥0⟨(−1, 0, 0), (0,−1, 0), (−1,−1, 1)⟩,

(b) a product of multiples of 𝛼̃∗(𝑐𝑑𝑧(−1,−1,0)) and a monomial 𝑡𝛽′𝑧𝑚′ appearing in

𝑓𝔡 where 𝔡 = R≥0⟨(−1,−1, 1), (−1, 0, 1)⟩, or

(c) a product of multiples of monomials of the form (a), (b), and monomial

summands 𝑡𝛽′𝑧𝑚′ of 𝑓𝔡 such that 𝔡 ⊂ 𝜎 and 𝑚′ ∈ R≥0⟨(1, 0, 0), (0, 1, 0)⟩.

It remains to show that there are only finitely monomials of the form (a) and (b)

which are nontrivial modulo 𝐺.

There are finitely many nontrivial monomials modulo 𝐺 which are summands

of 𝑓𝔡 for some 𝔡 ⊂ R≥0⟨(−1, 0, 0), (0,−1, 0), (−1,−1, 1)⟩. Moreover, the only such

monomials which are nontrivial modulo 𝔪egs are 𝛼̃∗(𝑐𝑧(−1,0,0)) and 𝛼̃∗(𝑑𝑧(0,−1,0)).

By Lemma 4.1.11 the scattering diagram Scatter(𝛼̃(𝔡𝑐 , 𝑓𝔡𝑐 ), 𝛼̃(𝔡𝑑 , 𝑓𝔡𝑑 )) is finite, so

when 𝑚′ = 𝛼̃∗(𝑐𝑧(−1,0,0)) there are finitely many monomials of the form (a). When



4.3. Morphisms to the mirrors to 𝑓 and 𝑔 133

𝑚′ ≠ 𝛼̃∗(𝑐𝑧(−1,0,0)), then Claim 4.1.14 implies 𝑚′ ∈ R≥0⟨(−1, 1, 0), (0, 1, 0)⟩, and so

𝑚 ∈ R≥0⟨(0, 1, 0), (−1,−1, 0)⟩ by Lemma 4.1.12. Since 𝛽′ ∈ 𝔪egs there are only finitely

many monomials 𝑡𝛽𝑧𝑚 of the form (a) which are nontrivial modulo 𝐺.

If 𝔡 = R≥0⟨(−1,−1, 1), (−1, 0, 1)⟩ and 𝑡𝛽
′
𝑧𝑚
′ is a summand of 𝑓𝔡 which con-

tributes to a monomial of them form (b), then we must have 𝑚′ ∈ R≥0(0, 1, 0). Since

R≥0(0, 1, 0) does not contain (−1, 0, 0) or (0,−1, 0), there are finitely many monomi-

als 𝑡𝛽′𝑧𝑚′ which are nontrivial modulo 𝐼. By Lemma 2.1.11 and Lemma 4.1.12, any

monomial 𝑡𝛽𝑧𝑚 of the form (b) must have 𝑚 ∈ 𝑅≥0⟨(−1, 0, 0), (0, 1, 0)⟩. Moreover,

we must have 𝛽′ ∈ 𝔪egs. Thus there are finitely monomials 𝑡𝛽𝑧𝑚 of the form (b)

which are nontrivial modulo𝐺. Thus conditions (i) and (ii) hold for𝔇∩𝜎. A similar

argument holds in the remaining case 𝜎 = R≥0⟨(−1, 0, 0), (−1,−1, 1), (0, 0, 1)⟩. □

Corollary 4.3.6. The wall structure 𝔇 = 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) also satisfies conditions (i) and (ii) of

Lemma 4.3.5.

Proof. In the proof of Lemma 4.3.5 in the case 𝔇 = 𝔇can( 𝑓 ), we showed that for

any 𝜎 ∈ 𝒫, conditions (i) and (ii) hold for 𝔇can( 𝑓 ) ∩ 𝜎 if and only if they hold for

Ψ(𝔇can( 𝑓 ) ∩ 𝜎) ≡ 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) ∩ Ψ(𝜎). Thus 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) satsifies conditions (i) and

(ii). □

Lemma 4.3.7. Let 𝔇, 𝑄 and 𝑄egs be as in Lemma 4.3.5. Then

𝑅egs(𝔇) :=
⊕
𝑚

𝑅egs · 𝜗𝑚 (4.25)

is well-defined as an 𝑅egs-algebra.

Proof. 𝔇 is a compatible system of consistent wall structures for 𝑄gs, and satisfies

conditions (i) and (ii) from Lemma 4.3.5. Therefore, given an ideal 𝐺 ⊂ 𝑄egs such

that
√
𝐺 = 𝔪egs, the definitions for consistency in codimensions zero and one are

satisfied. Consistency in codimension two is satisfied as long as, for any asymptotic

monomial𝑚 of 𝔇 and general point 𝑝 for𝑚, the theta function 𝜗𝑚(𝑝) is well defined

as an element of 𝑅gs/(𝐺 ∩𝑄gs). That is, the sum over broken lines 𝛽 with endpoint

𝑝 and asymptotic monomial 𝑚∑
𝛽

𝑎𝛽𝑧
𝑚𝛽 ∈ �k[𝑄gs ⊕ Λ𝑝]
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is finite modulo 𝐺. By Corollary 4.3.6 and the fact that 𝑅(𝔇can) and 𝑅(𝔇(𝑌Σ ,𝐻))

are isomorphic as 𝑅gs-algebras, we may consider the broken lines to live on 𝔇 =

𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) instead of on 𝔇can( 𝑓 ).

Let 𝑎𝑖−1𝑧
𝑚𝑖−1 and 𝑎𝑖𝑧

𝑚𝑖 ∈ k[𝑄gs ⊕ Λ𝛽(𝑡𝑖)] be the monomials carried by 𝛽 on the

domains of linearity either side of 𝑡𝑖 ∈ R<0, where 𝛽(𝑡𝑖) ∈ 𝔡 ∈ 𝔇. If 𝑎𝑖𝑧𝑚𝑖 ≠ 𝑎𝑖−1𝑧
𝑚𝑖−1

we say that 𝛽 interacts nontrivially with 𝔡. We say that 𝛽 picks up the monomial

(𝑎𝑖𝑧𝑚𝑖 )/(𝑎𝑖−1𝑧
𝑚𝑖−1) at 𝑡𝑖 . If 𝛽 changes direction at 𝑡𝑖 it must interact nontrivially

with 𝔡. If 𝔡 is a slab contained in the codimension one cell 𝜌 and the kink of the

piecewise linear function 𝜅𝜌 is non-zero, then 𝛽 must interact nontrivially with 𝔡;

the monomial 𝛽 picks up at 𝑡𝑖 must be divisible by 𝑧𝜅𝜌 .

Suppose for a contradiction that there are infinitely many broken lines 𝛽 on

𝔇 with endpoint 𝑝 and asymptotic monomial 𝑚 such that 𝑎𝛽𝑧𝑚𝛽 ∈ k[𝑄gs ⊕ Λ𝑝]

is nontrivial modulo 𝐼. This implies broken lines on 𝔇 can pick up arbitrarily

many nontrivial monomials modulo 𝔪egs and only a bounded number of trivial

monomials modulo 𝔪egs. By Lemma 4.3.5, the wall structure 𝔇 mod 𝔪egs is finite.

