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Abstract: Hybrid attacks coordinate the exploitation of vulnerabilities across domains to undermine trust in
authorities and cause social unrest. Whilst such attacks have primarily been seen in active conflict zones, there
is growing concern about the potential harm that can be caused by hybrid attacks more generally and a desire
to discover how better to identify and react to them. In addressing such threats, it is important to be able to
identify and understand an adversary’s behaviour. Game theory is the approach predominantly used in secu-
rity and defence literature for this purpose. However, the underlying rationality assumption, the equilibrium
concept of game theory, as well as the need to make simplifying assumptions can limit its use in the study of
emerging threats. To study hybrid threats, we present a novel agent-based model in which, for the first time,
agents use reinforcement learning to inform their decisions. This model allows us to investigate the behavioural
strategies of threat agents with hybrid attack capabilities as well as their broader impact on the behaviours and
opinions of other agents. In this paper, we demonstrate the face validity of this approach and argue that its
generality and adaptability render it an important tool in formulating holistic responses to hybrid threats, in-
cluding proactive vulnerability identification, which does not necessarily emerge by considering the multiple
threat vectors independently.
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Introduction

The topic of hybrid threats has gained significant attention in recent years, particularly after Russia attacked
Ukrainein 2014 (Treverton et al.l2018; Sazonov et al.[2016). During this attack, Russia coordinated actions across
multiple domains. For example, they deployed unmarked soldiers, engaged local separatists, conducted cyber-
attacks, and launched misinformation campaigns to achieve their strategic objectives. Russia did not trigger a
significant international response to these attacks. Other historical examples include: state actors, such as Iran
(Hoffman|2010) and China (Treverton et al..2018); and non-state actors, such as Hezbollah (Azanil2013) and the
Islamic State in Iraq and the Levant (Jacobs & Samaan|2015).

In recent years, hybrid operations have changed in scale by expanding beyond the physical space (Hoffman
2010) into the digital space due to the increasingly widespread use of the Internet and social media (Treverton
2018). Planning and launching such operations is typically less expensive than engaging in traditional warfare.
Moreover, definitively attributing such attacks can be challenging, making a timely and appropriate response
difficult, if not almost impossible, for the target (Treverton|2018). These attack methods offer many opportuni-
ties to manipulate people’s attitudes and opinions and influence their decision-making (Linkov et al.|2019).
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In this research, we define hybrid threats as strategically coordinated actions that exploit vulnerabilities across
cyber and information domains to influence the behaviour and shape the opinions of the target audience while
staying below the threshold of effective response.

To respond to the societal challenges associated with hybrid threats, it is essential to be able to identify and
understand the attacker’s behaviour. Modelling the behaviour of an adversary capable of coordinating attacks
across multiple domains helps to understand its potential attack strategies and assess its likely impacts. Game
theory is widely used in security and defence science research for this purpose. It has been used to model the
behaviour of an attacker with specific attack capabilities, such as cyberattacks against cyber-physical systems
(Huang & Zhu[2020) and misinformation dissemination in social networks (Kumar & Geethakumari2013), as well
as coordinated attack capabilities (Keith & Ahner2021;|Balcaen et al.|2022). However, the underlying rationality
assumption (Mueller|{1996) and equilibrium concept (Smith & Price|1973), as well as the need for a considerable
degree of abstraction, can limit the use of game theory in the study of such emerging threats.

To address these limitations, we propose a novel agent-based model in which agents use reinforcement learn-
ing (RL) to make decisions. For this, we introduce agents into an environment that comprises a series of com-
peting service providers and their customers. It also includes a social network in which information - both ac-
curate and misleading - about the quality of service can be exchanged. In this environment, malicious agents
use RL to decide when and for how long to attack a service provider, as well as how to coordinate attacks that
exploit vulnerabilities across cyber and information domains. Other agents, with no malicious intent, use RL
to decide from which provider to request service or about whom to exchange information. We use modelling
and simulation to analyse the strategic behaviour of malicious agents with hybrid attack capabilities as well as
their impact on the behaviours and opinions of other agents. The contributions of this paper are summarised
as follows:

+ We define a model with which to study the behaviour of malicious agents with hybrid attack capabilities.
To the best of our knowledge, this is the first paper to study the behavioural strategies of malicious agents
that exploit vulnerabilities across cyber and information domains.

+ We represent malicious agents’ behaviour as an RL problem to understand how adversaries can develop
their attack strategy based on their experience with and observations of the dynamics of the surrounding
system.

« We evaluate the impact of such attacks on the behaviours and opinions of the targets.

The problem is multifaceted and, whilst game theory can be applied to parts of it, the multiple layers of inter-
action render this approach inadequate to the task. Consequently, we propose that using RL in this domain is
appropriate, effective, and easier to adapt to the complexities of this emerging threat.

The remainder of the paperis organised as follows: Section 2 introduces hybrid threats and relevant research on
modelling the concept. Section 3 first introduces the environment before presenting different types of agents.
The section then summarises the model. Section 4 details the design of the experiments and presents the re-
sults. Section 5 interprets the results and discusses the implications. Section 6 details the conclusions, limita-
tions, and future work.

Related Work

The section introduces the concept of hybrid threats before describing the related research on modelling at-
tacker behaviour.

Hybrid threats

There is no concrete definition of the term “hybrid threats” that has been agreed upon in policy documents and
academic publications. Both state and non-state actors can use hybrid tactics to achieve their goals (Linkov
et al.[[2019). Rather than targeting armies, they typically target members of society to achieve their desired
outcomes without escalating the situation into war (Gunneriusson & Ottis|2013;|Treverton et al.[2018). They
simultaneously use a variety of political, economic, social, and informational means to exploit vulnerabilities
across different domains (Hoffman|[2007; Treverton et al|2018), making detection, attribution and response
more challenging for the target (NATO Strategic Communications|2020).
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Hybrid threats have been attracting growing interest among governments and policy-makers (UK Government
2015;|Giannopoulos et al.[2020), inter-governmental organisations (European Commission|2016), defence and
security communities (NATO Strategic Communications|2020), and academia (Hoffman|2010;|Linkov et al.|2019).
The reasons are the changing nature of conflict (Hoffman|2010), increasing interconnectedness between digi-
tal systems (Linkov et al.|12019), emerging technologies, and the changing information environment (Treverton
et al.[2018).

Modelling hybrid threats

Agent-based modellingis a computational approach to modelling systems with many autonomous agents (Sayama

2015). Formal descriptions of interactions and their consequences, typically game theory and reinforcement
learning, underpin the way in which computational agents interact with each other and seek to achieve their
goals in such systems.

Game theory is a method that has been used to address different societal challenges, such as cooperation,
conflict, and coordination (Myerson|1991;|Poole & Mackworth|2017). It provides an accessible and widely-used
way of studying the strategic interactions between players and the overall outcome of their decisions (Myerson
1991). In particular, game theory captures the adversarial nature of the interactions between players (Sinha
etal.2015). In security and defence-related research, game theory is applied to study the behaviour of opposing
agents — an attacker and a defender.

