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Abstract

Alignment and self-organisation of particles is a phenomenon observed in various

contexts and at different scales in biology. In nature, we see alignment in schools

of fish, flocks of birds, and groups of people. Zooming in at a cellular level, we

observe alignment in bacterial swarms and the alignment of fibroblasts in tissue.

Fibrotic tissue is associated with numerous pathologies, including cancer, liver

disease, and cystic fibrosis, and is believed to contribute to up to 45% of worldwide

deaths. One key difference between fibrotic tissue and healthy tissue is that the

fibroblasts, the cells which make up the bulk of the tissue, align with each other

over a relatively large length scale of up to 10 cell lengths, whereas there is little

cell alignment in healthy tissue.

In this thesis, we develop an agent-based modelling framework to model the

alignment of fibrotic tissue; specifically, self-propelled, interacting ellipse-shaped

particles. Although there are existing continuum models that consider the alignment

of self-propelled particles, we choose to use an agent-based model so that we can

fully understand the underlying mechanisms in our model and more easily relate

model parameters directly to experimental data.

We start by deriving a minimal model to understand if alignment of self-

propelled particles with overlap avoidance is sufficient to replicate the observed

experimental alignment. We obtain analytical results for two interacting cells and

then examine if these results are reflected in simulations with many particles. Next,

we computationally analyse the effect of model parameters on alignment and com-

pare the model output with experimental data.

We then introduce additional mechanisms into the model. The first mechanism
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is the ability for cells to change their aspect ratio in response to overlap avoidance.

The second added feature is cell-cell junctions, which can act on their own or pro-

vide a site for trans-cellular actin bundles to form. Again, we analytically examine

the model for two interacting cells and then computationally examine the model for

many interacting cells to relate it back to experimental data.



Impact Statement

Results from this thesis contribute towards progress from both a mathematical and

a biological perspective.

From a mathematical point of view, we have developed a new model for in-

vestigating the alignment of self-propelled particles. It has a number of advantages

over existing models in that alignment is not a model ingredient and hence align-

ment arises purely from physical principles. There are many possible use cases for

the model. It can be used to simulate and investigate alignment of self-propelled

particles of any shape, and can offer insight into the general principles of collective

alignment. Alongside this modelling framework, we have developed an analyti-

cal framework which offers a different perspective on how analysis of agent based

models can be conducted.

From a biological standpoint, we have developed a new model to investigate

emergent alignment mechanisms that does not have alignment as a model ingredi-

ent. We use computational and mathematical analysis to fully understand the role

that each aspect of the model could play on alignment. This allows us to gain funda-

mental physical insight into the role each mechanism plays in generating alignment

and results in a particularly useful modelling framework for working with experi-

mental data and translating between biology and mathematics. The generality and

flexibility of our modelling framework means that the model could have a number

of wide reaching applications beyond what is explored in this thesis. It could, for

example, be used to investigate the alignment of bacteria, or the alignment of fi-

broblasts in the context to wound healing. The model can hence continue to be used

and developed in the future.
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Work done as part of this thesis has resulted in two publications: (Kenny et al.,

2023) which focused on the experimental results and the conclusions that can be

drawn when comparing our model to the biological setting. (Leech et al., 2024b)

focused on the theoretical results from computational analysis of the agent-based

model. There is one further publication that has been submitted: (Leech et al.,

2024a), which focuses on analytic results from the two-cell model.
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Chapter 1

Introduction

1.1 Collective behaviour in biology

Collective behaviour in biology can be de�ned as group-level behaviour arising

from local behaviours or interactions of individuals in the group. This collective

behaviour usually has the aim of performing some group-level function (Ouellette

and Gordon, 2021).

There are many examples of collective behaviour in biology. On the macro-

scale we have the well known examples of schools of �sh, �ocks of birds, migrating

herds of wildebeest, or even crowds of people (Ginelli et al., 2015; Makris et al.,

2009; Parrish and Edelstein-Keshet, 1999), generally with the aim of migrating to-

gether as a group. Looking under a microscope, a key example of collective be-

haviour on a cellular scale is the collective alignment and then directed migration

of neural crest cells in an embryo, which plays a fundamental role in development

(Shellard et al., 2018). This is a very robust process and understanding it is of

fundamental interest in the �eld of developmental biology since it is thought to be

prototypic of general collective phenomena (Szabó and Mayor, 2016; Schumacher

et al., 2016). We observe cells behaving similarly in many examples of cancer in-

vasion (Friedl et al., 2012), where cells migrate collectively to spread to other parts

of the body. Bacteria also have the ability to behave collectively to form bio�lms

(Mah and O'Toole, 2001). They form bio�lms by communicating with each other,

a process that has been shown to be robust, even in the context of �uid �ows (Dal-
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wadi and Pearce, 2021). Depending on the context, the formation of a bio�lm will

in turn have a number of implications on the system it is found in, such as antibiotic

resistance, or the degradation of water quality (Ali et al., 2023).

Since these systems generally consist of agents with some form of self gener-

ated motion, they fall within the �eld of active matter. Physically, this means that

these systems consist of agents that are capable of converting energy into motion.

This ability, coupled with interactions between neighboring particles, can result in

collective behaviour. The novelty of active matter is that the energy input occurs

on a local scale, driving the system out of equilibrium and causing changes that

can propagate throughout the entire system, leading to emergent structures and be-

haviours. The study of how this process works and the search for theoretical de-

scriptions of living matter have been of interest for several years (Marchetti et al.,

2013).

Many different spatial patterns such as �ocks and swarms can arise as a result

of collective behaviour. Angular patterning can also emerge in populations in the

form of collective alignment. On a larger scale, collective alignment has been ob-

served in schools of �sh (Herbert-Read et al., 2011) where hydrodynamic bene�ts

as a result of collective alignment can aid migration (Lopez et al., 2012). Collec-

tive alignment is also observed on a micro-scale in cells and bacteria (Balagam

and Igoshin, 2015; Dartsch and Betz, 1989; Kenny et al., 2023; Zhang et al., 2010;

Gruler et al., 1999; Duclos et al., 2014) where alignment of �broblasts, for example,

can affect key mechanical properties of the tissue in which they are found (Erdogan

et al., 2017).

Though there are similarities between systems, modelling alignment in the

�eld of ecology typically involves different approaches to modelling alignment at

a cellular level. This is because larger organisms such as �sh, birds or wildebeest

commonly use sight to understand and interpret their surroundings and can actively

change their position and reorient themselves accordingly. For work on this see

Akoi (1982); Shu and Tadmor (2021). Cells, on the other hand, have a plethora

of other ways to understand their surroundings and react accordingly, including
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via signalling mechanisms such as chemotaxis or durotaxis, or mechanically via

overlap avoidance or communication with the extra-cellular matrix (ECM). Exper-

imental works (Wang et al., 2018; Maruthamuthu et al., 2011) have shown that

the ECM can transmit forces, aiding cytoskeletal alignment. Other environmental

factors could also have an impact on alignment. These include the shape of the en-

vironment if boundaries or other solid components are present, and the environment

medium.

