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Abstract

This thesis describes a research study on mathematical modelling of solid particle

trajectories in a fluid-filled channel. Inspired by the idea that ice crystal particles

can clog sensors on aircraft wings, the original motivation for the research is to

avoid collisions between particles and channel walls. Therefore most of the two-

dimensional solution testing stops at the moment when the particle collides with

the channel wall. The thesis, which combines numerical and analytical work, be-

gins with investigations of the trajectory of a single particle in a fixed shape channel

within which the oncoming inviscid fluid flow is uniform; here we find sustained os-

cillations provide a possible way to keep the particle moving in the channel without

collision. Then we move on to the motion trajectories of a particle in an expanding

or contracting channel subject to various different channel shapes. In the subsequent

chapter we create a multi-particle motion model. Besides the fixed shape model or

the regular shape model, the motion trajectories of a particle in a flexible-walled

channel whose deformation is caused by the pressure effects are also considered

in this thesis. In the final two chapters, the motion trajectories of a particle in a

fluid within flow at low Reynolds number are addressed, followed by the overall

conclusion.
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The research described in this thesis has been inspired by Professor Frank Smith,

who has done abundant research on biomedical and industrial applications. In turn,

his interest was motivated by contacts with a consultancy company Aerotex which

specialises in icing in aerodynamic settings. In a conversation with Frank, and

from a subsequent literature search, I learned that when an airplane passes through

clouds, the pilot often needs to rely on sensors on the airplane wings to determine

the parameters of the airplane during flight and then adjust the operation. Some-

times, however, ice crystals in the clouds clog the sensors, causing pilots to make

wrong judgments, and then make wrong operations, affecting the safety of everyone

on board. After reading a series of related literature, I also learned that an impor-

tant part of the sensor is a long and thin pipe, which is a very important and fragile

device. The application to icing within engines is also significant. The crash of Air

France Flight 447 in 2009, which killed all 228 people on board, drew particular

attention to a type of ice known as ice crystal icing. Therefore, avoiding collision

between a solid particle and the walls of the containing vessel is potentially very

important research. Many researchers have made a more comprehensive analysis of

the two-dimensional or three-dimensional motion trajectory of a single or multiple

particle(s) moving in a vessel or tube or interacting with each other. Most studies

have focused on round or spherical particles. Since ice crystals are mostly in long,

thin shapes as they pass through tubes, relatively thin elliptical particles may better

simulate the process. We examine the aspect of particle shape in detail in the present

thesis.

A flexible model for walls is also addressed in the thesis. This model could be
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used in bio-medicine. For example, sometimes under the influence of disease, some

blood cells will coagulate into a solid, such as a thrombus, and most of the time

the thrombus moving through the blood is dominated by the shape we assume (the

length of the solid is much larger than the width of the blood vessel). Background

literature is summarised in the present study, together with new modelling.

In addition, a low Reynolds number model is also mentioned at the end of

the study. The model can be applied to solve many practical problems. When

domestic sewage is discharged into a sewer pipe, due to the influence of factors

such as grease in kitchen waste, the liquid at this time can be treated as a liquid

flowing at low Reynolds number. Over time, particles suspended in the liquid can

become deposited inside the pipe, causing it to become clogged. The trajectory of

the deposition process can be simulated by this model.
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Chapter 1

Introductory Material

The motivation for the topics addressed in this mathematical modeling thesis on

fluid-body interaction is that the models developed and studied in the research might

be applied to solve real-world problems of interest. One such problem, or area of

problems, concerns the issue of the safety of aircraft in flight, including especially

ice formation on the wings or fuselage of an aircraft, or collisions caused by super-

cooled water or ice crystals entering the engine [1, 2, 3]. Many researchers have

made great academic contributions to the study of ice accumulation process [4]. At

the same time, many researchers have provided many interesting models for simu-

lation of droplet(s) collisions. Among these models, many researchers have given

liquid-air-solid models or liquid-air-liquid models, and have precisely studied the

effects of gases on liquid and solid surfaces at the moment before collision [5, 6, 7].

Essentially, the same modeling approach can be used for cars (For instance,

if we have a car with a length of L = 4m, a velocity of v = 30m/s, air den-

sity ρ = 1.225kg/m3, dynamic viscosity of air µ = 1.81 ∗ 10−5Pa · s, and grav-

ity g = 9.81m/s2, we can calculate the approximate Re = 8.1 ∗ 106 and Fr =

4.78), ships(For instance, if we have a waterline length of L = 5m, a ship ve-

locity of v = 15m/s, water density ρ = 1000kg/m3, dynamic viscosity of water

µ = 1 ∗ 10−3Pa · s, and gravity g = 9.81m/s2, we can calculate the approximate

Re = 7.5 ∗ 107 and Fr = 2.14), or submarines(For instance, if we have a waterline

length of L = 10m, a ship velocity of v = 15m/s, water density ρ = 1000kg/m3, dy-

namic viscosity of water µ = 1∗10−3Pa · s, gravity g = 9.81m/s2, We can calculate
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the approximate Re = 1.5∗108 and Fr = 1.51). At the same time, these models can

also be applied to biomedical fields, such as in the movement of thrombi in blood

vessels and the movement of drugs in the esophagus [8, 9, 10]. The range of interest

is widened by the field of food classification which can also produce more extensive

applications, for example in order to systematically study defects involved in rice

particles moving along chutes [11].

There has been much work on the flow of fluid past a fixed body (particle,

object) stationed within a vessel (tube, pipe, channel) or in free space. In the lat-

ter setting, this is often with the oncoming flow being a uniform stream; in the

internal flow setting the oncoming flow may be a uniform stream or a flow with

non-zero vorticity, depending on the precise context. The flow past such a rigid

body poses a classical problem, which has been addressed by means of modeling,

analysis, computation, and experiments [12, 13, 14]. The modeling is usually based

on the Navier-Stokes equations of fluid flow or on a system suitably reduced from

those equations, such as the Euler equations and the boundary layer equations for

relatively high flow rates and the Stokes equations and lubrication equations for rel-

atively low flow rates. The lift and drag exerted on the body by the fluid motion

are often of much interest [15, 16]. There is still a vast amount to be discovered in

regard to a freely moving body or system of bodies where the surrounding fluid flow

and the movements of the body interact in a two-way fashion. Here the body posi-

tion affects the flow as in the classical setting above but also the fluid flow provokes

pressure and other flow forces (the lift and drag mentioned above) which move the

body around by virtue of Newton’s rigid-body effects, thus feeding back on the fluid

flow, and so on.

In many recent articles using mathematical modeling, scholars have stud-

ied the interaction between free rigid bodies and the surrounding fluid flow and

reached interesting conclusions, for example on particle trajectories and collisions

[11, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

These articles involve studies of interactions between particles and fluids in various

contexts. For channel flows and boundary layers in particular, the body or particle is
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often imagined to be a thin, straight plate in two spatial dimensions, with or without

significant vorticity in the approaching fluid flow. The majority of the researches

mentioned earlier consider totally unsteady motion of the body as well as the fluid,

which is consistent with a situation where there is not an excessively high-density

ratio between the body and the fluid. In this thesis, however, our main focus will

be on the problem of how a reasonably dense particle, say with an elliptical body

shape, moves in a tube, i.e. in a pipe or channel. Our focus will be on the case of a

channel. The fact that the density ratio between ice and air is quite large, between

900 and 1000, is important here and will be investigated in more depth below. Many

other dynamic fluid-body or fluid-particle interactions have been researched in the

last few years [33, 34, 35]. The consequences of a collision between two solid bod-

ies or between one solid body and an enclosing wall have been examined in papers

[5, 11, 17, 19, 23, 5]. Moreover, although some researchers have examined how

different particles remain in a calcination zone [37], which is a gas counterflow,

others have concentrated on how a particle moves in a Newtonian fluid [36]. These

investigations have all focused on the movement of particles inside a fluid flow.

We plan to account in a rational manner for the motion of individual particle

in a channel, in our study. Initially we assume that this is a two-dimensional flow,

with an elliptically shaped particle moving between parallel walls. We also assume

in the majority of the current work that the fluid surrounding the particle, such as

air or fluid depending on the specific context, is in quasi-steady flow and can be

treated as an inviscid, incompressible, Newtonian fluid with uniform density. For

clarification, in chapter 2-5, we assume the whole process occurs in quasi-steady,

inviscid flow. In chapter 6, we assume the whole process occurs in quasi-steady

but viscous flow, which means we consider the influence of viscosity. Thus, in

our study, the core equations present quasi-steady fluid flow, but accompanied by

unsteady object motion. This setting of quasi-steady fluid flow corresponds to the

density of the object (for example, ice particles) being substantially greater than

the density of the fluid (for example, air), see[20]. This setting works very well in

principle for ice particles surrounded by air. We assume that the oncoming flow
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in the channel is a steady uniform flow (although the addition of uniform shear

flow is also mentioned in some configurations) and that our particles move freely

in the flow. In our study, which for the most part supposes the flow rate to be

large (and hence the Reynolds number is large), the target particle is actually small

enough to ignore any gravitational effect; further details can be found in appendix

B. Based on the previous hypothesis, we can build below on the information and

understanding that other researchers have found [11, 17, 18, 19, 20, 21]. In addition,

this work contains increased variations: in recent studies, articles mainly take the

channel width to be fixed in their model (e.g. [38]). Based on these, we make

further adjustments, such as widening or narrowing the channel, or setting part of

the channel to be flexible. Such a type of model may be used in simulating the

process of a stone (as a particle) passing from the renal tubule (a narrower tube) to

the urethra (a wider tube), see [39].

Besides the above points, most of the recent papers are focusing on a single

particle motion in the channel. Thus in this thesis, we also develop analytically a

model for two particles. Moreover, and in contrast with most of the studies per-

formed in the present thesis, the low Reynolds number flow for a single particle

motion within a channel still represents a gap in the subject [40, 41]; so we aim to

fill that gap as well. In addition, many researchers have performed valuable studies

on solid-solid collision or liquid-solid collision, e.g. [5]. In the current work the

behavior of a particle approaching a collision point is also an interesting topic. Fi-

nally here, the rebound of a single particle after such a collision represents a further

study conducted in this thesis.

In the following description, in chapter 2, we start with a very basic model of

single particle movement in a fixed channel shape. Then we deduce the governing

equations or boundary conditions for the model. With the conditions and equations

established, we create our mathematical model and test different parameters’ influ-

ence on our model results, and then draw conclusions. A very interesting part to

emphasize here is that for the first time we find that when the center of mass loca-

tion is at less than 1/3 of the distance between the leading and trailing edge of the
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particle there will be an oscillation happening to our particle. This could be a useful

way to keep the particle moving between the channel walls for a long time without

collision.

In chapter 3 more particle motion models are given. The numerical and analyt-

ical methodology introduced in the early chapters of the thesis is used throughout

most of the subsequent chapters, and the accuracy of the approach is tested by ex-

amination of the effects of grid refinement. As well as the single particle motion, the

multi-particles problem is also an interesting matter. Thus, in chapter 4, we create a

two-particles model and study certain properties of this model, including collisions.

In chapter 5, inspired by chapter 3, we research how a channel which is partly

flexible influences our particle motion. During the model building in chapter 5,

the flexibility of the channel is governed by a fourth-order differential equation

[42, 43, 44, 45, 46, 47, 48, 49, 50].

All of the above models assume motion at high Reynolds numbers. Thus in

Chapter 6, we set the precondition at low Reynolds numbers and give a detailed

study of the particle motion and its interaction with lubricating flow. Many re-

searches have been done on the motion of droplets or bubbles at low Reynolds

numbers [51, 52, 53]. At the same time, particle transport in low Reynolds num-

ber fluids has a wide range of applications in science and engineering. The be-

haviour and features of particle suspensions may be used in chemical and mining

engineering to determine how paint-related substances flow and how minerals are

separated[54]. The biological functions and human health of cells and microstruc-

tures in bodily fluids are tightly linked in biological transport [55, 56]. Based on the

fact that this topic may have very common universal applications in real life, we are

going to present our research on this topic in this thesis.

In Appendix A we study a very simple single particle bouncing model, i.e. the

rebound of the particle after a collision is discussed.

Chapter 7 presents the conclusions for the thesis.



Chapter 2

Fluid flow past a freely moving body

in a straight or distorted channel

This chapter is based on the paper ”Fluid flow past a freely moving body in a

straight or distorted channel” written by Samire Yazar, the present author and Frank

T Smith, in the journal ”Theoretical and Computational Fluid Dynamics”(2023).

We present the paper as it is, in full. The majority of the paper is from contributions

by the present author, the main exception being the subsection on wake effects.

This work addresses the interactive effects associated with a thin body that

is free to move in the flow of the surrounding fluid within a channel. The back-

ground for the present work mainly concerns industrial and biomedical applications

such as in problems on firing of bullet-like bodies in a defense context and the en-

try of objects into engine intakes in an aerodynamic safety context [1, 3, 57], the

travel of solids within vessels of major networks in the human body, the transport

of blood clots, embolization procedures in stroke treatment in a biomedical context

[10, 9, 8]. Another possible practical use of the current research is in development

of a body-transport approach to trace any weaknesses in an arterial wall or other

containing wall. The internal transient movement of the body through an artery

makes a weak part of an artery wall change shape (due to the weak part being more

elastic) and hence show up in a clinical scan. Practical interests also exist in in-

dustry, biomedical, environmental and engineering problems with constrictions and

branchings especially in respect to the medical aspect in terms of flow blockage and
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disease initiation. An example is in predicting where a thrombus becomes stuck in

an artery, or where a loose shard entering an aircraft engine intake eventually hits

the engine walls and can cause damage there.

A number of studies have addressed fluid-body interaction by means of direct

simulations and, in a few cases, experiments [58, 59, 60, 61, 62, 63, 64, 65, 66]. Our

concern is more on the analytical side. The present study of the body- and fluid-flow

inside a channel is based on [11, 17]. The body considered here is relatively thin

and free to move along a channel in which fluid is travelling. The channel has an

indentation (constriction or dilation) which is either of prescribed shape or is due to

wall flexibility. In [11] interactions between a finite number of infinitesimally thin

moving bodies or grains and the surrounding fluid within a straight-walled channel

are analysed in detail together with the instability about the uniform state. The

grains there are straight and free to move in a nearly parallel configuration in quasi-

inviscid fluid, the combined motion being assumed to be planar. [17] considers

a single body having thickness or camber (or both) interacting with the flow in a

straight-walled channel. Another aspect of theoretical investigation on collisions,

bouncing and skimming, e.g. shallow-water skipping in fluid-body or fluid-fluid

impacts, is given in [27, 18, 67]. Moreover, most of the research in this area has been

for two spatial dimensions (x, y, say) and time (t) but a recent work [68] has included

three spatial dimensions (thus x, y, z as well as time t). The current contribution

has almost the same interaction structure as in [17] with the new piece here being

on the unsteady interactions between a body and the fluid flow past it, inside an

indented (constricted or dilated) channel. The indentation is either a given shape

or an unknown shape due to flexibility involving the combined effect of the fluid

pressure in the respective gap and the external pressure. The present investigation

involves numerical and analytical studies as well as comparisons between the two.

Clashes are significant events. The typical clash occurs either near the leading

edge of the body as in [11] or near the mid-body region as in [17]. The majority

of the cases are found to yield a solid-solid clash within a finite scaled time as in

[17]: see also the reviews in [32, 38]. The effects of an indentation in the contain-
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ing channel and of flexibility in the wall of the channel on this phenomenon are to

be investigated. Clashes within a viscous fluid are also examined in recent work

[23, 23, 69, 15]. We focus however on a basic nonlinear problem assuming in effect

oncoming plug flow in the undisturbed part of the channel; strictly this corresponds

to the local fluid being already in motion prior to the body travelling through it.

See figure 2.1. Our aim is to understand and provide predictions for configurations

such as that in the figure, as well as tackling major analytical issues and the pos-

sibility of some continued oscillations arising between the freely moving body and

the surrounding fluid flow. Again, recent analytical work [21, 70, 71] implies that

significant body oscillations may occur within a fluid-body interaction under certain

conditions such as for a front-heavy body; we intend to study this possibility here.

The layout of the paper is as follows. Section 2.1 describes the motion of a thin

heavy body with or without camber passing through, and interacting with, the fluid

in a straight channel. This is followed by section 2.2 which describes an analysis-

based reduced system obtained for increased mass and moment of inertia and gives

comparisons with the full solutions of the previous section. Oscillations are also

discussed. Detailed wake effects are examined in section 2.3. The influences of dis-

tortions in the channel walls are addressed in section 2.4, while section 2.5 presents

final discussion points and conclusions.

2.1 The straight configuration: numerical solutions

The concern in this section is with a single body which is thin but with, in gen-

eral, non-zero thickness or camber (or both) and moving through fluid in a straight-

walled channel as drawn in figure 2.2. With a subscript D denoting a dimensional

quantity, the nondimensionalisation applied is based on the channel width LD , on-

coming fluid flow velocity UD , pressure pD and fluid density ρDF , while the body

length is LD/E say with E being small. The interactions between body and fluid

assume that the fluid is in effect inviscid and incompressible and the entire motion

with unknown velocity components UD(u,E v) takes place in a two-dimensional

LD(x/E ,y) plane. The body is taken to have its angles of inclination during motion
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(a) Fixed channel

(b) Fixed body

Figure 2.1: (a) Sketch in non-dimensional form of a body moving with axial velocity B
through a fixed channel (with an indentation shown); the overtaking fluid has
uniform velocity 1+B. Here undisturbed channel width H0 = 1. (b) As in (a)
but in the reference frame wherein the body is fixed: so the indentation moves
upstream in relative terms if B > 0 but downstream if B < 0. (The case B =−1
corresponds to the body travelling into fluid at rest.)

being of the same small order, E , as those of the containing channel. The angle θ

shown in figure 2 is scaled such that the real angle is E θ , yielding typical slopes

tan(E θ)∼ sin(E θ)∼ E θ , a property which is used in the formulation below.