Specifictypes of hybrid threats, such as cyber threats against cyber-physical systems (Huang & Zhu|2020) or mis-
information dissemination in social networks (Kumar & Geethakumari|2013), have been analysed using game
theory. More recently, game theory has also been applied to the study of threats that exploit vulnerabilities
across domains in a coordinated manner. For example, Keith & Ahner|(2021) use game theory to study a sce-
nario in which a defender protects population centres using air defence systems against an attacker capable
of both physical and cyberattacks. The attacker seeks to maximise harm by either directly targeting popula-
tion centres or conducting a cyberattack against the defender’s air defence systems. The defender strategically
positions their air defence systems to mitigate physical attacks on population centres, and they implement
appropriate cyber defences to protect their air defence systems. This research highlights the challenges inher-
ent in multi-domain operations, in which effective defence strategies must account for both physical and cyber
threats.|Balcaen et al.[(2022) use game theory to study the costs associated with hybrid threats. In the game, the
attacker can use conventional and unconventional means to destabilise their opponent. The defender decides
how to allocate monetary resources to counter such attacks. This research introduces the defence-economic
aspects of hybrid threats.

Such game-theoretic models assume that agents behave rationally and solve for equilibrium. In game the-
ory, agents choose the optimal action to maximise their expected future payoff. There are, however, issues
that emerge from this. Mueller| (1996) challenges the assumption of pure rationality, suggesting that agents’
past experiences significantly influence their decision-making. He argues that individuals often rely on prior
knowledge and learned behaviours when making choices, leading to actions that may not always be consid-
ered rational.[Smith & Price|(1973) argue that games that solve for equilibrium are too limited in their represen-
tation of real-life problems. The concept of equilibrium, by focusing on a stable outcome in which no player has
the incentive to change their strategy, simplifies the complex dynamics of real-life interactions. The concept
might not fully account for different factors that influence decision-making, such as emotions, social norms,
and evolving relationships between individuals.

RL, being more dynamic, has the potential to overcome these limitations. RL studies the emergent behaviour
of an agent derived from their interactions with a surrounding environment (Sutton & Barto|2020). An RL agent
interacts with the environment in discrete time steps. They observe the state of the environment, decide which
action to take, and receive rewards for their actions, as well as enter a new environment state. Through trial-
and-error interactions, the agent aims to learn an optimal policy that maximises their cumulative reward (Sut-
ton & Barto|[2020). Applications of RL include games (Silver et al.[[2018), robotics and autonomous systems
(Akkaya et al.2019), recommendation systems (Zheng et al.[2018), information spreading and opinion dynam-
ics in social networks (Banisch & Olbrich|2019;Yu et al.|2016;|Hao et al.2015;Mukherjee et al.|2008), and many
more.

In security and defence science, RL is particularly effective for modelling adversarial behaviours, especially
when simulating complex, sequential decision-making processes central to many attack campaigns. For exam-
ple, an adversary might escalate privileges by gaining initial access, discovering vulnerabilities, and exploiting
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them to move laterally or gain higher-level access, all while evading detection. RL captures the adaptive na-
ture of these strategies, where each action alters the environment and potentially triggers defensive responses
that attackers must learn to bypass. By training RL models in simulated environments, researchers can safely
explore and anticipate adversarial actions, providing valuable insights for developing more robust defences.

Much like game theory, RL methods have mainly been used to study individual threats. Security and defence
literature presents research where RL methods have been applied to various aspects of cybersecurity, including
intrusion detection (Kurt et al.[2019), intrusion prevention (Hammar & Stadler|2022), and penetration testing
(Zhou et al.|2021;|Oh et al.|2023;|Chowdhary et al.|2020). These problems align well with the RL framework as
an agent needs to learn a strategy to optimise an objective through repeated interactions with the surrounding
environment. RL methods have also been applied for studying information spreading and opinion dynamics
phenomena, such as the emergence of polarisation (Banisch & Olbrich|2019), public opinion expression (Ban-
isch et al.2022), formation of consensus (Yu et al.[2016) and social norms (Hao et al.2015;|Mukherjee et al.2008),
as well as for detecting and mitigating misinformation (Wang et al.|2020).

There appear to be no peer-reviewed publications that apply RL to model the behaviour of an adaptive attacker
capable of coordinating attacks across cyber and information domains.

Proposed Model

To devise an agent-based model for further analysing the behaviour of agents with hybrid attack capabilities
and their impact on the behaviours and opinions of other agents, we first need to specify the environment’s
structure, define the types of agents, and describe their behaviour.

Environment

Common to all RL-based approaches is the need for a training environment. However, the criticality of physi-
cal processes prevents direct experimentation with attacks within real-world systems, necessitating the use of
virtual testbeds, such as digital twins, to safely simulate and analyse attack-defence scenarios. While existing
platforms (Microsoft|2021;|DST Group|2022) offer valuable environments for exploring cyberattack and defence
operations, they primarily support the study of network-based attacks and lack the ability to represent inte-
grated cyber, physical, and social systems that multi-domain attacks exploit.

To address this gap, we develop an environmentin which itis possible to simulate not only attacks against cyber
and physical systems but also misinformation campaigns that can influence peoples’ opinions and behaviour.
This environment involves a series of competing service providers and their customers. It also includes a social
network in which information - both accurate and misleading - about the quality of service can be exchanged.
In short, the environment represents a Cyber-Physical-Social System (CPSS). Next to physical components and
supporting digital elements, a CPSS considers humans and social dynamics as an integral part of the whole
system (Wang|2010). Figure[I]visualises the environment.
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Figure 1: Environment as a Cyber-Physical-Social System.

Cyber-Physical System

Within the environment, the Cyber-Physical Systems are service providers, denoted as D = {dy, ..., dy}, with
central and end-point states. This paper assumes that service providers are critical infrastructure companies.
Forexample, a utility company comprises physical components like power generation plants, substations, trans-
mission and distribution lines, and cyber elements like customer portals, communication systems, and smart
meters. In this example, a power generation plant responsible for electricity generation has a central state, and
the transmission network ending at a customer’s premises is the end-point state. To model the possibility of
independent failures in central and end-points, we make use of two-state Gilbert-Elliott Markov models (Gilbert
1960; Elliott|1963).

A service provider, d € D, has a central state, z4, which can be 1 or 0, indicating whether it is available or
unavailable. At each time step ¢, the new value of the central state is calculated using transition probabilities
vg = prob(1 — 0) and g = prob(0 — 1), as follows:

1, with probability 1 — vg, ifzg+—1 =1
0, with probability vy, if z2g¢-1 =1
1, with probability g4, if2g¢-1=0
0, with probability 1 — g, ifz4¢—1 =0

Zdt <

Aservice provider, d € D, delivers an end-point state, [ ,,, to each regular agent, v € U. As before, it can either
be 1 or 0, showing the availability of the service. At each time step ¢, the new value of the end-point state for
each agent is conditional on the central state and is calculated using transition probabilities o4 = prob(1 — 0)
and 04 = prob(0 — 1), as follows:

1, with probability 1 — oy, iflgu:—1 =1andzg: =1
0, with probability o4, iflgut—1=1and zg; =1
laue < ¢ 1, with probability 6,4, iflgut—1=0and zq; =1 (2)
0, with probability 1 — 84, iflgu:—1 =0 andzg, =1
0, if Zdt = 0
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If the service provider’s central state, z4 +, is 0, then no end-point service is delivered to their users.

