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Significance

 Threatened species are often 
afflicted with small population 
sizes, elevated inbreeding levels, 
and high rates of reproductive 
failure. In threatened bird 
species, hatching failure is 
prevalent and caused by two, 
frequently conflated, 
mechanisms: fertilization failure 
and embryo mortality. We 
investigate the impact of 
inbreeding and population 
demographics on these two 
discrete causes of avian 
reproductive failure in a 
threatened bird species. We find 
that embryos are most likely to 
fail in early development, but not 
due to inbreeding. We reveal a 
link between population 
demographics and fertilization 
success, with higher fertilization 
failure in years when the 
population is smaller and has a 
more male-biased sex ratio, 
offering fresh insights into the 
complex reproductive challenges 
faced by threatened species.
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Hatching failure affects up to 77% of eggs laid by threatened bird species, yet the true 
prevalence and drivers of egg fertilization failure versus embryo mortality as underlying 
mechanisms of hatching failure are unknown. Here, using ten years of data comprising 
4,371 eggs laid by a population of a threatened bird, the hihi (Notiomystis cincta), we 
investigate the relative importance of infertility and embryo death as drivers of hatching 
failure and explore population- level factors associated with them. We show that of the 
1,438 eggs that failed to hatch (33% of laid eggs) between 2010 and 2020, 83% failed 
due to embryo mortality, with the majority failing in the early stages of embryonic 
development. In the most comprehensive estimates of infertility rates in a wild bird 
population to date, we find that fertilization failure accounts for around 17% of hatch-
ing failure overall and is more prevalent in years where the population is smaller and 
more male biased. Male embryos are more likely to die during early development than 
females, but we find no overall effect of sex on the successful development of embryos. 
Offspring fathered by within- pair males have significantly higher inbreeding levels than 
extra- pair offspring; however, we find no effect of inbreeding nor extra- pair paternity on 
embryo mortality. Accurately distinguishing between infertility and embryo mortality 
in this study provides unique insight into the underlying causes of reproductive failure 
over a long- term scale and reveals the complex risks of small population sizes to the 
reproduction of threatened species.

infertility | embryo mortality | sex ratio | population demographics | inbreeding

 Reproductive failure signifies a fitness cost for individuals, particularly for females who 
often invest more heavily than males in reproduction ( 1   – 3 ). In birds, females incur a large 
physiological cost from the production of eggs ( 4 ), which are formed and laid in response 
to phenological changes ( 5 ,  6 ) regardless of whether the ovum is fertilized or contains a 
viable embryo. The number of eggs laid by female birds is limited physiologically and 
dependent on a trade-off with future condition and survival ( 7 ,  8 ); therefore, unhatched 
eggs represent not only wasted fitness potential but also wasted energy and resources. 
Average rates of hatching failure across all birds are around 17% ( 9 ), but this is much 
higher in threatened bird species, with rates of up to 77% in small genetically isolated 
populations ( 10 ) and 89% under harsh conditions ( 11 ). Identifying the drivers of hatching 
failure is therefore an important goal for bird conservation ( 12 ).

 Understanding the physiological mechanisms underlying hatching failure requires an 
accurate distinction between its two potential causes: embryo mortality and fertilization 
failure. Fertilization failure occurs when sperm and ovum fail to fuse, while embryo 
mortality can occur at any stage of development from fertilization to hatching. It has 
been shown that the majority of failed eggs contain embryos that have died very early 
and therefore show no macroscopic signs of development ( 13 ,  14 ). These eggs are often 
assumed to be unfertilized by researchers and conservation practitioners ( 15 ), leading 
to the overestimation of infertility in bird populations and a persistent “invisible fraction” 
of individuals that die before sampling and are therefore overlooked in population 
genetics studies ( 13 ,  16 ). Many previous studies do not attempt to distinguish between 
embryo mortality and fertilization failure as causes of hatching failure or fail to do so 
accurately ( 17       – 21 ). Studies that do address the issue of embryo mortality directly often 
still fail to include early embryo mortality and assume that all undeveloped eggs (with 
no obvious sign of an embryo) are unfertilized ( 22 ,  23 ). Those that do attempt to assess 
egg infertility often make the same assumption, overestimating the incidence of egg 
infertility ( 10 ,  24       – 28 ).