The biological example of collective alignment that motivates the work done

in this thesis is the long-range alignment of �broblasts in keloid scar tissue. Keloid

scars are non-harmful thick raised scars that can appear on a patient's skin with no

known cause or cure. Fibroblasts are cells that help to maintain the structural frame-

work of tissue and are the main cells involved in the formation of keloid scars.

We are working in collaboration with experimental biologists in Professor Brian

Stramer's lab at Kings College London who have carried out a number of different

experiments to investigate the differences between keloid �broblasts (found in un-

healthy tissue) and normal �broblasts (found in healthy tissue), both at a single cell

level and between populations of cells. Individually, there are no major differences

observed between the two types of cells, but when observing the two populations

at a high cell density, keloid �broblasts are seen to collectively align over a much

longer length-scale and shorter time-scale compared to normal �broblasts.

Upon imaging the keloid �brobalsts and the underlying ECM, we �nd that cell

alignment is correlated with ECM. This suggests that there is a relationship between

the alignment of the cells and the alignment of the ECM. However the details of this

co-ordination remains unclear. One hypothesis is that there is some feedback loop

in the alignment where the cells remodel the ECM, which in turn reinforces the

alignment of the cells as they align themselves with the �bres in the ECM. This,

however, is a possible mechanism to reinforce alignment, instead of a mechanism

to explain where the alignment comes from in the �rst place. Experiments to in-

vestigate this further have shown that keloid �broblasts were equally aligned with

and without the presence of an ECM, suggesting that the ECM is not an essential
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component of the alignment process (Kenny et al., 2023).

One key difference between the populations of cells at con�uence (high den-

sity) is that keloid �broblasts are observed to avoid overlap more than normal �-

broblasts. Intuitively, it makes sense that this inhibition of overlap could contribute

towards more alignment, but a key question is whether this is enough to explain

the quanti�ed difference in alignment that we observe between the two populations.

Other important components that could play a role in cell communication are cell-

cell adhesions and actin in the cytoskeleton. Fibroblasts contain actin bundles that

tend to stretch the length of the cell, and have the ability to extend outside of the cell.

Experimentally we �nd that actin and cell orientation is more strongly correlated in

keloid �broblasts. Interestingly, differences in actin alignment between populations

is not observed in individual cells, but is seen over a larger neighbourhood of about

2 cell lengths, suggesting that this actin alignment is supracellular.

Though we have some hypotheses from biological studies, the mechanism be-

hind this long range alignment that we observe in keloid �broblasts is currently

unclear. We therefore turn to mathematical modelling as a tool to help understand

this further and test different hypotheses. We hope that exploring this speci�c ex-

ample of �brotic tissue in the context of keloid scars will offer a pathway to better

understanding the causes of tissue �brosis in general. This is of biological interest

since tissue �brosis is found in numerous pathologies and is thought to be respon-

sible for up to 45% of worldwide deaths (Henderson et al., 2020).

1.2 Mathematical modelling of collective behaviour

1.2.1 Approaches to modelling active matter

Pattern formation is a topic in mathematical biology that has been studied for many

years, �rst arising from Alan Turing's seminal paper (Turing, 1952). The focus of

this work was on spatial patterning, and a huge amount of research has been con-

ducted since to further explore this, with applications to embryonic development

amongst other topics (Meinhardt, 2008). When considering pattern formation, it is

not immediately clear how collective behaviour might emerge from understanding
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the individual-level behaviour within a system, orvice versa. We turn to mathemat-

ical models and simulations as a tool to help us bridge the gap between these two

phenomena. The study of collective behaviour has therefore led to a vast array of

modelling approaches being developed. While alignment of passive matter has been

studied in physics (Donev et al., 2004; Delaney et al., 2005; Rocks and Hoy, 2023),

the study of alignment in a biological setting has additional layers of dif�culty due

to the complexity of biological systems. This additional complexity includes the

ability for cells to self-propel, actively and passively change their shape and interact

with each other both mechanically (via overlap avoidance, cell-cell junctions, inter-

actions with the underlying extracellular matrix) and biochemically (via numerous

cell signals, each with a different effect on the cell). It is also likely that there is

noise in all aspects of the system. All of these effects could be interconnected,

making for a very complex system to understand and model. For comprehensive

reviews outlining some of the challenges and approaches taken see Ramaswamy

(2010); Shaebani et al. (2020).

A common modelling approach is continuum models, where the system of dis-

crete particles is approximated by continuous quantities, such as cell density and

mean orientation. An advantage of this approach is that the system can generally be

described by some set of partial differential equations for which we have a number

of analytical tools available to help us analyse and understand the model further.

This is a popular modelling approach and hence there are many examples of con-

tinuum models being used to model pattern formation (Murray, 2003; Albi and

Pareschi, 2013; Großmann et al., 2016; He et al., 2020; Manhart, 2019; Markham

et al., 2014). In the context of collective alignment, Leah Edelstein-Keshet and

others have developed a series of continuum models to describe and explore an-

gular patterning (Edelstein-Keshet and Ermentrout, 1990; Mogilner and Edelstein-

Keshet, 1995, 1996). The modelling framework assumes that cells move through

a 2D substrate and reorient randomly as a result of interactions with neighbour-

ing cells. The model involves considering distributions of orientation and deriving

integro-differential equations to account for changes in these distributions. Sta-
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bility analysis can be performed on these integro-differential equations to give a

range of parameter space in which pattern formation can occur. This is then sup-

ported by numerical simulations of the governing equations, alongside an agent

based modelling framework using cellular automata simulations (Ermentrout and

Edelstein-Keshet, 1993). Links are made with nematic order in crystal formation as

this involves alignment of molecules and has been very well studied. Another foun-

dational contribution to the physics of active matter when it comes to modelling

�ocking behaviour and understanding biological swarms is Toner and Tu theory.

Toner and Tu (1995) presents a series of hydrodynamic equations to describe the

large-scale behaviour of self-propelled interacting agents. An additional example

of collective alignment that can arise in nature is laning. This is the phenomena in

which agents naturally move in lanes to avoid interacting with each other and has

been modelled and analysed in Bacik et al. (2023). While continuum approaches

have many mathematical advantages, approximating a system of discrete cells as

continuous is not always appropriate. Firstly, continuum models often assume that

there are a large number of cells. As a consequence, parameters for a continuum

model can sometimes be dif�cult to relate back to physical individual parameters of

the biological system.

Another approach is to model the system as discrete, taking an agent based

modelling approach. This involves considering each individual particle (agent) in

the system separately and imposing a set of modelling assumptions to derive a set

of differential equations that describe how each individual agent changes over time.

This approach is particularly useful for modelling and understanding underlying

mechanisms since assumptions about cell behaviour on an individual level can usu-

ally be transferred directly into the modelling framework in a fairly straightforward

way. As a result, this approach �ts particularly well when working with experimen-

tal data as a lot of this information can be input directly into the model. This also

means that the modelling framework is easily interpretable and modelling assump-

tions are well understood. For review papers on this approach see Mogilner and

Manhart (2016); Yates et al. (2010). One of the most famous agent-based alignment
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models is the Vicsek model (Vicsek et al., 1995) which assumes that self-propelling

particles will reorient themselves to the average orientation of their neighbours,

with some amount of orientational noise. Under certain conditions (when the align-

ment effect is large compared to the noise), this produces large scale patterning and

collective alignment. The Vicsek model, and variants of the model, have been ap-

plied to a number of different biological applications (Park et al., 2020; Degond

et al., 2018). Another framework to model �ocking is Cucker and Smale (2007),

which again relies on self-propelled particles reorienting themselves to the average

velocity of their neighbours. We argue that these models are more useful for un-

derstandingwhy a system works, rather thanhow a system works. Though these

models are useful in certain contexts, they are not appropriate for determining un-

derlying mechanisms of alignment, since alignment is already an input assumption

of the model.