Social System

Agents, categorised as regular agents, U = {uy, ...., us }, and malicious agents, M = {m,...,m;}, represent
the environment’s Social System. These agents form a social network described as a static, undirected, and
unweighted graph G = (V, E), where an edge {v1,v2} € F indicates that agents v1,v2 € V have a social
tie between them. The graph is constructed following the Watts & Strogatz|(1998) model in which each node
initially connects to its x nearest neighbours in a ring configuration, and each edge is rewired with a probability
p to a uniformly chosen random vertex. This model generates a social network with short average path lengths
between nodes and high clustering, which are two inherent characteristics of social networks (Watts & Strogatz
1998). Agents can exchange information with each other through the social network and interact with the ser-
vice providers through online communication systems. By combining agents’ social interactions with service
providers’ cyber-physical components, the environment represents a CPSS.

Agent-based model

Our agent-based model details the behaviour of malicious and regular agents in the environment. We represent
the behaviour of malicious agents with an attack model and the behaviour of regular agents with an experience
model and an opinion dynamics model. The model’s notation is added as a table in Appendix A.

Attack model

An attack model describes how malicious agents learn about the system’s dynamics and use their experience
and collected information to attack their target. Whilst not a limitation of the approach, this paper assumes
that malicious agents can launch two different types of attacks: (1) a denial of service attack against a service
provider that blocks the availability of targeted resources to legitimate users and (2) a misinformation campaign
in a social network that manipulates public opinion. Malicious agents can coordinate these attack methods to
exploit vulnerabilities across cyber and information domains. Their goal is to maximise the number of service
provider customers who experience attacks by directly experiencing service unavailability or through exposure
to negative information on the social network, both of which may cause customers to change their provider.

Theimpact of the attacks is expected to depend on theirtimings and coordination. The first key question is when
to attack to realise the attacker’s goals. Whether an attacker attacks too early or too late, an opportunity to have
a more significant impact might be lost. The second question is for how long to attack a system. The longer the
time for which malicious agents attack a system at a given level of intensity, the greater the probability that
the attack is detected. Therefore, an attacker aims to achieve their goal as quickly as possible or as quietly
as possible to reduce the chance of detection. The third question is in which way should attacks be combined
to potentially maximise harm to the target. A misinformation campaign can sow distrust that the adversaries
can later exploit with a cyberattack. Alternatively, a cyberattack could first disrupt critical systems, creating an
opportunity for the attackers to disseminate tailored misinformation to amplify harm.

Malicious agents observe the state of the environment, s € S, that indicates the number of regular agents as-
sociated with each service provider. This number represents the agents an attack campaign can impact. They
have 5 available actions a,, € A,, = {0,1,...,4}, in which action 0 means undertaking reconnaissance, 1 =
conducting a cyberattack, 2 = spreading misinformation, 3 = combining attacks (cyberattack and misinforma-
tion), and 4 = terminating the attack campaign. Malicious agents receive a reward, r,,,, for their actions. This
reward consists of the following components:

« The cyberattack reward measures the proportion of regular agents affected by an attack against a service
provider. It is negative during reconnaissance (indicating the cost of inaction) and positive after attack
initiation.

« The misinformation reward measures the proportion of regular agents exposed to misinformation spread
by malicious agents. It is negative during reconnaissance (indicating the cost of inaction) and positive
after attack initiation.

« The detection reward represents the proportion of regular agents that have detected either a cyberattack
or misinformation. It is initially zero and negative after attack initiation.
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- regular agents who request service from the affected provider have a probability of detecting a cy-
berattack controlled by the parameter (.

- regular agents in contact with malicious agents spreading misinformation have a probability of de-
tecting misinformation controlled by the parameter .

Malicious agents start in the reconnaissance stage. We assign a positive value £ to undertaking reconnaissance
action, encouraging malicious agents to observe the environment. At each time step ¢, they receive the state of
the environment, s; € S, and take action following their policy 7, as:
Tm = arg max Q, (a) (3)
a€A,

where Q,,,(a) isan action-value function. When staying in reconnaissanceis no longer beneficial, they target the
service provider whose disruption could potentially have the most far-reaching consequences. This decision is
based on the potential to inflict maximum harm on customers through service outages and the propagation
of misleading information. For every action, they receive a reward, which is used to update the action-value,
Qm(a), as follows:

Qm(a) < Qm(a) + a X [rm — Qm(a)] (4)
where a is the selected action, 7, is the received reward, and « is the learning rate. Figure [2]illustrates the
behaviour of malicious agents in our environment.

RL agent
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Figure 2: Malicious agents’ behaviour in the environment.

Experience model

Each regular agent has a service provider and several social connections, as illustrated on Figure[1} To choose
service providers, agents combine their personal experiences with information from their social network.
Each agent, u € U, follows a policy, 7, that balances their direct experiences of using the service (represented
by action values Q.,(a)) with information about providers heard from their social connections (represented by
opinion values ®,,(0)). The agent’s policy is an e-greedy policy defined as follows:

arg max {w X Qu(a) + (1 —w) x [@,(0f) — @u(o;)]} with probability 1 — €

a
Ty = a€A,

U(AL) with probability €

(5)
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where @, (o}) and @, (0, ) represent the agent’s positive and negative opinions about action a, w is a weight
controlling the relative importance of direct experiences versus social information, € is an exploration param-
eter, and U(A,,) denotes a sample from the uniform distribution over the action space. By considering the
difference between positive and negative opinion values next to action values, agents are more likely to choose
providers about whom they have a stronger positive sentiment or avoid those with negative reputations.

3.16 Regular agents have several available actions representing the choice between service providers. At each time
step t, each agent, u € U, takes action, a,,; € A, = {di,...,dx}, and receives service from their chosen
provider, d;. They record the received end-point state, I, ., +, as their reward value, r,. During the learning
process, they update their evaluation of actions, @, (a), as:

Qu(a) = Qu(a) + ax [ry = Qu(a)] (6)

where q is the selected action, r, is the received reward value, and « is a learning rate. Each agent then asks
for information from one of their neighbours, ¢, € C,. This process is explained in Opinion dynamics model
section. After receiving information from their neighbour, the agent continues following the e-greedy policy to
select the next action.

Opinion dynamics model

3.17 Anopinion dynamics model describes how regular agents interact with their neighbours and use the received
information to develop their opinions on service providers’ behaviour. This paper follows the examples of Ban-
isch & Olbrich|(2019) and|Yu et al.|(2016) for designing opinion-sharing and adoption mechanisms.