 The underlying mechanisms leading to either fertilization failure or embryo mortality 
are likely very different, therefore, it is important to distinguish between them to fully 
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understand the causes of reproductive failure and to better direct 
conservation efforts. There are many possible mechanisms of 
fertilization failure, originating from male fertility disorders 
[e.g., low sperm numbers ( 29 ), azoospermia ( 30 )], female fer-
tility disorders ( 15 ,  31 ,  32 ), and pair incompatibility ( 12 ,  33 ), 
all of which could be addressed by artificial insemination ( 34 ) 
or switching incompatible pairs ( 35 ). On the other hand, early 
embryo death may result from a range of extrinsic and intrinsic 
factors. Extrinsic factors such as stress ( 36 ), temperature  
( 37     – 40 ), rainfall ( 41 ), humidity ( 42 ), and physical damage and 
resulting microbial infection ( 43   – 45 ) can be addressed by arti-
ficial incubation strategies ( 46 ). Intrinsic factors such as chro-
mosomal abnormalities ( 47 ) or low-quality male ( 48   – 50 ) or 
female ( 51 ,  52 ) gametes may be addressed by tactics such as 
sperm screening and ( 53 ) supplementary feeding ( 54 ), respec-
tively. In small populations, hatching success is often negatively 
impacted by the inbreeding level of the embryo itself ( 17 ,  18 , 
 55 ,  56 ), of its parents ( 17 ,  57 ), and of the population as a whole 
( 58 ), although whether the failure of these eggs is mostly due 
to fertilization failure or embryo death has not been explicitly 
tested.

 Overlooking the occurrence of early embryo mortality also 
means that there is a lack of understanding about the individuals 
that die at this stage of development, such as their sex and pater-
nity, and the factors that may be influencing their mortality, such 
as inbreeding. For example, extra-pair paternity has been proposed 
to lead to higher overall hatching success ( 59 ), and higher survival 
probability of individuals ( 60 ), but whether this proposed benefit 
of female promiscuity extends to fertilization success and/or 
embryo survival remains to be investigated. In wild bird popula-
tions the average adult sex ratio (tertiary sex ratio) is typically 
male-skewed, and more heavily so in threatened populations, 
whereas the average sex ratio of hatchlings (secondary sex ratio) 
is balanced between males and females ( 61 ,  62 ). Previous studies 
have found embryo mortality to be male biased ( 22 ,  63 ,  64 ), 
suggesting that the primary sex ratio (sex ratio at fertilization) may 
also be male biased in order for the balanced secondary sex ratio 
seen in hatchlings to occur. Sex biases in embryo mortality in birds 
could result from sex-biased inbreeding depression ( 22 ,  65 ) or 
differences in optimal incubation temperature between the sexes 
( 38 ). However, previous studies on sex bias in embryo mortality 
have not included an assessment of embryos that died very early 
in development (0 to 3 d incubation), before macroscopic signs 
of development are visible, so may over- or underestimate the 
degree of sex bias in embryo mortality.

 Sex-biased embryo mortality may be contributing to male- 
skewed adult sex ratios, but, conversely, the strong male bias 
observed in many small, threatened bird populations ( 61 ,  66   – 68 ) 
may also be contributing to hatching failure. Population demo-
graphic factors, such as sex ratio, are more susceptible to stochas-
ticity in small populations ( 69 ), and population size and sex ratio 
have been shown to be linked in some bird species, with smaller 
populations having more skewed sex ratios, either toward males 
( 67 ,  68 ) or females ( 70 ). Theory predicts small population size to 
negatively impact individual reproductive success via Allee effects 
( 71 ) and research in experimental systems has proven that the 
adult sex ratio can affect individual reproductive success ( 72 ,  73 ). 
One consequence of a biased sex ratio is an increase in sexual 
competition within the more numerous sex, which has been 
shown to bring costs for the rarer sex, such as a reduction in female 
fecundity ( 74 ), survival, and reproductive success as a direct result 
of male harassment and aggressive behaviors in populations with 
male-skewed adult sex ratios ( 75 ,  76 ). Yet little is known about 
the influence of demographics on reproductive failure in wild 

populations, and even less is known about the potentially varying 
effects of adult sex ratio on fertility and embryo mortality.