Another discrete modelling framework is a Voronoi model. These can be used

to model tissues at con�uence, and are particularly favoured for modelling epithe-

lial tissue. An example of where cell alignment has been explored in the context

of a Voronoi model can be found in Giavazzi et al. (2018). Here, a self-propelled

Voronoi model is used, with an orientation term that describes how each cell will re-

orient itself towards the migration velocity, with some additional orientational noise.

This is a good example of how the Voronoi model could be extended to incorpo-

rate additional effects. Voronoi models, however, are less suitable for describing

individual cell movement since they assume that cells must be interconnected at all

times.

1.2.2 Approaches to modelling cell shape change

Fibroblasts, the primary focus of this study, are observed to have highly dynamic

cell shapes. We therefore include the ability for cells to change their shape in our

modelling framework, instead of modelling cells as rigid bodies. Several differ-

ent modelling approaches exist that can �exibly describe changing cell shapes: (a)

the immersed boundary method, (b) phase-�eld models, (c) cellular Potts models

and (d) vertex models. The immersed boundary method (Peskin, 2002; Strychalski
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et al., 2015; Cooper et al., 2017) is a modelling framework that comes from the

�eld of �uid dynamics. It can be applied to biological settings by representing the

cell membrane as an explicit curve (or surface in 3D). The model describes how

the boundary of the cell will interact with the surrounding �uid. Phase-�eld models

(Moure and Gomez, 2021; Najem and Grant, 2016; Nonomura, 2012; Löber et al.,

2015; Shao et al., 2010), represent a cell by a continuous phase �eld variable which

takes value 1 inside the cell, 0 outside the cell and has a rapid but smooth transition

at the cell membrane. It is then possible to derive governing equations for how the

phase �eld evolves. Cellular Potts models (Graner and Glazier, 1992; Matsushita,

2017; Debets et al., 2021; M̈uller et al., 2023) are an on-lattice approach where

each cell consists of a collection of grid points, and their dynamics are governed by

energy minimization principles at each time step. Vertex models (Alt et al., 2017;

Barton et al., 2017; Koride et al., 2018; Li and Sun, 2014) represent connected cells

via vertices and edges, with the evolution being governed again by energy minimi-

sation principles. Phase-�eld and immersed boundary models have the advantage

of being able to accommodate a wide range of cell shapes. The downside of this is

that they are computationally intensive, making them more appropriate for simulat-

ing the evolution of a single cell, or a small number of cells. Thanks to advances

in computational methods, cellular Potts models have become less computationally

demanding (see, e.g., Morpheus Starruß et al. (2014)); however, their lattice-based

nature can be quite restrictive, making analytical studies challenging and the ex-

plicit inclusion of mechanical effects dif�cult. This being said, self-propulsion and

cell-cell adhesions have been studied within cellular Potts models in Lee and Lee

(2021). It still remains unclear how to incorporate other effects such as supracel-

lular actin cables into this framework. Lastly, vertex models are primarily used for

simulating tissue dynamics, making them less suitable for modeling individual cell

movement. An example exploring cell alignment in vertex models can be found in

Li and Sun (2014), which is relevant in the context of epithelial monolayers but dif-

fers from our model in that it does not account for cell overlap or cell-cell collisions.

An extension of a continuum approach to modelling active matter that accounts for
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shape deformations can be found in Hadjifrangiskou et al. (2023), where it is found

that allowing for shape deformations leads to elongated cells. Another discrete ap-

proach that incorporates shape change alongside cell polarisation and migration can

be found in Merchant et al. (2018). This modelling approach, however, investigates

the role that intracellular signaling can play in collective migration, as opposed to

cell-cell level interactions which is the focus of this work. A similar approach to

the one that we take in Chapter 5 is described in Palsson and Othmer (2000); Pals-

son (2008), where populations of deformable ellipsoidal cells in 3D respond to cell

overlap by experiencing changes in aspect ratio.

1.2.3 Approaches to modelling cell-cell junctions

Another feature of �broblasts that we look to include in our modelling framework

are cell-cell junctions and cytoskeletal forces. In an agent based modelling frame-

work, cell adhesions tend to be modelled as springs (Zhu, 2000; DiMilla et al.,

1991). In a continuous setting, the effect of cell adhesions are accounted for by

adding some short range attraction effect into the model (Chaplain et al., 2011).

Actin is a fundamental component of the cell cytoskeleton and appears in many bi-

ological contexts. There are therefore many examples of actin being modelled in

the literature. Some of the more relevant examples to this thesis are detailed models

of actin bundles within cells that can be found in Volkmann et al. (2001); Bathe

et al. (2008); Edelstein-Keshet (1998); Foffano et al. (2016). While these perhaps

go into a level of detail beyond what is needed for our modelling framework, they

can offer insight into the underlying mechanisms of actin bundles and highlight key

results that can help to inform modelling assumptions that we make.

1.3 Our approach

In this thesis, we mathematically model the dynamic collective alignment of self-

propelled cells moving in two spatial dimensions. We choose to take an agent based

modelling approach since this is appropriate for exploring the underlying mecha-

nisms of alignment; speci�cally how cell-cell interactions on an individual level

could lead to alignment propagating through a population. This approach also al-



1.3. Our approach 22

lows us to best utilise the experimental data available to us.

There are a few papers in the literature that have speci�cally looked at align-

ment of �broblasts using agent based modelling. In Wershof et al. (2019), com-

putational modelling is used to explore the interplay between �broblast and ECM

alignment. The Vicsek model (Vicsek et al., 1995) is adapted to include feedback

from an extra layer representing the ECM, which acts as a temporal `memory' to

collective motion. A two layer Vicsek model is developed where the �broblasts are

modelled by a more conventional Vicsek model, and the model for the underlying

matrix incorporates the cumulative effect of the cells on the matrix synthesis and

degradation. There is some experimental input and comparisons are made between

experimental data and the model. It is found that initial alignment is driven by cell

interactions with no need for ECM feedback, but that under certain conditions ma-

trix feedback causes further alignment and helps to replicate the diverse array of

matrix patterns that are observed experimentally. This is a good modelling frame-

work to explore the interplay between the �broblasts and the underlying ECM, but

since it is based on the Vicsek model, it is not appropriate for understanding the

underlying mechanism of where this alignment comes from.