In fact, we have

𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) ≡ 𝛼 𝑓𝔇init( 𝑓 ) mod 𝔪egs. (4.26)

However, the kinks of 𝜓 𝑓 across the two rays supporting the incoming walls 𝔡𝑎 and

𝔡𝑏 are contained in 𝔪egs, so broken lines cannot interact trivially with these walls

modulo 𝐼. Thus our assumption implies that a broken line 𝛽 on 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) can

interact nontrivially with the incoming ray 𝛼 𝑓 (𝔡𝑐) arbitrarily many times, without

interacting nontrivially with any other wall. This is clearly impossible. When

𝔇 = 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) we have

𝔇 ≡
𝛼̃{𝔡𝑎 , 𝔡𝑏} ∪

𝛼̃ (Scatter{𝔡𝑐 , 𝔡𝑑} ∩ R≥0⟨(−1, 0, 0), (0,−1, 0), (0, 0, 1)⟩)
mod 𝔪egs (4.27)

In this case, the kinks 𝜓̃ across the two incoming walls 𝔡𝑎 and 𝔡𝑏 are also contained in

𝔪egs. Broken lines in𝔇 cannot interact nontrivially arbitrarily many times with walls

in 𝛼̃ Scatter{𝔡𝑐 , 𝔡𝑑} without also interacting nontrivially with other walls arbitrarily

many times. □

Corollary 4.3.8. The algebra 𝑅egs(𝔇) is also a well-defined 𝑅egs-algebra (4.25) when
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𝔇 = C𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) or 𝔇 = 𝔇 𝑓↔𝑔 .

Proof. The two wall structures are truncations of cones over 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) and 𝛼̃𝔇𝑌(Σ̃ ,𝐻̃).

The wall functions of C𝔇 are 𝑓
1/𝑎
𝔡

, where 𝑎 is the index of the map ΛC𝔡 −→ Z

induced by projection to the height. Therefore, C𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) and 𝔇 𝑓↔𝑔 satisfy

conditions (i) and (ii) of Lemma 4.3.5 if 𝑓 1/𝑎
𝔡

is well-defined as an element of 𝑅egs

for all 𝔡 ∈ 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) and 𝔡 ∈ 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃). If 𝑓𝔡 ≡ 1 mod 𝔪egs then 𝑓
1/𝑎
𝔡

is uniquely

defined in 𝑅egs. By the equations (4.26) and (4.27) from the proof of Lemma 4.3.7,

we see that if 𝑓𝔡 . 1 mod 𝔪egs we have 𝑎 = 1. If C𝔇 satisfies conditions (i) and (ii),

and 𝑅egs(𝔇) is a 𝑅egs-algebra, then it follows that 𝑅egs(C𝔇) is a 𝑅egs-algebra. □

Construction 4.3.9 (Families over the extended Gross–Siebert locus). Let 𝔛 →

Spec𝑅gs denote either of the families 𝔛∼ or 𝔛 𝑓 . Following Corollary 4.3.8 above, we

may consider𝔛 to be the pullback of a scheme over Spec𝑅′′′ via the upper horizontal

morphism in (4.21) - we write

𝔛 = Proj (𝑆 ⊗𝑅′′′ 𝑅gs) ,

where 𝑆 is the graded𝑅′′′-algebra given by the algebras of theta functions
⊕

𝑘∈N 𝑆𝑘,𝑘

or 𝑅(C𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 )) respectively. Then we may define the corresponding family over

the extended Gross–Siebert locus

𝔛egs := Proj (𝑆 ⊗𝑅′′′ 𝑅egs)

as a scheme over Spec𝑅egs.

Remark 4.3.10. Not all the kinks of the piecewise linear function are contained in

𝔪egs, and not all wall functions 𝑓 ≡ 1 mod 𝔪egs, and so the central fibre of the

family 𝔛egs is not a union of toric varieties. However, 𝔛egs is the pullback of a family

𝔛′′ over Spec𝑅′′, and this family can be pulled back to a family 𝔛′′ ×Spec𝑅′′ Spec𝑅#

which does have a toric central fibre.

4.3.3 Asymptotic wall structures

Before we make use of the monoid maps 𝑄egs
𝑓

↩→ 𝑄̃egs and 𝑄𝑔 ↩→ 𝑄̃egs to relate the

three wall structures 𝔇 𝑓↔𝑔 , 𝔇(Σ 𝑓 ,𝐻 𝑓 ) and 𝔇(Σ𝑔 ,𝐻𝑔), we need to introduce the notion

of an asymptotic wall structure.
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Definition 4.3.11 (Asymptotic wall structure 𝒮as). Let 𝒮 be a wall structure on a

polyhedral affine pseudomanifold (𝐵,𝒫) equipped with MPA-function 𝜑. Define

the asymptotic wall structure 𝒮as similarly to the asymptotic scattering diagram of

Definition 4.1.6, by replacing each wall (𝔡, 𝑓𝔡) by (𝔡∞ , 𝑓𝔡), where 𝔡∞ is the tail cone

of 𝔡 = 𝔡0 + 𝔡∞. (See Remark 1.5.3 – here 𝔡0 is a bounded set.)

Let ℎ : C𝐵 → R≥0 be the global affine function defined by projection to the

second factor – i.e. the height. Suppose that

(𝐵as ,𝒫as) := (C𝐵,C𝒫) ∩ ℎ−1(0)

is a polyhedral affine pseudomanifold of dimension dim 𝐵 in the sense of Defini-

tion 1.2.1. Then

𝜑as := C𝜑 |ℎ−1(0)

defines a convex MPA-function on (𝐵as ,𝒫as), and 𝒮as is a wall structure for the data

(𝐵as ,𝒫as , 𝜑as).

Lemma 4.3.12. Given a consistent wall structure 𝒮, the asymptotic wall structure 𝒮as is

consistent if it is defined. Moreover, there is an isomorphism of k[𝑄]/𝐼-algebras

𝑅(𝒮) � 𝑅(𝒮as). (4.28)

Proof. For every joint 𝔧as of 𝒮as there is a simply connected subset of 𝒮

𝒮𝔧as := {Int 𝜏 ∈ 𝒫𝔇 | Int 𝜏 ∈ 𝐵𝔧 where 𝔧∞ = 𝔧as}

containing all the joints of 𝒮 with tail cone equal to 𝔧as.

(Consistency in codimension zero.) Consistency of the codimension zero joints of

𝒮as follows from the codimension zero joints of𝒮, similarly to the compatibility of an

asymptotic scattering diagram (see Remark 4.1.8). For any maximal cell 𝜎as ∈ 𝒫as,

there is a unique maximal cell 𝜎 ∈ 𝒫 with tail cone 𝜎∞ equal to 𝜎as. Moreover,

𝑅𝜎as � 𝑅𝜎, and if 𝔧as ⊂ 𝜎as is of codimension zero, then any joint 𝔧 of 𝒮 with tail cone

𝔧∞ equal to 𝔧as must have codimension zero itself, and so 𝒮𝔧as is contained in 𝜎 ∈ 𝒫.

Given any wall 𝔡as ∈ (𝒮as)𝔧as , the walls 𝔡 ∈ 𝔇 with asymptotic cone containing
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𝔡as are contained in 𝒮𝔧as , and

𝑓𝔡as =
∏

𝔡∞⊃𝔡as

𝑓𝔡.

In particular, all such walls are parallel, so their change of chambers morphisms

commute, and 𝜃𝔡as is equal to the composition of all 𝜃𝔡 such that 𝔡 is a wall in

𝒮 with tail cone containing in 𝔡as. Since 𝒮 is consistent in codimension zero, the

composition of isomorphisms

𝜃𝛾 = 𝜃𝔡𝑟 ◦ · · · ◦ 𝜃𝔡1 : 𝑅𝜎 −→ 𝑅𝜎

determined by any closed loop contained in 𝜎 is equal to the identity. There is a

closed loop 𝛾 in 𝒮𝔧as such that 𝜃𝛾 is equal to 𝜃𝛾′ where 𝛾′ is the simple closed loop

in (𝒮as)𝔧as around 𝔧as. Therefore 𝜃𝛾′ is the identity on 𝑅𝜎as .