 This study aims to examine patterns of hatching failure and 
infertility in a long-term monitored population of hihi (Notiomystis 
cincta ), which is under conservation management on the island 
reserve Tiritiri Matangi. The hihi is a threatened, New Zealand 
endemic passerine bird which, following population decline and 
subsequent conservation efforts, exists as a remnant population 
along with numerous reintroduced populations ( 77 ). The species 
therefore has a history of multiple genetic bottlenecks, and all its 
populations are of small size, with high inbreeding levels ( 22 ,  78 ). 
Hihi have consistently high rates of hatching failure (33%); how-
ever, based on macroscopic examination of unhatched eggs, the 
infertility rate of these unhatched eggs is unknown. The popula-
tion on Tiritiri Matangi is small and therefore susceptible to 
increased stochasticity, skewed sex ratio, and lower reproductive 
success of individuals. Hihi have extremely high levels of extra-pair 
paternity, with females experiencing forced extra-pair copulations 
from nonpair males, which become more frequent with an increas-
ingly male-biased sex ratio ( 79 ). The adult sex ratio in this popu-
lation has been found to have no effect on adult female survival 
or number of fledglings produced, despite the high occurrence of 
female harassment when the population is male biased ( 80 ). 
However, the impact on other aspects of female reproduction  
such as the high incidence of hatching failure has not been 
investigated.

 Using a long-term dataset spanning 10 years, including a 
genetic pedigree, reproductive data, population demographic esti-
mates, and the accurate fertilization and developmental status of 
1,437 unhatched eggs, we assess the mechanisms underlying the 
high incidence of hatching failure in this species, and how they 
are linked to key features shared across many threatened species: 
small population size, skewed sex ratio, and high inbreeding levels. 
We use microscopic techniques for determining the fertilization 
status of eggs, allowing us to accurately determine whether an egg 
failed to hatch due to fertilization failure or embryo mortality. 
This study provides the most accurate estimates of infertility rates 
in a wild bird population to date and utilizes an undersampled 
subset of individuals that die very early during embryo develop-
ment to assess potential causes of embryo mortality at all stages 
of development. 

Results

Fertilization Failure vs Embryo Mortality. Of a total of 4,371 eggs 
recorded as laid in the Tiritiri Matangi population of hihi between 
2010 and 2020, 1,470 failed to hatch (33.6%), we were able to 
identify the fertilization status and/or developmental stage of 1,437 
of these eggs (SI Appendix, Table S3 in supplementary information 
for detailed sample sizes), with 33 eggs (2.2% of unhatched eggs) 
being excluded due to nest abandonment, damaged samples, or 
missing records. The importance of these 33 missing eggs for the 
results was tested and deemed to be insignificant (Supplementary 
Information). To determine the mechanism of hatching failure 
for each egg, they were macroscopically and/or microscopically 
examined to assess whether hatching failure was a consequence 
of fertilization failure or embryo death (12, 16, 81). Dead 
embryos were assessed for their stage of development based on 
Hamburger and Hamilton’s (HH) (82) chick developmental series 
and classified as early, mid or late failures. The most common 
cause of hatching failure was embryo mortality at an early stage 
of development (Fig. 1B), prior to HH stage 8 and within the 
first two days of hihi embryo development, when there are few 
obvious macroscopic signs of embryonic development, particularly 
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in partially degraded eggs. Early embryo mortality was found to 
cause on average 56.8% (±15% SD) of all hatching failure in hihi, 
which is higher than that caused by mid (9.6% ± 4.9% SD) or 
late (16.8% ± 5.7% SD) embryo mortality.

 The overall proportion of hihi eggs that failed to hatch due to 
fertilization failure across the 10 y was 17.8%, with an annual mean 
of 16.7% ± 13.3% SD (range: 2.2% to 17.6%). These values are 
significantly lower than estimates of fertilization failure based on 
macroscopic assessment (between 26% and 74%; average of 26.3% 
± 8.5% SD of unhatched eggs thought to be infertile, average of 
46.6% ± 9.3% SD of unhatched eggs with unknown fertilization 
status) ( Fig. 1A  ; paired Wilcoxon test, P  = 0.003). To determine 
whether fertilization failure was a significant component of hatching 
failure, we tested the relationship between annual fertilization failure 
rate and annual hatching failure rate of females, controlling for 
repeated measures of females across years. The annual hatching 
failure rate of females was significantly related to their annual infer-
tility rate (glmm conditional model (number of hatched eggs): 
estimate = −0.507, std. error = 0.036, P  < 0.001, zero-inflation 
model (probability of zero hatched eggs): estimate = 0.22, std. error 

= 0.1, P  < 0.05), suggesting that fertilization failure is a significant 
contributor to hatching failure.  