Li et al. (2017) explores two possible approaches to modelling �broblast align-

ment. The �rst approach uses a Monte Carlo simulation framework. Elliptic parti-

cles randomly move forwards and backwards with given probabilities, and overlap

is detected at each timestep. If overlap is identi�ed, then the particle is reverted

back to its original position and a new random orientation is de�ned. This process

is repeated until there are no overlaps, before moving onto the next time step. This

is an appropriate framework for replicating the random motion of �broblasts. This

method does not, however, explore cell interactions explicitly. It simply accounts

for cell interactions by specifying that cells cannot be overlapping. The second ap-

proach in Li et al. (2017) uses a Newtonian-based modelling framework. Particles

are represented by self-propelled spherocylinders (rectangles with semicircles on

each end) which experience a viscous drag and forces as a result of collisions. The

forces applied are normal to the line of collision and create a repulsion force and a
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torque which affects the position and orientation of each particle. This is an exam-

ple of a modelling framework where an explicit mechanism is implemented. The

amount of overlap can be controlled on a sliding scale by adjusting the strength of

the force applied as a result of collisions between cells. Overlap is straightforward

to detect as a result of the cells being composed of rectangles and semicircles. How-

ever we know that �broblasts are spindle shaped in reality and hence the cell shape

is a signi�cant assumption in the model.

Many alignment models (Peruani et al., 2006; Baskaran and Marchetti, 2008;

Kraikivski et al., 2006; Li et al., 2017) include self-propulsion and some kind of

overlap avoidance or volume exclusion as model ingredients, suggesting that these

are key components needed for alignment between particles to occur. This can be

justi�ed intuitively, since cell interactions provide a way for cells to change their

orientation, and self-propulsion provides a way for cells to continually interact with

each other and propagate the effects of cell interactions throughout the population.

In our approach we start with a minimal model that investigates how and when the

combination of self-propulsion and overlap avoidance can lead to collective align-

ment. Since cells are observed to crawl on top of each other in varying amounts we

model this overlap avoidance as a quantity that we are able to modify in a continu-

ous manner, instead of treating the cells as solid bodies.

1.4 Thesis outline

The remainder of this thesis is organised as follows: In Chapter 2 we motivate

and derive the base model. Using the modelling philosophy of starting with the

simplest model �rst (Howison, 2005), this is a minimal model which includes two

key ingredients that we hypothesise are needed to give rise to collective alignment:

self-propulsion and overlap avoidance. The model is derived, interpreted and model

properties are discussed.

We then numerically simulate and analytically interrogate this model in Chap-

ter 3. We discuss general model behaviour from numerical simulations and we ex-

plore the dependence of cell alignment on model parameters. To analyse the model
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more deeply, we consider two interacting cells with certain symmetries imposed,

which results in a dynamical system that we can investigate mathematically and

relate back to the modelling framework in order to interpret the results.

With a deeper understanding of the modelling framework and the effect of dif-

ferent model parameters on cell alignment, we make comparisons with experimental

data in Chapter 4. To do so we use insight from our analysis of the model to �t to

experimental measures of cell persistence, alignment and overlap. We �nd good

qualitative agreements but �nd that quantitative agreements could be improved.

Our comparisons with experimental data motivate further model extensions in

Chapters 5 and 6. In Chapter 5 we make the model more realistic by incorporating

the ability for cells to change their shape in response to overlap. We motivate and

derive the extended model, and then explore the effect that this has on our compu-

tational and analytical results.

In Chapter 6 we extend the model in another direction by incorporating the

ability for cell-cell junctions and supracellular actin cables to form. We biologically

motivate and then derive the model accounting for these additional features. We

again simulate the model and investigate the effect of new model parameters on

alignment. Our analytical approach from Chapters 3 and 5 does not hold for this

new model, so we derive a new analytical framework that helps us to understand the

effect of cell-cell junctions on alignment in more detail.

Finally, in Chapter 7, we discuss key results, namely the effect of each model

component on alignment as has been investigated in our computational and analyt-

ical study of the model. We also discuss future avenues of research and possible

model extensions.



Chapter 2

Model derivation

2.1 Biological motivation

Figure 2.1: A,B: Experimental �gures for weakly aligned normal dermal �broblasts
(NDFs), top row, and strongly aligned keloid derived �broblasts (KDFs), bot-
tom row. A: Phase microscopy pictures, scale bar 50mm. B: Mosaically la-
belled cells with two different probes in order to investigate cell overlap (left:
CellTrace Violet, middle: CellTrace Green, right: overlay), scale bar 20mm.

Fibroblasts are cells in the connective tissue in animals that help to maintain the

structural framework of tissues. They are also responsible for making and remod-

elling the underlying extra cellular matrix (ECM). Fibroblast and ECM alignment is

observed during various scarring pathologies. In Kenny et al. (2023) we have inves-

tigated the difference in alignment behaviour of �broblasts in healthy tissue (nor-

mal dermal �broblasts, NDFs) compared to dermo�broblasts in certain scar tissue
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(keloid derived �broblasts, KDFs). KDFs were found to show stronger alignment

over larger length scales, Fig. 2.1A,B. Further we found that KDFs show less ten-

dency to crawl on top of each other. We will use the differences between NDFs and

KDFs to motivate an agent-based model to describe cells with some self-generated

motion where overlap avoidence can be controlled on a continuous scale. Since

alignment processes in active particles are relevant in many contexts, the model in-

gredients are applicable to other cells and situations and hence the model and the

�ndings are relevant beyond �broblasts. We will go on to compare the output of

our model to experimental data in Ch. 4 which will then motivate further model

extensions in Ch. 5 and 6.

Motivated by the biological context discussed in Ch. 1, we build a mechanistic,

agent-based model to describe the motion of individual cells interacting with neigh-

bouring cells in 2D. With the philosophy of starting with the simplest models �rst,

we initially treat the cells as ellipses. This is an approximation and while typically

elongated, real �broblast shapes are more complex and include ruf�es, and protrud-

ing and contracting lamellipodia (Chen, 1981; Felder and Elson, 1990). However,

over the timescale we are interested in, we argue that ellipses are a rough, but appro-

priate approximation of real cell shapes. We note that our choice of ellipses allows

for a straight forward description of dynamic cell shape changes (see Ch. 5). Ad-

ditionally, our modelling framework can be extended to more complex cell shapes

in a straightforward manner. We include a derivation of the governing equations for

some general cell shape in Appendix C. Below, however, we focus on the speci�c

case of ellipse-shaped cells. Finally, we note that we neglect cell divisions in this

model since the timescale of alignment is much faster than the doubling time.

The key model ingredients are:

• Environmental friction:As is standard for this biological system, we assume

a friction-dominated regime. As a consequence, inertia is unimportant and

velocities (not accelerations) are proportional to forces. The strength of the

friction with the substrate is given byh , which effectively sets a time scale.

• Self-propulsion:In the absence of interactions, cells move with �xed speed
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w in the direction of their orientation. Orientational noise will be included in

a straightforward manner when making experimental comparisons, since this

is observed experimentally. We show in Chapter 3 that orientational noise

affects cell alignment in a systematic way by decreasing alignment as noise

increases. We will therefore omit it from the model derivation that follows

in this Chapter and from our initial computational analysis in Chapter 3 for

simplicity.

• Overlap avoidance:When placed on a 2D substrate, many cells types will

try to avoid moving on top of other cells. The termcontact inhibition of

locomotionis sometimes used in this context. However, contact inhibition

of locomotion more commonly refers to an active change of direction upon

contact, as opposed to a more passive reaction, which is what we model here.