3.18 Each agent, u € U, follows a policy, 1, represented by a vector of opinion values, ®,,(0). The policy of the
agent is an e-greedy policy defined as:

argmax ®, (o) with probability 1 — €
Hoy = 0€0, (7)
U0,) with probability e

where ois an opinion, ¢ is an exploration parameter, and 4/ (O,,) denotes a sample from the uniform distribution
of the opinion space.

3.19 Regular agents have 2 x k available opinions. Each opinion, o, € O, = {o],07, ...,o,;,okf}, reflects the
agent’s sentiment towards a service provider’s behaviour. Each opinion is a tuple of an opinion value and a
service provider’s identity. The opinion value is 1 or —1, indicating a positive or negative opinion. For example,
a positive opinion on service provider d is a tuple of (1,d) = o . Similarly, a negative opinionis (—1,d) = o .

3.20 Ateachtimestept,eachagent,u € U,expressesanopinion,o, : € O,,toarandomly chosen neighbour, ¢, € C,,
in the social network. This way, agents are exposed to a wider range of opinions that can help them to make

informed decisions. When asked, the neighbour compares the proportion of service availability, I, ,,, calculated

asly, = Zi:ﬂld,u,t X da, ,.d), Whered = offz, with a satisfaction threshold, 7, to decide whether they have a

positive or negative opinion of the specific service provider. If the neighbour has no prior experience with the
service provider, they do not provide feedback. Otherwise, if their opinions match, they get a positive reward,
h., = 1;alternatively, they get a negative reward of —1. They update their internal evaluation of opinion, ®,,(0),
as:

D, (0) + P, (0) + a X [hy(0) — Pyy(0)] (8)

where o is the expressed opinion, h,, is the reward value, and « is a learning rate. Afterwards, they continue fol-
lowing the e-greedy policy for selecting an action and expressing an opinion at the next step. Figure[3|illustrates
the behaviour of each regular agent as an RL agent in our custom environment.
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Figure 3: Regular agents’ behaviour in the environment.

Parameters and input values

3.21 Table[l]summarises the parameters in the simulation. These values were chosen on the basis of a combination
of theoretical considerations and practical limitations:

JASSS, 28(1) 1,2025

The learning rate, «, set to 0.05, controls how quickly agents learn from their experiences. A smaller
value ensures stability during learning, while a larger value might lead to faster but potentially less robust
learning.

The exploration parameter, ¢, set to 0.10, balances the exploitation of known good choices with the ex-
ploration of new service providers and opinions.

The cyberattack and misinformation detection probabilities, ¢ and 7, set to 0.80 and 0.10, reflect the
assumed relative difficulty in detecting these attacks. These values reflect the assumption that people
are more likely to recognise a cyberattack than a well-crafted misinformation campaign.

The number of neighbours, &, is set to 6, following values used in social network studies (Watts & Stro-
gatz[1998; Perra & Rocha|2019). The graph was generated using the Watts & Strogatz| (1998) model with
a rewiring probability, p of 0.01. This probability value introduces a small degree of randomness into the
network structure while primarily preserving local connections, reflecting realistic social network pat-
terns.

The satisfaction threshold, 7, set to 0.80, represents the expected level of service availability that regular
agents consider satisfactory.

The direct experience weight, w, set to 0.80, indicates how much agents value their personal experiences
over information from their social network. This value reflects the assumption that agents generally trust
their own experiences more than information from others.

The transition probability values, v, 1, o, and 0, are hard to estimate due to limited data; therefore, the
probability values, shown in|Gilbert|(1960), are used to model the output of a service provider’s end-point
state. The transition probabilities are chosen so that the central state is more likely to be available than
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the end-point states, reflecting greater stability and availability. In our example, this translates to a power
generation plant being less prone to failure than a transmission network.

Parameter  Description Value
o Learning rate 0.05
€ Exploration parameter 0.10
¢ Cyberattack detection probability 0.80
n Misinformation detection probability 0.10
K Number of neighbours 6
p Rewiring probability 0.01
T Satisfaction threshold 0.80
w Direct experience weight 0.80
13 Positive initialisation of malicious agents 100
o End-point transition probability 1 — 0 0.03
0 End-point transition probability 0 — 1 0.25
v Central state transition probability 1 -0  0.01
P Central state transition probability 0 — 1 0.30

Table 1: Parameter values in the model.

Table2]summarises input values used in the simulation. Warm-up time, W, necessary for different aspects of
the simulation to normalise, is the period for which the simulation will run before any data is collected. Welch
(1951) method was used to determine the length of the warm-up time. Observations showed convergence of
the simulation after 2000 time steps. The number of time steps, T', set to 10000, is proportional to the warm-up
time. The simulation environment includes 1000 agents, of which 950 are regular agents and 50 (5%) are mali-
cious agents. This setup allows the model to focus on the behaviour of the majority of agents while examining
the disruptive influence of a minority of malicious actors. The three service providers introduce competition
into the system, creating options for regular agents. The chosen agent population size balances computational
efficiency with the ability to observe interesting social network dynamics.

Input  Description Value
T Number of time steps 10000
w Warm-up time 2000

b,|U|  Number of regular agents 950

J,|M|  Number of malicious agents 50

k,|D| Number of service providers 3

Table 2: Input values in the model.

Experiments and Analysis

The section presents metrics used to characterise agents’ behaviour and introduces the results of two experi-
ments. The first experiment concerns the behaviour of regular agents alone, i.e., without introducing adversar-
ial events. The second experiment examines the attackers’ strategic behaviour and impact on regular agents.
We conducted a linear regression analysis to understand which malicious agents’ decisions impacted regular
agents’ behaviour and opinions.

Metrics

This section introduces metrics that were used to understand the system’s behaviour.

1. Average service selection rate, 775, shows the regular agents’ preference for each service provider. Higher
values indicate a preference among these agents for a particular service provider. We calculate this as

follows:
Ul T

Mg = Lt ZZéaw,d | a = choose d (9)

u=1t=1
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where ¢, ,, is the Kronecker delta, equal to 1 if x = y and 0 otherwise, action a is the choice of service
provider d, |U| is the number of users, and T is the number of time steps.

2. Average service level, I4, is the proportion of time service was available when requested. Higher values
indicate greater service availability. We calculate this as follows:

vl T

_ 1
T = [ 2 Dl X ) "

u=1t=1

where [g,,, is the end-point state provided by service provider d to agent u at time step ¢, ¢, , is the
Kronecker delta, equal to 1 if x = y and 0 otherwise, action a is agent u’s choice of service provider d,

|U| is the number of users, and T' is the number of time steps.
3. Average opinion value on service provider, o4, shows the strength of positive o;r or negative opinion o

on service provider, calculated as follows:

vl

= e % 2 3 el =

u=1t=1

where ®,, ;(0) is agentu’s value of opinion o at time step ¢, |U| is the number of users, and T"is the number
of time steps.