Patterns in Embryo Mortality. All 133 mid-  and all 240 late- 
stage failed embryos were genotyped using microsatellites allowing 
sexing and parentage assignment using a genetic pedigree (83). 
Genotyping was also attempted on 145 of the 803 early failed 
embryo samples (16) (i.e., those that were frozen in years 2019 
and 2020; we were not able to extract DNA from samples from 
prior years because they were formalin- fixed). This resulted in 
successful paternity analysis of 400 failed embryos, pedigree 
estimated inbreeding coefficients for 286 failed embryos, and 
the sexing of 436 failed embryos, allowing us to test the effects 
of the paternity (extra- pair vs within- pair), sex, and inbreeding 
coefficient of an embryo on its chances of successfully developing 
and hatching. Early embryo mortality, the most common cause of 
hatching failure, was male biased (males/females = 1.4, Fig. 2A).

 A cumulative link mixed model (clmm) of the effect of inbreed-
ing coefficient (F PED ), sex, and paternity on embryo outcome 
found a significant effect of inbreeding coefficient (F PED ) on 
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Fig. 1.   How egg outcomes vary with population demographics in the Tiritiri Matangi population of hihi across 10 y. (A) The total number of eggs which failed 
to hatch after the full incubation period for every year, compared to the count of eggs previously assumed to be unfertilized/with unknown fertilization status 
using macroscopic techniques, and the proportion determined to be truly unfertilized through microscopic analysis. (B) The outcome of every egg laid in the 
population across every year (as proportions of the total number of eggs laid), highlighting early embryo morality as the main cause of hatching failure in this 
population. (C) The sex ratio and size of the population of hihi on Tiritiri Matangi across 10 y.
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embryo outcome (clmm: estimate = 6.58, std. error = 3.13,  
p = 0.036); unexpectedly, individuals which hatched had signifi-
cantly higher inbreeding coefficients than individuals that failed 
at the early embryonic stage (glmm: estimate = 0.75, std. error: 
0.38, P  = 0.046). The average inbreeding coefficient (F PED ) of 
failed embryos was 0.19 ± 0.38 SD and of hatchlings was 0.23 ± 
0.47 SD. There was no significant interaction between the effects 
of inbreeding coefficient (F PED ) and sex on embryo outcome, sug-
gesting that the inbreeding level and the impact of inbreeding 
depression in male and female embryos is similar.

 There was no significant overall effect of an embryo’s sex, or 
paternity (within-pair versus extra-pair) on its outcome (i.e., early, 
mid, late embryo mortality or successful hatching) ( Fig. 2 A –C  ). 
Individuals fathered by within-pair males had significantly higher 
inbreeding coefficients than those fathered by extra-pair males 

( Fig. 2E  , glmm: estimate = 0.3, std. error = 0.063, P  < 0.001), but 
this does not seem to have negative impacts on their likelihood of 
survival to hatching; the rate of extra pair paternity for hatched 
individuals (60%) and individuals which suffered embryo mor-
tality (58%) was similar ( Fig. 2C  ).  

Demographic Effects on Fertilization Failure and Embryo 
Mortality. Using estimates of population size and sex ratio 
calculated from biannual transect surveys (84), we explored 
the long- term trends in population demographics and their 
association with overall hatching failure rate, embryo mortality, 
and fertilization failure rate. The average primary sex ratio 
(prehatch males/females = 1.01 ± 0.16 SD) and secondary sex 
ratio (hatched males/females = 1.01 ± 0.15 SD) were found to be 
practically equal, suggesting that although early embryo mortality 
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Fig. 2.   The probability of an egg being unfertilized is significantly increased in years when the sex ratio of males to females is more biased; however, this 
does not significantly affect overall hatching failure, which is mostly due to embryo mortality. Embryo mortality, at any stage of development, does not seem 
to be influenced by sex, paternity of inbreeding level of the embryo. (A) The proportion of males and females that died at the different stages of development 
compared to those that hatched. (B) the inbreeding coefficients of males and females that died at different stages of development compared to those that 
hatched. (C) the proportion of extra- pair paternity (EPP) and within- pair paternity (WPP) of individuals that died at different stages of development compared 
to those which hatched. (D) The density distribution of the probability that a hihi egg will be unfertilized/infertile, unhatched, or hatched, given the dynamic sex 
ratio of the population of hihi on Tiritiri Matangi. The sex ratio and size of this population are significantly correlated, making it impossible to separate their 
respective effects on the infertility rate of eggs. (E) Mean (point) and SE (bars) of the inbreeding coefficients of extra- pair (n = 2,029) and within- pair (1,250) hihi 
offspring from the years 2010 to 2020 (excluding 2012), including failed embryos and hatched individuals. Plotted sample sizes are: a) Sex: Early EM = 115, Mid 
EM =103, Late EM = 218, Hatched = 2,856; b) Inbreeding*Sex: Early EM = 11, Mid EM = 74, Late EM = 164, Hatched = 1,618); c) Paternity: Early EM = 68, Mid EM 
= 107, Late EM = 220, Hatched = 2,833; and d) Inbreeding*Paternity: EPP = 1,396, WPP =888.
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is sex- biased toward males, mortality across all stages of embryonic 
development is not sex biased. However, the adult/tertiary sex ratio 
is consistently male biased in this population (Fig. 1C), with an 
average sex ratio (males/females) of 1.38 ± 0.27 SD. Population 
size and sex ratio were found to be significantly correlated in this 
population (Fig. 1C, r = −0.76, df = 9, p = 0.007), and therefore, 
the effect of these demographics on fertilization failure and embryo 
mortality was tested in separate models.