Another commonly used term in this context isrepulsion. However, in this

work we will use the termoverlap avoidanceto emphasise that the effect is

short-ranged and driven by cell overlap. Note that “overlap” in 2D can be

interpreted either as being positioned partly on top of each other, or allowing

for some cell softness. We allow overlap avoidance to be tuneable, its strength

given by parameters . As a result we are able to control the amount that

cells avoid overlap on a continuous scale. Ifs = 0, cells have no overlap

avoidance, and fors ! ¥ , cells would behave as solid objects that never

overlap/move on top of each other. To avoid overlap, cells can:

– move to change their location,

– turn to change their orientation.

Both these effects will be a consequence of the minimisation of a common

energy term.

2.2 Derivation details

We considerN cells within the �xed domainW2 R2, each with centroid posi-

tion X i = ( Xi ;Yi) 2 R2; i = 1; : : : ;N and orientationa i 2 [0;2p); i = 1; : : : ;N. Each
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cell is described by an ellipse with semi-major axisa and semi-minor axisb as

shown in Fig. 2.2A,B. The cell's area is then given byA = abp. In the ab-

sence of other cells, each cell self-propels with constant velocityw in the direc-

tion e(a i) = ( cos(a i);sin(a i))T , where superscriptT denotes the transpose. We

assume that this self propulsion encompasses the mechanism of an individual cell

moving in a directed way across the substrate. In the biological context this is a

complex process involving protruding lamellelapodia and adhesion to the underly-

ing substrate (Tschumperlin, 2013). We do not model this level of detail; instead

we model the whole process as some directed motion, as described below. An al-

ternative approach would be to model cell motion as a persistent random walk, as

has been done in e.g. Escaff et al. (2018); Wu et al. (2015). We note that since the

self-propulsion directly follows the orientation, this implies that the reorientation

timescale is instantaneous. In reality, cells could take some time to start moving in

a different direction following a cell reorientation. If we were to model this level of

detail, some decay timescale for the self-propulsion vector could be included here.

With the aim of not introducing additional unknown parameters into the model and

keeping the initial model as simple as possible, we keep the reorientation timescale

to be instantaneous.

Figure 2.2: A: Ellipse parameterisation. B: Elliptic cell geometry of a single cell with
centreX, dimensionsa andb, orientationa .

We want to build a phenomenological model that includes the key ingredients

of self-propulsion and overlap avoidance observed in experiments. We can write
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down an energy to represent this behaviour and then use energy minimisation prin-

ciples to derive the resulting governing equations. Focusing on one cell positioned

atX(t) with orientationa (t) at timet, we parameterise the points inside the cell,x,

by

x(t;s;q) = X(t)+ sR(a (t))k(q); s2 [0;1]; q 2 [0;2p); (2.1)

whereq can be thought of as a modi�ed arc length ands quanti�es the normalised

distance from the centre to the boundary of the ellipse, see Fig. 2.2A. We note

that there are other parameterisation options; we use this parameterisation for later

analytic convenience. We emphasize thatq is not necessarily equivalent to the

angle around the ellipseb, but it relates to this via the relationbtanq = atanb. The

rotation matrixR(a ) and the shape vectork(q) are de�ned by

R(a ) =

0

@
cos(a ) � sin(a )

sin(a ) cos(a )

1

A and k(q) =

0

@
acos(q)

bsin(q)

1

A : (2.2)

We assume that at every time stepDt, the system minimizes a total energyEtot,

which, for the base model, is the sum of contributions from frictionEfriction, from

overlap avoidanceEoverlap and from self-propulsionEprop. All terms inside the in-

tegrals below represent the effect of each contribution on one pointx inside the

ellipse. We then obtain the total energy for one cell by integrating over whole (el-

liptic) cell area, i.e. with respect tos andq. The chosen parametrisation given in

(2.1) leads to the appearance of the area elementabsin the integrals in (2.3), (2.4)

and (2.5).Efriction models friction with the environment by comparing how much

pointsx have moved between timet and timet � Dt:

Efriction = h
Z 2p

0

Z 1

0
abs

jx(t;s;q) � x(t � Dt;s;q)j2

2Dt
dsdq: (2.3)

The overlap avoidance termEoverlap is modelled by an energy potentialV which
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includes overlap avoidance interactions with all other cells.

Eoverlap=
Z 2p

0

Z 1

0
absV(x(t;s;q)) dsdq: (2.4)

The choice ofV will be discussed below. Finally, we model self-propulsion. We

include it in the energy formulation by prescribing a forceF acting on the cell.

Below, we choose this to beF = whe(a ), i.e. acting in the direction of the orien-

tation and proportional to the experienced frictionh . This choice ofF leads to a

self-propulsion speed that is independent of friction (choosingF not proportional

to h would simply lead to a different de�nition of the non-dimensional quantities

below), via

Eprop = �
Z 2p

0

Z 1

0
absF � x(t;s;q) dsdq: (2.5)

The total energy is then given by summing (2.3), (2.4) and (2.5)

Etot = Efriction + Eoverlap+ Eprop: (2.6)

We obtain governing equations by minimising this energy in each time step. In other

words, in each time step the cell can change its characteristics (position, orientation,

shape) to decrease its overall energy. The energy over a timeDt, Etot for one cell is

given by

Etot =
Z 2p

0

Z 1

0

�
h

jx(t;s;q) � x(t � Dt;s;q)j2

2Dt

� F�x(t;s;q)+ V(x(t;s;q))
�
absdsdq:

(2.7)

To obtain the governing equation for centroid positionX, we �rst take the derivative
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of (2.7) with respect toX(t). We holdx(t � Dt;s;q) constant and obtain

dEtot

dX
=

Z 2p

0

Z 1

0

�
h

(x(t;s;q) � x(t � Dt;s;q))
Dt

� F+ ÑV(x(t;s;q))
�

absdsdq:

(2.8)

To minimise the energy, we then set dEtot=dX = 0 and letDt ! 0. Using (2.1) to

determine�x in terms of �X and �a we obtain

0 =
Z 2p

0

Z 1

0

�
h ( �X + s�a

dR
da

k) � F+ ÑV(x(t;s;q))
�

absdsdq: (2.9)

Finally, we evaluate the integral in (2.9). The �rst term in (2.9) givesAh �X, corre-

sponding to the (equal) friction experienced across the cell area. The second term

integrates to zero, due the cosine and sine terms ink (and which automatically

follows from the de�nition of X as the centroid). The third term involving self-

propulsion simply givesAF, which we set to beF = whe(a ) as discussed above.