4. Average regret, 7, is a performance metric that shows the difference between the optimal and received
rewards. A smaller value indicates that regular agents, on average, are making decisions closer to the
optimal strategy. We calculate this as follows:

1 vl T
7= T ¥ SN 07 = 1) (12)
u=1t=1

where 7} is the optimal reward value at time step ¢ (r; = 1 when any service provider’s end-point state
lau,t = Land rf = 0 otherwise), r,, , is the reward received by user u at time step ¢, |U| is the number of
users, and 7' is the number of time steps.

5. Attack duration is the number of time steps for which an attack took place.

« Cyberattack duration, x1, is the number of time steps for which the attack took place.

+ Misinformation duration, 3, is the number of time steps for which a misinformation campaign took
place.

+ Combined attack duration, x5, is the number of time steps during which an attacker used both attack
methods at the same time.

6. Attack start marks the time step at which an attack started.
+ Cyberattackstart, -, is the time step at which malicious agents launch a DoS attack against a service

provider.

+ Misinformation start, x4, is the time step at which malicious agents launch a misinformation cam-
paign in the social network.

+ Combined attack start, g, is the time step at which an attacker decides to start using both attack
methods simultaneously.

7. Order of attacks, x7, shows the sequence in which malicious agents launch attacks. It is a binary variable
recorded as 1 if malicious agents start their attack campaign with a cyberattack and launch a misinfor-
mation campaign later. Alternatively, if they start with misinformation and escalate the situation with a
cyberattack, the variable is recorded as 0.

8. Impact on service selection rate, y1, is the difference between the average service selection rate during
an attack and during normal operations (no attack).

9. Impact on positive opinion, y,, is the difference between the average positive opinion value during an
attack and during normal operations (no attack).

10. Impact on negative opinion, ys, is the difference between the average negative opinion value during an
attack and during normal operations (no attack).

JASSS, 28(1) 1, 2025 http://jasss.soc.surrey.ac.uk/28/1/1.html Doi: 10.18564/jasss.5539



4.3

4.4

4.5

4.6

Experiment 1

In the first experiment, we investigated the general behaviour of regular agents in the environment. For this,
we ran the agent-based model without introducing malicious behaviour. We measured each service provider’s
average service selection rate, average service level, and average opinion values to understand how regular
agents and service providers behave in the environment. We also measured the average regret value to under-
stand how well agents performed. Table[3|summarises the results.

Metric  Description Mean  Std Dev Min Max
nr Average service selection rate 0.33 0.03 0.22 0.42
N Average service level 0.89 0.00 0.89 091
E Average positive opinion 0.94 0.06 0.63 1.00
f Average negative opinion -0.94 0.06 -0.64 -0.99
) Average service selection rate 0.33 0.03 021 041
Iy Average service level 0.89 0.00 0.88 091
% Average positive opinion 0.96 0.06 057 1.00
E Average negative opinion -0.96 0.06 -0.57 -1.00
naz Average service selection rate 0.34 0.02 0.27 0.39
I3 Average service level 0.89 0.00 0.88 0.90
E Average positive opinion 0.97 0.03 0.82 1.00
E Average negative opinion -0.97 0.03 -0.82 -0.99
v Average regret 0.10 0.00 0.10 0.11

Table 3: Agents behaviour in the first experiment. The number of simulation runs was 100. The index of a metric
identifies the service provider.

We found that all service providers had similar popularity among regular agents, each providing service to
about a third (between 33 — 34%) of the agents. Decisions on which service provider to use were based on
what regular agents directly experienced and what they heard from others in the social network. As service
providers’ transition probabilities between states, o, 0, v, 1, that indicate service availability, were the same
(see Table , their average service level (0.89) was also similar. The average service level exceeded the satis-
faction threshold 7, making regular agents form positive opinions of each service provider. As regular agents
generally had good experiences and thought well of all the providers, they chose between them fairly equally.
Regular agents formed positive opinions of each service provider’s behaviour (average values between 0.94
and 0.97) based on the feedback they received from the agents in their social network. These values imply that
users strongly believed that all service providers behaved well. Positive values for positive opinions show that
when users asked their neighbours if they were satisfied with their service provider, their neighbours tended to
agree. Negative values for negative opinions (average values between —0.94 and —0.97) show that when reg-
ular agents asked their neighbours if they were unsatisfied, they disagreed. We expected such results as each
service provider exceeded the satisfaction threshold 7 with their performance. We measured agents’ average
regret value as 0.10, which aligns with the exploration parameter e. This fixed exploration parameter is a pri-
mary limiting factor in the agent’s ability to achieve optimal decisions consistently. To further reduce the regret
value, it would be necessary to decrease the exploration parameter value during training dynamically.

These results show what regular agents learned to do in the environment to maximise their cumulative re-
ward while balancing exploitation with exploration. Because their transition probabilities were the same, we
expected minor differences between the average service levels of the three service providers. In addition, as
the average service levels were higher than the satisfaction threshold, we expected that users formed positive
opinions on the service providers’ performance. With this experiment, we showed how the dynamics in the
system evolved without malicious activities.

Experiment 2

In this experiment, we investigated the behavioural strategies of malicious agents with coordinated attack ca-
pabilities and their impact on others’ behaviours and opinions. We included both regular and malicious agents
in the environment. We first measured the average service selection rate, average positive and negative opin-
ion values, average service level, and regret to gain insight into the changes in agents’ behaviour. We then
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conducted a linear regression analysis on simulated data to understand the impact. Table 4] summarises the
results of the second experiment.

Metric  Definition Mean  Std Dev Min Max
nr Average service selection rate 0.31 0.06 0.11 0.42
1 Average service level 0.88 0.00 0.86 0.89
Z Average positive opinion 0.86 0.11 037 0.96
f Average negative opinion -0.85 0.10 -0.38 -0.94
n2 Average service selection rate 0.35 0.06 0.15 0.51
lo Average service level 0.88 0.01 0.86 0.89
E Average positive opinion 0.92 0.07 0.53 1.00
E Average negative opinion -0.90 0.07 -0.53 -0.96
n3 Average service selection rate 0.34 0.06 0.19 048
ls Average service level 0.88 0.01 0.86 0.89
E Average positive opinion 0.91 0.08 0.58 0.99
E Average negative opinion -0.90 0.08 -0.58 -0.96
v Average regret 0.12 0.00 0.11 0.13

Table 4: Agents behaviour in the second experiment. The number of simulation runs was 100. The index of a
metric identifies the service provider.

We observed that the average service selection rates were between 31% and 35%, similar to the first experi-
ment’s findings. However, the average service level was slightly lower because, in each simulation, malicious
agents targeted a service provider, making it unavailable to its users. These attacks resulted in a decrease in the
average service level. We also noticed differences in the average positive and negative opinion values compared
to the first experiment. For instance, the average positive opinion on the first service provider was smaller (0.86
compared with 0.94), indicating that agents in this experiment believed less in the positive opinion of the ser-
vice provider to be true. The average negative opinion values on service providers were also smaller (e.g., —0.85
compared with —0.94), indicating that agents were less confident that a negative opinion on a service provider
was false. There was a difference in regret values between the experiments; 0.12 compared to 0.10 suggested
that agents performed worse following their policy in this experiment compared to the first experiment.