The main objective is to examine a model for nonlinear interactions with a

single body (occupying 0 ≤ x ≤ 1) of uniform density ρDB contained within side

walls. Two-way nonlinear interaction takes place simply because the fluid dynam-

ical forces lead to body movement which in turn affects the fluid motion. The

background governing equations for the fluid are the continuity and Navier- Stokes

equations and for the body are those of rigid body motion. The flow equations, given

the above assumptions on thinness and the absence of incident vorticity, become the

thin-layer system

Hnt +(Hnun)x = 0 and unt +ununx =−pnx, (2.1)
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Figure 2.2: The body having both thickness and camber at a general position and orienta-
tion in the flow, with fluid-filled gaps 1,2. Here, h is y-position of the body
centre of mass (COM) measured from the lower wall; also f1 = 0, f2 = 1. The
chord line, being the straight line through the leading and trailing edges, makes
a small angle θ with the x-axis. The incident velocity u0 = 1.

for n = 1, 2. Here Hn are the unknown thicknesses of the two fluid-filled gaps

between the body surface and the walls, whereas un and pn represent the corre-

sponding unknown velocities and pressures in each region. The incident velocity is

u0 = 1 and the scaled pressure is zero upstream of the leading edge, without loss of

generality. The system here applies for 0 ≤ x ≤ 1 as, due to the drag force being

relatively small, the axial velocity of the thin body is constant; this constant is zero

in the current frame of reference. The body occupies the region

f−(x, t)< y < f+(x, t), x ∈ [0, 1], (2.2)

where y = f±(x, t) are the curves of the upper (+) and lower (−) surfaces of the

body as it moves. At the leading and trailing edges, for closure,

f−(0, t) = f+(0, t) and f−(1, t) = f+(1, t). (2.3)

The overall mass-conservation balance requires

2

∑
i=1

ui(1-, t)Hi(1-, t) = 1, (2.4)

by virtue of the incident conditions ahead of the body. Here in more explicit form
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the values

H1 = h(t)+F1(x)+(x−a)θ(t), (2.5a)

H2 = 1−h(t)−F2(x)− (x−a)θ(t) (2.5b)

are the thicknesses of the regions of fluid flow between the lower wall of the chan-

nel and the lower surface of the body, and between the upper wall of the channel

and upper surface of the body, respectively. Thus f+ = F2(x)+ h(t)+ (x− a)θ(t)

and f− = F1(x)+ h(t)+ (x− a)θ(t). We allow the body to have arbitrary shape,

with underbody and overbody shapes (when not moving) given by y = F1(x) =

C(x)− T (x)/2 and y = F2(x) = C(x)+ T (x)/2 with C(x) and T (x) being camber

and thickness of the body, in turn. Note that C(x) can be negative or positive. The

condition at the body’s trailing edge is in effect the Kutta condition requiring the

flow to be smooth and this imposes on the fluid flow the constraint

p1(1-, t) = p2(1-, t) = πe(t) (2.6)

as another boundary condition, with the pressure value πe(t) being an unknown

function of t. In order for the Kutta condition on pn(1-, t) to be enforced at the

trailing edge (TE), the interactive system requires the existence of a short Euler

region of quasi-steady flow surrounding the leading edge (LE), in consequence of

which we have

pn(0+, t)+
1
2

u2
n(0+, t) =

1
2

(2.7)

from the Bernoulli theorem. The Kutta condition applies as each region of fluid

flows enter into the common wake, requiring the pressures across the two gap re-

gions to be equal there, whereas the velocities are unequal generally, thus allowing

vortex sheets into the common wake. The fluid-dynamical part of the interactive

motion has thus been described.

To determine the body motion equations, we neglect gravity and we should

also note that the main force driving the body motion is the pressure force due to
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the fluid flow. Thus

Mhtt =
∫ 1

0
(p1 − p2)dx, Iθtt =

∫ 1

0
(x−a)(p1 − p2)dx = τ. (2.8)

Here τ is the torque applied on the body by the fluid flow, while θtt and htt represent

the angular acceleration and linear acceleration in the positive y-direction respec-

tively. Also M and I represent the scaled non-dimensional mass and moment of

inertia of the body respectively, with I being at most M/4 for physical sense, while

a(= 1/2 in this section) is the x-position of the centre of mass. Here M, I, u0 and

F1(X), F2(x) are treated as given, and we intend to solve for the behaviour of the

body, i.e. h and θ as functions of time.

Numerical solutions of the dynamic fluid-body interaction were derived using

the method detailed in [11, 17, 72] among others. Figure 2.3 shows numerical evo-

lutions of the system (2.1)-(2.8) for the body’s leading and trailing edge positions

and θ , θ̇ for increasing M and I values in a straight channel. The body has a sinu-

soidal nonzero thickness. The initial conditions are (h, ht , θ , θt) = (0.5, 0, 0.1, 0).

The early motion is dominated by a linear increase in θ . The figure suggests

that the resulting lift-induced migration to the wall and angular acceleration af-

fect the flow more slowly for heavier bodies. The impact time was found as

2.3832, 3.0278, 3.4330 for M = 2, 6, 10 respectively. We now present an anal-

ysis for the effect of the enhanced mass and moment of inertia and of the centre of

mass position on the fluid and body motions.

2.2 Analysis for the straight case
The computational results of the previous section point to some relevant new anal-

ysis in the present section concerning successively the effects of enhanced mass,

reduced ratio of moment of inertia to mass and positional variation of the centre of

mass.

First however, given that uniform flow with zero pressure variation constitutes

an exact solution of the interaction system for the case of an aligned flat plate in the

middle of the channel, small perturbations from the uniform state are of interest.
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(a) LE, TE positions for M = 2, 6, 10 (b) θ , θ̇ for M = 2, 6, 10

Figure 2.3: (a) Body leading edge (LE) and trailing edge (TE) positions for M =
2, 6, 10, I = M/5 and thickness T (x) = 0.4sin(πx), camber C(x) = 0, (b)
angle θ , angular velocity θ̇ .

These take the form

(H,u, p) = (
1
2
, 1, 0)+O(δ ), (2.9)

with δ ≪ 1. Substitution [11, 38] into the full system leaves at leading order lin-

earised equations and conditions for the O(δ ) perturbations in (2.9). When the body

thickness is negligible the time-dependence becomes exponential, proportional to

exp(Qt) say. Thus (2.1) then yields, at order δ , the ordinary differential equation

Q H+
n +

d
dx

H+
n +

d
dx

u+n = 0,

while (2.8) gives the integral constraints

Q2M h+ =
∫ 1

0
(p+1 − p+2 ) dx,

Q2I θ
+ =

∫ 1

0
(x−a) (p+1 − p+2 ) dx,

where (H+
n ,u+n )exp(Qt) are the O(δ ) perturbations in (2.9). Similar working ap-

plies for the other quantities with superscripts ‘+′ and for the linearised versions of
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(2.4) -(2.7). We are led to an eigenvalue equation for the constant Q, namely

Q2
{
(3M+1)

(
I +

1
180

)
Q3 +

(
3MI +

M
10

+ 4I +
1

20

)
Q2 −

(
M
2
−6I − 1

5

)
Q+

(
1
3
−M

)}
= 0.

(2.10)

The main concern here is in the cubic form inside the curly brackets, rather than

the presence of two zero-Q roots (from the Q2 factor outside) which are associated

with uniform translation. Plots in [38] of the cubic form in the left-hand side of

(2.10) establish that for any M > 1/3 there is a single eigenvalue with a positive real

part, due to the signs of the terms in (2.10). The fact that this eigenvalue is O(1)

indicates the modelled interaction exhibits instability but only over the time scale

of the complete interaction, not over shorter or longer time scales. See [11, 38]. In

addition there is much current interest in the response for large M, I values with

M, I remaining comparable. Here (2.10) shows that the relevant Q root then tends

to zero, with

Q ∼ (3I)−1/2 for M ∼ I ≫ 1. (2.11)

The finding (2.11) suggests three features, specifically that the evolution slows down

as M, I are increased, which makes sense physically, that the typical time scale in-

creases like M1/2 and that the variation of θ may come to dominate. These analyti-

cal features combine with the computations above to guide the following analysis.

2.2.1 Behaviour for large mass.

If the mass M is large and the moment of inertia I is comparable with M then the

typical time scale t increases, as implied by Q becoming small in the linear result

(2.11). In the nonlinear regime the time scale can be seen to grow like M1/2 in

view of the mass-acceleration-force balance in (2.8), given that when h is of order

unity the velocity and pressure responses are likely to be also of order unity, which

requires M/t2 to be O(1). Similar reasoning applies to the rotation motion balance.

Hence t = M1/2t∗ say, with t∗ of order unity, and taking the initial conditions to

involve no substantial velocities dh/dt, dθ/dt (e.g. for a body starting from rest)
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we have the expansion

(h,θ , u, p) = (h∗,θ ∗,u∗, p∗)+ . . . (2.12)

with the scale of x and the body surface shapes remaining typically of O(1). The

velocities dh/dt, dθ/dt just mentioned are of order M−1/2 and hence small. It

follows that the fluid flow part of the whole interaction becomes quasi-steady; at

leading order the governing equations of the flow remain as in (2.1) but with the

time derivatives omitted and with asterisks inserted as per (2.12). Therefore the

flows in the two gaps for n = 1, 2 are described by

u∗nH∗
n = d∗

n(t
∗) =

Hn
∗

T E

H0
, (2.13a)

p∗n =
1
2

{
1

H2
0
− d∗

n
2

Hn
∗2

}
, (2.13b)

from the quasi-steady mass conservation and Bernoulli property. Here the functions

d∗
n(t

∗) depend only on the scaled time t∗ as in (2.13a), the subscript T E denotes

evaluation at the trailing edge x = 1 and, to clarify, the gap widths are H∗
1 (x, t

∗) =

f−− f1, H∗
2 (x, t

∗) = f2 − f+ while in the present context H0 = 1, f1 = 0, f2 = 1.

Thus

H∗
1 (x, t

∗) = F1(x)+h∗(t∗)+(x−a)θ ∗(t∗), (2.14a)

H∗
2 (x, t

∗) = 1−F2(x)−h∗(t∗)− (x−a)θ ∗(t∗). (2.14b)

The reduced system here then comprises (2.13a-2.14b) combined with the body

motion part of the interaction in the form

d2h∗

dt∗2 =
∫ 1

0
(p∗1 − p∗2)dx, (2.15a)

I∗
d2θ ∗

dt∗2 =
∫ 1

0
(x−a)(p∗1 − p∗2)dx. (2.15b)
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Figure 2.4: Evolutions of h, θ from the full system (with unsteady fluid and body motion)
for M of 16, 36, 256 and from the reduced system (steady fluid flow), plot-
ted against scaled time t∗ = M−1/2t. This is for a flat-plate body in a straight
channel, with I = M/5 throughout. Dots indicate every 50th data point.

Here I∗ denotes the I/M body ratio of the moment of inertia relative to the mass.

Solutions of the reduced system (2.13a-e) are presented in figure 2.4. (Here

and in certain other figures below the dots typically indicate every 50th data point,

for clarity of presentation.) Comparisons with the full numerical results prove to be

useful and are also included in that figure. In figure 2.4 numerical results are shown

for the evolutions of h, θ obtained from the full and the reduced systems for a flat

plate body. The agreement is evident in terms of the trends of the evolution curves

as M, I increase.

2.2.2 Small ratio of moment of inertia to mass

Here we suppose additionally that the ratio I∗ is small. Then, because of the bal-

ances of contributions in (2.15b), the time scale t∗ decreases accordingly such that

t∗ = I∗1/2t∗∗ say with t∗∗ being of O(1). This assumes the two gap pressures re-

main characteristically of order unity, from reasoning as in subsection 2.2.1. So the
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controlling equations (2.15a, e) become

d2h∗

dt∗∗2 = 0, (2.16a)

d2θ ∗

dt∗∗2 =
∫ 1

0
(x−a)(p∗1 − p∗2)dx, (2.16b)

to leading order. The first equation gives simply

h∗(t∗∗) = h∗(0)+ t∗∗
dh∗

dt∗∗
(0) (2.17)

explicitly and so, on use of (2.13b) for the pressures, we are left with the single

equation
d2θ ∗

dt∗∗2 =
1
2

∫ 1

0
(x−a)

{
H∗

2 (1, t∗∗)2

H∗
2 (x, t∗∗)2 −

H∗
1 (1, t∗∗)2

H∗
1 (x, t∗∗)2

}
dx (2.18)

which acts as an integro-differential equation for the scaled angle θ ∗(t∗∗). In (2.18)

the terms H∗
n (x, t∗∗) are given by (2.14a), (2.14b) with t∗ replaced by t∗∗ but with h∗

prescribed by the known form (2.17) as well as the body shapes F1(x), F2(x) being

known.

In the basic case of a flat-plate body F1(x), F2(x) are zero. If in addition the

initial velocity dh∗/dt∗∗(0) is zero then, with the constant h∗(0) written as β for

convenience, the terms inside the integral on the right-hand side of (2.18) simplify

somewhat since

H∗
1 (x, t

∗∗) = β +(x−a)θ ∗(t∗∗), H∗
2 (x, t

∗∗) = 1−β − (x−a)θ ∗(t∗∗). (2.19)

The integral, which can be worked out analytically such as appendix C, is somewhat

unwieldy, and as an alternative a straightforward numerical treatment can be applied

to the reduced form (2.18), (2.19). The solutions of interest which are shown in

figure 2.5 highlight that impact with one of the walls can still occur in this regime

but also the beginnings of oscillations of θ ∗ with respect to time t∗∗ are seen under

certain conditions. The solutions for h, θ in figure 2.5 hint at the possibility of

oscillatory solutions, in the sense that when the centre of mass is moved forward on
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Figure 2.5: Solutions of the reduced form (2.13a-e) for
h, θ vs t∗ when the centre of mass location x = a is varied from 0.5 to 0.1. Here
I∗(= I/M) = 0.2. Vertical lines indicate a wall-body clash.

the body an undulation appears in the results and this acts to delay the impact with

the channel wall.

2.2.3 Oscillations

The intriguing property of oscillations arising comes to the fore especially when the

centre of mass ‘a’ is varied. A linearised analysis (given below) first shows this and

indicates a critical value of a = ac = 1/3 for the switch to oscillatory behaviour, as

follows. The linearised analysis corresponds to the scaled angle θ ∗ in (2.18) being

assumed to be small, with the constants β , a remaining of O(1) in general. Hence

in view of (2.19) the following expansions are implied,

θ
∗(t∗∗) = εθ̄(t∗∗)+ . . . , (2.20a)

H∗
1 (x, t

∗∗) = β + ε(x−a)θ̄(t∗∗)+ . . . , (2.20b)

H∗
2 (x, t

∗∗) = 1−β − ε(x−a)θ̄(t∗∗)+ . . . , (2.20c)

where ε ≪ 1 is a measure of the size of θ ∗, leaving θ̄(t∗∗) of order unity. Substitu-

tion into (2.18) leads to the linear equation
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Figure 2.6: (a) Evolutions h, θ plotted against scaled time t∗∗ as discussed in section 2.2.
(b) Body positions at times t∗∗ = 0, 2, 4.

d2θ̄

dt∗∗2 =
θ̄

(β (1−β ))

∫ 1

0
(x−a)(x−1)dx, (2.21)

from which the form
d2θ̄

dt∗∗2 =
1
2

(
a− 1

3

)
θ̄

(β (1−β ))
(2.22)

is obtained. Here (2.22) confirms the critical value as ac = 1/3. If a > ac then the

small disturbance grows exponentially in t∗∗, whereas if a < ac then small oscilla-

tions are predicted: the frequency of such oscillations increases when the body is

placed close to either wall where the value of β is near zero or unity. (This is a

matter taken further in section 2.5.) Nonlinear solutions then support the finding.

See figures 2.6, 2.7. Figure 2.6 shows the response over the t∗∗ time scale with h

remaining at its initial value of 0.5 throughout and θ gradually increasing, in 2.6(a),

such that the flat-plate body clashes with the upper and lower walls almost simulta-

neously at a t∗∗ value of about 4.5, in 2.6(b); the leading edge impacts on the lower

wall and the trailing edge on the upper. The impact is indicated by the vertical line

in 2.6(a). In figure 2.7, the centre of mass is at x = 0.1 instead of the usual value 0.5

and this is seen, in 2.7(a), to lead to oscillations. The largest oscillation which is for

an initial θ equal to 0.55 displays the effects of nonlinearity through a movement of

the peak and trough locations in particular, with the body’s trailing edge almost but
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Figure 2.7: Oscillatory interactions. (a) Angle θ vs t∗∗ for initial conditions θ(0) =
0.1, 0.4, 0.55 in the case a = 0.1. (b) Evolution of body positions for the
0.55 initial condition.

not quite hitting the walls as the oscillations continue.

The analysis appears to be in keeping with the numerical solutions of (2.18),

(2.19). The analytical oscillatory response is also consistent with the earlier numer-

ical work on the full system, particularly when I is large but significantly less than

M.

2.3 Wake behaviour

The wake behind the body arises because the velocity components u1, u2 of the

body-scale flow studied in section 2.1 are unequal in general at the trailing edge.

This is shown by taking the integral of (2.1) with respect to x from the leading edge

to the trailing edge, together with the Euler and Kutta conditions on pressure in

(2.6), (2.7). Spatial and temporal evolution must therefore take place in the wake to

restore uniform flow far downstream. The argument here is similar to that in section

2.1. In the wake, where x > 1, the absence of a solid body implies that the pressures

p1, p2 must be equal but the dividing streamline, which marks the interface between

fluid that has come from above the body in 0 < x < 1 and fluid from below the body,

is unknown in advance.
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The relevant flow system to be solved in the wake x > 1 is thus

∂Hn

∂ t
+

∂ (Hnun)

∂x
= 0, (2.23a)

∂un

∂ t
+un

∂un

∂x
=−∂ pn

∂x
, (2.23b)

together with the pressure equality

p1 = p2 (2.24)

and

H1 +H2 = 1. (2.25)

Here (2.25) represents the feature that the thicknesses H1 of the lower fluid flow and

H2 of the upper fluid flow must add up to unity, which is the overall width of the

straight channel. The initial conditions are typically that

H1 = H2 =
1
2
, p1 = p2 = 0, u1 = u2 = 1 at time t = 0, (2.26)

while the boundary conditions at the start of the wake, i.e. at x = 1+, are

(H1, H2, u1, u2, p1, p2)(1+, t) = (H1, H2, u1, u2, p1, p2)(1−, t), (2.27)

for all t > 0. The form (2.27) matches with the fluid /body interaction properties

considered in sections 2.1, 2.2 at the trailing edge of the body, with the Kutta con-

dition assuring that p1, p2 are equal there and so the pressure can be continuous.

It is notable that in the limit of large M, I there is no wake effect to leading order

because the flow contribution is then quasi-steady and so the Kutta condition on

pressure leads to u1, u2 being equal in that case.

The system was solved numerically by means of an adjustment of the method

described in [11, 17, 72]. In addition a linearised analytical solution appropriate for

small perturbations from the state (2.26) is described in [72]: see also the analysis

in (2.9-c). Analysis along the lines to be discussed in the following section also
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(a) (b)

Figure 2.8: Lower and upper layer widths H1 and H2 until time t = 2. Here M = 10, I = 2.
(a) The lower layer width H1 for x ∈ [1, 3.4]. (b) The lower layer width H2.

applies in the wake part of the present interaction. Tests on the accuracy of the

numerical work are given in [72].

The results are presented in figures 2.8-2.11. Figures 2.8-2.10 are for a thick

body in 0 < x < 1 with initial conditions (0.5, 0, 0, 0.1) for (h, dh/dt. θ , dθ/dt).

Here figure 2.8 shows the lower and upper widths H1, H2, while figure 2.9 presents

the velocities u1, u2 and figure 2.10 the pressure solution p1 = p2. The incident

conditions (2.27) at x = 1 in figure 2.8a, b indicate that H1 there decreases with time

whereas H2 increases, in line with (2.25). This temporal decay and growth in H1, H2

is arrested at larger x values however and replaced by growth and decay respectively,

ahead of a travelling front, while downstream of that front the quantities given by

the initial conditions in (2.26) remain undisturbed. Similar phenomena appear in

figure 2.9a, b and figure 2.10. In all cases the existence of a travelling front is

clear in the wake, the front speed being approximately unity as would be expected.