(Consistency in codimension one.) If 𝔧as is a joint of codimension one, then all

the joints contained in 𝒮𝔧as are joints of codimension zero or one in 𝒮. Given a slab

𝔟as ∈ 𝒮as, the change of chambers morphism

𝜃𝔟as : 𝑅𝔟as
𝔲as −→ 𝑅𝔲′as

is equal to the composition of all change of chambers morphisms 𝜃𝔟 or 𝜃𝔡 restricted

to𝑅𝔟
𝔲, where 𝔟 and 𝔡 are all the slabs and walls with tail cone containing 𝔟as. Note that

the order of the composition does not matter as the change of chambers morphisms

commute, and here 𝑅𝔟
𝔲 and 𝑅

𝔟as
𝔲as are canonically identified because 𝔟 is necessarily

parallel to 𝔟as. Consistency of 𝔧as therefore follows from consistency of all the joints

in 𝒮𝔧as .

(Consistency in codimension two and isomorphism of algebras of theta functions.) If

𝔧as is a codimension two joint of 𝒮as, then we have

(𝒮𝔧as)as ≡ (𝒮as)𝔧as .

Therefore, consistency of 𝔧as follows if we show that there is a bĳective correspon-

dence between broken lines on 𝒮 and broken lines on 𝒮as with fixed asymptotic

monomial and endpoint. Since asymptotic monomials on𝒮as are asymptotic mono-

mials on𝒮 by definition, the correspondence between broken lines would also imply
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that the identification of theta functions 𝜗𝑚 ↦→ 𝜗𝑚 induces an isomorphism of the

algebras 𝑅(𝒮) → 𝑅(𝒮as).

For any chamber 𝔲as of 𝒮as, there exists a unique chamber 𝔲 of 𝒮 with tail

cone 𝔲∞ = 𝔲as. Suppose that 𝛽as is a broken line on 𝒮as with endpoint 𝑝as ∈ 𝔲𝑝as .

By choosing 𝑝 to be far enough away from the origin, it is easy to see how 𝛽as

corresponds to a broken line 𝛽 on 𝒮 with endpoint 𝑝 ∈ 𝔲0 + 𝑝as ⊂ 𝔲𝑝 , where

𝔲𝑝 = 𝔲0 + 𝔲𝑝as . The broken line 𝛽 only passes through chambers 𝔲 of 𝒮 with tail

cone equal to a chamber or wall of 𝒮as. If 𝔲∞ = 𝔡as ∈ 𝒮as, then 𝛽 enters an exits

𝔲 via walls 𝔡 and 𝔡′ whose tail cone contains in 𝔡as. We claim that there exists a

choice of general point 𝑝∞ ∈ 𝔲𝑝 such that no broken lines 𝛽 contributing to 𝜗𝑚(𝑞)

pass through any chamber 𝔲 of 𝒮 without tail cone 𝔲∞ equal to a chamber or wall

of 𝒮as. Thus every broken line contributing to 𝜗𝑚(𝑝∞) ∈ 𝒮 corresponds to a broken

line 𝛽as on 𝒮as, contributing to 𝜗𝑚(𝑝) ∈ 𝑅(𝒮as).

Suppose that 𝛽 is a broken line on 𝒮 with endpoint 𝑞 ∈ 𝔲𝑝 , passing through

a chamber 𝔲 with tail cone of codimension greater than one. Suppose that 𝔲 is

adjacent to 𝔲𝑝 , and 𝛽 passes through the wall 𝔡 = 𝔲 ∩ 𝔲𝑝 . The final monomial 𝑎𝛽𝑧𝑚𝛽

carried by 𝛽 is a summand of 𝜃𝔡(𝑎𝑟−1𝑡
𝑚𝑟−1), where 𝑎𝑟−1𝑡

𝑚𝑟−1 is the monomial carried

by 𝛽 in 𝔲. The endpoint 𝑞 must be contained in 𝔡 + R≥0𝑚𝛽, and since 𝔡 has tail cone

of codimension at least two, the set 𝔡 + R≥0𝑚𝛽 ⊂ 𝔲𝑝 has tail cone of codimension at

least one.

Now suppose that a broken line 𝛽 with endpoint 𝑞 ∈ 𝔲𝑝 passes through cham-

bers with tail cone of codimension greater than one, but that the final such chamber

𝔲 is not adjacent to 𝔲𝑝 . We may argue by induction that 𝑞 ∈ 𝜏 + R≥0𝑚𝛽, where 𝜏 is

a subset of a wall of 𝔲𝑝 , with tail cone 𝜏∞ of codimension at least two. The tail cone

of 𝜏 + R≥0𝑚𝛽 is also of codimension at least one.

Since there are finitely many broken line types in 𝒮, there are finitely many

possible subsets 𝜏 + R≥0𝑚𝛽 ⊂ 𝔲𝑝 containing endpoints of broken lines which pass

through chambers with tail cone of codimension greater than one. The complement

of these subsets of 𝔲𝑝 is therefore a union of polyhedra with combined tail cone equal

to 𝔲𝑝as , the tail cone of 𝔲𝑝 . Thus we can choose 𝑝∞ to be in this complement in 𝔲𝑝 . □

Corollary 4.3.13. Given a consistent wall structure 𝒮, there is an isomorphism of k[𝑄]/𝐼-
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algebras

𝑅(C𝒮)0 � 𝑅(𝒮as), (4.29)

where 𝑅(C𝔇) is the graded algebra of theta functions defined on𝒮, and 𝑅(𝒮as) is the algebra

of theta functions defined on 𝒮as.

Proof. By [23, Theorem 4.3.2], we know that 𝑅(C𝒮)0 � 𝑅(𝒮), and by Lemma 4.3.12

we have 𝑅(𝒮) � 𝑅(𝒮as). □

Lemma 4.3.14. The monoid maps 𝜄 𝑓 and 𝜄𝑔 induce ring homomorphisms

𝑅
egs
𝑓
−→ 𝑅̃egs and 𝑅

gs
𝑔 −→ 𝑅̃egs. (4.30)

Moreover, we have

Proj
(
𝑆0,• ⊗𝑅̃′′′ 𝑅̃egs) � 𝔛𝑔 ×𝜄𝑔 Spec 𝑅̃egs (4.31)

and

Proj
(
𝑆•,0 ⊗𝑅̃′′′ 𝑅̃egs) � 𝔛 𝑓 egs ×𝜄 𝑓 Spec 𝑅̃egs (4.32)

Proof. The monoid map 𝜄 𝑓 and 𝜄𝑔 induce the ring homomorphisms (4.30) because

𝜄−1
𝑓
(𝔪̃egs) = 𝔪

egs
𝑓

and 𝜄−1
𝑔 (𝔪̃egs) = 𝔪

gs
𝑔 .