Together this yields

dX
dt

= �
1

hp

Z 2p

0

Z 1

0
sÑV dsdq + we(a ); (2.10)

We obtain the equation for da =dt in a similar way. Taking the derivative of (2.7)

with respect toa and holdingx(t � Dt;s;q) constant we obtain

dEDt

da
=

Z 2p

0

Z 1

0

�
h

(x(t;s;q) � x(t � Dt;s;q))
Dt

� F+ ÑV(x(t;s;q))
�

� s
dR
da

k absdsdq:

(2.11)

We set dEDt=da = 0 and letDt ! 0. Using (2.1) to determine�x we obtain

0 =
Z 2p

0

Z 1

0

�
h ( �X + s�a

dR
da

k) � F+ ÑV(x(t;s;q))
�

� s
dR
da

k absdsdq: (2.12)

We can again evaluate the integral. The �rst term integrates to zero due to the sine

and cosine terms ink. The second term gives(a2 + b2)Ah �a =4 which contains the
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friction parameterh and the expression for the moment of inertia of an ellipse. This

therefore corresponds to the friction experienced by the cell when turning. The

third term also integrates to zero due to the sine and cosine terms ink. Together this

yields
da
dt

= �
4

hp(a2 + b2)

Z 2p

0

Z 1

0
s2ÑV � (Rk(q))? dsdq: (2.13)

The superscript? describes the left-turned normal vector. We note thatR? =

dR=da = R(a + p=2). The two equations (2.10) and (2.13) show how the cell

position and orientation are in�uenced by the force and torque associated withV

respectively. Note that we are working in a friction-dominated regime, which is

why velocity and angular velocity (as opposed to acceleration and angular accel-

eration) are proportional to force and torque. We also present an alternative model

derivation based on force balance in an overdamped regime, which leads to the same

governing equations in Appendix. B.

2.2.1 Choice of overlap potentialV

The potentialV describes the in�uence of overlap, whereV > 0 describes over-

lap avoidance andV < 0 overlap preference. Many choices ofV are possible: e.g.

since cells might be thicker closer to the cell centre, overlap closer to the cell centre

could be punished more than further away. However, due to the governing equa-

tions in (2.10) and (2.13) being formulated in terms of integrals of the gradient of

the potentialV, complicated shapes ofV are computationally harder to evaluate,

especially in the context of collective dynamics when this will need to be computed

numerous times at each time step, and hence has the potential to be computation-

ally costly. We therefore chooseV to be constant with values in regions of overlap

and zero elsewhere: For two overlapping ellipses with domainsA andB we de-

�ne V(x) = s 1A \ B (x), where1A \ B (x) is the indicator function which equals 1

if x 2 A \ B and 0 otherwise. The strength of this potential iss 2 R. If s > 0, the

cells experience repulsion in response to overlap, and ifs < 0, the cells experience

attraction. In this works > 0. As a result of this choice of potentialV, two cells

only experience overlap avoidance upon directly overlapping with each other, hence
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we de�neN i as the set of indices of cells that overlap with thei-th cell.

This choice ofV allows us to evaluate the integrals in the governing equations

(2.10) and (2.13) explicitly. For (2.10) we start by reverting to Cartesian coordinates

and using the divergence theorem.

Z 2p

0

Z 1

0
absÑV(x(t;s;q)) dsdq =

Z

A
ÑV(x) dx =

Z

¶A
V(x)ndS; (2.14)

wheren is the outward unit normal along the edge of the cell. Next we assume

there is only overlap with one other cell covering the domainB and denote the

intersection points going counter-clockwise along the intersecting segment byP1

andP2, see Fig. 2.3B. We use the piecewise constant choice ofV = s 1A \ B . This

gives

Z

¶A
V(x)ndS= s

Z

¶A \ B
ndS= s (P1 � P2)? : (2.15)

For (2.13) we again revert to Cartesian coordinates to obtain

Z 2p

0

Z 1

0
abs2ÑV(x(t;s;q)) � (Rk(q))? dsdq

=
Z

¶A
ÑV(x) � (x � X)? dx := I :

(2.16)

We can use the product rule to expand (2.16) as

I =
Z

¶A
Ñ(V(x � X)? ) � V(Ñ � (x � X)? ) dx: (2.17)

On inspecting (2.17) we note that we can use the divergence theorem to evaluate the

�rst term, and that the second term is zero. This gives

I = s
Z

¶A \ B
(x � X)? � ndS (2.18)

We can de�ne the outward pointing unit normal vectorn in terms ofR andk.

n =
w
jwj

; w = � R
dk
dq

?
: (2.19)



2.2. Derivation details 34

Changing (2.18) to be in terms ofq we have

I = s
Z q2

q1

(Rk)? �
w
jwj

�
�
�
�
¶x
¶q

�
�
�
� dq; (2.20)

whereq1 andq2 correspond to overlap pointsP1 andP2 wherePi = x(t;1;qi). We

also note thatjwj = j¶x=¶qj and hence these two terms cancel each other in (2.20).

Then, using the chain rule we can rewrite (2.20) as

I = � s
Z q2

q1

(Rk)? � R
dk
dq

?
dq: (2.21)

Noting that the rotation matricesR don't contribute to the integral, (2.21) can be

re-written as

I = � s
Z q2

q1

k �
dk
dq

dq: (2.22)

We then note that the integrand of (2.22) can be rewritten in the following form

I = � s
Z q2

q1

d
dq

(
1
2

jkj2) dq; (2.23)

and evaluating this integral we obtain

I = �
s
2

(jX � P2j2 � j X � P1j2): (2.24)

Note that the fact that we can evaluate the overlap avoidance integral explicitly

hinges on the simple shape ofV.

Using (2.14) and (2.24) we can therefore write down the full model. The re-

sulting equations can be formulated such that they depend only on the points of

overlap between cellsi and j, denoted byPi j
k , where up tok = 4 points of overlap

are possible. Though we only show the derivation above for 2 points of overlap,

it can be extended to the case of 4 points of overlap in a straightforward manner.

Some care is required with de�ning notation appropriately. In the followingKi j = 1

or Ki j = 2 denotes the number of overlap point pairs between celli and cell j (hav-
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ing one or three points of overlap can be reduced to having zero or two points of

overlap by neglecting the overlap point corresponding to a repeated root).N i is the

set of indices of all cells overlapping with celli. The overlap points are ordered

anticlockwise around the boundary of the cell. In addition, we choosePi j
1 andPi j

2

such that the boundary segment of celli between these points is contained within

the domain of cellj , see Fig. 2.3B, and similarly forPi j
3 andPi j

4 . Overall this gives

dX i

dt
= �

s
Ah å

j2N i

Ki j

å
k= 1

(Pi j
2k� 1 � Pi j

2k)
? + we(a i); (2.25a)

da i

dt
=

2s
Ah(a2 + b2) å

j2N i

Ki j

å
k= 1

(jX i � Pi j
2kj

2 � j X i � Pi j
2k� 1j2); (2.25b)

We provide a summary of model parameter names and meaning in Ap-

pendix A.