Figure 2.11 exhibits the combined body-flow and wake-flow properties in terms of

u1, u2 plotted against x between the body leading edge x = 0 and the wake position

x = 3.4, for a range of times t as shown. In this interaction an impact of the body

with the lower wall of the channel occurs at a time of about 3.4. Again the travelling

front is apparent in the wake.
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(a) (b)

Figure 2.9: Velocities u1 and u2 in the wake region until time t = 2. Here M = 10, I = 2.
(a) Velocity in the lower wake layer u1 for x ∈ [1, 3.4]. (b) Velocity in the upper
wake layer u2. The initial conditions are as in figure 2.8.

Figure 2.10: Pressure p solutions in the wake region until time t = 2.

2.4 Body motion through dilated or constricted chan-

nels

We consider here the effects of a continued dilation (expansion) of the channel

width, in section 2.4.1, followed by a study of finite dilation or constriction in sec-

tion 2.4.2.
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2.4.1 Channel expansions

In the configuration studied in this section the lower wall is moving upstream, i.e.

leftward, from right to left, with constant speed, relative to the body. Certain ana-

lytical features are worth describing first since they influence the coupling between

the flow ahead of the body and that around the body in the fluid-body interplay.

Upstream of the body the wall eventually becomes distorted from its original

straight form after a finite time, t = t0 say. Since no body is present there the relevant

governing equations are

Ht +(uH)x = 0, (2.28a)

ut +uux =−px, (2.28b)

for x < 0 (ahead of the body) but x > x0(t) (the position where wall distortion be-

gins). Here (2.28a, 2.28b) applies across the whole channel. Let us assume that

the incident velocity and channel thickness u0, H0 are maintained as constant in the

straight channel far upstream. We suppose also that the lower wall is prescribed as

y = fL(x, t), which holds for x > x0(t), when x0(t)< 0. Upstream of x = x0(t) the

channel remains straight. The upper wall is at y = 1 say. (In the body frame, we

repeat, the body’s leading edge remains at x = 0 and the trailing edge remains at

x = 1.) Ahead of the leading edge, for x0(t)< x < 0, we have (2.28a) with the gap

width being H = 1− fL(x, t). Hence (uH)x = ∂ fL/∂ t and integration in x then gives

uH(x, t) = u0H0 +
∫ x

x0(t)

(
∂ fL

∂ t

)
dx, (2.29)

and in particular at the onset of the leading edge

uH(0, t) = u0H0 +
∫ 0

x0(t)

(
∂ fL

∂ t

)
dx. (2.30)

On the other hand, where the body is present, i.e. for 0 < x < 1, we have the

two kinematic balances H1t +(u1H1)x = 0 and H2t +(u2H2)x = 0 from section 2.1.
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(a) (b)

Figure 2.11: Velocities for a body of profile T (x) = 0.4sin(πx), C(x) = 0, with M =
10, I = 2, approaching impact with the lower wall at the scaled time of t
about 3.4. (Solutions are presented from time t = 0 to t = 3.3). (a) The ve-
locity u1 in gap 1 for 0 < x < 3.4 (body and wake regions) and approaching
the clash. (b) The upper layer velocity u2. (The evolution in u1 is sufficiently
small over the whole time interval in the body region where 0 < x < 1).

Integrating these two equations from x = 0 to x = 1 and adding the results gives us

(
d
dt

)∫ 1

0
(H1 +H2) dx+(u1H1 +u2H2)(1, t) = (u1H1 +u2H2)(0, t). (2.31)

Then using the fact that H1 = 1− f+(x)−h(t)− (x−a) θ(t) and H2 is given by a

similar formula, we find from (2.31) that

(u1H1 +u2H2)(0, t) =−
∫ 1

0

(
∂ fL

∂ t

)
dx+(u1H1 +u2H2)(1, t). (2.32)

However, the Euler region surrounding the leading edge contains quasi-steady flow

and hence mass conservation in that region simply tells us that the left-hand side of

(2.30) is equal to the left-hand side of (2.32). Therefore, from the right-hand sides

we have

(u1H1 +u2H2)(1, t) = u0H0 +
∫ 1

x0(t)

(
∂ fL

∂ t

)
dx. (2.33)

This is the main mass-conservation requirement. Using the result

u1 =

[
c1−h′ (x−a)− 1

2
θ
′ (x−a)2+

∫ x

x0(t)

(
∂ fL

∂ t

)
dx
]
/[h+θ(x−a)− fL] (2.34)
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(where c1(t) is an unknown function of integration, while we recall a is the position

of the centre of mass) and a similar result for u2, we then substitute these into (2.33).

We are led to the mass-conservation requirement

c1(t)+ c2(t) = 1, (2.35)

which acts as a generalisation of the mass condition (2.4). It is notable that the

integral in (2.34) has x0(t) as its lower limit; this leads to (2.35). In addition the

momentum balance (2.28b) gives, on integration, the form

p+
1
2

u2 =
1
2
−

∫ x

x0(t)
ut dx (2.36)

for the pressure head. Hence in particular we obtain the result

(p+
1
2

u2)(0−, t) =
1
2
+M− 1

2 (1+M− 1
2 )µx0 / (1+µx0), (2.37)

holding at the leading edge for the specific case addressed in the results shown

in figure 2.12. Here x0(t) = 1−M−1/2t = 1− t∗, (2.37) holds for t > M1/2 and

µ is a constant. Figure 2.12 shows h, θ against t∗ for the expanding channel, in

2.12(a), where the wall which is moving upstream relative to the body has shape

fL = µ(x−1+ t∗) for x > 1− t∗, with µ =−1 in this example. Here 2.12(b) gives

the evolving body positions as seen in the laboratory frame. We note that h, θ can be

shown to grow in the form O(t∗)+O(ln t∗) at large t∗ values within the expanding

channel; the dependence on the centre-of-mass location a is implicit in the O(t∗)

term but explicit in the O(ln t∗) contribution.

Most significant for the fluid-body interaction are the channel width at the lead-

ing edge at any time t and the initial conditions at zero time on the velocities u1, u2.

Both the channel width and the initial conditions are built in to the solution pro-

cedure, as is (2.35) to preserve total mass. By contrast, (2.37) does not affect the

body-scale solution significantly. This is due to the property that an arbitrary func-

tion of t can be added to each of the pressures p1, p2 without altering the interactive
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Figure 2.12: For an expanding channel. Solutions of the reduced system (2.13a-e) with
I = M/5 (I∗ = 0.2) for a flat-plate body with centre of mass location a = 0.5.

(a) h, θ vs time t∗. (b) Body positions in the channel at times 0, 1, 2.

flow equations and, additionally, the fluid-body interaction itself involves only the

pressure difference p1 − p2, as seen in (2.8), thereby cancelling out the arbitrary

function just described.

Computational solutions for the fluid-body interaction are presented in figure

2.12. These are for the case of large M, I as described in section 2.2 but now

with channel expansion, such that in the laboratory frame the body is moving into a

spatially expanding channel. The lower channel wall is given in the body frame by

fL(x, t) = µ(x+ t∗−1) for x > x0(t∗), zero otherwise, (2.38)

where µ = −1 and x0 = 1− t∗. The upstream effect in (2.37) is small since M is

large, while the initial conditions here correspond to a symmetric start at time zero

(see also (2.9)) and the channel width at the leading edge increases as 1−µ(t∗−1),

that is, as t∗, for times t∗ > 1. The figure shows the evolution of h, θ as well as

the body and wall positions, with no impacts taking place in this example. It can be

shown that for large times t∗ the accelerations continue to reduce as the time scale

increases and in effect the pressure approaches a stagnation value as the channel

continues to expand.
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Figure 2.13: In a constricted channel. Here again the ratio I/M = 0.2.
(a) h, θ solutions plotted against time t = 4t∗(=M1/2t∗) from full system at M = 16
(dotted curves) and from reduced system (labelled Limit). (b) The positions of the
body at times t∗ = 0, 0.2, 0.4 prior to impact, according to the reduced system.
Comparisons for other M values are described in the text.

2.4.2 Finite dilation or constriction

The channel here is straight-walled except for the occurrence of a finite indenta-

tion or bump over which the moving body travels, such that in the present moving

frame (the body frame) the indentation appears to enter the region of interest in the

rightward direction with constant speed less than unity: in terms of figure 2.1 the

constant B is negative in this case.

Considerations and analysis essentially identical with those in (2.28a)-(2.37)

again apply ahead of the body here. This is relevant from the initial time because

of the rightward motion of the lower wall in the present case. On the other hand the

finite distortion, whether a dilation or a constriction, remains fixed in the laboratory

frame in which the channel is stationary and we can expect the flow there to be

steady at leading order, implying that in our body coordinates the effect upstream

of the body depends only on (x−λ t). Here λ is a given positive constant. Mass flux

uH is conserved then, from the kinematic condition (2.28a), while the momentum
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balance (2.28b) now becomes

(u−λ ) ux =−px, (2.39)

which can be integrated readily as in section 2.2 to yield the variation of the pressure

head (p+1/2 u2). Following this, however, the same comments as in section 2.4.1,

on the pressure difference and on the significance of the channel width at the body’s

leading edge and the initial conditions, still hold in the current scenario.

The results shown in figure 2.13 are for the full problem (of (2.1)-(2.8)) with

an M value of 16, for a finite constriction, with µ = −6, together with a compari-

son with the result from the reduced problem (of (2.13a-e)) where M, I are taken

as asymptotically large. In the latter regime the wall-velocity factor λ is small and

the upstream effect corresponding to (2.37) is negligible at leading order over the

current time scales. As previously, the solution of the reduced problem is observed

to capture the qualitative trend of the full solution; see also the next paragraph. In

more detail, the results in figure 2.13 are specifically for a lower wall which pro-

duces a constriction, moving downstream relative to the body, with 2.13(a) showing

h, θ and a comparison with the full-system results which suggests qualitative agree-

ment. In contrast, 2.13(b) is presented in the laboratory frame and depicts the body

evolution at three successive times. The position of the body at time t∗ = 0.2 is

altered only a little from that at time t∗ = 0, with the leading edge seen to move up-

stream of its original position with hardly any body rotation, but by the time t∗ = 0.4

the rotation has increased. The effective squeezing of fluid locally accompanied by

a lowered pressure means that the body thereby approaches the constriction and

then impacts upon it soon afterwards, at a t∗ value of about 0.5 according to the

calculation.

The comparison in figure 2.13 for M of 16 indicates that the approximate im-

pact time predicted by the reduced system is t = 1.98, whereas that from the full

system is t = 2.89. The ratio is thus 0.685. With I kept at the value M/5, the cor-

responding times for M of 64 are found to be 3.96 and 4.95 respectively, giving a

ratio of 0.80, while for M of 256 we find 7.92 and 9.10 in turn and hence a ratio of
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0.87. The trend, namely 0.685, 0.80, 0.87, is encouraging as far as the approach to

the limiting value of unity for the ratio at asymptotically large M, I is concerned.

2.5 Discussion and conclusions

The study has sought increased understanding of the free movement of a slender

body in a surrounding fluid flow within a channel. This is with two-way interaction

being considerable between the fluid motion and the body motion and with fully un-

steady evolution being active for both motions in general. The work has addressed

numerical aspects for a thin or thick object inside a channel with straight walls and

the corresponding analytical features for comparatively large values of the scaled

mass and moment of inertia. The latter lead to a significantly reduced system. Os-

cillations coupling the body and the fluid motions have been found, including some

particularly interesting ones which occur for relatively small values of the moment

of inertia. Wake responses and the influences of non-straight walls associated with

finite dilation and constriction or with continued expansion of the channel have also

been investigated.

The main findings from the present modelling, analysis and computations,

along with comparisons, are felt to be the following. First is the finite-time clashing

of the body with the channel walls, which is a quite common phenomenon here, but

there are means to avoid such clashing. The impact or clashing of the body when it

does occur on a stationary or a moving wall is as in [11] if at the leading edge of the

body or [17] in terms of a mid-body clash. However, a continuing expansion of the

vessel is found to readily lead to the avoidance of such an impact. The second main

finding concerns sustained oscillations. These are found to be possible as mentioned

earlier and their occurrence can be supported clearly in analytical form. They arise

especially for a front-loaded body. Third, wake properties behind the body show a

distinct traveling front downstream. The fourth finding is concerned with the body

flow through a dilated or constricted channel, which generates substantial nonlinear

effects upstream of the body, whether the body travels leftwards towards the oncom-

ing fluid flow or rightwards with the oncoming flow. Fifth is the broad agreement
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seen in the solution trends between full-system and reduced-system responses as

the body mass and moment of inertia increase.

An interesting issue arises if the body lies near one of the walls. Suppose

that the whole body is close to the lower wall (see figure 2.2), whether the wall is

straight or otherwise; this is the the case of a thin flat plate if the wall is straight. To

leading order the flow in the thin gap, of small thickness of order δ say, dominates

the fluid-body interaction and gives a boundary-layer type of response as in [15]

within region 1 of figure 2.2, the pressure p1 being of order unity and satisfying

the Kutta condition. Here region 1 refers to the gap where the fluid velocity has

subscript unity and region 2 to the other gap above the body. This boundary layer

implies that the height h and angle θ are known to leading order, with O(δ ) relative

corrections. (As a significant point here, the present argument supports the bound-

ary layer analyses of [38, 15, 70, 73] in the sense that only the underbody pressure

affects the body motion to leading order in the boundary layer case and also the

fluid flow is quasi-steady if the scaled mass is relatively large.) At issue next is the

question of how the solution in region 2 is determined. This appears to be by means

of a linearized system in that region, which involves an O(δ ) perturbation from the

uniform incident stream and a corresponding pressure p2 of order δ . The boundary

condition on the top surface of the body now acts at zero y in effect. Combined

with the no-penetration condition at the top wall, it indicates a behaviour similar to

that studied in a single channel (section 2.4). The pressure p2 can be found thereby

and has a nonzero value generally at the trailing edge: this value provides a small

corrective feedback to the pressure in the region 1. A similar reasoning applies to

the wake of the near-wall body, a wake which is concentrated near the lower wall to

leading order and is governed by the inviscid Burgers’ equation, that is, by (2.23b)

for u1(x, t) in x > 1 but with zero pressure p1 in order to match with the majority

of the flow at every wake station.

Potential future work has much of interest. It would be valuable to add in the

influence of viscosity, for example as in [23, 23, 69], to admit three-dimensional

interactions [68], and to include more than one body [74]. Similarly, the modelling
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of a flexible elastic wall or flexible body in the channel could be of great concern,

not least because of the possible application to the tracing of vessel weaknesses de-

scribed in the Introduction. We would also like to highlight the effects of reduced

mass and moment of inertia, specifically in the eigenvalue equation (2.10). The re-

duction leads to one real negative root for Q along with two complex conjugates and

corresponds directly to demanding that the right-hand sides of the body motion bal-

ances (2.8) be zero. Thus the pressures have to adjust to make the lift and moment

integrals remain zero throughout the evolution. In this mass reduction case the time

derivatives of the fluid flow stay significant, in contrast with the mass enhancement

case of section 2.2 where the time derivatives of the body movements dominate the

interaction. Work in [73] considers the mass reduction case in a boundary-layer

context for an ice particle in water; it would be interesting to continue this case for

the present internal flow configuration.



Chapter 3

Further examples and features of

”Fluid flow past a freely moving body

in a straight or distorted channel”

3.1 Model creation
In the previous chapter, we reached some conclusions about the motion as single

particle and some cases concerned with channel expansions. With those results, we

find a possible constraint to keep our particle moving within the channel. We may

have some oscillations or rotations during the particle movement. However, we can

keep our particle moving between the parallel walls for a considerable time. That is

felt to be possibly, in some settings, the most ideal form of the particle movement in

real applications. In reality, on the other hand, the channel containing the sensors on

airplane wings might not have straight or smooth walls. Thus, we should consider

the effects of changing wall shape, such as by means of a sunken surface. In this

chapter we undertake an investigation of wall-shape-changing accordingly.

With the above considerations, we would like as a first investigation to change

the wall shape by means of the forms

fL(t∗) = s1 ∗ t∗2, fU(t∗) = 1+ s2 ∗ t∗2, (3.1)

where fL(t∗) represents the shape of the lower wall and fU(t∗) represents the shape
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of the upper wall. It is notable here that the wall shape behaviour involving t∗2 is

just a very simple model to mimic the expansion of the channel. Really we would

need a function of (x, t) say to allow for a fixed (originally fixed) shape of channel

to enter the calculation domain and to then move across the domain from right to

left. See particular examples in chapter 2. To be specific concerning the forms fL, fU

above we also set the constants s1,s2 with s1 between (-0.4,0.4), s2 between (0,0.6).

Thus we can change the height H1 and H2 as below,

H1
∗ = f−− s1 ∗ t∗2, (3.2a)

H2
∗ = 1+ s2 ∗ t∗2 − f+. (3.2b)

Then we substitute the new variables H1 and H2 into equation (2.13a) to

(2.15b). We obtain new relations as below,

u1
∗ =

d1
∗

H1
∗ =

d1
∗

f−(x, t∗)− s1 ∗ t∗2 , (3.3a)

u2
∗ =

d2
∗

H2
∗ =

d2
∗

1+ s2 ∗ t∗2 − f+(x, t∗)
, (3.3b)

p1
∗ =

1
2
− 1

2
(

d1
∗

f−(x, t∗)− s1 ∗ t∗2 )
2, (3.3c)

p2
∗ =

1
2
− 1

2
(

d2
∗

1+ s2 ∗ t∗2 − f+(x, t∗)
)2. (3.3d)

where again ∗ represents the non-dimensional values,

With above relations, we apply the Kutta condition which has the form p1
∗ =

p2
∗ at x = 1. This leads to

(
d1

∗

f−(x, t∗)− s1 ∗ t∗2 )
2 = (

d2
∗

1+ s2 ∗ t∗2 − f+(x, t∗)
)2. (3.4)

We assume α = 0.3, β = 0.1, h(0)= 0, θ(0)=−0.1, COM(center of mass)=

0.5 in the particle motion function ( f+ and f−). By using these assumptions and the

relation (3.4), we can easily derive the values d1
∗ = 0.25 and d2

∗ = 0.75 at t∗ = 0.
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Generally, because d1,d2,H1,H2 are real positive values, if we have ( d1
∗

H1∗)
2 =

( d2
∗

H2
∗ )2, we can draw the conclusion that d1

∗

H1∗ =
d2

∗

H2
∗ . Then we use this relation along

with equation (2.4), to reach the relation below,

d1
∗ =

H1
∗

H1
∗+H2

∗ , (3.5a)

d2
∗ =

H2
∗

H1
∗+H2

∗ . (3.5b)

Then we substitute equation (3.3c),(3.3d) into (2.8) to get the new core equa-

tions as below,

M∗ d2h
dt∗2 =

1
2

∫ 1

0
{( d2

∗

1+ s2 ∗ t∗2 − f+(x, t∗)
)2 − (

d1
∗

f−(x, t∗)− s1 ∗ t∗2 )
2}dx,

(3.6a)

I∗
d2θ

dt∗2 =
1
2

∫ 1

0
{(x−a){( d2

∗

1+ s2 ∗ t∗2 − f+(x, t∗)
)2 − (

d1
∗

f−(x, t∗)− s1 ∗ t∗2 )
2}}dx.

(3.6b)

The behavior of the nonlinear system will be considered below.