 The probability of an egg being unfertilized significantly 
increased in years when the size of the population was smaller 
( Fig. 1 , glmm: estimate = 1.21, std. error = 0.32, P  < 0.001), and 
the sex ratio of the population was more male biased ( Fig. 2 , 
glmm: estimate = −3.58, std.error = 1.36, P  < 0.001). However, 
the overall hatching success of eggs was not significantly affected 
by population size (glmm: estimate = 0.29, std. error = 0.23,  
 P  = 0.21) or the adult sex ratio (glmm: estimate = −1.07, std.  
error = 0.87, P  = 0.21), despite the appearance of a trend toward 
higher hatching failure in more male-biased populations ( Fig. 2C  ).   

Discussion

 In this study, we aimed to determine the contribution of fertili-
zation failure and embryo mortality to the high incidence of hatch-
ing failure observed in a reintroduced population of an inbred, 
threatened, endemic New Zealand passerine, the hihi (N. cincta ), 
and how these two modes of hatching failure are linked to key 
characteristics typical of threatened species: fluctuating population 
sizes and sex ratios and high inbreeding levels. We show that the 
main cause of hatching failure (57% of unhatched eggs) is early 
embryo mortality, and this important source of early-stage losses 
from the population is subject to sex bias. Fertilization failure rates 
in this population of hihi are significantly lower than was previ-
ously assumed based upon macroscopic examination of egg con-
tents. This finding supports that of previous studies on several bird 
species, which have found infertility to be less prevalent than was 
previously thought ( 14 ,  85 ) and adds to the body of evidence 
suggesting that research and conservation efforts should be focused 
on reducing embryo mortality rates in threatened species. 
However, the fertilization failure rate (16.7% of unhatched eggs) 
was greater than has been recorded for the small number of other 
wild bird populations in which this has been assessed accurately 
( 13 ,  14 ,  85 ,  86 ). While the fertilization failure of eggs is less 
common in this population than previously thought, fertilization 
failure rates are nonetheless substantial, vary across years according 
to fluctuations in population size and sex ratio, and are signifi-
cantly correlated with hatching failure rates. Population size and 
sex ratio are intrinsically linked in this population, with smaller 
population sizes having a more male-biased adult sex ratio, and 
when the sex ratio is more extremely male-biased, infertility rates 
are higher.

 The relationship between population size and sex ratio found 
in this study reflects a common pattern found in birds, particularly 
those with threatened ( 61 ) and/or small, isolated populations ( 66 ). 
Sex biases in small populations are proposed to be driven by lower 
survival or recruitment of the rarer sex ( 61 ,  66 ). However, the 
exact mechanism behind these differential mortality rates remains 
unknown ( 61 ,  87 ). The origin of the consistent male bias in the 
adult sex ratio of hihi is elusive, as the primary (prehatch) and 
secondary (hatchling) sex ratios in this population are practically 
equal, as shown by this study and previous research which did not 
include the sexing of early hihi embryos ( 88 ). A reasonable expla-
nation is that postfledging, or adult mortality is higher in females 
than males in this population, although this remains to be con-
firmed and would be an interesting avenue for further study. 

Previous studies have shown that female birds have lower survival 
rates than males in some species and others have demonstrated 
that this is a direct cause of male-biased sex ratios ( 67 ,  89 ,  90 ).