2.2.2 Interpretation for two cells

To gain some intuition for the behaviours of equations (2.25), we �rst consider a

scenario where there is only interaction between one cell (with centreX and orien-

tationa ), and one other cell. If there is only one pair of overlap points,P1 andP2,

then (2.25) reduces to

dX
dt

= �
s

Ah
(P1 � P2)? + we(a ); (2.26a)

da
dt

=
2s

Ah(a2 + b2)
(jX � P2j2 � j X � P1j2): (2.26b)

We see in (2.26a) that the cell's centre is being pushed in the direction normal to

the vector connecting the points of overlap. Further, from (2.26b) we see that the

change in orientation depends on the difference in lengths of the segments connect-

ing the cell centre with the intersection points, turning the cell in the direction from

the shorter to the longer one, see Fig. 2.3B for a visual depiction of this. This shows

that cells will both move away from each other, and reorient themselves in order

to minimise cell overlap. These are both behaviours that can be observed in ex-

perimental videos, see Kenny et al. (2023). Compared to a more ad hoc model of
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simple repulsion between centroids there are two main differences. Firstly, perhaps

the direction of movement of the centroids would be different: movement would

occur along the line connecting the centroids as opposed to� (P1 � P2)? . Likely

this difference would still lead to a similar behaviour in terms of cell populations

spreading out and forming a monolayer. However, secondly (and perhaps more im-

portantly), our energy minimisation model also provides an equation for how the

cell orientation changes without the need for extra assumptions.

Figure 2.3: A: Effect of self-propulsion speedw. B: Effect of overlap avoidance upon one
cell overlapping with another cell.

2.3 Model properties

To verify that the model physically makes sense, we can show that the model with-

out self-propulsion conserves linear and angular momentum. To do this we consider

two overlapping ellipses A and B with overlap pointsP1 andP2. The consequent

governing equations will be

dXA

dt
= �

s
Ah

(P1 � P2)? ; (2.27a)

dXB

dt
= �

s
Ah

(P2 � P1)? ; (2.27b)

From (2.27) we can see that�XA = � �XB and hence momentum is conserved since

the translation due to overlap of each ellipse is equal and opposite.
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To show that angular momentum is conserved we consider the torque which is

given byx � F = � x � ÑV in 3D or equivalently� ÑV � x? in 2D. The total torque

acting on cell A is given by

t = : �
Z

¶A
ÑV � x? dx =

Z

¶A
VÑ� x? dx �

Z

¶A
Ñ� (Vx? ) dx: (2.28)

The �rst integral on the RHS of (2.28) is zero sinceÑ � x? = 0 and we can use the

divergence theorem on the second integral in (2.28) to give

�
Z

¶A
Vx? � ndx = � s

Z

¶A \ B
n � x? dS: (2.29)

Substituting in the de�nitions ofx and n from (2.1) and (2.19) respectively we

obtain

s
Z q2

q1

Rk0� (X? + Rk? ) dq = s
Z q2

q1

(Rk0� X? +
1
2

(jkj2)0) dq: (2.30)

We can integrate (2.30) directly, giving

t = s [Rk(q2) � X +
1
2

jk(q2)j2 � Rk(q1) � X �
1
2

jk(q1)j2] (2.31)

Using the de�nition forx in (2.1) we can rewrite (2.31) as

s [(X2 � X1) � X +
1
2

(jX � X2j2 � j X � X1j2)] =
s
2

(jX2j2 � j X1j2) (2.32)

Therefore the torque on cell A due to cell B is given bys (jX2j2 � j X1j2)=2 and by

symmetry the torque on cell B due to cell A is given bys (jX1j2 � j X2j2)=2. Since

these are equal and opposite, it shows that the total torque is zero and consequently

the angular momentum as a result of cell overlap is conserved.

This shows that the system (2.25) in the absence of self-propulsion conserves

momentum and angular momentum, allowing us to conclude that the system is

closed and thus the process of overlap avoidance is passive as opposed to active.

On the other hand, the self-propulsion in the system is an active process, meaning
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that energy is being put into and dissipated through the system via this mechanism.

It is this component which pushes the system out of equilibrium and means it can

be classi�ed as being within the �eld of active matter (Marchetti et al., 2013; Ra-

maswamy, 2010).

2.4 Non-dimensional model

We non-dimensionalise the model to reduce the number of parameters to explore.

We useAh=s as the reference time and
p

A=p as the reference length. We choose

this reference length and time since the cell areaA remains constant over time (in

contrast to e.g. axis lengths which will vary when we introduce shape change into

the model in Ch. 5) and hence both of these quantities remain constant over time.

We de�ner = a=b as the cell's aspect ratio. On non-dimensionalising our governing

equations (2.25) we obtain

dX i

dt
= � å

j2N i

Ki j

å
k= 1

(Y i j
2k� 1 � Y i j

2k)
? + ne(a i); (2.33a)

da i

dt
=

2r
r2 + 1 å

j2N i

Ki j

å
k= 1

(jX i � Y i j
2kj

2 � j X i � Y i j
2k� 1j2); (2.33b)

where the non-dimensional quantityn is de�ned as

n =
wh
s

p
pA: (2.34)

The quantity in (2.34) can be interpreted as comparing the strength of repulsion in

the presence of friction to the self-propulsion speed. (We discuss this in more de-

tail in our computational results in Ch. 3). These two governing equations (2.33)

are supplemented with initial conditions and boundary conditions. Throughout this

work the domain is a square box with side lengthL and cells are initially placed ran-

domly inside the box with a random orientation. Further, we use periodic boundary

conditions.



Chapter 3

Base model results

Now we have motivated and derived our modelling framework in Ch. 2, we are able

to exploit both computational and analytical methods to understand the model in

further detail. In this chapter we begin by investigating the model computationally.

We then set up the framework to mathematically analyse the model, and present

some results from our analysis.

3.1 Simulation details

3.1.1 Computational method

To numerically solve the governing equations (2.33) we use a Forward Euler method

with Dt = 1=100;1=150, depending on the parameters, to ensure convergence by

checking that the same results were obtained when the time step was halved, and en-

suring that the cell position and orientation does not change above a threshold value

each time step. We useN = 125 cells and a square domain withW= [ 0;L]2, L = 20

together with periodic boundary conditions. For the initial cell orientations we use

a uniform random distribution on[0;2p). Initial cell positions are distributed ran-

domly onWwith a minimum distance of 1 between cell centres to avoid unrealistic

cell overlap. The only source of stochasticity in the system is the initial conditions.

To draw reproducible conclusions, we have averaged output quantities over 60 or

more simulations, with precise numbers speci�ed in each �gure. Each simulation is

run until timeT = 1000, which is when we observe convergence for the cases that

are slower to converge such as the case ofr = 4;n = 0:5 andr = 2;n = 2. Other
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parameter combinations that are shown in the results are much faster to converge.

To check this, we plot the alignment against time and check that it has plateaued off

and hence reached dynamic convergence.

3.1.2 Finding overlap points

Numerically solving the governing equations (2.33) hinges on �nding the points of

overlap for all ellipses at all time points. We use an approximate method to do this,

which is computationally more ef�cient than solving for intersection points exactly

and also allows for easier generalisation to other cell shapes. The boundary of each

ellipse is discretised by 200 points evenly spaced by angle. This means that we

have more points around the head and tail of the cells than along the sides which

helps with �ner precision at the cell ends where overlap points may end up being

closer together. For a given ellipsei, we then use therangesearch function in

MATLAB to �nd all ellipses within a radius of 2
p

r of ellipse i. For this set of

ellipses that have the potential to be overlapping, we search for all boundary points

within a certain optimal search range that is small enough to identify two distinct

points of overlap, but large enough to not miss any. The value of this search range

will depend both on the aspect ratio of the ellipse and on the number of points on

the boundary. For example, for ellipses of aspect ratio 2, we use a search range

of 0.04, as can be seen in Fig. 3.1. Clusters of neighbouring boundary points are

identi�ed and averaged to �nd approximate points of overlap and correspondingq

values. We determine the ordering of overlap points as described in Tab. 3.1.