In order to prove (4.31), we show that there is an isomorphism of 𝑅̃egs-algebras

𝑅
(
C𝛼𝑔𝔇(Σ𝑔 ,𝐻𝑔)

)
⊗𝜄𝑔 𝑅̃egs � 𝑆0,• ⊗𝑅̃′′′ 𝑅̃egs. (4.33)

Since 𝑆0,• = 𝑅
(
𝔇 𝑓↔𝑔

)
0, we use Corollary 4.3.13 and relate C𝛼𝑔𝔇(Σ𝑔 ,𝐻𝑔) to 𝔇 𝑓↔𝑔 in

the following sense. By Remark 4.2.9, we can express 𝔇 𝑓↔𝑔 as a cone with respect

to the 𝑡-height:

𝔇 𝑓↔𝑔 = C
( (
𝛼̃𝔇pert × R≥0

)
∩

(
𝐵 𝑓↔𝑔 ∩ {𝑡 = 1}

) )
,

so we aim to show that

( (
𝛼̃𝔇pert × R≥0

)
∩

(
𝐵 𝑓↔𝑔 ∩ {𝑡 = 1}

) )
as = 𝜄𝑔C𝛼𝑔𝔇(Σ𝑔 ,𝐻𝑔). (4.34)
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This is done by simply tracing through the identifications – we start by noting that

𝐵 𝑓↔𝑔 ∩ {𝑡 = 0} = C(Newt 𝑔)∨ (4.35)

and (
Σ̃ × R≥0

)
∩ {𝑡 = 0} = CΣ𝑔 . (4.36)

To show (4.34), it therefore suffices to show that

(𝛼̃𝔇pert × R≥0)as ≡ 𝜄𝑔C𝛼𝑔𝔇(Σ𝑔 ,𝐻𝑔)

⇐⇒ (𝛼̃𝔇pert)as ≡ 𝜄𝑔 ◦ 𝛼𝑔𝔇(Σ𝑔 ,𝐻𝑔) ,

where the latter is an equivalence of wall structures on (𝑀R ,Σ𝑔) equipped with the

𝑄̃egs-valued piecewise linear function 𝜓̃
��
𝑀R×{0}. This is easy to see since

𝜓̃
��
𝑀R×{0} = 𝜄𝑔 ◦ 𝜓𝑔 and (𝔇pert)as = 𝔇(Σ𝑔 ,𝐻𝑔) ,

so (
𝛼̃ |{𝑡=1}𝔇pert

)
as
= 𝛼̃ |{𝑡=0} (𝔇pert)as

= 𝛼̃ |{𝑡=0}𝔇(Σ𝑔 ,𝐻𝑔)

= 𝜄𝑔 ◦ 𝛼𝑔𝔇(Σ𝑔 ,𝐻𝑔).

In order to prove (4.32), we show that there is an isomorphism of 𝑅̃egs-algebras

𝑅
(
C𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 )

)
⊗𝜄 𝑓 𝑅̃egs � 𝑆•,0 ⊗𝑅′′′ 𝑅egs. (4.37)

Following the same argument as for 𝔛𝑔 , we note that

𝐵 𝑓↔𝑔 ∩ {𝑠 = 0} = C(Newt 𝑓 )∨ (4.38)

and (
Σ̃ × R≥0

)
∩ {𝑠 = 0} = Σ̃.
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However, we have

Σ̃ ∩ C(Newt 𝑓 )∨ �
(
Σ 𝑓 × R≥0

)
∩ C(Newt 𝑓 )∨ ,

and the restriction 𝜓̃
��
C(Newt 𝑓 )∨ can be linearly continued to give a 𝑄̃egs-valued piece-

wise linear function on Σ 𝑓 × R≥0, which we will denote by 𝜓̃
��
(Σ 𝑓 ×R≥0). Since all of

the codimension one cells of Σ 𝑓 × R≥0 are vertical, the same MPA-function is also

represented by

𝜓̃
��
Σ 𝑓
× 0 :=

(
𝜓̃
��
(Σ 𝑓 ×R≥0)

���
𝑀R×{0}

× 0
)

: 𝑀R × R≥0 −→ 𝑄̃egs.

With this representative, we can identify

𝜓̃
��
Σ 𝑓
× 0 = 𝜄 𝑓 ◦

(
𝜓 𝑓 × 0

)
as piecewise linear functions on (𝑀R × R≥0 ,Σ 𝑓 × R≥0), and make the identification

𝛼̃ ◦ (𝜙 × 0) = 𝜄 𝑓 ◦ (𝛼 𝑓 × 0) : 𝑃 𝑓 × R≥0 −→ 𝒫+𝜓̃|Σ 𝑓 ×R≥0

(4.39)

of functions of sheaves on (𝑀R × R≥0 ,Σ 𝑓 × R≥0), where 𝜙 : 𝑃 𝑓 → 𝑃𝑔 is defined in

(4.4). We can now argue that

(
𝔇 𝑓↔𝑔 ∩ {𝑠 = 1}

)
as = 𝔇 𝑓↔𝑔 ∩ {𝑠 = 0}

= 𝛼̃𝔇(𝑌Σ̃ ,𝐻̃) ∩ C(Newt 𝑓 )∨ by (4.38)

= 𝛼̃
(
𝔇(𝑌Σ̃ ,𝐻̃) ∩ C(Newt 𝑓 )∨

)
= 𝜄 𝑓 ◦ (𝛼 𝑓 × 0)

(
C𝔇(Σ 𝑓 ,𝐻 𝑓 ) ∩ C(Newt 𝑓 )∨

)
by (4.39)

= 𝜄 𝑓C𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) ,

and so (4.37) holds by Remark 4.2.9 and Corollary 4.3.13. □

Lemma 4.3.15. The wall structure 𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡} is equivalent to the cone over 𝛼̃𝔇pert,

where

𝔇pert := 𝔇pert ∩
(
𝐵 𝑓↔𝑔 ∩ {𝑠 = 𝑡 = 1}

)
. (4.40)
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Moreover, there is an isomorphism of graded k[𝑄̃]/𝐼-algebras⊕
𝑘∈N

𝑆𝑘,𝑘 � 𝑅
(
𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡}

)
. (4.41)

Proof. The first statement follows from the discussion in Remark 4.2.9. We show

that broken lines on 𝔇 𝑓↔𝑔 which contribute to a theta function 𝜗(𝑚,𝑘,𝑘) ∈ 𝑆𝑘,𝑘

correspond bĳectively to broken lines on𝔇 𝑓↔𝑔∩{𝑠 = 𝑡}which contribute to 𝜗(𝑚,𝑘) ∈

𝑅(𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡}). One direction of this bĳection is clear – any broken line

𝛽 contained in 𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡} is automatically a broken line in 𝔇 𝑓↔𝑔 , and its

asymptotic monomial must have degree (𝑘, 𝑘).

Now suppose that 𝛽 is a broken line on 𝔇 𝑓↔𝑔 with asymptotic monomial of

degree (𝑘, 𝑘). Since the monomials in the wall functions of 𝔇 𝑓↔𝑔 have degree

(0, 0), the monomial carried by 𝛽 has constant degree, and thus the image of 𝛽 is

completely contained in a hyperplane

𝐻 := {𝑠 − 𝑡 = 𝑐} ∩ 𝐵 𝑓↔𝑔

for some constant 𝑐 ∈ R, parallel to 𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡}. If 𝑐 < 0, then 𝐻 carries a

wall structure 𝔇 𝑓↔𝑔 ∩ 𝐻 such that 𝔇 𝑓↔𝑔 ∩ 𝐻 \ 𝜕𝔇 𝑓↔𝑔 is equivalent to a subset of

𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡}. Therefore, 𝛽 determines a broken line on 𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡} which

has endpoint in 𝔲𝑠=𝑡 . If 𝑐 > 0, then 𝐻 carries a wall structure 𝔇 𝑓↔𝑔 ∩ 𝐻 such that

(𝔇 𝑓↔𝑔 ∩ 𝐻)as ≡ 𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡}. Since 𝛽 contributes to 𝜗(𝑚,𝑘) ∈ 𝑅(𝔇 𝑓↔𝑔 ∩ 𝐻) and

𝑅(𝔇 𝑓↔𝑔 ∩𝐻) � 𝑅(𝔇 𝑓↔𝑔 ∩{𝑠 = 𝑡}) by Lemma 4.3.12, 𝛽 must correspond to a broken

line contributing to 𝜗(𝑚,𝑘) ∈ 𝑅(𝔇 𝑓↔𝑔 ∩ {𝑠 = 𝑡}). □



Chapter 5

The morphisms are birational

In the previous chapter, we constructed three families over Spec �k[𝑄̃egs] and maps

between them. In this chapter, we will show that the generic fibres of these families

are smooth, and that the maps between them are birational. For simplicity, we

adopt uniform notation for the three families.