Impact analysis

We conducted regression analyses to identify which malicious agents’ strategic decisions impacted regular
agents’ behaviour and opinions in the environment. For this, we measured the start time of an attack, its du-
ration, the order of attacks, the impact on service selection rate, the impact on positive opinion value, and the
impact on negative opinion value.

We found that attack start time variables had a low correlation (value < 0.20) with all impact variables. There-
fore, these variables (i.e., z2, x4, and xg) were excluded from further analysis. As combined attack length can
be calculated from other attack variables, its relationships with impact variables were observed separately. The
data showed that malicious agents always started their attack campaign with a cyberattack and launched a mis-
information campaign later. Therefore, as there was no data on the results of an alternative order of attacks, we
had to exclude the order of attacks from further analysis. Combining the remaining independent variables (x)
with dependent variables (y), introduced in Section 4.2, we ended up with 6 different models to analyse. Table
[Blshows these results.
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Variable Model 1 Model 2 Model 3 Model4 Model 5 Model 6

bo -0.090*  -0.053*  -0.049 0.046*  0.005 0.081 ***
(0.04) (0.02) (0.03) (0.02) (0.03) (0.02)
1 0.016 *** 0.004 * 0.003 *
(0.00) (0.00) (0.00)
T3 0.002 0.007 *** 0.005 ***
(0.00) (0.00) (0.00)
Ts5 0.016 *** 0.005 ** 0.005 ***
(0.00) (0.00) (0.00)
R? 0.48 0.48 0.19 0.09 0.20 0.11
Adj. R 0.47 0.47 0.18 0.08 0.19 0.10

Table 5: Regression analysis results. The number of simulation runs was 100. Standard errors in parentheses.
***p <0.001;**p <0.01;*p <0.05Tp <0.1

The first model (Model 1) predicts the impact on service selection rate given the length of a cyberattack z; and
misinformation campaign z3. The following equation predicts the impact on the service selection rate as:

y1 = —0.090 4+ 0.016 x 1 + 0.002 X x3 + € (13)

where € is the error term. The model results showed that the impact on service selection rate depends sig-
nificantly on the length of a cyberattack but does not depend significantly on the length of a misinformation
campaign. The model suggests that more regular agents tend to change their service provider the longer it is
unavailable due to a cyberattack. According to the model, an attacker needs to find resources to conduct a
cyberattack for at least 6 time steps to receive a significant impact on the user behaviour. If attackers decide
to attack a service provider for an additional time step, the impact on the service selection rate will increase
by 0.016 units. Here, we found that around 1.6% of regular agents will leave their service provider during ev-
ery additional time step of a cyberattack. Analysis of R? showed that the attack length variables collectively
explained about 48% of the variability observed in the impact variable.

The second model (Model 2) predicts the impact on service selection rate given the length of a combined attack.
The equation for this is:
y1 = —0.053 + 0.016 x =5 + €. (14)

where € is the error term. The results showed that an attacker needs to conduct a cyberattack with a misinfor-
mation campaign for at least 4 steps to achieve a positive impact. The longer the combined attack lasts, the
higher the positive impact is for malicious agents. Here, we found that the percentage of regular agents who
will leave their service provideris 1.6% for every additional time step of a combined attack. Like the first model,
the combined attack duration variable explains around 48% of the variability in the dependent variable.

The third model (Model 3) predicts the impact on the positive opinion given the lengths of a cyberattack and
misinformation campaign. The equation is:

yo = —0.049 4 0.004 x z1 + 0.007 X z3 + ¢ (15)

where eisthe errorterm. Theresults showed that the impact on the positive opinion value significantly depends
on both independent variables. While spreading misinformation for only 1 time step, an attacker should attack
a service provider for at least 23 time steps to influence the positive opinion value. However, the longer they
conduct a cyberattack, the more likely they will be detected. Misinformation detection can be more challenging.
According to the model, they only need to spread misinformation for 7 time steps and a cyberattack for 1 time
step to influence the positive opinion value. If an attacker decides to attack the service provider for 1 time
step longer, the impact will increase by 0.004 units. If an attacker decides to spread misinformation about a
service provider in the social network for 1 time step longer, the impact will increase by 0.007. Opinion values
show the strength of an opinion in society. Here, we found that the strength of a positive opinion value of the
targeted service provider will decrease by either 0.004 or 0.007 units. Considering their resources, attackers can
decide how long to conduct a cyberattack or a misinformation campaign to change the positive opinion of the
targeted provider. The R? value showed that the attack length variables explained only 19% of the variability
in the impact variable.

The fourth model (Model 4) predicts the impact on the positive opinion given the length of a combined attack
as:
y2 = 0.046 + 0.005 x x5 + € (16)

JASSS, 28(1) 1, 2025 http://jasss.soc.surrey.ac.uk/28/1/1.html Doi: 10.18564/jasss.5539



4.14

4.15

4.16

5.1

5.2

5.3

where € is the error term. The results showed that the impact on positive opinion value significantly depends
on the length of a combined attack. The results suggested that conducting a combined attack for 1 time step
longer will increase the impact by 0.005 units. The strength of the positive opinion value on the targeted ser-
vice provider will decrease by 0.005 at every additional time step. The R? value showed that the independent
variable explained only around 9% of the variability in the dependent variable.

The fifth model (Model 5) predicts the impact on the negative opinion given the length of a cyberattack and
misinformation campaign. The following equation predicts the impact variables as:

ys = 0.005 4 0.003 x 1 + 0.005 X z3 + € (17)

where € is the error term. The results showed that the dependent variable significantly depends on the inde-
pendent variables. According to the model, increasing the cyberattack length variable by one additional time
step increases the impact on the negative opinion value by 0.003 units. Similarly, increasing the number of
misinformation campaign time steps by 1 increases the impact on the negative opinion value by 0.005. Here,
we found that the length of a misinformation campaign increased the impact on the negative opinion value
more than a cyberattack did. We expected this as we interpreted “misinformation” as saying that the service
provider’s performance was negative even when it was not true. The independent variables explain about 20%
of the variability in the dependent variable.

With the last model (Model 6), we wanted to predict the impact on the negative opinion value given the length
of the combined attack. The equation expresses this as:

ys = 0.081 4 0.005 x 25 + € (18)

where e is the error term. The results showed that the impact on negative opinion value significantly depended
on the combined attack length. Here, we found that increasing the length of a combined attack by 1 time step
will increase the impact on negative opinion by 0.005. The results showed that a combined attack would in-
crease the strength of the negative opinion in society. The R? values showed that the combined attack length
variable explained around 11% of the variability in the negative opinion value. The R? values from this and
previous models offer valuable insights. They also highlight the opportunity to explore a potentially richer set
of factors influencing agents’ behaviour and opinions in real scenarios.

We tested the linear regression assumptions for all models before analysing the results. We confirmed that the
relationship between the predictor and outcome variables was linear; the residuals were normally distributed,
uncorrelated, and had a constant variance. Sensitivity analysis results are added as Appendix B.