3.1.3 Simulation quanti�ers

In the following computational analysis, we vary model parameters and explore the

effect that this has on model outputs: cell alignment, the packing fraction and cell

interactions. We brie�y explain how each of these quanti�ers are calculated below.

3.1.4 Alignment parameter

Alignment at timet in the neighbourhoodl is measured using the formula

Alignmentt(l ) =
q

hcos2Df l ;t i 2 + hsin2Df l ;t i 2; (3.1)
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Figure 3.1: A,B: plots to show how the total error and number of missing/ incorrect points
determined varies with the search range. Each value plotted is a sum over 1000
different random cell con�gurations and compared to a method which �nds the
overlap points exactly using a build in MATLAB function. Forr = 2.

No. overlap points Method
1 Point is disregarded

2
For two overlap pointsYa andYb parameterised byq values
qa andqb, if (qa � qb) mod 2p < (qb � qa) mod 2p
thena = 2 andb = 1, otherwisea = 1 andb = 2.

3
We identify the point where the ellipses are most likely to be
tangential as the point with the maximum cluster size. This point
is disregarded and we proceed as with 2 overlap points.

4

We order the points in order of increasingq asYa;Yb;Yc;Yd.
We �nd the vectors between each consecutive pair of overlap
points, and then identify the one that is oriented most closely
to the orientationa , up to a multiple ofp. These two
points make up the �rst pair of overlap points, and the remaining
points make up the other. e.g. ifYd � Yc is the vector closest in
orientation toa thenc = 1;d = 2;a = 3;b = 4.

5
The two overlap points that are closest together are identi�ed
and one is disregarded. We then treat as in the case of 4
overlap points.

Table 3.1: Overlap point treatment.

whereDf l ;t is the difference in orientation between every pair of cells at timet

within the alignment neighbourhood given by a distance of radiusl . The bracket

hi denotes the average of all these values for a given group of cells. (3.1) is a
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conventional apolar 2D order parameter that comes from the theory of liquid crys-

tals (De Gennes and Prost, 1993) and is commonly used in biological applications

(Duclos et al., 2014; Li et al., 2017). Note that this is different to how alignment

is measured in Ch. 4, where we implement the method used by our experimental

collaborators. All alignment plots in this chapter show alignment with a neigh-

bourhood size ofl = 6, corresponding to a radius of just over 2 cell lengths. We

show in Appendix D that the alignment parameter is not qualitatively affected by

the choice of neighbourhood size. To determine the length scale of alignment, we

measure Alignmentt(l ) for different neighbourhood sizesl and average over several

simulations. We then �t the resulting values to the function

Alignment�tt (l ) = ae� l
la : (3.2)

From this we obtain the length scale of alignmentla, which indicates how quickly

in space alignment decays. Largerla means slower decay and hence a longer length

scale of alignment.

3.1.5 Packing fraction

We �nd the packing fraction by dividing the area of the domain that is covered

by cells by the total area of the domain. The higher the packing fraction, the less

overlap there is in the population. As a consequence of the chosen reference length,

all cells have areap. Therefore, forN = 125,L = 20, the maximum packing fraction

(which corresponds to no cell overlap) is 125p=400� 0:98.

3.1.6 Cell interactions

To quantify cell-cell interactions, we determine the index-pairs of overlapping cells

at each time point and follow this set over time. From this, we can calculate: (1)

the average time of interaction and (2) the average number of interactions per cell

at each time point.
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3.2 Computational results

In this section we derive some computational results to gain an understanding of the

effect of different model parameters on the alignment between cells in the system.

We analyse the non-dimensional model since this reduces the number of parameters

to explore and allows us to understand the effect of key non-dimensional quantities

on the output of the model. We note that these results are not particularly sensitive

to the number of cells in the domain, as shown in Appendix D. When testing the

model, we also found that the results were not sensitive to initial conditions. We ran

the same simulation for cells with initial random orientations and cells with the same

orientation, up to a multiple ofp, and found that the same dynamic equilibrium was

reached.

3.2.1 Understanding general behaviour

Figure 3.2: A: Simulation snapshots at timet = 0 andt = 800 showing cells for an example
simulation, colour indicates nematic orientation, arrows indicate orientation.
B: Alignment parameter over time shown for one individual simulation (blue,
solid) and averaged over 80 simulations (orange, dashed). Parameters for A,B:
n = 0:2, N = 125,L = 20,r = 2.

We start by demonstrating basic model behaviour. In Fig. 3.2A,B we see the

typical behaviour of the base model with self-propulsion and overlap avoidance.

Over time cell overlap decreases and alignment increases until a dynamic equilib-

rium is reached. At this point cells still move, but the alignment parameter stays

relatively constant. Further, we observe that cells tend to be aligned with their di-

rect neighbours, but this alignment is local and does not typically go beyond one or

two cell lengths. This is related to packing problems, where one studies how and
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how densely objects of a certain shape can be placed in space without overlapping.

Such problems are highly non-trivial, but well-studied for non-moving, completely

solid particles, and for symmetric and elongated particles in 2D and 3D (see e.g.

Donev et al. (2004); Delaney et al. (2005); Rocks and Hoy (2023)). For applica-

tions to active matter and in biology see e.g. Li et al. (2017); Narayan et al. (2007);

Palachanis et al. (2015); Shi and Ma (2013). Comparison with these works suggests

that, irrespective of the model details, overlap avoidance leads to some amount of

alignment.

Next we inspect how the aspect ratio impacts alignment. We �nd that increas-

ing the aspect ratior of the cells leads to increased alignment. This can be seen in

Fig. 3.3A,B. This is a result that can also be found in Li et al. (2017) where they

investigate two overlap avoidance mechanisms with ellipse shaped cells and sphe-

rocylinders. Moreover, this provides a potential link to the experimental results of

Ilkanaiv et al. (2017) and the computational results of Bera et al. (2021), who found

that the ability of bacteria to align with each other and hence swarm effectively is

modulated by their aspect ratio. Investigating why higher aspect ratio leads to more

alignment, we see in Fig. 3.3A that increasing the aspect ratio of the cells also leads

to a higher packing fraction, meaning that there is less cell overlap in the popu-

lation. Interestingly, for non-moving, solid ellipses Rocks and Hoy (2023) found

a similar dependence of the alignment parameter on the aspect ratio forr > 1:3.

On another related note, Onsager (1949) explored how the density of particles re-

lates to their self-organisation, �nding a critical volume fraction which represents

an isotropic-to-nematic phase transition. It was found that this critical volume frac-

tion further depends on the aspect ratio of particles, with particles of a higher aspect

ratio aligning more easily. This further supports the results we see here.

3.2.2 The effect of self-propulsion

The non-dimensional parametern is proportional to the self-propulsion speed di-

vided by the strength of overlap avoidance,n µ w=s , and can be interpreted as

the ratio between two time scalest1=t2. Here,t1 = Ah=s is the time scale of the

movement caused by overlap avoidance acting against friction andt2 = w=
p

A=p
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