3.2 Effects of different channel expansion rates on

the model

3.2.1 Rapid expansion

Heretofore we have studied a single particle moving in a channel of fixed shape and

also investigated some particle movements with changing channel shape. Recalling

the previous results, we now want to check in more detail how the channel expan-

sion parameters s1 and s2 influence our model. To compare with the rapid expansion

cases, first of all here, and consistent with what was mentioned in section 3.1, we

set α = 0.3,β = 0.1,a = 0.1,s1 = 0 and s2 = 0 for the case of a particle moving

between fixed straight parallel-wall channel and the results shown in figure below,
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Figure 3.1: h and θ function for straight parallel wall case

From the figure 3.1, there is no abrupt change of the particle height function,

which tells us that our particle can move between the parallel walls for quite a long

time under the initial conditions we mentioned before. It is not difficult to see from

the figure that the height curve of the particle forms a regular trigonometric function

image. This means that the particle moves up and down regularly during its motion

and does not collide with the wall. In addition, in the process of particle motion,

its θ − f unction also shows that the particle oscillates regularly in the process of

motion. Which means the oscillating angle and motion height of the particle both

are changing regularly. The next step for the research is to change the wall shape

with different values of the parameters s1 and s2 where s1 and s2 are the parameters

for changing our model channel shape.

3.2.1.1 Effects of different s1 and s2 values on the model

Previously we have given images of h and θ equations for particle moving inside

parallel channel. In this section, we will test the effect of different s1 and s2 on the

particle motion. To avoid the model having a sudden change in its parameter space,
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we will start with a small value for both s1 and s2. In the following tests, unless

otherwise stated, the following values are used as initial conditions. To control the

variables, we choose the same initial conditions as figure 3.1 which α = 0.3,β =

0.1,a = 0.1 but s1 =−0.01 and s2 = 0.01. Then we show the result as below,

Figure 3.2: h and θ function for s1 =−0.01 and s2 = 0.01 case

At the very beginning, the height equation of the particle in figure 3.2 is similar

to the height equation of the particle in figure 3.1. All have a gentle start. However,

unlike figure 3.1, the height of the particle in figure 3.2 gradually rises with time,

and there is no obvious sudden change. This means that the particle keep moving

inside the channel and does not collide with the channel. Let’s go ahead and increase

the value of s1 and s2 to see how larger s1 and s2 affects the model. Thus we keep

the initial conditions same as before but set s1 = −0.1 and s2 = 0.1. The result is

shown below,
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Figure 3.3: h and θ function for s1 =−0.1 and s2 = 0.1 case

It is not hard to see from this figure that the initial flat part in the height equation

of the particle also disappears. In addition to this, we observe that the oscillation

frequency of the particle is also reduced. This means the particle essentially reaches

its ’stable’ (asymptotic for large-time) state sooner than figure 3.2. Therefore we

speculate that as the channel widens, the particle will reach the stable state faster.

In order to verify this term, we chose a rather exaggerated value. Same as before,

we keep the initial conditions but set s1 =−0.4 and s2 = 0.4 and the show the result

as below,
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Figure 3.4: h and θ function for s1 =−0.4 and s2 = 0.4 case

From the figure, it is easy to see that the particle can move in the channel for a

considerable time without colliding with a wall and reach the stable state faster than

in previous cases.

One thing that needs to be noticed is that the θ we used here is a scaled θ ∗. For

the real angle θr, θr should be θr = γθ ∗, where γ =
L∗

2
L∗

1
and L∗

2 represents the non-

dimensional channel width and L∗
1 stands for the non-dimensional particle length.

The θr is small as γ is small, but θ ∗ is an O(1) quantity. If θ ∗ gets big, as in the

cases where my plots show it increasing (or decreasing) linearly, then when θ ∗ is

about the size of 1
γ
, the real angle is not small but O(1). Thus my model is only

valid for 1 ∼ θ ≪ 1
γ
. If θ ∼ 1

γ
, the model is not valid anymore and we would have

to reconsider the model.

For the height function, we observe that when the absolute value of s1 and

s2 increases, our h function shows that our particle may stay between the parallel

moving walls for a longer time.

Previously we used the same increase for the coefficients s1 and s2. Only
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this kind of variation amplitude cannot fully show the interaction between particle

and channel. Therefore, we will study the interaction between different shapes of

channel and particle in the following research.

3.2.2 Effects of different absolute values of s1 and s2

Previously, we only consider s1 and s2 having the same absolute value. For the next

step, we want to test what will happen if s1 and s2 do not have the same absolute

value. For an example we set s1 = −0.2 and s2 = 0.1 and then we find the result

shown in figure 3.5.

Figure 3.5: h and θ functions s1 =−0.2 and s2 = 0.1 (rapid expansion)
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From the graphs we discover that there are some quantitative differences be-

tween the earlier results for the same absolute values of s1 and s2 in figure 3.2-3.4

and different absolute values of s1 and s2 in figure 3.5. However, the general direc-

tion of the graph is qualitatively similar to the results of the previous tests. Thus we

would like to do some further test in the following chapters.

In the previous analysis we only considered expansions having opposite signs,

which act to increase the gap width. Here we treat cases of s1, s2 having the same

signs. First of all, we assume both s1 and s2 are positive. Thus we have 2 different

situations:

1.s1 < s2, these changes can widen the channel.

2.s1 > s2, these changes narrow the gap.

The computational results obtained are described below.

3.2.2.1 s1 < s2 cases

Following tests show the results of first situation, which s1 < s2. In order to compare

the cases where s1 and s2 are the same sign, as a control experiment, we keep the

value of s2 unchanged and set s2 = 0.4 in the test. First of all, we started with a

small value of s1 and gradually increase the value of s1 close to s2. The following

test shows the result of s1 = 0.01,



3.2. Effects of different channel expansion rates on the model 62

Figure 3.6: h and θ functions s1 = 0.01 and s2 = 0.4 (rapid expansion)

Figure 3.6 represents the height function(blue) and angular motion func-

tion(red) when we choose s1 = 0.01 and s2 = 0.4. From the graph we notice that

there is a sharp decrease of the height function and the angular motion function.

This is caused by our particle hitting the bottom wall. The whole movement of our

particle is over. We believe this is caused by the bottom wall move up faster than

the front-loaded particle (COM = 0.1). To test this, we use a faster upward speed

for the bottom wall and the test result is shown below,
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Figure 3.7: h and θ functions s1 = 0.1 and s2 = 0.4 (rapid expansion)

Figure 3.7 represents the height function(blue) and angular motion func-

tion(red) when we choose s1 = 0.1 and s2 = 0.4. From the graph we notice that

the particle hits the bottom wall sooner than s1 = 0.01 case. The conjecture is also

verified here. We also did one more test with s1 = 0.3 as below,
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Figure 3.8: h and θ functions s1 = 0.3 and s2 = 0.4 (rapid expansion)

Figure 3.8 represents the height function (blue) and angular motion function

(red) when we choose s1 = 0.3 and s2 = 0.4. From the graph we notice that the

particle hits the bottom wall even quicker than s1 = 0.1 case. This is also because

our bottom wall is moving up quicker than s1 = 0.1 case. In the future research, if

we consider about the gravity, our particle may hit the bottom wall quicker.

We can conclude from the above three cases that the particles will collide with

the wall during the process of movement, and as the upward movement speed of

the lower wall increases, our particles will collide with that wall earlier. On the one

hand, from the figure 3.6-3.8, we can find that the slope of the height function is

much smaller than the value of s1. On the other hand, the influence of the pressure

caused on the particle is much less than the shape changing of the channel. Even-

tually, the particle will hit the bottom wall and the particle motion terminates.To

verify that pressure does have effects during particle motion, we can compare the

data in figure 3.6-3.8. Because of the effects of pressure, the collision time does

not decrease proportionally when we increase s1 proportionally. Thus in this case
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the smaller s1 value we use, the longer time our particle moves. If the value of

s1 is negative, the particle will never collide with the wall under the given initial

conditions.

In the previous 3 cases, we see that when s1 = 0.01 the particle remains the

longest between the parallel walls. Hence next we keep s1 = 0.01 and gradually

change the value of the parameter s2. We set 3 new conditions as below,

1.s1 = 0.01,s2 = 0.4;

2.s1 = 0.01,s2 = 0.2;

3.s1 = 0.01,s2 = 0.1.

Figure 3.9: h and θ functions s1 = 0.01 and s2 = 0.4 (rapid expansion)

Figure 3.9 is the same as the figure 3.6. We put figure 3.9 here is just for

comparing with other 2 conditions.
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Figure 3.10: h and θ functions s1 = 0.01 and s2 = 0.2 (rapid expansion)

Figure 3.10 represents the height function (blue) and angular motion function

(red) when we choose s1 = 0.01 and s2 = 0.2. From the graph we notice that our

particle does not hit the wall, because there is not any sharply decreasing or increas-

ing for either height function or angular motion function. Then we do one more

case with s2 = 0.1,
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Figure 3.11: h and θ functions s1 = 0.01 and s2 = 0.1 (rapid expansion)

Figure 3.11 represents the height function (blue) and angular motion function

(red) when we choose s1 = 0.01 and s2 = 0.1. From the graph we notice that from

the slope that our particle can move in the channel for smoother time than s2 = 0.4

case but not smoother than s2 = 0.2. Therefore in order to make the particle move

more smoothly in the pipe, we should not always reduce s2.

One possible explanation is the pressure above our particle does not have such

significant influence. As a conclusion, the particle will move smoother than s2 = 0.4

case. Comparing this situation with s2 = 0.4 and s2 = 0.1, we found the slope for

this situation is smoother than other 2 cases. The height equation of the particle

indicates that the particle moves more gently.

3.2.2.2 s1 > s2 cases

Previously, we have already tested few different conditions about s1 < s2. Thus in

this part we would like to focus on s1 > s2 case. Since when we set the values of

s1 and s2 such that s1 > s2, the upper and lower walls gradually move towards each

other with the channel suffering a contraction. In this situation we need only test
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one representative sample. We randomly choose s1 = 0.2, s2 = −0.3 as the initial

conditions and keep others the same as we mentioned before.

Figure 3.12: h and θ functions s1 = 0.2 and s2 =−0.3 (rapid expansion)

As we can see from the graphs in figure 3.12, there is a sharp change in the

trajectory of the particle near scaled time t=1. This arises because the gap between

the top and the bottom of the wall has shrunk to a value small enough for the particle

to collide or even squeeze against the wall.

Previously we set the channel as a fixed shape. In this section we discuss

some situations about different wall shape changing. First if we have a negative

value of s1 and positive value of s2 and with s1 decreasing and s2 increasing, the

particle can move in the channel for longer and longer time. This might be caused

by the width of model channel is too big comparing with the size of our particle.

Thus our particle can move ”freely” in the channel. Next we discuss about the s1

and s2 are both positive. Firstly, we set s2 = 0.4 as a constant and we change the

value of s1. We notice that with the value of s1 increasing, the particle will hit

wall sooner and sooner. This is because the bottom wall moving up speed quicker
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than our particle moving up speed. As a result, our particle will hit the bottom

wall. Secondly, we keep s1 = 0.01 as a constant and change the value of s2. Unlike

before, the smoothest trajectory of the particle does not occur at the minimum value

of s2. Finally, we discuss the situation that s1 > s2, we notice the channel will close

quickly. There is not enough space for our particle oscillating or moving up or

down.

3.2.3 Modest expansion

Wall deformation involving st2 (rapid expansion) is just one of the many possibil-

ities we might encounter, but a simpler variation is change proportional to st. The

latter gives modest expansion. We still use a scaled thickness of β = 0.1 to simulate

the problems addressed here. We still use α = 0.3,β = 0.1,a = 0.1 but s1 =−0.01

and s2 = 0.01 as the initial condition.

Figure 3.13: h and θ functions s1 =−0.01 and s2 = 0.01 (rapid expansion)

Figure 3.13 represents the height function (blue) and angular motion function

(red) when we choose s1 =−0.01 and s2 = 0.01. Figure 3.13 compare with 3.2, it is

not difficult to see from the figure that there is a clear difference between the height
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equation and the θ equation of the particle. For next step, we choose s1 =−0.1 and

s2 = 0.1 as the second test.

Figure 3.14: h and θ functions s1 =−0.1 and s2 = 0.1 (rapid expansion)

Figure 3.14 represents the height function (blue) and angular motion function

(red) when we choose s1 =−0.1 and s2 = 0.1. From the graph we notice that due to

the decreasing of the value of s1 and the increasing of the value s2, our particle can

move more ”freely” than s1 = −0.01 and s2 = 0.01 case. As a result, our particle

will hit the top wall with longer time. The figure below is the third test, where we

choose s1 =−0.4 and s2 = 0.4 and the result is shown below,
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Figure 3.15: h and θ functions s1 =−0.4 and s2 = 0.4 (rapid expansion)

Figure represents the height function (blue) and angular motion function (red)

when we choose s1 =−0.4 and s2 = 0.4. From the graph we notice that our particle

will still move upward and the trajectory is smoother than figure 3.13 and figure

3.14. Figure 3.15 compared with figure 3.4, figure 3.15 has a smaller height varia-

tion. This means that in the part 3.2.3, the particle have smoother trajectories under

same conditions.

From figures 3.13-3.15, we notice that the particle can keep moving between

the parallel walls for a comparatively long time with some oscillations apparent in

θ . When we earlier chose our parallel wall to be deformed like st2, the pressure

difference between the upper and lower parts of the particle had a larger impact

on the response of the particle. In other words, the excessive pressure difference

caused our particle to move up faster and perhaps in large time t, this will lead to

a chaos motion. When we deform our wall shape like st, the pressure difference

is not as big as st2 model. In this case, our particle can move up slowly. Another

feature that due to the pressure difference is smaller than st2 model, the particle will
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move up less and in this kind of channel our particle has enough space to do some

oscillations and we are more likely to predict the trajectory of the particle in this

case.

In this chapter we have created several different simplistic models of an ex-

panding channel and compared the results obtained, especially concerning whether

the particle remains between the channel walls or instead collides with the walls

over a given time interval. The study for a single particle movement with channel

expansion finishes here as far as this thesis concerned. In the next chapter we will

start on multi-particle problems.



Chapter 4

On interaction between freely moving

bodies and fluid in a channel flow

This chapter, like chapter 2, is based on a recently published paper ”On interaction

between freely moving bodies and fluid in a channel flow” by the present author,

Samire Yazar and Frank T Smith. The paper appeared in the journal ”Theoretical

and Applied Mechanics Letters” (2022). As before, we present the paper in full as

follows.

4.1 Introduction
The motivation for this study on dynamic fluid/body interactions comes partly from

the many practical application areas of these interactions. Included are significant

issues of air vehicle safety concerned with the icing of external surfaces (wing,

fuselage) or internal surfaces (engine) when impacted upon by ice particles, super-

cooled liquid droplets or other bodies or particles [1], [2], [3]. Similar issues arise

for land and sea transport. Another wide area is in biomedical science where rela-

tively small particles such as treatment drugs or thrombi travel through blood ves-

sels [8], [9], [10] which are often relatively long. Yet another area is centred on

environmental applications, for example the movement of dirt, dust and sand, both

on Earth and on other planets. Finally here the application to food-sorting can be

mentioned, involving for example rice grains travelling down a chute in order to be

investigated systematically for defects [11]. The motivation is also partly from the
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intrinsic scientific interest and challenge of the interactive area, as distinct from that

of the classical problem of fluid flow around a fixed body. During a dynamic flu-

id/body interaction the fluid motion affects the body motion because of the induced

flow forces acting on the body surface but the moving body in turn alters the fluid

motion around it by virtue of (e.g.) the kinematic conditions on the body surface

and so there is two-way coupling.

One of our prime aims is to increase physical understanding of the mechanisms

involved. We use rational modelling based on reduced equations, which then tend

to shed light on the mechanisms by means of analysis and reduced computation

[11], [17], [19], [74], [15], [67]. The study is meant to be complementary to direct

numerical simulations [63], [64], [62]. In addition there has been much work on

fluid/body interaction for a single body or particle: see inviscid-based theory in

Refs. [11], [17], [19], [74], [15], [67] and viscous-inviscid interaction theory in

Ref. [23], [23], [71], [21]. Among these works are found close connections between

reduced-equation results of the type discussed in the current paper and the numerical

findings from direct numerical simulation: see Refs. [23] and [21].

The specific interest in the present investigation is in fluid/body interactions

for two or more bodies (finite-sized particles, objects) free to move in fluid within a

straight-walled channel. This has practical connections with applications to engine

dynamics [57] and food-sorting processes [75] in particular. Concerning the latter

and its modelling, the situation is that many food objects such as peas or rice grains

are projected down an inclined open chute for subsequent sorting [32]. The study in

Ref. [11] addressed this scenario by consideration of many slender particles being

present inside a channel through which fluid (air in their case) is flowing towards,

around and past the particles in a coordinate frame fixed in the typical particle as

opposed to the laboratory frame. The particles in the above study are assumed to be

stacked, having identical lengths, being nearly parallel with the axial flow direction

(horizontal say) and being aligned (vertically or laterally) such that their leading

and trailing edges are sited at the same axial locations, namely at x values of zero

and unity respectively where x denotes the scaled distance in the axial direction.



4.2. Model formulation for a single free particle in channel flow 75

We aim to generalise the modelling in order to incorporate non-aligned bodies.

That is, the bodies are taken to be stacked but with their leading and trailing edges

being at different axial locations. In most applications of concern the representative

Reynolds number and Froude number are very large, as in references above, and so

as a very first model it seems reasonable to suppose viscous effects and gravity can

be neglected. That being so we are led to the unsteady Euler equations of motion

for the fluid flow and these are to be coupled with Newton’s equations of motion for

the bodies, yielding fluid/body interaction. The model at this stage is also to allow

for the feature that the bodies of interest are slender in the sense that their typical

lateral or vertical extent is significantly less than their axial or horizontal extent.

4.2 Model formulation for a single free particle in

channel flow

For a single particle use is made of non-dimensional variables, namely Cartesian

coordinates x∗(axial), y∗(lateral), time t∗, fluid velocity vector u∗ = (u∗,v∗) and

pressure p∗, based on the channel width vertically, the typical incident flow velocity

and the density ρDF of the fluid. Assuming viscous and gravity effects are negligible

as discussed in the introduction we may then work within the framework of the

Euler equations,

div u∗ = 0, u∗t∗ +(u∗ ·grad)u∗ =−grad p∗, (4.1)

as regards the fluid flow. Here ‘div’ and ‘grad’ represent divergence and gradient

respectively. The boundary conditions appropriate here are kinematic boundary

conditions on the moving body surfaces and tangential flow (zero normal flow) at

the fixed walls, along with a match with the oncoming flow u∗ = u0(y) with zero v∗

far upstream in the channel, where p∗ is taken to be zero, and, after consideration

of overall conservation of mass and vorticity, the same conditions are expected to

apply far downstream as well. Thus



4.2. Model formulation for a single free particle in channel flow 76

u∗ → u0(y), v∗ → 0, p∗ → 0 as x∗ →±∞, f or 0 < y∗ < 1. (4.2)

There is clearly upstream influence ahead of the body and downstream influence aft

of the body.

Figure 4.1: One body in channel flow, indicating regions 1, 2 below and above the body
respectively. Upstream influence concentrates in the dashed zone when the
body length L is large. The diagram is not to scale: the horizontal (x∗) scale has
been reduced in comparison with the vertical (y∗) scale.