Discussion

The threat landscape continues to evolve rapidly, with attackers using more advanced tools, like artificial in-
telligence (Al) and machine learning (ML), to launch large-scale, sophisticated attacks at lower cost (Brundage
et al.|2018;|Bresniker et al.|2019). Large Language Models, for example, can be used to generate large volumes
of misleading or false information, including personalised dialogue, which can be used for targeted disinforma-
tion campaigns. Attackers can also use Al/ML techniques to develop attacks against specific targets. By creating
adigital twin as a digital copy of a targeted system, they can simulate attacks, assess potential harm, and refine
their tactics before launching the attack against a real-world system. The prospect of such autonomous and
adaptive attacks raises concerns for the future of defence.

Traditional security analysis approaches often rely on game theory to study attacker behaviour. However, hy-
brid threats, characterised by adaptive behaviour and complex attack strategies, can undermine the core ra-
tionality assumption and equilibrium concept that underlie game theory. Furthermore, the limited real-world
data on hybrid threats and their consequences make it difficult to develop accurate and reliable data-driven
models. These issues create a pressing need for analytical tools and methods that can adapt and learn, even in
situations in which information is limited. Such tools should be capable of representing complex multi-domain
attack situations and enabling a defence-in-depth approach that addresses technical and social issues.

We address this problem by proposing a novel agent-based modelin which malicious agents use RL for decision-
making. Instead of having to pre-define every attacker movement in the environment, the approach allows
them to learn and improve their attack strategies based on their experiences over time. Future work can ex-
pand upon this foundation by incorporating additional factors, such as resource constraints and the presence
of autonomous defence mechanisms, into the malicious agents’ decision-making processes. This will advance
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the understanding of how attackers adapt their behaviour in response to evolving defences, ultimately leading
to the development of more robust defence strategies.

We determined the effectiveness of our RL approach by analysing how the attackers’ decisions on attack start
time, duration, and coordination of attacks affected the societal impact. We found a weak correlation between
attack timing and societal impact, contradicting prior research that showed the potential of an attack during
system downtime to cause considerable harm (Krotofil et al.|2014). Our result suggests that attackers with hy-
brid attack capabilities using RL may struggle to consistently identify these optimal attack moments. The rea-
son for this can be the forward-looking nature of attack planning; attackers must weigh current opportunities
against potentially better future scenarios. The decision-making process becomes even more complex when
attackers operate across multiple interconnected domains. They face the additional challenge of predicting the
cascading effects of coordinated attacks across domains. Accurately predicting these interactions is hard.

Our findings on attack campaign duration and societal impact align with prior research, highlighting a correla-
tion between longer durations and greater societal impact (Podobnik et al.|[2015). Attackers with hybrid attack
capabilities face the complex problem of determining the balance between the acceptable cost and the received
benefit of their attack campaign. Extending the duration can indeed increase the potential societal harm by al-
lowing the effects to cascade across domains. At the same time, they need to balance potential gains against
the increased resource expenditure required to sustain the attack across multiple domains and the heightened
likelihood of detection due to the extended timeframe.

Our investigation into attack strategies revealed that attackers consistently initiated campaigns with cyberat-
tacks followed by misinformation. The initial cyberattack disrupts critical systems, potentially leading to oper-
ational challenges and an increased susceptibility to further manipulations. The subsequent misinformation
campaign then takes advantage of this situation by influencing perceptions or shaping narratives. Following
this strategy, the attacker can potentially reduce misinformation detection as it is likely to blend with the more
genuine concerns caused by the cyberattack. Additionally, after a cyberattack, people are likely more suscepti-
ble to misinformation, amplifying its societal impact.

While our research suggests limitations to attackers’ ability to optimise all aspects of attacks (timing, dura-
tion, coordination of methods) using RL, it highlights the broader threat of intelligent attackers leveraging ad-
vanced technologies. Autonomous penetration testing tools, used for defence purposes today (Oh et al.|2023;
Zhou et al.|2021;/Chowdhary et al.|2020), demonstrate the feasibility of automated vulnerability detection and
exploitation. These tools have the potential to be adapted for malicious purposes, generating and executing
autonomous attack plans across diverse environments (Chowdhary et al.|2020). The lack of current evidence
about attackers actively using such tools in real life should not create a false sense of security. The increasing
availability of powerful computing resources, digital twins, and huge datasets will likely accelerate the devel-
opment of more sophisticated malicious Al capabilities in the future.

While RL has proven to be a valuable component in detecting and mitigating misinformation within social net-
works, as shown in\Wang et al.|(2020), the same techniques raise concerns regarding their potential malicious
use. It could be used for tailoring misinformation campaigns or testing the effectiveness of various narratives
on different groups based on their preferences and online behaviours. Additionally, RL could counter defen-
sive measures against misinformation spreading by continually learning and adapting to evade detection and
maximise impact.

Our study expanded upon these independent threats by exploring the potential for intelligent attackers to gen-
erate autonomous attack operations across multiple domains. While our focus was only on the attacker’s be-
haviour, real-world scenarios would likely include defensive countermeasures. This underscores the impor-
tance of modelling hybrid threats and defensive countermeasures as an adversarial multi-agent attack and de-
fence problem, where both agents employ evolving, intelligent, tactics. Just as autonomous attacks are plau-
sible, so too is the potential for autonomous, adaptive defence.

Conclusion

We proposed an agent-based model composed of intelligent learning agents with which to study the strategic
behaviour of malicious agents with hybrid attack capabilities. We implemented the proposed model and per-
formed linear regression analysis on the collected data. With the model, we were able to determine the strategic
behaviour of malicious agents that would potentially maximise their influence on the target audience.

In summary, our research showed that malicious agents with hybrid attack capabilities could effectively learn
to attack a system. They learned to decide the length of an attack on the system so that agents would start
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changing their behaviour and opinions about the target. The longer the attack lasted, the higher the impact
was, but the greater the chance of detection. They also learned to exploit vulnerabilities across cyber and in-
formation domains in a coordinated manner that significantly impacted the target. The results showed that
an adversary could effectively learn to coordinate attacks across cyber and online information domains based
on their understanding of the system’s behaviour. Such adaptive behaviour can be particularly challenging for
other agents to detect. We also conducted a sensitivity analysis of the model’s parameters to determine how
different parameter values affect the outcome variables given the set of assumptions.

6.3 RL holds significant potential for modelling complex attack scenarios that require adaptive strategies, precise
timing, and coordinated efforts. An RL agent’s ability to learn and adapt continuously through interaction with
its environment allows it to craft sophisticated strategies that exploit specific vulnerabilities in defences, such
as identifying unpatched vulnerabilities or intensifying resources during an attack to overwhelm defenders’
responses. Multi-agent RL further extends this capability by simulating scenarios in which multiple adversar-
ial agents must coordinate actions, such as a synchronised cyber and misinformation campaign, to achieve
shared objectives. Additionally, multi-agent RL can be used in adversarial environments where both attack-
ers and defenders are learning agents, dynamically adjusting their strategies in response to each other. This
dynamic interplay between agents offers valuable insights into complex adversarial interactions, highlighting
RL’s distinct advantages for simulating advanced attack strategies. These capabilities lay the groundwork for
future research, expanding RL’s application in attack modelling and helping to develop more robust defensive
countermeasures.