Notation 5.0.1. Recall the three monoids 𝑄̃gs, 𝑄gs
𝑓

and 𝑄gs
𝑔 associated to the Gross–

Siebert loci for the respective log Calabi–Yau pairs (𝑌̃, 𝐷̃), (𝑌𝑓 , 𝐷 𝑓 ) and (𝑌𝑔 , 𝐷𝑔).

We denote these monoids by 𝑄gs when the context is clear, and denote by 𝑄egs

the monoid associated to the corresponding extended Gross–Siebert locus. (Here

𝑄
egs
𝑔 := 𝑄gs

𝑔 .) We set

𝑅gs := �k[𝑄gs] and 𝑅egs := �k[𝑄egs], (5.1)

and let 𝔇 denote one of the following three wall structures over 𝑅egs:

𝛼̃𝔇pert , 𝛼 𝑓𝔇(Σ 𝑓 ,𝐻 𝑓 ) , or 𝛼𝑔𝔇(Σ𝑔 ,𝐻𝑔). (5.2)

We write 𝔛 for the family

𝔛 := Proj𝑅(C𝔇) −→ Spec𝑅egs (5.3)

where 𝑅(C𝔇) is the graded 𝑅egs-algebra of theta functions for the three-dimensional

wall structure C𝔇.

5.1 Smoothness of the generic fibre
Theorem 5.1.1. The families 𝔛 −→ Spec𝑅egs are smooth over the generic point.
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Proof. We will prove this via a local analysis of the two-dimensional wall structure

𝔇. Roughly speaking1, neighbourhoods of joints in 𝔇 give rise to local charts on

𝔛. The most difficult point in the analysis involves the joint at the origin: here we

use results of Gross–Hacking–Keel [21], for which we need to work over a sharp

monoid.

Fix a sharp monoid 𝑄# that satisfies the conditions of Construction 2.2.7 and is

contained in 𝑄gs, and let

𝑅# := �k[𝑄#]. (5.4)

Let 𝔪′ denote the intersection of 𝑄# with the maximal ideal of 𝑄gs, let 𝔪′′ denote

the intersection of 𝑄# with the maximal ideal of 𝑄egs, and recall the diagram of

rings (4.21).

Claim 5.1.2. There exists a family 𝔛′′→ Spec𝑅′′ such that 𝔛 � 𝔛′′ ×Spec𝑅′′ Spec𝑅egs.

Proof. We need to show that the structure constants (1.18) in the 𝑅egs-algebra of

theta functions 𝑅(C𝔇) are actually contained in 𝑅′′. The claim therefore follows if

𝑎𝛽 ∈ k[𝑄#] for every broken line 𝛽 on 𝔇. We only show this in the first case, but the

argument in the other two cases is similar.

When 𝔇 = 𝛼̃𝔇pert, there are only five walls 𝔡 ∈ 𝔇 whose wall function 𝑓𝔡 admits

a monomial summand 𝑡𝐴𝑧𝑚 such that𝐴 ∉ 𝑄̃#, namely the slabs arising from the five

rays in 𝔇pert which propagate towards the origin: 𝔡𝑎 , 𝔡𝑏 , 𝔡𝑐 , 𝔡𝑑 , 𝔡𝑐𝑑 ∈ Scatter2(𝔇0
pert).

The wall functions carried by these slabs 𝔟𝑎 , 𝔟𝑏 , 𝔟𝑐 , 𝔟𝑑, 𝔟𝑐𝑑 are of the form 𝑓𝔟𝑖 =

(1 + 𝑡𝐴𝑖 𝑧𝑚𝑖 )𝑔𝔟𝑖 , where 𝑚𝑖 ∈ 𝑀,

𝐴𝑖 =


−𝐸𝑖 if 𝑖 = 𝑎, 𝑏, 𝑐 or 𝑑

𝐸̃ − 𝐸𝑐 − 𝐸𝑑 if 𝑖 = 𝑐𝑑,

and every monomial summand of 𝑔𝔟𝑖 is contained in k[𝑄# ⊕ 𝑀]. Suppose that a

broken line 𝛽 crosses one of these five slabs at 𝑡𝑘 ∈ (−∞, 0). Then the monomial

(𝑎𝑘+1𝑧
𝑚𝑘+1)/(𝑎𝑘𝑧𝑚𝑘 ) ∈ k[𝑄egs ⊕ 𝑀] that 𝛽 picks up at 𝑡𝑘 is a summand of

(𝑡𝜅𝔟𝑖 𝑓𝔟𝑖 )𝑛

1This is not quite true, which is why we work with a formal family below, rather than arguing
directly on 𝔛.
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for some 𝑛 ∈ N. Noting that 𝜅𝔟𝑖 + 𝐴𝑖 ∈ 𝑁𝐸(𝑌̃) for every 𝑖, we conclude that

𝑎𝑘+1/𝑎𝑘 ∈ k[𝑄egs] in fact lies in k[𝑄#]. Then it follows by induction that 𝑎𝛽 ∈ k[𝑄#].

Therefore, we may consider the ring of theta functions on C𝔇 to be a graded 𝑅′′-

algebra𝑅′′(C𝔇), where𝑅(C𝔇) � 𝑅′′(C𝔇)⊗𝑅′′𝑅egs. We define𝔛′′ := Proj𝑅′′(C𝔇). □

We may now construct families over Spec of every ring in the diagram (4.21)

via pullback of 𝔛′′. In particular, let 𝔛# be the pullback of 𝔛′′ via Spec𝑅# → Spec𝑅′′.

Let 𝜂egs, 𝜂′′ and 𝜂# denote the respective generic points of Spec𝑅egs, Spec𝑅′′ and

Spec𝑅#. The residue fields 𝜅(𝜂egs) and 𝜅(𝜂#) are both extensions of 𝜅(𝜂′′), so the

generic fibre 𝔛𝜂egs is smooth if and only if 𝔛′′𝜂′′ is smooth, if and only if 𝔛#
𝜂# is

smooth. Thus Theorem 5.1.1 follows from Lemma 5.1.3 below. □

Lemma 5.1.3. The families 𝔛# −→ Spec𝑅# are smooth over the generic point.

Proof. Let 𝔇can denote the canonical wall structure for the log Calabi–Yau pair

associated to 𝔇. The discussion in Section 2.3 shows that there is a truncation of

𝔇can such that we have an equivalence of wall structures over 𝑅gs

𝔇can ≡


C𝔇 in the first case (𝑌̃, 𝐷̃)

𝔇 in the second two cases (𝑌𝑓 , 𝐷 𝑓 ) and (𝑌𝑔 , 𝐷𝑔).

Moreover, the isomorphism of the 𝑅gs-algebras of theta functions induced by the

equivalence of wall structures actually extends to an isomorphism of 𝑅′′-algebras by

Claim 5.1.2. Therefore, the family 𝔛# is equal to the algebraisation of the canonical

formal family

𝔛̂ := colim√
𝐼=𝔪# Proj𝑅(𝔇can/𝐼) 𝜋̂ // Spf𝑅#.