The slenderness of the body within the channel as shown in Fig. 4.1 now sug-

gests scaling axial distances by the body length L(≫ 1). The flow then acquires an

interesting structure. First, the continuity balance implies that generally the lateral

flow velocity scales with L−1 and so the solution form

(u∗,v∗, p∗) = (u,L−1v, p),+... (4.3a)

(x∗,y∗, t∗) = (Lx,y,Lt), (4.3b)

is indicated. This long-scale form applies in the two gaps between the body surface

and the wall, for 0< x< 1 , and it leads from Eq. (4.1) to the slender-layer equations

ux + vy = 0, (4.4a)

ut +uux + vuy =−px(x, t), (4.4b)

0 =−py, (4.4c)
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at leading order, where the y-momentum balance Eq.(4.4c) leaves p depending only

on x, t. Second, due to the hyperbolic nature of Eq. (4.4a-4.4c), a different solu-

tion form is found to hold near the body’s leading edge x = 0 . Here, in a region

sometimes called the Euler zone [11], [76],

(u∗,v∗, p∗) = O(1), (4.5a)

(x∗,y∗, t∗) = (x∗,y,Lt), (4.5b)

and so the Euler equations (4.1) hold in full except for the unsteady term u∗t∗ which

becomes negligible: the flow is thus quasi-steady. The boundary conditions on Eq.

(4.5a, 4.5b) include the requirement Eq. (4.2) as x∗→∞ , tangential flow at the walls

y∗ = 0, 1 and tangential flow on the leading-edge part of the body, a part which for

all the body shapes studied herein appears as a flat horizontal plate because of the

slenderness of the body. As x∗ → ∞, on the other hand, the conditions holding

can be deduced from the Bernoulli relation since the flow is quasi-steady, giving

conservation of p∗ + 1
2(u

∗2 + v∗2) along streamlines. These streamlines become

effectively horizontal at large negative and positive x∗, as v∗ tends to zero there,

and hence a match with Eq. (4.2) upstream and with the form Eq. (4.3a, 4.3b)

downstream is achieved.

In consequence the boundary conditions acting on the long-scale flow can now

be written down completely. This is done here for the basic case of an incident

profile u0(y) = 1 corresponding to uniform or so-called plug flow far upstream. The

conditions are

v = 0 at y = 0, 1 (tangential flow on channel walls) (4.6a)

v = fnt +u fnx at y = fn(x, t) (kinematic conditions on body surfaces) (4.6b)

p+
1
2

u2 =
1
2

at x = 0+ (matching with the Euler zone solution) (4.6c)

p = 0 at x = 1 (the trailing edge constraint) (4.6d)

The condition Eq. (4.6c) coupled with the response Eq. (4.5a, 4.5b) in the
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Euler zone accounts for the upstream influence mentioned earlier, while Eq. (4.6d)

is the well-known Kutta requirement [11], [76] at the body’s assumed non-blunt

trailing edge. In Eq. (4.6b) y = fn(x, t) denotes the moving body surfaces for n =

1,2. Further progress can be made by observing that the vorticity is zero to leading

order in this basic case, which leads to the replacement equations

Hnt +(Hnun)x = 0, (4.7a)

ut +uux =−px(x, t), (4.7b)

where Eq. (4.7a) replaces Eqs. (4.4a), (4.6a) and (4.6b), Eq. (4.7b) replaces

Eq. (4.4b), (4.4c) and Hn are the two gap widths, namely H1 = f1(x, t) and H2 =

1− f2(x, t). The fluid motion is therefore governed by Eq. (4.7a) and (4.7b) subject

to Eq. (4.6c) and (4.6d). Initial conditions at time zero are supposed given also.

The body motion is governed by the mass-acceleration physics of a solid body

of density ρDB whose centre of mass (x,y) = (C,h(t)) is moving vertically, com-

bined with a scaled rotation angle θ(t) , in response to the evolving pressure field

from the fluid flow. The moving body surfaces are therefore given by

f1(x, t) = F1(x)+h(t)+(x−C)θ(t), (4.8a)

f2(x, t) = F2(x)+h(t)+(x−C)θ(t), (4.8b)

where Fn(x) are the fixed underbody and overbody shapes, and we have at

leading order the body-motion equations

M
d2h
dt2 =

∫
(p1(x, t)− p2(x, t))dx, (4.9a)

I
d2θ

dt2 =
∫
(x−C)(p1(x, t)− p2(x, t))dx, (4.9b)

with the prime denoting the ordinary t derivative and M, I denoting the scaled
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mass and moment of inertia of the body. Account has been taken of the small angles

inherent in the current slender-body analysis as well as the fixed axial positions x =

0 , C, 1 of the leading edge, centre of mass and trailing edge of the body respectively

in the present body-based coordinate frame.

Numerical and analytical properties of the fluid/body interaction Eqs. (4.6c),

(4.6d), (4.7a), (4.7b), (4.8a), (4.8b), (4.9a) and (4.9b) are investigated in Ref. [19].

There is also interest in the regime where M and I are large and comparable, which

occurs if the density ratio ρDF/ρDB is sufficiently small as for example with an ice

particle moving through air: the density ratio in that example is about 10−3 . In

this regime time t tends to scale like M
1
2 because of Eq. (4.9a) and (4.9b) and so

the fluid flow becomes quasi-steady everywhere. Helpful simplifications then stem

from Eq. (4.7a) and (4.7b), yielding conservation of Hnun and p+ 1
2u2 in each gap.

In the next section we extend the above modelling in order to describe the

fluid/body interaction when two bodies are presented in a channel.

4.3 Model for two free particles in flow
Consideration is now given to two slender bodies interacting in a channel flow as

depicted in non-dimensional form in Fig. 4.2. The bodies are non-aligned with their

leading edges at different axial stations and likewise for their trailing edges. They

also overlap in the sense that the leading edge of the second body (on the right) is

positioned between the leading edge and the trailing edge of the first body (the body

on the left). In the laboratory frame the bodies are moving with equal horizontal

components of velocity and it follows that in the current body based frame they

each have zero velocity in the horizontal direction, although able to move vertically

and azimuthally, to leading order.
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Figure 4.2: Two bodies in a uniform channel flow. The diagram is not to scale; as before,
the horizontal (x) scale has been reduced in comparison with the vertical (y)
scale.

Concerning the flow part of the fluid/body interaction, guided by the previous

work as summarised in the previous section we suggest that there is a flow structure

as shown in Fig. 4.3. This comprises five zones 1−5. In Fig. 4.3 the dashed lines

indicate the two Euler zones, surrounding the two leading edges of the bodies, and

the two trailing edges where Kutta conditions apply. The lower and upper surfaces

of the first body are written y = f1(x, t), y = f2(x, t) respectively, while the lower

and upper surfaces of the second body are y = f4(x, t), y = f3(x, t) respectively: we

note the ordering.

Figure 4.3: The interactive structure for two bodies, showing zones 1-5.

The density ratio is taken to be small and hence the flow can be treated as if

steady, for the sake of simplicity in the present first modelling; the flow is assumed

to be forward from left to right throughout such that un > 0 for all n. So, using and

extending the assumptions and notation from the previous section, we have in the

successive gaps (n = 1−5) the mass balances
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unHn = dn(constants), (4.10)

where the gap widths are H1 = f1,H2 = 1− f2,H3 = f1 − f3,H4 = f4,H5 =

1− f3. Similarly the usual Bernoulli quantity is conserved throughout the zones

1−5 because of the known properties of the Euler regions and hence

pn +
1
2

d2
n

H2
n
=

1
2
, (4.11)

again holding for n = 1−5. There are expected to be jumps in pressure p and

velocity u across the Euler regions in general but the quantities in Eq . (4.11) remain

conserved across those regions.

Next, the total mass fluxes must be taken into account. These require the fol-

lowing relations to hold,

d1 +d2 = 1,d3 +d4 = d1,d2 +d3 = d5. (4.12)

From the above relations we see that the required balances d4+d5 = d1+d2 =

1 also hold. Also the Kutta conditions at the two trailing edges x = b, x = c are that

the pressures there are equal, leading from Eq. (4.11) to the equations

d2
2

H2
2 (b, t)

=
d2

3

H2
3 (b, t)

, (4.13)

and

d2
4

H2
4 (c, t)

=
d2

5

H2
5 (c, t)

, (4.14)

in turn. The equality of the values in Eq. (4.13) with the value d2
5

H2
5 (b,t)

implied

by zone 5 is found to be assured, i.e. it is guaranted by the displayed equations

above.

Thus there are five equations Eqs. (4.12), (4.13) and (4.14) for the five un-

knowns d1 − d5 . The balances Eqs. (4.13) and (4.14) can now be simplified to
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give

d2

H2(b, t)
=

d3

H3(b, t)
,

d4

H4(c, t)
=

d5

H5(c, t)
, (4.15)

since all the velocities un are positive. Hence the solutions are found to be

d1 = 1− H2(b, t)H5(c, t)
H5(b, t)

, (4.16a)

d2 =
H2(b, t)H5(c, t)

H5(b, t)
, (4.16b)

d3 =
H3(b, t)H5(c, t)

H5(b, t)
, (4.16c)

d4 = H4(c, t), (4.16d)

d5 = H5(c, t). (4.16e)

These are to be used in conjunction with the body-movement properties de-

scribed below. It is notable meanwhile that a non-overlapping scenario would in-

volve zero feedback between the two bodies because of the Kutta condition and the

ensuing lack of a wake in the present quasi-steady flow model for small density

ratios.

Concerning the body motions, the two bodies have to move by virtue of the

mass-acceleration effects. Thus

M1
d2h1

dt2 =
∫ a

0
(p2 − p1)dx+

∫ b

a
(p2 − p3)dx, (4.17a)

I1
d2θ1

dt2 =
∫ a

0
(x−C1)(p2 − p1)dx+

∫ b

a
(x−C1)(p2 − p3)dx, (4.17b)

(4.17c)

for the first body and
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M2
d2h2

dt2 =
∫ b

a
(p3 − p4)dx+

∫ c

b
(p5 − p4)dx, (4.18a)

I2
d2θ2

dt2 =
∫ b

a
(x−C2)(p3 − p4)dx+

∫ b

a
(x−C2)(p5 − p4)dx, (4.18b)

(4.18c)

for the second body. The right-hand sides in Eqs. (4.17a), (4.17b), (4.18a) and

(4.18b) depend on the pressure differences to be calculated from the fluid flow. We

also need to relate h1 , θ1 , h2 , θ2 to the gap widths H1 −H5 and to the prescribed

shapes of the body surfaces

The properties resulting from the interactive equations of the fluid flow in Eqs.

(4.11)-(4.16e) and the bodies’ motions in Eqs. (4.17a), (4.17b), (4.18a) and (4.18b)

are investigated in the following section.

4.4 Results and discussion for two particles in flow
Here for the sake of numerical and analytical study we would like to consider con-

crete examples of the previous model configurations. What we are particularly inter-

ested in is investigating how to make particles remain between the parallel channel

walls for as long as possible without any impacting on each other or on the walls.

Our current study stops when one of the particles collides with the wall, either the

top or the bottom wall, or when there is a particle-particle impact. It is necessary

now to address specific examples.

In detail, the equations for the unknown moving body surfaces are now taken

to be as follows,

f1(x, t) = F−
1 (x)+h1(t)+(x− 1

2
)θ1(t), (4.19)

f2(x, t) = F+
1 (x)+h1(t)+(x− 1

2
)θ1(t), (4.20)

f3(x, t) = F+
2 (x)+h2(t)+(x−0.8− 1

4
)θ2(t), (4.21)

f4(x, t) = F−
2 (x)+h2(t)+(x−0.8− 1

4
)θ2(t), (4.22)
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where Eqs. (4.19) and (4.20) represent the lower and upper shape functions for

particle 1 respectively, while Eqs. (4.21) and (4.22) represent the upper and lower

shape functions for particle 2 respectively.

In addition, particle 1 has its leading edge at x = 0 and its trailing edge at x = 1,

thus having unit length, whereas particle 2 has length 1
2 with its leading and trailing

edges being at x = 0.8 and x = 1.3 in turn. The respective centres of mass are

located at the halfway positions, namely x = 0.5 and x = 1.05. We also define our

particles to be elliptically shaped. Thus here we define the particle shape functions

as

F+
1 (x) = α1 + x

1
2 (1− x)

1
2 β1 (4.23)

F−
1 (x) = α1 − x

1
2 (1− x)

1
2 β1 (4.24)

F+
2 (x) = α2 +(x−0.8)

1
2 (1.3− x)

1
2 β2 (4.25)

F−
2 (x) = α2 − (x−0.8)

1
2 (1.3− x)

1
2 β2 (4.26)

with positive thickness constants β1, β2 and leading edge heights α1 , α2 . Typical

studies described here are for ( α1 , α2 , β1 , β2 ) equal to (0, 0, 0.1, 0.05) and initial

conditions ( h1 , dh1
dt , h2 , dh2

dt )(0) equal to (0.7, 0, 0.4, 0). During the course of the

study, we tested many different values of initial angles and angular velocities but

among them interesting values were found to be θ1(0) = −0.1, θ2(0) = 0.1 with
dθ1
dt = −1 and dθ2

dt = 1. We found that with such initial conditions, the collision

can occur not only in a finite time, but also neither too quickly nor too slowly. We

also set the moment of inertia of particle 1 to be I1 = 0.25M1 and particle 2 to be

I2 = 0.1M2 .

In the following figures which show numerical solutions we plot three exam-

ples (1)-(3) with different mass values as described below.

(1) We set M1 = 1 and M2 = 1
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Figure 4.4: t=0 Figure 4.5: t=0.17

Figure 4.6: t=0.33

Figure 4.4 is the initial starting point of the whole system. Figure 4.5 shows

in a sense the middle stage of the whole movement. Figure 4.6 is at the collision

time where particle 1 impacts upon the upper wall. As we can see from the graph,

the particle 1 moves upwards and rotates clockwise. The height of the centre of

mass for particle 2 remains almost constant and its motion is almost only a rotation,

slightly upward and anticlockwise. In order to make a clear contrast with this group,

we next took two extreme values and tested them.

(2) We set M1 = 16 and M2 = 1 and keep other values the same as in example

(1).
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Figure 4.7: t=0 Figure 4.8: t=0.23

Figure 4.9: t=0.46

Here Fig. 4.7 is the initial starting point of the whole system, Fig. 4.8 is the

middle stage of the evolution and Fig. 4.9 is essentially at the collision time. Despite

the increased mass of particle 1 in example (2) we have almost the same motion as

in example (1) except that the collision happens somewhat later than in example (1).

(3)We set M1 = 1 and M2 = 16 and keep other values same as for example (1)
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Figure 4.10: t=0 Figure 4.11: t=0.23

Figure 4.12: t=0.46

Again Fig. 4.10 is the initial starting point of the whole system. Figure 4.11

is the middle stage of the whole movement. Figure 4.12 is at the collision time.

We have almost the same motion as in example (1). From the graphs we notice

that there is a tiny difference between examples (1) and (3) (and likewise between

examples (1) and (2)). This might well be caused by the different mass of particle

2. With larger mass and moment of inertia, particle 2 is harder to stop in a sense; its

motion is virtually ballistic. In particular the displacement of particle 2 in example

(3) is larger than that in example (1).

The height and theta functions for these three examples are presented in Figs.

4.13 and 4.14 .
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Figure 4.13: Height functions for the two-particle model in three examples

Figure 4.13 gives a graph showing the height trajectories of each case. The

top three lines represent the trajectories for particle 1 in these three examples and

the bottom three lines represent the trajectories for particle 2. From the sudden

change of the height functions for particle 1 we can read that the collision happened

between particle 1 and the top wall. That is, the fluid gap there closed at a finite

time, after which the results are unphysical. Similarly, we plot the theta functions

for particles in these three cases in Fig. 4.14.
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Figure 4.14: θ functions for the two-particle model in three examples.

Figure 4.14 presents the θ trajectories of each case. In contrast to the height

trajectory, the bottom three lines represent the θ trajectories for particle 1 and the

top three lines represent the θ trajectories for particle 2. Once again the collision

time is indicated by the rapid turning point in the results.

Analysis provides some insight here. When M1 and I1 are large the suggestion

is that, to leading order, the equations for particle 1 become simply

M1
d2h1

dt2 = 0, I1
d2θ1

dt2 = 0, (4.27)

for times t of order unity. Hence

h1(t) = h1(0),θ1(t) = θ1(0)+θ
′
1(0)t, (4.28)

for all such t. In our model we can regard M = 16 as large enough to use the

above analysis. Thus for the case of M1 = 16 and M2 = 1, the asymptotic analysis

shows that particle 1 is free to rotate about its centre of mass x = 1
2 at a constant



4.4. Results and discussion for two particles in flow 90

rotation rate (constant angular velocity) which is -1, from the initial conditions.

In effect the centre of mass of particle 1 stays still. Hence the leading edge rises

uniformly and the trailing edge falls uniformly. (Particle 1 is in essence independent

of particle 2 in this extreme.) However, particle 1 is long compared with particle 2

and so the leading and trailing edges of particle 1 appear to be displaced by large

amounts compared with the movement of the smaller particle 2. For the M1 = 1

and M2 = 16 case, similarly, the leading and trailing edges of particle 2 move up

or down uniformly and its centre of mass effectively stays still, in line with the

asymptotic behaviour

h2(t) = h2(0),θ2(t) = θ2(0)+θ
′
2(0)t, (4.29)

for t of order unity. However, particle 2 is the shorter particle and so its displacement

appears smaller in the results.

The analytical trends Eqs. (4.28) and (4.29) appear to agree with those of the

numerical solutions in Figs. 4.4-4.14. The analysis behind forms Eqs. (4.28) and

(4.29) also suggests repeating the numerical study of case (3) but with the initial

rotation θ ′
2(0) increased to 4 and the initial vertical distances between the centres of

mass decreased, in which case particle 2 might be expected to collide with particle

1 before any other collision can occur. Thus an additional example (4) is examined

next.

(4) We set θ ′
2(0) = 4 and h1(0) = 0.5 and keep other values the same as for

example (3). The result is given in Fig. 4.15 and 4.16 .

Figure 4.15: t=0 Figure 4.16: t=0.14
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The finding in case (4) is that, whereas in the earlier cases the gap between

the two particles is too large to let them collide with each other (before hitting a

wall), now a collision can occur between the particles due to the change of initial

height of particle 1 from 0.7 to 0.5 and the enlarged initial rotation of particle 2. A

consequent body-to-body collision time of about t = 0.14 is seen to be encountered.

It is felt that the examples (1)-(4) as described above indicate the two types

of impact phenomena likely to be present in the two-body fluid/body interaction

problem in a channel. The types are body-wall and body-body impacts. The exam-

ples also suggest that further analysis on parametric influences could be especially

fruitful. It is to be expected that many other specific cases lead potentially to the

occurrence of the two types of impact above.

4.5 Further discussion
The present work points immediately to a number of useful follow-up studies and

also to addressing certain difficult issues of combined fluid and solid mechanics.

One natural follow-on is to extend the understanding to the case of many bodies

being present in the channel. This has only been done in the aligned scenario of

[11]. In the more general non-aligned setting we can begin by creating a model for

three free particles. Extending the model of the previous sections to three bodies

leads to the interactive solution structure displayed in Fig. 4.17. The figure gives

one example of how the three leading edge positions and the three trailing edge

positions of the bodies can overlap but in all examples there must be three short-

scale Euler zones and three Kutta conditions to apply, a feature which guides the

subsequent working. In this example eight separate long-scale regions are present

as shown in the figure.