6.4 Future work will focus on advancing malicious agents’ learning behaviour to improve their decision-making
on the optimal time to attack the system. We will analyse in which order malicious agents should learn to co-
ordinate attacks to maximise their impact on the behaviours and opinions of other agents in the system. We
will evaluate different scenarios to determine the most impactful strategies, and will explore the differences
in impact between individual attacks and coordinated attacks. Future work will also analyse how to respond
effectively to such attacks. More specifically, we will develop and implement relevant detection and response
mechanisms to limit the impact of coordinated attacks in multi-agent systems.

® Model Documentation

The modelisavailableat: https://www.comses.net/codebases/26f3d0de-6965-4915-ba81-8ddbcb27b037/
releases/1.0.0/
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Appendix A: Notation

Notation  Description

a, A action, set of actions

b, |U| number of regular agents

c,C neighbour, set of neighbours

d,D service provider, set of service providers
E set of edges

G graph

h feedback

7, | M| number of malicious agents

k,|D| number of service providers

l service provider’s end-point state

m, M malicious agent, set of malicious agents
n service selection rate

0,0 opinion, set of opinions

Q action-value function

r,R reward, reward function

s, S state, set of states

t, T time step, number of time steps

u, U regular agent, set of regular agents

v,V vertex, set of vertexes

W warm-up time

independent variable

dependent variable

service provider’s central state

learning rate

exploration parameter

probability of detecting a cyberattack

probability of detecting a misinformation campaign
end-point state transition probability 0 — 1
number of neighbours in social network

policy for opinion selection

regret

positive initial value associated with reconnaissance
policy for action selection

rewiring probability

end-point state transition probability 1 — 0
satisfaction threshold

central state transition probability 1 — 0
opinion-value function

central state transition probability 0 — 1

direct experience weight

E LS AIQITDAMIT 73 DI N A O vy

Table 6: Notation.

Appendix B: Sensitivity Analysis

For validating agent-based models, methods such as comparison to real-world data, cross-validation, and sen-
sitivity analysis are typically used (Hunter & Kelleher2020). However, not all of these methods may be feasible
or necessary. In our case, we cannot perform real-data analysis due to the scarcity of empirical data on hybrid
threats, specifically on coordinated cyber and misinformation attacks. Our study focuses on the intersection of
these two threat types rather than examining them in isolation. As a result, our findings are likely to differ from
data on independent cyberattacks or misinformation campaigns since attackers with finite resources would
either concentrate them on a single attack or divide them across multiple attacks, affecting each attack’s du-
ration, intensity, or frequency. Additionally, cross-validation is not feasible due to the lack of validated models
on hybrid threats required for benchmarking.

Tovalidate our model, we used sensitivity analysis. Specifically, we employed regression-based sensitivity anal-
ysis (ten Broeke et al.|2016), focusing on key outputs: average service selection rate (724), average service level
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(14), average positive/negative opinion value (oj, o, ), average regret (7), cyberattack duration (x;), misinfor-
mation duration (z3), combined attack duration (x5), cyberattack start (x5), misinformation start (x4), and com-
bined attack start (z¢). Finding a low correlation for 724, x2, x4, and xg (value < 0.20) with all parameters, we
focused on the remaining variables. Initial correlation analysis and scatterplots revealed that [; was most influ-
enced by end-point transition probability 0 — 1 (), central state transition probability 1 — 0 (v), and central
state transition probability 0 — 1 (v), while satisfaction threshold (7), end-transition probability 1 — 0 (o),
and 0 affected both oj and o, , parameters 6, ¢, and v were most important for 7, cyberattack detection prob-
ability (¢) affected 21 and 25 and misinformation detection probability () influences z3 and 5. Table[7}, which
includes models with R? higher than 0.50, details these relationships and Figure@visualises them.

Variable Model Parameter Output change R?

0.22***(0.014) 0.64

0.09 *** (0.014)

L1 0.28 *** (0.022)
0.44*** (0.018)
—0.21***(0.017)

TV —0.11***(0.028)
0.39*** (0.080)

2.51*** (0.078)

.0 ~3.19*** (0.136)
3.00 *** (0.085)

1.42 *** (0.089)
to 1.88*** (0.161)
0.25 *** (0.009)
(0.009)

( )

( )

(0.013)

( )

(0.494)

( )

( )

(0.455)

( )

lg SA1

SA2 0.63

0.63

o,  SA4 0.53

0.71
0.15 *** (0.009

) 0.07 *** (0.014
0.11*** (0.014
—0.27***(0.013

‘v —0.30 *** (0.021
—17.41*** (0.494
—20.59 *** (0.470

‘n —25.88*** (0.941
—18.52*** (0.455
—22.72*** (0.638

SA6 0.60
0.51

0.38
0.33

N|
%
>
o
ISANIN TS DTTTIETI QAN AT TS DDTE D

Table 7: Sensitivity analysis results. Standard errors in parentheses. *** p < 0.001; **p < 0.01;*p < 0.05; 1
p<0.1

As expected, higher 6 and 1) increase service levels (I,) (SA1 on FigureEb. This aligns with the intuitive notion
that more availability leads to more successful service experiences. However, a significant negative interaction
between v and 6 highlights that central state unavailability has a stronger impact, disrupting service delivery
at the end-points (SA2 on Figure[4).

i 4 5 ¥
| 8. 8

Figure 4: Visualisation of sensitivity analysis results.

Ahigher 7 leads to a decrease in positive opinion value (ﬁ) while and a higher 6 increases E. Yet the negative
coefficient for 7 : 0 indicates that even when service availability increases if the requirements for satisfaction
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also increase, people think less positively and more negatively about the service provider (SA3 on Figurefd). A

higher 7 and o increase negative opinion value (o, ). Higher values for these parameters would make people
believe that the service provider’s behaviour is more negative than positive (SA4 on Figuref4).

We also found that increased 6 and v lead to higher regret (7). This likely arises because higher availability
increases the potential for positive rewards during normal operation. Disruption by attacks creates greater
contrast, leading to higher regret (SA5 on Figure[4). While § increases regret, v lowers regret. Considering the
interaction term 6 : v, a lower 6 and higher v would result in lower regret because, similarly to 0 : 1, a lower
likelihood of availability means that it is not likely to receive positive rewards with any strategy, minimising the
effects of attacks (SA6 on Figure[d).

As expected, higher ( and 1) decrease combined attack duration (x5) (SA7 on Figure[). Additionally, ¢ decreases
theduration of a cyberattack (z1) and n decreases the duration of a misinformation campaign (x3). These results
show that higher detection probabilities decrease the number of time steps attackers can conduct an attack.
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