The family 𝔛# → Spec𝑅# is smooth over the generic point if and only if the formal

family 𝔛̂ → Spf𝑅# is smooth over the generic point in the sense of [21, Definition

4.2]. We may therefore work in local charts and to finite order to show that, for a

sufficiently large 𝔪#-primary ideal 𝐼, the singular locus of

𝔛#/𝐼 𝜋̂𝐼 //𝑊𝐼 := Spec𝑅#/𝐼

does not surject scheme-theoretically onto the base Spec𝑅#/𝐼.

For every joint 𝔧 in the wall structure 𝔇, we may define an affine scheme
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𝑈𝔧 := Spec𝑅𝔧 such that 𝔛#/𝐼 is covered by all 𝑈𝔧 such that 𝔧 appears as a joint of

𝔇 modulo 𝐼. The scheme 𝑈𝔧 extends the local construction of 𝔛◦(𝔇/𝐼) about 𝔧 over

codimension two: it is the affine completion of the glued scheme

𝔛◦(𝔇/𝐼 ∩ 𝐵𝔧) :=
⋃
𝜏∈𝒫𝔇

𝔧∈𝜏

Spec𝑅𝜏 ⊂ 𝔛◦(𝔇).

where 𝐵𝔧 is as in Definition 1.4.6. Furthermore, a subcover of 𝔛#/𝐼 is given by the

set of 𝑈𝔧 such that 𝔧 is a either a boundary joint or a codimension two joint of 𝔇/𝐼.

Indeed, it follows from consistency in codimensions zero and one that when 𝔧 is

an interior joint, we have 𝔛◦(𝔇/𝐼 ∩ 𝐵𝔧) � Spec𝑅𝔲 for any chamber 𝔲 containing 𝔧 if

codim 𝔧 = 0, and 𝔛◦(𝔇/𝐼∩𝐵𝔧) � Spec𝑅𝔟 where 𝔟 is either of the two slabs containing

𝔧 if codim 𝔧 = 1. Thus we have

𝑈𝔧 =


Spec𝑅𝔲 if codim 𝔧 = 0

Spec𝑅𝔟 if codim 𝔧 = 1

and so𝑈𝔧 ⊂ 𝔛◦(𝔇/𝐼 ∩ 𝐵𝔧′) for some interior joint 𝔧′ of codimension two.

There are therefore three types of joints in 𝔇 which make up an affine cover of

𝔛#/𝐼: (1) boundary joints 𝔧 ∈ 𝜕𝔇; (2) the origin; (3) an additional interior joint. Case

3 only occurs when 𝔇 = 𝛼̃(𝔇pert), and is the point 𝔧 = (−1,−1).

Case 1: Boundary joints. Suppose the boundary joint 𝔧 is contained in chambers

𝔲+ and 𝔲−, separated by a wall 𝔡 such that 𝔧 = 𝔡 ∩ 𝜕𝐵. The scheme 𝑈𝔧 is defined to

be the affine completion of the glued scheme

Spec𝑅𝜕
𝔲− ←↪ Spec𝑅𝔲− ↩→ Spec𝑅𝔡 ←↪ Spec𝑅𝔲+ ↩→ Spec𝑅𝜕

𝔲+ .

The ring of regular functions on this scheme is given by 𝑅𝔧 = k[(𝒫+𝜑 )𝑥], where 𝜑

is the 𝑄#-valued piecewise-linear function on (𝐵,𝒫) and (𝒫+𝜑 )𝑥 is the stalk of the

associated sheaf of monoids at the point 𝑥 = 𝔧. It may be written as

𝑅𝔧 � (𝑅#/𝐼)[𝑋,𝑌, 𝑍]/(𝑋𝑌 − 𝑡𝜅𝔡𝑍𝑟 𝑓𝔡) (5.5)



5.1. Smoothness of the generic fibre 147

for some 𝑟 ∈ N, where 𝑓𝔡 is the wall function on 𝔡 and

𝜅𝔡 =


𝜅𝜌(𝜑) if 𝔡 is a slab contained in 𝜌 ∈ 𝒫[𝑛−1]

0 if 𝔡 is a wall of codimension zero.

The generators of 𝑅𝔧 represent the vectors in (𝒫+𝜑 )𝑥 given by

𝑋 = 𝑧𝜉+ 𝑡𝜑
∗(𝜉+) , 𝑌 = 𝑧𝜉− 𝑡𝜑

∗(𝜉−) , 𝑍 = 𝑧𝜉𝜌 𝑡𝜑
∗(𝜉𝜌) ,

where 𝜉+ ∈ Λ𝜕𝔲+ , 𝜉− ∈ Λ𝜕𝔲− and 𝜉𝜌 ∈ Λ𝜌 are all generators pointing away from 𝔧.

Then the number 𝑟 ∈ N is given by the equation

𝜉+ + 𝜉− = 𝑟 · 𝜉𝜌 ∈ Λ𝑥 .

Note that although 𝑓𝔡 ∈ (𝑅#/𝐼)[𝑍, 𝑍−1], we know by convexity of the joint 𝔧 that

𝑍𝑟 𝑓𝔡 ∈ (𝑅#/𝐼)[𝑍].

If 𝔧 is a boundary joint in any of the three wall structures (5.2), then 𝑟 ∈ {0, 1}.

Furthermore, we know that when 𝑟 = 1 we have

𝑍 𝑓𝔡 = (𝑍 + 𝑡−𝐸𝑖 ) · 𝑔𝔡

for some 𝑖 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, where 𝑔𝔡 ∈ (𝑅#/𝐼)[𝑍] and 𝑔𝔡 ≡ 1 mod 𝔪′. By [21,

Definition-Lemma 4.1], the singular locus Sing(𝜋̂𝔧) ⊂ 𝑈𝔧 is defined by the 2nd fitting

ideal of Ω1
𝑈𝔧/𝑊𝐼

. This is the ideal 𝐽 = (𝑋,𝑌, 𝐹(𝑍)) ⊂ 𝑅𝔧, where

𝐹(𝑍) :=


𝑡𝜅𝔡

𝜕 𝑓𝔡
𝜕𝑍 if 𝑟 = 0

𝑡𝜅𝔡

(
𝑔𝔡 + (𝑍 + 𝑡−𝐸𝑖 ) 𝜕𝑔𝔡𝜕𝑍

)
if 𝑟 = 1.

(5.6)

When 𝜅𝔡 = 0, we claim that Sing(𝜋̂𝔧) is empty. Indeed, if 𝜅𝔡 = 𝑟 = 0, then

𝑓𝔡 = 𝑋𝑌 is contained in the fitting ideal 𝐽. Since 𝑓𝔡 ≡ 1 mod 𝔪# and
√
𝐼 = 𝔪#, 𝑓𝔡 is a

unit in 𝑅𝔧 and so 𝐽 = 𝑅𝔧. If 𝜅𝔡 = 0 and 𝑟 = 1, then (𝑍+ 𝑡−𝐸𝑖 )𝑔𝔡 = 𝑋𝑌 ∈ 𝐽. Since 𝑔𝔡 ≡ 1

mod 𝔪#, it is also a unit in 𝑅𝔧, and so (𝑍+𝑡−𝐸𝑖 ) ∈ 𝐽. But now 𝑔𝔡 = 𝐹−(𝑍+𝑡−𝐸𝑖 ) 𝜕𝑔𝔡𝜕𝑍 ∈ 𝐽,

so 𝐽 = 𝑅𝔧.