 In years when the sex ratio is extremely male biased, we found 
that the infertility rate of eggs increases. However, hihi have a 
mating system notable for its high levels of female harassment by 
males and high rates of extra pair paternity [on average 62% (data 
from this study), ranging up to 100% in 89% of broods; ( 91 )]. 
Extra-pair copulations frequently take the form of “forced 
face-to-face copulations”, where multiple males chase, attack, and 
pin down females, who show evasive and defensive behavior ( 79 , 
 92 ,  93 ). The nature of these forced copulations suggests that they 
may be stressful and physiologically costly for females, particularly 
as they occur at a high frequency (up to 16 times an hour) when 
the sex ratio of the population is extremely male-biased ( 79 ). The 
results of a previous study show that female survival and fledgling 
production were not reduced in years of high male to female sex 
ratio ( 80 ) suggesting that forced copulations do not have sufficient 
physiological cost to influence survival rates. However, there may 
be hidden physiological costs on female reproductive systems 
resulting in fertilization failure. In other species, aggressive male 
behavior in male-biased population can negatively affect female 
survival and reproductive output ( 75 ,  76 ). Physiological stress may 
contribute to elevated levels of reproductive failure via higher 
maternal corticosterone levels, which have been shown to lead to 
lower fertility rates of eggs in an experimental study on quail 
 (Coturnix japonica  ( 94 ). Physiological stress can also disrupt the 
reproductive hormones ( 95 ) that control sperm release from stor-
age ( 96 ). However, further study is required to identify the phys-
iological mechanisms linking skewed population sex ratio with 
fertilization failure.

 Although fertilization failure is an important component of 
individual-level hatching success, we found the most common 
cause of hatching failure in this population of hihi to be early 
embryo mortality. The sex ratio of embryos that died during the 
early stages of development was male biased, which has previously 
been linked to inbreeding depression in this species ( 22 ). 
However, the results of our study show that inbreeding coefficient 
did not negatively affect the outcome of a developing embryo, 
and that in fact, embryos that failed in the early embryonic stages 
had significantly lower inbreeding coefficients than those that 
hatched. These results are inconsistent with those of a previous 
study on hihi, which found that male embryos that died before 
hatching had a higher microsatellite marker-based inbreeding 
coefficient than those which survived (albeit with a smaller sample 
size of later-stage failed embryos than our study), and that male 
embryos that died were significantly more inbred than female 
embryos that died ( 22 ). Other studies which have investigated 
the effect of embryo inbreeding coefficient ( 22 ,  26 ) or relatedness 
of parents ( 56 ) on survival probability also find negative effects 
of inbreeding.

 The results regarding inbreeding presented in this study are 
somewhat limited, both by the use of pedigree estimates of inbreed-
ing and the difficulty of genotyping embryos which fail very early 
in development for inclusion in that pedigree. Genotyping indi-
viduals that die early in embryonic development and have under-
gone postdeath incubation presents technical challenges. Resulting 
samples are smaller and more degraded than blood samples, so are 
prone to higher genotyping error rates ( 16 ). The mean inbreeding 
coefficient for hihi in this study (F PED  = 0.023 ± 0.045, n = 4,371) 
is lower than that estimated through genomic and microsatellite 
methods and has larger variation than those estimated with micro-
satellite markers, despite a larger sample size. Using a genetically 
reconstructed pedigree does not provide estimates as accurate as 
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genomic measures of inbreeding ( 97 ), despite often outperforming 
microsatellite marker-based methods of inbreeding estimation ( 98 ). 
The inbreeding levels of the population of hihi used in this study, 
on Tiritiri Matangi, have been found previously to be f  = 0.08 ± 
0.009 [n = 89, ( 22 )] using microsatellite marker based inbreeding 
coefficients, and are higher again when estimated using runs of 
homozygosity from genomic data [FROH  = 0.29; ( 99 )]. Quantifying 
the inbreeding coefficients of embryos that die using genomic 
measures may allow further insight into why early embryonic fail-
ure is so prevalent in this population. However, our finding that 
individuals with within-pair paternity have higher inbreeding coef-
ficients that individuals with extra-pair paternity confirms the 
results of a previous study in this population, which finds that social 
mates are more closely related than they would be with random 
mating ( 100 ).