The governing equations in the eight regions are analogous, thus yielding

unHn = dn(constants), (4.30)

pn +
1
2

d2
n

H2
n
=

1
2
, (4.31)
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Figure 4.17: Sketch of the three-body problem and its solution structure.

for n = 1 − 8 where the gap widths Hn(x, t) are defined by differences between

adjacent body positions or between a body position and the adjacent wall of the

channel. Because of the number of leading and trailing edges the total mass fluxes

then require the six relations

d1 +d2 = 1,d3 +d7 = d1,

d4 +d5 = d2,d3 +d4 = d6,

d5 +d6 = d8,d7 +d8 = 1,

(4.32)

to hold. Notably the final relation Eq. (4.32) is linearly dependent on the other

relations. Further the Kutta conditions at the three trailing edges, say x = b, x = c,

x = d point to the equations

d2
3

H2
3 (b, t)

=
d2

4
H2

4 (b, t)
, (4.33)

d2
5

H2
5 (c, t)

=
d2

6

H2
6 (c, t)

, (4.34)

d2
7

H2
7 (d, t)

=
d2

8

H2
8 (d, t)

, (4.35)

in turn. The eight equations Eqs. (4.32)-(4.35) can then be solved for the eight

unknowns d1−d8 in order to provide the pressure distributions pn . The latter act as
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forcing effects in the body-motion balances which are analogous with Eqs. (4.17a),

(4.17b), (4.18a) and (4.18b) but extended for three bodies, i.e. involving unknown

functions of time (h1,θ1) , (h2,θ2) and (h3,θ3) . The solution responses remain to

be pursued.

Challenging issues are also involved in tackling several extra aspects of fluid/-

body interactions relevant to the current area. These include in particular: different

horizontal speeds of the bodies in the laboratory frame, causing slip in the body

based frame and hence time-dependent overlaps; rebounds after clashes (in par-

ticular a post-collision two-particle model will be investigated in future research);

the effects of viscosity, three-dimensional and surface flexibility; comparison of the

predictions from unsteady and quasi-steady flow; the full influence of body shapes

and wall shapes. Just as there are many parameter regimes to study, there are in

addition many interesting shapes to consider. These extra issues should enable the

connection with practical applications to be made firmer.

4.6 Conclusion

The two-dimensional fluid/body interaction arising when fast- moving bodies, or

particles of finite size, are free to move within the fluid surrounding them has been

studied. New modelling and results on the behaviour of two interacting bodies

inside a channel flow have been described for an assumed inviscid fluid. The ex-

tension to more bodies has also been discussed with a view to treating arrays of

non-aligned bodies in a rational manner. For the case of many bodies the role of

overlap as described is notable. Thus if there are groups of bodies separated by ver-

tical gaps, i.e. not overlapping, then the feedback between the groups is negligible

even if the groups are nearby each other; the absence of significant flow separa-

tion and hence the absence of significant wakes for the present slender bodies is a

substantial factor here. For the case of two overlapping bodies it has been found

specifically that the initial conditions and the relative body masses and moments

of inertia exert considerable influence not only on the occurrence of body-body

impacts as distinct from wall-body impacts but also on the corresponding impact
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times. (Both the wall-body and the body-body impacts in the present context of

quasi-steady fluid flow can be described locally by analyses akin to those applied in

recent work [77] within the context of a boundary layer.)

The modelled interaction between fluid flow dynamics and the free movement

of bodies holds over a wide range of scales, from macro- to nano-scales. Here

the potential relevance to industry, aerodynamics, biomedicine and the environment

seems positive. In terms of understanding the mechanics and the physical aspects,

it is felt that there is far more still to be explored (on three-dimensional effects, on

many-particle interactions, on non-linear and conventional instability effects for ex-

ample) than has been done to date in the area. Continuing studies along the current

lines are concerned with skimming, with the growth or erosion of ice on a sub-

strate, and with tackling three-dimensional interactions as well as with attempting

to accommodate many bodies as described in the previous section. The combina-

tion of physical modelling, analysis and allied computation, whether small-scale or

large-scale, appears to have been beneficial in this work.



Chapter 5

Particle moving within a channel

which shape changing with pressure

5.1 Introduction
In this chapter, we will create a new model for a particle moving within a channel

whose shape changes with the pressure exerted on the channel walls. The model

will be built on the work in chapters 2-4 concerned with quasi-inviscid fluids and

fluid-body interactions, but now allowing for flexibility in one of the walls of the

channel. There appears to have been no previous study of the present particular

model.

Recalling from the previous research, we have already built a model in which

the shape of the channel changes. In that model, however, we specified the shape of

the channel. In this way, we could more easily predict the trajectory of particles and

possible collisions. That model works better for situations with fixed walls such as

needles or conduits. The present model may work better for the soft (flexible, see

references below) wall shape channel such as a modelled blood vessel. As in our

previous chapters, we can anticipate that there will be many parameters involved, a

feature which may be expected to be reinforced by the parameters associated with

the wall flexibility. Our intention in this chapter will be to inspect part of the new

parameter space, not the whole of it.
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Figure 5.1: The initial position of our particle in the flexible channel shape model.

In the present model we assume that flexible parts of the channel wall could

exist in the x interval of [a,b]. The coordinates x, y, t are defined as in earlier

chapters of the thesis. Here x = 0 and x = 1 represent the leading edge and the

trailing edge of our particle respectively. Meanwhile, we assume the channel width

at x = a and x = b is equal and equal to 1. We note that our concern will usually

be with the case where 0 < a < b < 1. We assume the p0 is the non-dimensional

base (external) pressure relative to the oncoming pressure level, which is taken to be

zero, p1 is the pressure between the bottom wall and the lower edge of the particle,

p2 is the pressure between the top wall and the upper edge of the particle.

Regarding the flexible surface shape’s response to fluid flow across the sur-

face, models by [49], [45], [46], [43], and others show that the shape and flow in-

teract via the local pressure. The main assumptions are those of the commonly used

membrane-model type as in the references above, with [47] as well as [42], [78],

[44], and [48] providing particularly interesting background discussions of linearly

elastic materials and related aspects relevant here. We refer here to equation (2.5)

in [50] as our governing equation,

e1 fxxxx + e2 fxx + e3 f + e4 ftt + e5 ft = p− p0. (5.1)

In this model we assume the spike shape is y = f (x, t) and the non-dimensional

constant coefficients e1 =
−B∗

U∗2L∗3ρ∗ , e2 =
T ∗

t
U∗2L∗ρ∗ , e3 =

−κ∗L∗

U∗2ρ∗ , e4 =
−M∗

L∗ρ∗ , e5 =
C∗

U∗ρ∗ ,
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with U∗, L∗, ρ∗, M∗, C∗, κ∗, T ∗
t being the fluid velocity, the typical length factor,

the uniform density of the incompressible fluid, the mass, the damping constant,

the flexural rigidity, the spring stiffness, longitudinal tension respectively. During

the test, p0 is the dimensionless base pressure relative to the oncoming pressure

level and we take p0 zero or nonzero depending on the circumstances. For specific

materials, the values of the aforementioned quantities are calculated by experimen-

tation or tabulated. Importantly, according to the physical quantities contained in

the above variables we conclude e1 < 0, e2 > 0, e3 < 0.

We assume for simplicity that the flexible part of the channel wall is moving

with the particle. For this and other reasons we could ignore the last two terms in

the left-hand-side of the equation (5.1) and rewrite the equation as below,

e1 fxxxx + e2 fxx + e3 f = p1 − p0. (5.2)

Here p1 = p is the internal pressure and others are the same as mentioned before.

The boundary conditions for f are

f = fX = 0 at X = a,b, (5.3)

if X = a,b are assumed for the single flexible region’s end points for certainty.

Additionally, we still use the same body shape and motion functions as before,

fp
±(x, t) = F±(x)+h(t)+(x−1/2)θ(t). (5.4)

We still assume F+
1 (x) = α + x

1
2 (1− x)

1
2 β and F−

1 (x) = α − x
1
2 (1− x)

1
2 β as our

body shape functions representing an ellipse, where α , β are real constants and

0 < α,β < 1.

With all above new conditions, the whole system will be changed into,

fp
+(x, t) = F+(x)+h(t)+(x−1/2)θ(t). (5.5)

fp
−(x, t) = F−(x)+h(t)+(x−1/2)θ(t). (5.6)
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At the trailing edge we have fp
+(1, t) = fp

−(1, t). By the contunity equations and

Bernoulli relations and Kutta conditions, we have the relations below,

d1 +d2 = 1, (5.7)

d1
2

H1
2 =

d2
2

H2
2 , (5.8)

p1 =
1
2
(1−u1

2), p2 =
1
2
(1−u2

2), (5.9)

where d1 = u1H1, d2 = u2H2, H1 = fp
−− f , H2 = 1− fp

+. Same as before, we still

use the Newton’s motion functions for the rigid body as the governing equations,

M
d2h
dt2 =

∫
(p1(x, t)− p2(x, t))dx, (5.10a)

I
d2θ

dt2 =
∫
(x−C)(p1(x, t)− p2(x, t))dx, (5.10b)

where C represents the center of mass of the particle.

In this section we have created a new model to describe particle motion. In the

next section, we will give the initial conditions and test the model. During the test,

we will use almost the same motion functions as before. At the same time, we will

seek to verify the accuracy of the model.

5.2 Model creation
For the first test, we randomly choose e1 = −1, e2 = 1, e3 = −1 and we assume

the external pressure p0 = 0. At the same time, we assume the flexible part of the

bottom wall is from x = 0.2 (point x = a) to x = 0.7 (point x = b), that is, with 0.2

corresponding to point a and 0.7 corresponding to point b. With the previous and

above conditions, we can take the initial test as below,
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(a) Particle position at t=0 (b) Particle position at t=0.13

(c) Particle position at t=0.26

Figure 5.2: Initial test with e1 =−1, e2 = 1, e3 =−1, p0 = 0

From the figure 5.2, we can see that the particle trajectory is not much different

from the previous tests, which had no flexibility of the wall, and indeed the shape of

the lower wall is not significantly changed. It is changed a small amount, however.

We plot the graph for the bottom wall to better present the changes.
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(a) Bottom wall shape at t=0 (b) Bottom wall shape at t=0.13

(c) Bottom wall shape at t=0.26

Figure 5.3: Initial test for bottom wall shape

From the figure 5.3, we know that the typical variation of the bottom wall is too

small to have a significant effect on our particle motion. Responding to this, we

increase the external pressure p0 and the results are shown in figure 5.4,
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(a) Particle position at t=0.26 (p0 = 1) (b) Bottom wall shape at t=0.26 (p0 = 1)

(c) Particle position at t=0.26 (p0 = 1000) (d) Bottom wall shape at t=0.26 (p0 = 1000)

Figure 5.4: Particle collision point and bottom wall shape with different external pressure

Referring to figure 5.4b, we notice the shape changing with order of 10−4. If

we increase the wall effect 1000 times, there could be a noticeable change on the

bottom wall. Thus we change the external pressure from 0 to 1000. See figure 5.4d

which shows a much more substantial response.

To prove we have the correct bottom wall shape, we examine the wall equa-

tion more closely. For example, recalling from the previous 4th order differential

equation (5.2) with e1 =−1, e2 = 1, e3 =−1, we address

− fxxxx + fxx − f = p1 − p0. (5.11)

When we have a large value of p0, for example in the last test, p0 = 1000, the

right-hand-side of the equation will be dominated by p0 and the left-hand-side of

the equation will be dominated by fxxxx as an approximation. Thus, roughly, we can
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treat the equation as

fxxxx = p0. (5.12)

After solving equation (5.12), we have the approximate answer as below,

f (x) =
p0

4!
(x−a)4 +A(x−a)3 +B(x−a)2 +C(x−a)+D, (5.13)

where the constants A, B, C, D need to be solved. Recalling from the initial condi-

tions

f (a) = 0, f ′(a) = 0. (5.14a)

f (b) = 0, f ′(b) = 0. (5.14b)

We can have the relation below,

0 =
p0

4!
(b−a)4 +A(b−a)3 +B(b−a)2. (5.15a)

0 =
p0

3!
(b−a)3 +3A(b−a)2 +2B(b−a). (5.15b)

In our assumption, b− a is a real nonzero number. Therefore, we can divide (b−

a)2 on both sides of equation (5.15a) and divide (b− a) on both sides of equation

(5.15b). Hence, we obtain 2 new equations

0 =
p0

4!
(b−a)2 +A(b−a)+B. (5.16a)

0 =
p0

3!
(b−a)2 +3A(b−a)+2B. (5.16b)

After solving the above equation pair, we have A =− p0
12(b−a), B = p0

24(b−a)2. We

substitute above values A, B, C, D into equation (5.13) to find,

f (x) =
p0

4!
(x−a)4 − p0

12
(b−a)(x−a)3 +

p0

24
(b−a)2(x−a)2. (5.17)

Then we may substitute any value of x to check the accuracy. For instance, we
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choose x = (a+b)
2 , which gives,

f (x) =
p0

4!
(x−a)4 − p0

12
(b−a)(x−a)3 +

p0

24
(b−a)2(x−a)2. (5.18)

After substitution we have f ((a + b)/2) = 0.16276, while the numerical finite-

difference value is 0.16171. The error is about 0.001 which, can be accepted in

our model. Thus, we are going to use this model in the future tests.

In this part, we checked to find the appropriate external pressure (p0 = 1000)

to make an observable change in our model, and we verified the accuracy of the

bottom wall shape. In the next chapter we will focus on varying the particle height

and internal pressures to examine the collisions between the particle and the bottom

wall.

5.3 Varying the external and internal pressure and

particle height

5.3.1 Vary the external and internal pressure

In the previous section, we have already found an appropriate external pressure.

Now we are more interested in possible collisions. Thus, we change the external

pressure and rescale the bottom wall shape governing equation. After rescaling, our

bottom wall shape governing equation (5.2) becomes,

e∗1 f ∗xxxx + e∗2 f ∗xx + e∗3 f ∗ = c∗1(p1 − p∗0). (5.19)

Because when we use the original equations for the calculation, we will always get

a high spike on the flexible part, this restricts our particle’s movement which means

the particle will collide with the bottom wall very quickly. That is why we need

a constant c∗1 on the right hand side of the equation (5.19). Here e∗1 =
e1
c2

, e∗2 =
e2
c2

,

e∗3 = e3
c2

, c∗1 = c1
c2

. The external pressure now becomes p∗0 = p0
c∗1

. With the above

rescaling equation we set e∗1 = −0.001, e∗2 = 0.001, e∗3 = −0.001, and c∗1 = 0.001.

To tell the difference between p0 = 1 and p0 = 2, we plot the new graphs with
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the equation (5.19) and use α = 0.7, β = 0.1, c = 0.5, θ(0) = −0.1, h(0) = 0,

θ ′(0) = 0, h′(0) = 0 as the initial conditions. We also set a = 0.2 to b = 0.7 as the

part of the bottom wall that is flexible. First we plot the graphs with p0 = 1 and the

results are shown as below in figure 5.5,

(a) Particle position at t=0 (p0 = 1) (b) Particle position at t=0.13 (p0 = 1)

(c) Particle position at t=0.26 (p0 = 1)

Figure 5.5: Particle movement with external pressure p0 = 1

Figure 5.5 are some results with p0 = 1. We put this set of test here as a

comparison. Next we keep all the initial conditions the same as before but change

to p0 = 2; the results are shown as below in figure 5.6,
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(a) Particle position at t=0 (p0 = 2) (b) Particle position at t=0.13 (p0 = 2)

(c) Particle position at t=0.26 (p0 = 2)

Figure 5.6: Particle movement with external pressure p0 = 2

As we can see from the figures 5.5 and 5.6, the height for the bottom flexi-

ble part varies. Obviously, figure 5.6 suggests that it is easier to make a collision

happen. Thus we are going to use p0 = 2 in our subsequent tests.

In addition, we recall the research interest in avoiding collision between the

particle and the channel walls. Because the pressure p1 above the flexible part is

always negative for a the smaller gap, increasing the parameter c1 is a possible way

to drag the particle downwards or reduce the particle’s upwards velocity. On the

other hand, this is a delicate method because the negative pressure will also tend to

increase the height of the bottom flexible part. With these concerns, we undertook

4 different tests (c∗1 = 0.001, c∗1 = 0.1, c∗1 = 0.3, c∗1 = 0.5). We use the same initial

conditions mentioned before along with p0 = 2. The only difference is that different

values for c∗1 are taken. The results are shown as below.
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(a) Particle position at t=0.29 (c∗1 = 0.001) (b) Particle position at t=0.29 (c∗1 = 0.1)

(c) Particle position at t=0.30 (c∗1 = 0.3) (d) Particle position at t=0.31 (c∗1 = 0.5)

Figure 5.7: Particle collision point with different values of c∗1

From the figure 5.7, the results are exactly the same as our conjectures in the

previous paragraph. In the subsequent tests we would like to know all these parame-

ters’ influences on our particle, including the different initial heights of the particle.

For this we need to keep some space for the particle movement. As a consequence,

c∗1 = 0.5 seems a reasonable value for the tests.

5.3.2 Vary particle height

In the section 5.3.1, we simulated numerically the motion of the particle and the

flexible lower wall, including variations of the internal and external pressure. We

found that using an external pressure p0 = 2 is a helpful condition to let the lower

flexible wall produce a significant change. Thus, in this section, we aim to keep

this condition. Besides this, we only test 1 case where the particle collides with the

top wall. Hence, in this section, we work to seek numerically some other possible

collisions.

(1) h(0)=0.5 case

For the numerical analyses in the last section, we kept h(0) = 0.7 and varied

the parameter multiplying p1 which is c∗1 to change the internal pressure and vary

p0 to change the external pressure. In the present part, we add some variation for
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the initial height as well. In order to better observe the influence of initial height,

the value c∗1 = 0.5 was selected as the initial control group (in effect) and results are

shown below.

(a) Particle position at t=0 (h(0) = 0.7) (b) Particle position at t=0.15 (h(0) = 0.7)

(c) Particle position at t=0.3 (h(0) = 0.7)

Figure 5.8: Particle position with h(0) = 0.7

Just for reminding, we use α = 0.7, β = 0.1, c = 0.5, M = 2, I = 0.01, θ(0) =

−0.1, θ ′(0) = 0, h′(0) = 0, p0 = 2 as the initial conditions during the test and h(0)

needs to be set in each test. Besides, figure 5.8a shows the starting point of the test.

By the way, the particle and wall are very close together but do not collide.

To compare with these results, we change h(0) = 0.7 to h(0) = 0.5 and we no-

tice, under the same conditions, the bottom flexible wall cannot cross the particle,

even though it appears to do so. This is clearly not a reasonable model and it is

physically incorrect. Therefore, as we mentioned before, the value for p1 is nega-

tive. Thus reducing c∗1 could reduce the drag force to the bottom flexible part. Thus

this should be a useful way to make the model reasonable. The process of reducing

c∗1 from 0.5 to 0.05 is shown in figure 5.9.
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(a) Particle position at t=0 (c∗1 = 0.5) (b) Particle position at t=0 (c∗1 = 0.3)

(c) Particle position at t=0 (c∗1 = 0.1) (d) Particle position at t=0 (c∗1 = 0.05)

Figure 5.9: Tests of different values of c∗1 influence to the model with h(0)=0.5

After testing the results as in figure 5.9, we find when the value for c∗1 reduces

to 0.05, the particle is not crossed by the bottom flexible part at the initial position.