When 𝜅𝔡 ≠ 0, we claim that Sing(𝜋̂𝔧) does not surject scheme-theoretically onto
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𝑊𝐼 . If 𝜅𝔡 ≠ 0 and 𝑟 = 0, the ideal 𝐽 contains 𝑡𝜅𝔡 𝑓𝔡 = 𝑋𝑌. Since 𝑓𝔡 is a unit in 𝑅𝔧, we

have 𝑡𝜅𝔡 𝑓𝔡 · ( 𝑓𝔡)−1 ∈ 𝐽, and so 𝑡𝜅𝔡 is contained in the kernel of 𝑅#/𝐼 → 𝑅𝔧/𝐽. Since

Sing(𝜋̂𝔧) = Spec𝑅𝔧/𝐽, we see that the singular locus fails to surject onto𝑊𝐼 . If 𝜅𝔡 ≠ 0

and 𝑟 = 1, we have 𝐹 = 𝑡𝜅𝔡𝐺 ∈ 𝐽, where 𝐺 is the expression in brackets in (5.6).

Since 𝑔𝔡 ≡ 1 mod 𝔪′, we have 𝐺 ≡ 1 mod 𝔪#, and so 𝐺 is a unit in 𝑅𝔧. Therefore

𝑡𝜅𝔡 is again an element of the kernel of 𝑅#/𝐼 → 𝑅𝔧/𝐽, and the claim follows.

Case 2: The origin. If the origin is the only interior joint in 𝔇, then 𝑅𝔧 is

isomorphic to the localisation 𝑅(C𝔇)𝜗(0,0,1) . We can therefore apply the discussion

around Claim 2.4.3 to show that 𝑅𝔧 � 𝑅(𝔇can). The main result of [21, Section 4] is

that the generic fibre of the formal family defined by 𝑅(𝔇can) is smooth.

The remaining case, where we consider the origin in 𝛼̃(𝔇pert), is not covered

by [21, Theorem 4.6] because the monomial carried by the incoming ray arising

from 𝔡𝑐𝑑 is not contained in 𝔪′. (That is, because not all of the incoming rays have

order zero with respect to 𝔪′, the wall structure is not equivalent to a canonical wall

structure.) Nevertheless, the argument of [21, Section 4] goes through verbatim in

this setting, and shows that the generic fibre of the family associated to 𝑅𝔧 is smooth.

Case 3: The additional interior joint. As discussed, this case only arises when

𝔇 = 𝛼̃(𝔇pert) and 𝔧 = (−1,−1). The open set 𝑈𝔧 is the spectrum of 𝑅(𝔇𝔧), and 𝔇𝔧

is the image under 𝛼̃ of a neighbourhood 𝑁 of 𝔧 in 𝔇pert that contains no other

joints (see Definition 1.4.6). As a scattering diagram, 𝑁 ≡ Scatter(𝐸), where 𝐸 is

the scattering diagram containing only those walls of 𝑁 that are incoming to 𝔧.

See Figure 5.1. The diagram 𝐸 has exactly five incoming walls, and we consider a

perturbed scattering diagram 𝐸′ obtained by shifting three of the incoming walls

as shown in Figure 5.2. Set 𝔈′ := 𝛼̃(Scatter(𝐸′)). The asymptotic scattering diagram

associated to Scatter(𝐸′) is equivalent to 𝑁 , and therefore we have an equivalence of

wall structures (𝔈′)as ≡ 𝔇𝔧. Applying Lemma 4.3.12, we see that 𝑈𝔧 is the spectrum

of the algebra of theta functions on 𝔈′.

Note that 𝔈′ contains only one joint of codimension two: the joint at (−1 − 1),

which we denote 𝔧′. It therefore suffices to show that 𝑈𝔧′ has smooth generic fibre.

But the wall structure 𝔈′
𝔧′ is finite and easy to describe – in fact, we claim that 𝔈′

𝔧′

is equivalent to the algorithmic scattering diagram 𝛼(𝔇(𝑌Σ ,𝐻)) associated to a log

Calabi–Yau pair (𝑌, 𝐷), where 𝑌 is a smooth del Pezzo surface of degree seven, as
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we now describe.

Figure 5.1: The scattering diagram
𝑁 , with the support of
𝐸 shown in black. The
infinite collection of rays
in every quadrant but
the positive one is repre-
sented by grey arrows.

Figure 5.2: The scattering diagram
𝐸′, where the perturbed
lines are shown in grey.

We see from Figure 5.2 that 𝔈′
𝔧′ is simply the image of the finite scattering

diagram Scatter{𝔡𝑐 , 𝔡𝑑} under 𝛼̃. This is pictured in Figure 5.3. Thus 𝔈′
𝔧′ consists

of five walls, three of which coincide with codimension one cells in the polyhedral

decomposition 𝒫𝔧′. Each of these cells carries the kink 𝐸̃ ∈ 𝑄̃, and the two incoming

walls to 𝔧′ carry the wall functions

𝛼̃( 𝑓𝔡𝑐 ) = 1 + 𝑡−𝐸𝑐𝑥−1 and 𝛼̃( 𝑓𝔡𝑑 ) = 1 + 𝑡−𝐸𝑑 𝑦−1.

Thus we may consider 𝑌 to be a hypersurface of 𝑌̃ with the divisorial log structure

𝐷 induced by the divisorial log structure 𝐷̃. More concretely, 𝑌 ⊂ 𝑌̃ is the strict

transform of the toric divisor 𝑌R≥0(−1,−1,1) ⊂ 𝑌Σ̃ under the blowup Bl𝐻̃ : 𝑌̃ → 𝑌Σ̃, and

𝐷 ⊂ 𝐷̃ is the strict transform of the toric boundary of 𝑌R≥0(−1,−1,1). We see that 𝑌 is

a smooth del Pezzo surface of degree seven, and 𝐷 is a union of three lines on it.

The toric model of (𝑌, 𝐷) is induced by the toric model of (𝑌̃, 𝐻̃) – the toric variety

is 𝑌R≥0(−1,−1,1) � P
2 and the locus of the blowup is 𝐻̃ ∩ 𝑌R≥0(−1,−1,1), which consists

of two points: each on the interior of one of the toric boundary components of P2.
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𝔧′1 + 𝑡−𝐸𝑑𝑥−1

1
+
𝑡−
𝐸
𝑐
𝑦
−1

1 +
𝑡
𝐸̃−
𝐸 𝑐
−𝐸

𝑑 𝑥
−1 𝑦
−1

Figure 5.3: The wall structure 𝔈′, with the three slabs shown in bold.

The result of [21, Theorem 4.6] therefore also applies to the wall structure 𝔈′
𝔧′; we

conclude that𝑈𝔧′ has smooth generic fibre. □

Remark 5.1.4. The algebra 𝑅(𝔈′
𝔧′) is calculated by Gross–Hacking–Keel–Kontsevich

in [22, Example 8.31]. Since 𝔈′
𝔧′ is finite, we may consider 𝑈𝔧′ to be a family over A1

with generic fibre isomorphic to the complement of five lines in a smooth del Pezzo

surface of degree five.

Notation 5.1.5. The monoid maps 𝜄 𝑓 and 𝜄𝑔 defined in Construction 4.3.1 induce

ring homomorphisms

𝜄 𝑓 : 𝑅egs
𝑓

↩→ 𝑅
egs
∼ and 𝜄𝑔 : 𝑅egs

𝑔 ↩→ 𝑅
egs
∼ (5.7)

where 𝑅egs
𝑓

is the ring 𝑅egs associated to 𝑄egs
𝑓

, and similarly for 𝑅egs
𝑔 and 𝑅

egs
∼ . We

denote the three families, previously denoted by 𝔛, by 𝔛∼, 𝔛 𝑓 and 𝔛𝑔 .