 In summary, we have shown that early embryo mortality is the 
primary cause of hatching failure in this population of hihi (N. 
cincta ), adding to an increasing number of studies which suggest 
that early embryo mortality is the most important cause of repro-
ductive failure in threatened and endangered species ( 85 ,  101 ). 
We find that rates of fertilization failure are lower than previously 
assumed, yet infertility is still a significant component of 
individual-level hatching failure and is positively associated with 
population-level hatching failure rate. We also find that small 
population sizes are more vulnerable to extreme male-biased sex 
ratios in this system, and that this has negative implications for 
female fertility, potentially driven by high rates of harassment of 
females by males. We hope that these results will stimulate further 
research into fertilization failure in species on the brink of extinc-
tion, with small population sizes and low breeding success. 
Population demographics are rarely considered in studies of 
individual-level fertility, although this study identifies a link 
between small population size, sex ratio bias and reduced fertili-
zation rates, more research is needed to establish whether this 
pattern is species-specific or common across species. Identifying 
the mechanism of fertilization failure in this species would also 
be of value; potential mechanisms include stress-induced disrup-
tion of female reproductive hormones, or a lower success rate of 
mating attempts, and/or reduced male fertility in populations with 
high levels of sexual competition. Importantly, we reveal early 
embryo mortality to be the largest component of hatching failure 
in this population, but since we do not find a link between vari-
ation in embryo mortality rates and inbreeding depression, further 
research is needed to understand the causes of early embryo death 
in this species and others. Our results highlight some of the repro-
ductive challenges faced by threatened species with small popula-
tion sizes and emphasize that embryo failure and egg infertility 
may have different underlying causes as mechanisms of reproduc-
tive failure.  

Materials and Methods

At 21 d old, each individual bird in the Tiritiri Matangi population is color ringed 
for identification purposes and has blood samples taken for microsatellite analysis 
which allows sexing and paternity analysis for inclusion in a long- term pedigree 
[for details on pedigree construction see (102)]. Since 1995, two constant effort 
transect surveys have been carried out each year: one prebreeding survey in 
September and one postbreeding survey in February. An integrated population 
modeling framework (84) was used to estimate the population size and sex ratio 
using the sighting data obtained from these biannual surveys and breeding data.

The population of hihi on Tiritiri Matangi use nest boxes provided across the 
island. During the breeding season (September- February) the population is mon-
itored closely to record accurate dates for laying, hatching, and fledging. Clutch 
size, hatching success, and fledging success are also recorded for each nesting 
attempt. Unhatched eggs are collected from nest boxes 3 d after the last egg in 

a clutch has hatched (14- d incubation period). For this study, all unhatched eggs 
were collected from hihi nests between the years 2010 and 2020, excluding 2012. 
The unhatched eggs were opened to inspect the contents; obvious embryos were 
approximately staged according to Hamburger & Hamilton (82) based on the 
size of the embryo and the developmental state of limbs (see also Hemmings 
& Birkhead (29) for passerine staging comparison and estimations of develop-
ment times). The embryos were categorized here as “Early Embryo” (Hamburger- 
Hamilton Stage 1 to 21/day 0 to day 5), “Mid Embryo” (Hamburger- Hamilton 
Stage 22 to 36/day 5 to day 10), and “Late Embryo” (Hamburger- Hamilton stage 
37 – hatching/day 11 to day 14). All macroscopically visible embryos (“Mid 
Embryo” and “Late Embryo”) had tissue samples taken for later DNA extraction.

Between 2010 and 2017, unhatched eggs without signs of embryonic devel-
opment upon opening of the egg were stored without the shell in 10% formalin. 
Between 2018 and 2020, unhatched eggs were candled for signs of development 
and refrigerated (short term) or frozen (long term) in the shell before analysis. 
Previously, in routine conservation management practice, unhatched eggs with-
out signs of embryonic development and where the yolk remained intact and 
separate from the albumen were classified as unfertilized, and eggs without signs 
of embryonic development where the yolk was addled/rotten were classified as 
having unknown fertilization status. To determine the accurate fertilization status 
of all eggs without macroscopic signs of embryonic development, all formalin- 
preserved and refrigerated/frozen eggs were dissected to isolate the i) germinal 
disc; the site of fertilization and embryonic development, and ii) the perivitelline 
layer; a membrane surrounding the yolk which sperm must penetrate to fertilize 
the germinal disc, and in which sperm become trapped during egg formation. 
The germinal disc and the perivitelline layer were stained with a fluorescent dye 
targeting DNA and examined using a UV microscope for the presence of embry-
onic cells and/or sperm cells as sign of fertilization. These methods are described 
in more detail in Assersohn et al., (12) (see associated open access protocols). 
Following these examinations, unhatched eggs were reclassified as fertilized if 
there was evidence of embryonic development (embryonic tissue visible under 
the microscope) and/or sperm penetration of the perivitelline layer. Eggs were 
deemed as unfertilized if there was no evidence of embryonic development or 
sperm penetration.