Then we show some middle steps and collision point of this case as in figure 5.10.
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(a) Particle position at t=0 (h(0) = 0.5, c∗1 =
0.05)

(b) Particle position at t=0.07 (h(0) =
0.5, c∗1 = 0.05)

(c) Particle position at t=0.14 (h(0) = 0.5, c∗1 = 0.05)

Figure 5.10: Particle motion with h(0) = 0.5, c∗1 = 0.05

From the figure 5.10, we notice the particle and the bottom wall start close

together, but, same as before, they did not collide. After a few steps, they become

even closer to each other until the collision occurs. Although let the particle travel

time in the channel reach t=0.14 is an encouraging result, we still want longer travel

time to make sure the model is a sensible model. Thus, given the previous results,

we further reduce c∗1 to c∗1 = 0.01 and show the results below,
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(a) Particle position at t=0 (h(0) = 0.5, c∗1 =
0.01)

(b) Particle position at t=0.24 (h(0) =
0.5, c∗1 = 0.01)

(c) Particle position at t=0.45 (h(0) = 0.5, c∗1 = 0.01)

Figure 5.11: Particle motion with h(0) = 0.5, c∗1 = 0.01

From the graphs in figure 5.11 we can see the particle can move between the

channel walls for about 0.45 unit time. Since c∗1 only affects the flexible wall on

the lower side, it can be concluded via the tests that, under the same conditions,

smaller c∗1 will make the particle move for a longer time. We assume that c∗1 is

always a non-negative number (c∗1 ≥ 0), that is, the existence of c∗1 will not cause

downward bending of the flexible wall on the lower side. In this way, there is a

situation in our model that can make the particle move for the longest time, that is,

let c∗1 approach zero indefinitely. At this point, the function and shape of the lower

wall with e∗1 =−0.001, e∗2 = 0.001, e∗3 =−0.001 are shown in figure 5.12.
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Figure 5.12: Bottom wall shape with c∗1 = 0, p0 = 2

From these cases, we can draw a conclusion that inner pressure with parameter

c∗1 = 0.05 is perhaps apt to keep the particle moving in the channel. At the same

time, we found that smaller c∗1 leads to longer translational time for the particle.

(2)h(0)=0.3 case

Previously, we have drawn some conclusion about the h(0) = 0.5 case. In this

part, we prefer a lower starting point h(0) = 0.3. As in the previous tests, we use

h(0) = 0.3, h′(0) = 0, θ(0) = −0.1, with e∗1 = −0.001, e∗2 = 0.001, e∗3 = −0.001,

c∗1 = 0.5 as the initial conditions but we vary p0 = 0.5 to find a ”reasonable” initial

position. The reason why we use p0 = 0.5 as the initial condition is because when

we use a larger pressure (for example p0 = 2), no matter what value of c∗1 we choose,

we cannot find physical results. After few tests, we decide to use p0 = 0.5 as the

initial condition to give us a ”reasonable” start and the results are shown below.
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(a) Particle position at t=0 (p0 = 0.5) (b) Particle position at t=0.2 (p0 = 0.5)

(c) Particle position at t=0.41 (p0 = 0.5)

Figure 5.13: Particle motion with p0 = 0.5

Figure 5.13 shows the collision happens between the bottom wall (non-flexible

part) and the particle’s trailing edge.

In this section, we discussed 3 different height cases. Luckily, we found some

possible ways to make the collisions happen. For instance, when h(0) = 0.5 with

the conditions we mentioned above, if we could adjust the parameter for the inner

pressure c∗1 = 0.01, we may find an improved solution such that the particle could

move for 0.45 unit time. Furthermore, if we start with a lower position, for instance,

h(0) = 0.3, with the conditions we mentioned earlier in this section, we found no

matter how small we adjust the value for c∗1, we could not find a reasonable initial

position for our model. Therefore, we adjusted the external pressure p0 from p0 = 2

to some smaller value and we suppose there should be a solution between p0 = 0.5

and p0 = 0.8 to make the collision happen between the particle and the bottom

flexible wall. In the following part, we would like to present a few further tests.

First, we aim to find the collision for h(0) = 0.7 case. Besides this, we also want to

test the particle with zero thickness and the bottom wall shape function without the
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4th order term.

5.4 Further cases
As a reminder from the beginning of the current chapter, we should comment

here that our fluid-body interaction with a flexible wall present involves a multi-

parameter space. Our aim is to address certain particular aspects of that space and

the effects of certain particular parameters. Additionally it is notable that inclu-

sion of the wall equation (6.2) or (6.5) makes the overall system considerably more

difficult to solve and sensitive to the values of the parameters involved.

5.4.1 Runs with initial downwards velocity

Besides the previous runs, we now add a downwards initial velocity to our particle.

The reason is that with such an initial velocity, the collision should happen much

easier than in the previous zero-initial-velocity cases. The present part of the study

is found to reveal several interesting phenomena. Trials were carried out to derive

reasonable initial conditions. and these trials led to much ’detective’ work. Many

details can be omitted but for openness and completeness we show several lead-up

investigations below.

Firstly, we choose c∗1 = 0.5, dt = 0.01, p0 = 2, h(0) = 0.7, h′(0) = −0.5,

θ(0) = −0.1, θ ′(0) = 0 and others are the same values as in section 5.3 to check

whether the collision could happen. The negative value of h′(0) here indicates the

downward initial velocity of the particle. The results are shown in figures 5.14.

(a) Particle position at t=0 (h′(0) =−0.5) (b) Particle position at t=0.01 (h′(0) =−0.5)

Figure 5.14: Particle motion with h′(0) =−0.5

Although it is hard to see any difference in the subfigures but this is considered
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in the text below. Recalling the section 5.3, we found that c∗1 = 0.5 can cause a col-

lision between the particle and the lower side wall, so we continued to use c∗1 = 0.5

in the following experiments (some tests will modify the parameters). At the same

time, based on the previous test, if we set the initial height at 0.7, the particle can

have enough time to move in the channel, and then we can modify the parameters

later to study the particle movement trajectory and the deformation process of the

lower wall in more detail. Since we care more about the relation between the par-

ticle and the lower side wall, we add an initial downward velocity and a negative

angle to the particle. At the same time, in the previous test, we learned that when

the external pressure is equal to 2, the lower wall can be significantly deformed, and

the speed of deformation will not be too fast, which leaves us a certain operating

time of the whole system. At the same time, when we set time-step equals to 0.01,

we get a continuous trajectory. To sum up, we chose c∗1 = 0.5, dt = 0.01, p0 = 2,

h(0) = 0.7, h′(0) =−0.5, θ(0) =−0.1, θ ′(0) = 0 and others are the same values as

in 5.3 as our initial condition. But unfortunately, when we chose these as the initial

variables, the lower side wall was already very close to our particle at the beginning

position. And figure 5.14b shows what the system looks like after a time-step. We

see that the lower side wall has passed through our particle, which is against the

original intention of our research, so we need to modify the parameters and retry

the test.

Next, given the graphs above and previous results, if the particle moves down

slowly enough to give the lower wall enough time to move down, it might keep

the particle moving through the channel longer. Thus, we try to reduce the initial

velocity from h′(0) = −0.5 to h′(0) = −0.3 and the results are shown below in

figure 5.15.
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(a) Particle position at t=0 (h′(0) =−0.3) (b) Particle position at t=0.01 (h′(0) =−0.3)

(c) Particle position at t=0.02 (h′(0) =−0.3)

Figure 5.15: Particle motion with h′(0) =−0.3

In the test with h′(0) = −0.5 as the initial velocity, we found that the particle

had almost no time to move in the tube, which is not consistent with the results we

wanted. We can extend the movement time of the particle in the pipe by modify-

ing the parameters. First, we chose to reduce the initial downward velocity of the

particle and show the results in figure 5.15. We can see from the figure that the

motion time of the particle increases from less than 0.01-unit time in h′(0) =−0.5

test to less than 0.02-unit time in h′(0) =−0.3 test. Prove that we are modifying the

parameters in the right direction. Reducing the initial velocity allows the particle to

travel in the tube for a longer time.

With this encouraging result, we further reduce the value from h′(0) =−0.3 to

h′(0) =−0.1 and the results are shown in figure 5.16.
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(a) Particle position at t=0 (h′(0) =−0.1) (b) Particle position at t=0.1 (h′(0) =−0.1)

(c) Particle position at t=0.33 (h′(0) =−0.1)

Figure 5.16: Particle motion with h′(0) =−0.1

It is not difficult to see that after we modify the initial velocity to h′(0) =−0.1,

our particle has a slow enough initial falling velocity for the lower wall to complete

the ascending and then descending process. During the process we found that the

running time of the particle in the channel is greatly increased, because the particle

has a very close but non-collision trajectory with the lower wall during the move-

ment. This situation can be understood as approaching the boundary condition, if

the initial speed of the particle moving downward is increased, the particle will col-

lide with the lower side wall, resulting in the particle cannot continue to move, and

the test will stop. We can treat this kind of condition as the “optimal solution”. The

minimum gap between the lower wall and the particle during the entire motion is

about 4.25 ∗ 10−3. The above run was stopped after the particle collided with the

upper wall.
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5.4.2 Runs with initial downwards velocity and zero thickness

Previously, we made simulation runs of a single particle with thickness and we

almost obtained an optimal solution for a single particle movement within a part-

flexible channel. In the previous chapter, we have studied a lot of similar models.

Since zero thickness is almost impossible in a real-life problem, therefore we only

do one case for this model. In this case, we use h(0) = 0.7, h′(0) = −0.3,θ(0) =

−0.1, equation (5.19) with e∗1 =−0.001, e∗2 = 0.001, e∗3 =−0.001, c∗1 = 0.5, p0 =

2, dt = 0.01 as our initial conditions. We also choose zero-thickness as our test

objective and show the results in figures 5.17.

(a) Particle position at t=0 (zero-thickness) (b) Particle position at t=0.21 (zero-
thickness)

(c) Particle position at t=0.42 (zero-thickness)

Figure 5.17: Particle motion with h′(0) =−0.3

It is clear from the figures that during the whole process of motion, the zero-

thickness particle remains significantly far away from the lower wall. Because of

this, a clash with the flexible wall is not the limitation for the model. To optimize

this model, we increase the downwards speed from h’(0)=-0.3 to h’(0)=-0.5 and

show the results below. See figure 5.18.
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(a) Particle position at t=0 (h′(0) =−0.5) (b) Particle position at t=0.34 (h′(0) =−0.5)

(c) Particle position at t=0.48 (h′(0) =−0.5)

Figure 5.18: Particle motion with h′(0) =−0.5

The run stops one time step before the collision with the fixed part of the lower

wall in figure 5.18c. As we can see from the graphs, this is not a realistic model.

For, as the particle moves, the lower wall still remains a small gap even at the closest

time in figure 5.18b. Therefore, next we can improve the model by increasing the

initial velocity from h′(0) = −0.5 to h′(0) = −0.55 to find the ”optimal solution”.

The results are shown in figure 5.19.

(a) Particle position at t=0 (h′(0) =−0.55) (b) Particle position at t=0.34 (h′(0) =
−0.55)

Figure 5.19: Particle motion with h′(0) =−0.55

As in the previous cases, this test stops one time step before the collision with



5.5. Accuracy check 119

the lower wall. From the results in the figure 5.19, we notice that lower wall goes

through the particle in figure 5.19b, breaking the original assumptions. Therefore,

we can conclude that when the initial velocity of the particle is between h′(0) =

−0.55 and h′(0) =−0.5, we can obtain an ”optimal solution” of the model in which

the particle almost touches the flexible part of the lower wall without significant

deformation. Some other initial conditions are found to be unrealistic physically in

the sense that they make the particle and the lower wall overlap immediately. We

omit such cases.

In this chapter we tested a number of different cases: a particle with downwards

speed, a particle with zero thickness. We almost have one optimal solution for the

“touch” model – the model uses c∗1 = 0.5, p0 = 2, −0.5< h′(0)<−0.55, θ0 =−0.1

as the initial conditions. Also we will do further researches with this model in the

following sections.

5.5 Accuracy check
The current part and subsequent parts 5.5-5.7 examine further aspects of the param-

eter space of solutions of the fluid-body interactions in a channel. The aim here is to

increase understanding of the interactions and in particular study the phenomenon

of possible spiking of the flexible wall. Spikes, in the sense of near-discontinuities

in the slope of the flexible wall, are suggested by the numerical findings in a number

of the present results. Eventually we would wish to comprehend the nature of such

spikes in analytical terms.

Recall from the core equations for particle movements,

mhtt = cL, (5.20)

where m is the particle mass, h is the height function for the particle, cL represents

the lift force which acts on the particle. We set ht =
V
m and we find Vt = cL. How-

ever, it is impossible to solve the equation (5.20) analytically. Thus in the coding

language, we treat the particle movement as a discrete time movement. We believe,

when the time-step is small enough, the particle movement could simulate the con-
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tinuous motion. Thus in the coding, we are using the relation (5.21) to solve the

equation (5.20).
V (t +δ t)−V (t))

δ t
= cL. (5.21)

But when we use Taylor expansion of V (t +δ t), we should have the Taylor relation

below,

V (t +δ t) =V (t)+δ tV ′(t)+O((δ t)2)+ ... . (5.22)

Thus when we substitute equation (5.22) into equation (5.21), we will have the

relation as (5.23),

V ′(t)+O(δ t) = cL. (5.23)

Actually, the analytical ODE is (to repeat)

V ′(t) = cL. (5.24)

Thus reducing δ t should make (5.21) closer to (5.24). The O(δ t) error is the usual

finite-difference error for an Euler scheme such as ours.

With above analysis, we check the accuracy for this model. We use h(0) = 0.5,

h′(0) = 0, θ(0) = −0.1, with e∗1 = −0.001, e∗2 = 0.001, e∗3 = −0.001, c∗1 = 0.05,

p0 = 2, dt = 0.01 as our test conditions and the results are shown in figure 5.20.
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(a) Particle position at t=0 (dt = 0.01) (b) Particle position at t=0.07 (dt = 0.01)

(c) Particle position at t=0.15 (dt = 0.01)

Figure 5.20: Accuracy check with time step dt = 0.01

For comparison, we keep all the values same as in the last test, except dt =

0.005, and the results are shown in figure 5.21.
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(a) Particle position at t=0 (dt = 0.005) (b) Particle position at t=0.07 (dt = 0.005)

(c) Particle position at t=0.145 (dt = 0.005)

Figure 5.21: Accuracy check with dt = 0.005

From the figures 5.20 and 5.21 (and their data) we can read, the positions of

the particle are almost the same at almost the same times and the shape changes of

the lower wall are almost the same too. Besides the collision between the bottom

wall and particle, we also ran a test about the collision between the particle and the

upper wall. Unlike before, we use h(0) = 0.7, h′(0) = −0.1, θ(0) = −0.1, with

e∗1 = −0.001, e∗2 = 0.001, e∗3 = −0.001, c∗1 = 0.5, p0 = 1.8,dt = 0.01 as our test

conditions. The reason why we use this is that when we use a lower initial height,

the particle collision happens too fast. Thus we increase the initial height a little bit.

We also would like to see more difference, which means we would like our particle

to be moving in the channel for a longer time. With these concerns, we decrease

the external pressure a little and add a small downward speed. With all the above

considered, we run the test and show the results below.
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(a) Particle position at t=0 (dt = 0.01, upper
collision)

(b) Particle position at t=0.16 (dt = 0.01, up-
per collision)

(c) Particle position at t=0.31 (dt = 0.01, upper collision)

Figure 5.22: Accuracy check with dt = 0.01, upper collision

In the serial comparison, we find the final collision point is just 1 time-step

different. Thus, we use a smaller time-step dt = 0.001 to test a more accurate

result. With this time-step, the results are shown below.
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(a) Particle position at t=0 (dt = 0.001, upper
collision)

(b) Particle position at t=0.16 (dt = 0.001,
upper collision)

(c) Particle position at t=0.306 (dt = 0.001, upper collision)

Figure 5.23: Accuracy check with dt = 0.001, upper collision

From the figure 5.23 we notice that with a longer motion, there is more difference.

But compared with the previous test, the collision times are closer between dt =

0.01 and dt = 0.001 cases. From the figure 5.23, we can see that under the more

accurate calculation results, the motion trajectories of the particle and the lower side

wall are roughly the same as in the previous results shown in figure 5.22. Therefore,

we can deduce that the result of our operation is probably accuracy enough.

In this section, we checked the accuracy of applying different time-steps in

two collision models. Both of them tell us that our calculations are fairly accurate.

As a consequence, in the rest of the research, if more accuracy is not required, we

may reasonably use dt = 0.01 to reduce the time taken by the program. In the next

section, we will focus on the system of bottom wall shape equation without its 4th

derivative term.
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5.6 Bottom wall shape function without 4-th order

cases

5.6.1 Background

Recalling from the equation (5.2), because in our model, the typical length factor L∗

is large enough, thus, we can have the result that the parameter e1 is much smaller

than e2 and e3. Therefore, we derive the governing equations for our model as

below,

e∗2 fxx + e∗3 f = c∗1(p∗1 − p∗0). (5.25)

In this model we still assume the blip shape is y = f (x, t) and the non-dimensional

constant coefficients e∗2 =
T ∗

t
U∗2L∗ρ∗ , e∗3 = −κ∗L∗

U∗2ρ∗ , with U∗, L∗, ρ∗, M∗, C∗, B∗, κ∗,

T ∗
t , p∗1, p∗2 being the fluid velocity, the typical length factor, the uniform density

of the incompressible fluid, the mass, the damping constant, the spring stiffness,

longitudinal tension, internal lower pressure, external pressure respectively.

5.6.2 Test results for bottom wall shape function without 4-th

order cases

We start the test with h(0) = 0.7, h′(0) = −0.1, e∗1 = 0, e∗2 = 0.1, e∗3 = −0.1, c∗1 =

0.5, p0 = 2 and the results are shown below,
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Figure 5.24: Initial test

From the figure 5.24, we notice that from the beginning, the bottom wall start-

ing with a strange shape and cross the particle. Thus, we need to change the condi-

tions to test the results. We increase the value e∗2 and decrease the value e∗3 and we

got the results as below,
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(a) Particle position at t=0 (e∗2 = 0.2,e∗3 =
−0.2)

(b) Particle position at t=0.15 (e∗2 = 0.2,e∗3 =
−0.2)

(c) Particle position at t=0.32 (e∗2 = 0.2,e∗3 =−0.2)

Figure 5.25: Particle motion with e∗2 = 0.2,e∗3 =−0.2

From figure 5.25, with above mentioned initial conditions, there are still a lot

of space between the particle and the bottom flexible wall. Thus, we still need to

increase the downwards speed or change other conditions. With this consideration,

we keep the same initial conditions, except changing the parameters e∗2 from 0.2 to

0.3 and e∗3 from -0.2 to -0.3 and show the result as below,
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(a) Particle position at t=0 (e∗2 = 0.3,e∗3 =
−0.3)

(b) Particle position at t=0.14 (e∗2 = 0.3,e∗3 =
−0.3)

(c) Particle position at t=0.28 (e∗2 = 0.3,e∗3 =−0.3)

Figure 5.26: Particle motion with e∗2 = 0.3,e∗3 =−0.3

With h(0) = 0.7, h′(0) = −0.1, e∗2 = 0.3, e∗3 = −0.3, c∗1 = 0.5, p0 = 2 initial

conditions, the blip of the bottom wall is much lower than the second case. Also,

the collision between the particle and the top wall happens sooner than the previous

case.