Lemma 5.1.6. Consider the pullback families 𝜄∗
𝑓
𝔛 𝑓 and 𝜄∗𝑔𝔛𝑔 over Spec𝑅egs

∼ , and the

morphisms

𝔛∼

𝜄∗
𝑓
𝔛 𝑓 𝜄∗𝑔𝔛𝑔 .

(5.8)

defined in Proposition 4.2.15. These morphisms are birational over Spec𝑅egs
∼ .

Proof. The three families in (5.8) are all projective schemes over Spec𝑅egs
∼ . By the

Stein factorization theorem, therefore, each of the two morphisms is a composition
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𝜋 ◦ 𝑝 of a proper morphism 𝑝 with connected fibres and a finite morphism 𝜋. We

claim that the finite morphism 𝜋 is of degree one. Since being of fixed degree is an

open condition, it suffices to show the existence of a point in 𝜄∗
𝑓
𝔛 𝑓 and 𝜄∗𝑔𝔛𝑔 with

fibre in 𝔛∼ equal to a single point.

The central fibre of Spec𝑅(𝔇 𝑓↔𝑔) is a union of eight irreducible components,

seven of which are smooth toric varieties. Each of these toric varieties is iso-

morphic to Spec𝐾[𝐶(Z)], where 𝐾 = (𝑅egs
∼ /𝔪egs), 𝐶 is one of the ten domains of

linearity of the piecewise linear function 𝜓̃ on 𝐵 𝑓↔𝑔 , and 𝐶(Z) denotes the inte-

gral points of 𝐶. (The seven domains of linearity that we consider here arise from

the seven chambers in Figure 4.5 which are not in the lower left quadrant.) Let

us consider 𝐶 = 𝐶𝑡 + 𝐶𝑠 , where 𝐶𝑡 = Cone⟨(0, 0, 1, 0), (0,−1, 1, 0), (1,−1, 1, 0)⟩ and

𝐶𝑠 = Cone⟨(0, 0, 0, 1), (0,−1, 0, 1), (1,−1, 0, 1)⟩. The restrictions of the maps (5.8)

to the component of the central fibre defined by 𝐶 are induced by the inclusions

𝐶𝑡 , 𝐶𝑠 ↩→ 𝐶:

Spec𝐾[𝐶(Z)]

Spec𝐾[𝐶𝑡(Z)] Spec𝐾[𝐶𝑠(Z)].

(5.9)

The GIT quotients of these three affine toric varieties by G2
𝑚 (as specified in the

proof of Proposition 4.2.15), are all isomorphic to P2. More specifically, the GIT

quotients are realised as Spec𝐾[𝐶𝑡(Z)]/G2
𝑚 � P

2
𝐾

, Spec𝐾[𝐶𝑠(Z)]/G2
𝑚 � P

2
𝐾

and

Spec𝐾[𝐶(Z)]/G2
𝑚 � Δ ⊂ P2

𝐾
× P2

𝐾
, where the morphisms of (5.9) descend to the

projections
Δ ⊂ P2

𝐾
× P2

𝐾

P2
𝐾

P2
𝐾
.

𝜋1 𝜋2 (5.10)

Hence both morphisms in (5.8) are generically of degree one. □

5.2 The main result

Definition 5.2.1. Let 𝜂 denote the generic point of Spec k⟦𝑡⟧, and denote the generic

fibre of a family ℨ → Spec k⟦𝑡⟧ by ℨ𝜂. We will say that a one-parameter family

𝛾 : Spec k⟦𝑡⟧→ Spec 𝑅̃egs is general if the generic fibre (𝛾∗𝔛)𝜂 is smooth for each of
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the three families 𝔛→ Spec 𝑅̃egs given by 𝔛∼, 𝜄∗𝑓𝔛 𝑓 and 𝜄∗𝑔𝔛𝑔 .

Note that almost all one-parameter families 𝛾 are general. The main result of

this thesis is:

Theorem 5.2.2. For a general one-parameter family 𝛾 : Spec k⟦𝑡⟧ → Spec 𝑅̃egs, the

morphisms of (5.8) induce a diagram

(
𝛾∗𝔛∼

)
𝜂

(
𝛾∗𝜄∗

𝑓
𝔛 𝑓

)
𝜂

(
𝛾∗𝜄∗𝑔𝔛𝑔

)
𝜂

(5.11)

where the bottom left corner is isomorphic to P2
k((𝑡)), the other two entries in the diagram are

isomorphic to Blpt P
2
k((𝑡)), and both leftward-pointing maps are the blowup in a point on the

boundary.

Theorem 5.2.2 follows immediately from the two lemmas below.

Lemma 5.2.3. For a general one-parameter family 𝛾 : Spec k⟦𝑡⟧→ Spec 𝑅̃egs, the generic

fibre
(
𝛾∗𝜄∗

𝑓
𝔛 𝑓

)
𝜂

is isomorphic to P2
k((𝑡)).

Proof. The generic fibre
(
𝛾∗𝜄∗

𝑓
𝔛 𝑓

)
𝜂

is a smooth del Pezzo surface. Since the Brauer

group of k((𝑡)) is trivial for k of characteristic zero, it suffices to prove that this del

Pezzo surface has degree nine; cf. [23, Example 6.0.2]. Consider the diagram of

rings

𝑅
egs
𝑓

𝑅̃egs

𝑅̃′′ 𝑅̃#.

𝜄 𝑓

(5.12)

The family 𝜄∗
𝑓
𝔛 𝑓 → Spec 𝑅̃egs arises by pullback from a family 𝔚 → Spec 𝑅̃′′,

because all the wall functions of 𝜄 𝑓
(
𝛼 𝑓 (𝔇(Σ 𝑓 ,𝐻 𝑓 ))

)
lie in 𝑅̃′′. Consider the pullback

of 𝔚 to Spec 𝑅̃# via the lower horizontal map in (5.12). It suffices to show that fibres

of this family have degree nine – since the degree is constant on fibres, we compute

the degree of the central fibre. The central fibre is the union of toric varieties with

moment polytopes as pictured in Figure 5.4. This is also the central fibre of a

Mumford degeneration with general fibre P2, and hence has degree nine. □
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Figure 5.4: The moment polytopes of the toric varieties whose union forms the central
fibre of the pullback of 𝔚 to Spec 𝑅̃#.

Lemma 5.2.4. For a general one-parameter family 𝛾 : Spec k⟦𝑡⟧ → Spec 𝑅̃egs, both the

generic fibres
(
𝛾∗𝔛∼

)
𝜂

and
(
𝛾∗𝜄∗𝑔𝔛𝑔

)
𝜂

are isomorphic to Blpt P
2
k((𝑡)).

Proof. As above, both generic fibres are smooth del Pezzo surfaces. It suffices to

prove that these del Pezzo surfaces have degree eight, since any such del Pezzo

surface is either P1 × P1 or Blpt P2 and furthermore:

•
(
𝛾∗𝔛∼

)
𝜂

admits a birational morphism toP2
k((𝑡)) and hence cannot be isomorphic

to P1
k((𝑡)) × P

1
k((𝑡));

•
(
𝛾∗𝜄∗𝑔𝔛𝑔

)
𝜂

receives a birational morphism from
(
𝛾∗𝔛∼

)
𝜂
� Blpt P

2
k((𝑡)), and

hence cannot be isomorphic to P1
k((𝑡)) × P

1
k((𝑡)).

Here we used Lemma 5.1.6.

To see that these del Pezzo surfaces have degree eight, we argue exactly as

above, computing the degree of the central fibres of families over Spec 𝑅̃#. These

central fibres are once again unions of toric varieties, which also occur as central

fibres of Mumford degenerations – this time of Blpt P2. They therefore have degree

eight. □
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