Hatchlings (including those that died before individual color banding at 21 
d) and dead embryos, including early- stage embryos extracted from the frozen 
unhatched eggs detailed above, were sexed via microsatellite analysis, using two 
sex- typing markers [Z002a and Z037b; (103, 104)], following methods in refs. 
102 and 16. Paternity analysis was also performed using microsatellite analysis: 
DNA samples from hatchlings and embryos were genotyped using 18 autosomal 
microsatellite markers (83). Paternity assignments were performed in Colony 
(105), including information on candidate maternal and paternal genotypes 
and maternal siblings (samples from the same nest). There were no cases of 
DNA contamination from the mother or (social) father detected as duplicates 
by Colony. Inbreeding coefficients (FPED) were estimated using the long- term 
genetically resolved pedigree and the pedigreemm package. Individuals were 
only included in the analysis involving inbreeding coefficients if two generations 
of close relatives, i.e., parents and the father and mother of both parents, were 
present in the pedigree.

All data analysis was carried out in R (version 1.4.1717). More detail 
on the data included in each model described here as well as the model 
formulas, model type, and family can be found in SI  Appendix, Table  S1 
(Supplementary Information), data and code are publicly available (106). 
To test whether fertilization failure was a significant component of overall 
hatching failure, we built a generalized linear mixed model using data on 
the annual reproductive output of females (the number of eggs laid in a 
breeding season by individual females which were unfertilized, unhatched, 
or hatched), including repeated measure of females across years. The model 
tested the effect of the number of unfertilized eggs on the total number 
of unhatched vs hatched eggs and used a binomial distribution with a 
zero- inflation component, due to a large number of zeros in the counts of 
unhatched eggs and unfertilized eggs in the data. The model was run using 
the “glmmTMB” package in R (107), with year and female ID as random fac-
tors. To test whether there were i) sex biases in embryo mortality, ii) paternity 
biases in embryo mortality, iii) effects of inbreeding coefficient, and iv) 
sex differences in the effect of inbreeding coefficient on embryo outcome 
we fitted a model of embryo outcome with sex, extra-  versus within- pair 

http://www.pnas.org/lookup/doi/10.1073/pnas.2319104121#supplementary-materials
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paternity, inbreeding coefficient, and an interaction between inbreeding 
coefficient and sex as independent variables. We ran a cumulative link mixed 
model using the “ordinal” package in R (108), including mother ID, clutch, 
and year as random effects, and used a logit link function, selected from 
available link functions using AIC values. A cumulative link mixed model 
is designed to deal with ordinal/ordered categorical data, making it suited 
for the dependent variable of embryo outcome; categorized according to 
the developmental stage reached and therefore ordered by developmental 
time. The variation in inbreeding coefficients with paternity was tested in 
using a generalized linear mixed model with inbreeding coefficient as the 
dependent variable, paternity (within- pair/extra- pair) as the independent 
variable, and mother ID and year as random effects. The model was run with 
a tweedie distribution to account for zero inflation in the inbreeding coeffi-
cient estimates. The effect of sex ratio and population size on egg infertility 
probability and hatching probability was tested using four general linear 
mixed models with the binomial dependent variables of hatched/unhatched 
and fertilized/unfertilized tested against sex ratio and size of the population 
as independent variables. The four models all included mother ID, clutch, 
and year as random effects and used a binomial distribution due to the bino-
mial response variable. Population size was scaled (/100) to improve model 
convergence. The results of the models (estimates, CI, and P values of fixed 
effects) can be found in SI Appendix, Table S2 (Supplementary Information).

Data, Materials, and Software Availability. The data and code associated 
with this analysis are publicly available at https://github.com/fmorland/hihipop-
demographicsandreprodfailure.git (106). Hihi are of cultural significance to the 
Indigenous people of Aotearoa New Zealand, the Māori, and are considered a 
taonga (treasured) species whose whakapapa (genealogy) is intricately tied to that 
of Māori. For this reason, the hihi pedigree will not be made available publicly but 
will be made available by reasonable request on the recommendation of Ngāti 
Manuhiri, the iwi (tribe) that affiliates as kaitiaki (guardians) for hihi. To obtain 
contact details for Ngāti Manuhiri, please contact Dr Patricia Brekke at patricia.
brekke@ioz.ac.uk. This process is necessary in order to maintain current permit 
stipulations and is in agreement with the Nagoya Protocol and NZ's treaty of 
partnership between the British Crown and Māori, Te Tiriti o Waitangi.
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