From the results we can deduce that when we increase the values of e∗2 and

decrease e∗3, the height of the spike of the bottom wall will also decrease. Thus, if

we want the collision happens between the particle and the bottom flexible wall, we

should find a e∗2 between 0.1 to 0.2 and e∗3 between -0.1 to -0.2 and keep all the other

conditions same.

Besides the above possible way, there is another method to make the collision

happen—increasing initial downwards speed. With this assumption and above anal-

ysis, we increase the initial downwards speed from h′(0) = −0.1 to h′(0) = −0.3

and we start with h(0) = 0.7, h′(0) = −0.5, c∗1 = 0.5, p0 = 2 as our initial condi-

tions. We also notice that smaller values of e∗2 and e∗3 can make the spike of the
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bottom wall higher which means the collision might happen between the bottom

wall and the particle before the test begins. With this result, we slightly increase the

values of e∗2 and e∗3 and the typical results are shown below.

(a) Particle position at t=0 (e∗2 = 0.19,e∗3 =
−0.19)

(b) Particle position at t=0.03
(e∗2 = 0.19,e∗3 =−0.19)

(c) Particle position at t=0 (e∗2 = 0.2,e∗3 =
−0.2)

(d) Particle position at t=0.15 (e∗2 = 0.2,e∗3 =
−0.2)

Figure 5.27: Particle motion with different e∗2 and e∗3 =−0.3

In all the above cases we find that collisions happen. But when we keep in-

creasing e∗2 to 0.21 and decreasing e∗3 to -0.21, figure 5.28 tells the results.
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(a) Particle position at t=0 (e∗2 = 0.21,e∗3 =
−0.21)

(b) Particle position at t=0.21
(e∗2 = 0.21,e∗3 =−0.21)

(c) Particle position at t=0.42 (e∗2 = 0.21,e∗3 =−0.21)

Figure 5.28: Particle motion with e∗2 = 0.21,e∗3 =−0.21

From the results we notice that there is no collision. Thus, with h(0) = 0.7,

h′(0) =−0.5, c∗1 = 0.5, p0 = 2 the interval value of 0.18 < e∗2 < 0.21 and −0.21 <

e∗3 <−0.18 enables the collision to occur.

In this section, we test some cases about bottom wall shape without 4th or-

der term. During the test, we find increasing e∗2 and decreasing e∗3 will reduce the

deformation of the wall. Therefore, this can reduce the collision possibility of the

particle with the wall. As a consequence, the particle can move in the channel for a

longer time. Besides this, we also find a possible ”optimal solution” for this kind of

case. In the next section, we would like to do the research about negative external

pressure’s influence to our model.
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5.7 Negative external pressure

5.7.1 Background

In the previous sections, we conducted many groups of experiments and drew cer-

tain conclusions. But these conclusions and these experiments are all for positive

external pressure. Therefore, in this chapter, we changed the external pressure to be

negative. The specific experimental procedure will be shown below.

We use the same formula, but we change external pressure p0 = 2 to p0 =

−2. Because in previous tests we found that when external pressure p0 = 2, the

lower wall will undergo obvious deformation, and the motion trajectory of the whole

particle will also change accordingly. Thus, in this test, we set the initial conditions

as h(0) = 0.7, h′(0) = −0.1, e∗1 = −0.001, e∗2 = 0.001, e∗3 = −0.001, c∗1 = 0.3,

p0 =−2. The result is shown below,

(a) Particle position at t=0 (h′(0) =
−0.1,c∗1 = 0.3)

(b) Particle position at t=0.14 (h′(0) =
−0.1,c∗1 = 0.3)

(c) Particle position at t=0.27 (h′(0) =−0.1,c∗1 = 0.3)

Figure 5.29: Particle motion with h′(0) =−0.1,c∗1 = 0.3

In above case we don’t see any collisions between the particle and the bottom

flexible wall. Due to the particle length is much more greater than the channel width,
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no matter what initial conditions we choose, there will be no collision between the

bottom flexible part and particle. But the collision does exist between the bottom

wall and particle. For instance, as we increase the initial downward velocity. We

use different initial downwards velocity h′(0) =−0.3, h′(0) =−0.5, h′(0) =−0.9

as our initial condition and the results are shown in figure 5.30

(a) Particle position at t=0.3 (h′(0) =−0.3) (b) Particle position at t=0.33 (h′(0) =−0.5)

(c) Particle position at t=0.36 (h′(0) =−0.9)

Figure 5.30: Particle motion with different initial downwards velocity

All these results in figure 5.30 represent one time step before collision. It’s

not hard to read from the figure 5.30 that the particle position at the collision time

is moving downwards. At the same time, with a larger downwards velocity, the

particle will move longer in the channel. From the results we conclude that for

the particle with downwards velocity less than 0.5, the particle will collide with

the top wall. If downwards velocity greater than 0.9, the particle will collide with

the bottom wall. Besides, with a faster downward speed, the collision will happen

sooner. Also from the figure, we can read that there might be a longest motion be-

tween h′(0) =−0.5 and h′(0) =−0.9 case. For example, when we choose a special

downwards velocity, the particle will ”touch” the bottom wall but not collide. Then
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the particle moves back to collide with the top wall. Maybe the particle will have

some oscillation or a quite stable case to moving in the channel forever.

5.8 Conclusion
In previous chapters, we considered fixed channel shapes. In this chapter, we ex-

tended the research from the previous studies to address a model in which one chan-

nel wall is partly flexible. Firstly, we found a ”suitable” external pressure to make

the deformation more clear. Here the ”suitable” means the bottom wall flexible part

has a noticeable deformation and it provides a large enough space (the gap between

the bottom wall and upper wall) for the particle to move freely. With such a kind

of ”suitable” external pressure, we ran tests to find out the influence of the internal

pressure, external pressure and particle initial height. Then we added some initial

downwards velocity to our particle and we also tested the zero-thickness case. For

the next step, we did some tests about the bottom wall shape equation without its

4th order derivative. The reason why we did that is because when the typical length

factor is large enough, which is similar to our previous assumptions, the parameter

e∗1 may be small. Thus we have a new shape function as (5.25). With equation

(5.25), we examined the influence of the parameters e∗2 and e∗3. The influence of e∗2

and e∗3 is suitable for large longitudinal tension and spring stiffness respectively. We

also gave an example of finding a possible ”near-optimal solution” in section 5.6.

Prior to section 5.6, we studied the effects of positive external pressure, but next we

focused on the negative external pressure cases. Here we found it is impossible to

make the collision happen between the bottom flexible part and particle. But it is

possible to have the collision between the particle and the bottom wall. In addition

to these tests, there could be also some other interesting cases; for example, setting

the whole bottom wall to be flexible or both of the top and the bottom walls being

flexible could be a challenge topic. Finally here, the typical local behaviour during

the onset of collision between the particle and the flexible wall when the external

pressure is positive has still to be analyzed in detail.



Chapter 6

Particle in channel flow at low

Reynolds numbers

6.1 Background creation

In the beginning of the thesis, we described research concerned with the motion of

a particle in the high Reynolds number regime. This initial investigation focused on

examining the behavior of the particle within the framework of the Euler equations

of motion, which describe the dynamics of an ideal, inviscid fluid. The analysis

was applied to reduced systems where the assumption of a separation-free, inviscid

flow was adopted, simplifying the complex interactions between the particle and the

fluid. These assumptions enabled a clearer understanding of the motion under high

Reynolds number conditions, where inertial forces dominate and viscous effects are

negligible.

By contrast, in this chapter, we shift our focus to a different flow regime, specif-

ically considering a body moving in a channel flow at low Reynolds number. The

transition to low Reynolds number flows introduces a new set of challenges, as the

dynamics are now governed predominantly by viscous forces rather than inertial

forces. This regime is characterized by slow, steady flows, where the influence

of viscosity becomes more pronounced and cannot be neglected, unlike the high

Reynolds number case. In this context, the flow is typically laminar, and the motion

of the body must be analyzed under the influence of viscous drag and the associated
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resistance to movement.

This shift in focus allows for a more detailed exploration of the phenomena

occurring at low Reynolds numbers, where the traditional assumptions of an invis-

cid fluid no longer hold. Instead, we must now consider the full effects of viscosity

and explore how these forces influence the motion of the body within the confined

geometry of a channel. This chapter aims to build on the insights gained from the

high Reynolds number analysis and apply them to the distinct physical phenomena

encountered in the low Reynolds number regime.

6.2 Model analysis (lubrication regime)
In this chapter, we continue to consider a particle with some thickness. However, for

convenience, we begin by analyzing and testing the properties of the model using a

zero-thickness particle. The aim here is to determine the lift and moment of inertia

on the particle due to lubrication forces and then analyze the fluid-body interaction

in full. (Later on, numerical study rather than analysis will be needed for less simple

particle shapes.)

Now we assume that the gap widths are of the form Hn = An +Bnx, with con-

stants satisfying

A2 = 1−A1 and B2 =−B1. (6.1)

The graph of the setup is shown in figure 6.1.

We consider the flow past a thin freely-moving body in a channel. This model

has notation (p1,H1, p2,H2,h(t),θ(t)) similar to that studied in the previous chapter

2, but now the Reynolds number is small and the scaled pressures p0, p3 at the

leading and trailing edge (x = 0,1) respectively are prescribed constants with p0 >

p3. Typically we can take p0 = 1, p3 = 0.

The gap widths are written as

H1 = F−(x)+h(t)+(x−C)θ(t), (6.2)

H2 = 1− [F+(x)+h(t)+(x−C)θ(t)] (6.3)
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Figure 6.1: Model setup. Total channel width is 1. The pressure at x = 0 is p0 and the
pressure at x = 1 is p∞. The distance between the upper wall and the particle is
H2(x, t). The distance between the bottom wall and the particle is H1(x, t).

with the usual notation.

Recalling from the incompressible Navier–Stokes equation we have,

ρ(ut +uux + vuy) =−px +µ(uxx +uyy) (6.4)

Since we assume the whole process happens in steady flow, thus we ignore the ut

term on the left hand side of equation (6.4). Thus the typical magnitudes of left

hand side of equation (6.4) is ρ
U0

2

L while the viscous terms scales as µ
U0

2

h2 .

In lubrication theory, we assume the inertia terms are negligible, thus we have

the relation below,

ρ
U0

2

L
≪ µ

U0
2

h2 ⇒ Re(
h
L
)2 ≪ 1 where Re =

ρU0L
µ

and h ≪ L (6.5)

Then we keep the dominate terms in 2D lubrication theory

Px = µuyy,Py = 0. (6.6)

For convenience, we use P to represent the pressures to deduce the Reynolds lubri-
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cation equation.

Thus, solving (6.6) we can have,

P = P(x, t),u =
Px

2µ
(y2 +Ay+B), (6.7)

where A,B are constants. Then we impose the boundary conditions u = 0 at y = 0,

u = (U0,V0) at y = h in (6.7) we have,

u =
Px

2µ
(y2 −hy)+

U0

h
y (6.8)

Then we impose the continuity of mass, by integrating ∇ · u = 0 across the

layer we have,

∂

∂x

∫ h(x,t)

0
u(x.y.t)dy =

∫ h(x,t)

0

∂u
∂x

dy+u(x,y,h, t)
∂h
∂x

=
∫ h(x,t)

0
uxdy+U0hx (6.9)

Then we use the incompressibility condition,

ux + vy = 0 ⇒ vy =−ux. (6.10)

Thus we have,

V0 =
∫ h(x,t)

0
vydy =−

∫ h(x,t)

0
uxdy. (6.11)

After substituting (6.8) into (6.11) and solving it, we have,

1
12µ

∂ (h3Px)

∂x
=V0 −

1
2

U0hx. (6.12)

Because the channel walls are stationary, thus we can assume the U0 =V0 = 0. As

a consequence, we have
∂ (h3Px)

∂x
= 0 (6.13)

After replacing h by Hn and P by pn in (6.13), the result leads to Reynolds
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lubrication equation in the form

∂ (Hn
3 pnx)

∂x
= 0 (6.14)

for n = 1,2 in the lower gap and upper gap respectively. So

pnx =
cn

Hn
3 (6.15)

where the unknown constant cn represents the mass flux to be determined in each

gap. Hence we have

pn = p0 + cn

∫ x

0
Hn

−3dx, (6.16)

for 0< x< 1 and n for 1 and 2 represent lower and upper gap respectively. Applying

the condition pn = p3 at the trailing edge then gives us

p3 = p0 + cn

∫ 1

0
Hn

−3dx, (6.17)

We can use (6.17) to determine c1 and c2 in numerical steps. One thing that needs

to be noticed is that when the particle is close to the channel walls, the gap width

Hn decreases accordingly. However, in equation (6.17), P3 and P0 are constants,

meaning that if the particle is close to the channel walls, the constants c1 and c2 will

also decrease. Thus, from equation (6.15), the pressure in each gap also decreases,

which makes the collision possible.

With the analysis above for the pressure contributions in the gaps we have,

pn − p0 = cn

∫ x

0

1
(An +Bnx)3 dx, (6.18)

where pn(n = 1,2) represents the different pressures at each position from 0 to 1

and the unknown constant cn represents the mass flux to be determined in each gap.

Then we evaluate the right-hand-side of the above equation and rewrite the
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equation as below,

pn − p0 = cn[
(An +Bnx)−2

−2Bn
− (An)

−2

−2Bn
]. (6.19)

Then we can use the values at x = 1 to obtain the value for cn. The detailed step is

as follows,

P = p3 − p0 = cn[
(An +Bn)

−2

−2Bn
− (An)

−2

−2Bn
]. (6.20)

Hence for the lift force term,

cL =
∫ 1

0
(P1 −P2)dx. (6.21)

Noting P1 = p1 − p0, P2 = p2 − p0, using P1 − P2 = (p1 − p0)− (p2 − p0) and

substituting into equation (6.21), then we can find the result as below,

cL = c1
−2B1

[ (A1+B1)
−1−(A1)

−1

−B1
− (A1)

−2]− c2
−2B2

[ (A2+B2)
−1−(A2)

−1

−B2
− (A2)

−2]. (6.22)

Similarly, for the moment equation’s right-hand side,

cM =
∫ 1

0
(x−C)(P1 −P2)dx, (6.23)

we derive

cM =−CcL +
∫ 1

0
x(P1 −P2)dx. (6.24)

Putting ∫ 1

0
x(P1 −P2)dx =

∫ 1

0
x(p1 − p0)dx−

∫ 1

0
x(p2 − p0)dx, (6.25)

we set

I1 =
∫ 1

0
x(p1 − p0)dx, I2 =

∫ 1

0
x(p2 − p0)dx. (6.26)

After some algebraic steps we obtain the relations below,
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−2B1

c1
I1 =

1
(B1)2 ln(

A1 +B1

A1
)+

A1

(B1)2 [(A1 +B1)
−1 − (A1)

−1]− 1
2
(A1)

−2. (6.27)

With the steps above, we find

cM =−CcL −
c1

2B1
[

1
(B1)2 ln

A1 +B1

A1
+

A1

(B1)2 [(A1 +B1)
−1 − (A1)

−1]− 1
2
(A1)

−2]

+
c2

2B2
[

1
(B2)2 ln

A2 +B2

A2
+

A2

(B2)2 [(A2 +B2)
−1 − (A2)

−1]− 1
2
(A2)

−2].

(6.28)

From the above analysis, our body motion equations can be rewritten as fol-

lows,

Mhtt = cL, (6.29)

Iθtt = cM. (6.30)

Also, the relation between A1,B1,h,θ is

A1 = E +h−Cθ , B1 = θ , (6.31)

where E represents the particle’s initial height, which has the same meaning as h(0).

Since sometimes we need some mathematical analysis, we split it from the height

h.

With these relations we can use equation (6.31) to obtain the value for A1,B1

and use equation (6.1) to obtain the values for A2,B2. From equation (6.17) and

(6.20) we then derive the value for c1 and c2. Then from equation (6.22) and (6.28),

we can obtain the values for cL and cM. With these values of cL and cM, we may

update h and θ from equation (6.29) and (6.30) for the next time step, in numerical

terms.
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6.2.1 Stability test

To examine the basic stability issue for the initially symmetric case of E = 0.5,

where E has the same influence as α in the previous chapter for particle initial

height, we substitute

A1 = 0.5+ εxeαt + ..., B1 = εyeαt + ..., (6.32)

where the constant ε ≪ 1 and the constant α needs to be found. The reason we

do this is that, firstly, with the above assumptions, (A1, B1) = (0.5,0) corresponds

to an exact solution of the system. Secondly, x, y are distinct from the original

coordinates.Thirdly, in the system, we are considering the general case where the

perturbations of A1, B1 significantly affect each other; this is why both of the per-

turbations are of order ε and proportional to eαt . The time-dependence eαt applies

because there is no explicit t in the governing equations(6.29, 6.30). Thus with

(6.22), (6.29) and (6.31) we obtain

h =−E +(A1 +CB1), (6.33)

εMα
2(x+Cy) = c1R1 − c2R2. (6.34)

where

R1 =
1

2B1
[
(A1 +B1)

−1 − (A1)
−1

B1
+A−2

1 ], (6.35)

defined from equation (6.22). Similarly, we define the expression for R2

R2 =
1

2B2
[
(A2 +B2)

−1 − (A2)
−1

B2
+(A2)

−2], (6.36)

By taking the leading order from the Taylor expansion and substituting equa-

tion (6.32) to the equation (6.35), we can get

−2εyR1 =
(1

2 + εx+ εy)−1 − (1
2 + εx)−1

εy
+(

1
2
+ εx)−2. (6.37)

Previously, from equation (6.20) and (6.32), we had the leading orders as be-
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low,

−2εyP = c1[(
1
2
+ εx+ εy)−2 − (

1
2
+ εx)−2] (6.38)

Hence, by using the Taylor expansion and taking first 2 terms,

−2εyP = 4c1[(1−4ε(x+ y))− (1−4εx)]. (6.39)

So

c1 =
P
8
. (6.40)

This is the lubrication result for an aligned flat plate. Similarly, c2 =
P
8 to the

leading order. Higher order contributions are also important here. We find that we

need to use higher order terms, as shown below.

Expanding (6.37) by Taylor series and taking the first 3 terms, we find

2εyR1 =
2(1−2ε(x+ y)+4ε2(x+ y)2 −8ε3(x+ y)3)−2(1−2εx+4ε2x2 −8ε3x3)

εy

+4(1−4εx+12ε
2x2).

(6.41)

After some numerical steps, we can reach to the result below,

2εyR1 = 8εy−16ε
2(3xy+ y2). (6.42)

Thus, we have R1 = 4−8ε(3x+ y). Similarly, we obtain R2 = 4+8ε(3x+ y).

Then, we used the Taylor expansion and took the first 3 terms for equation

(6.38) to find the values for c1 and c2,

−2εyP = c1[(
1
2
+ εx+ εy)−2 − (

1
2
+ εx)−2]

= 4c1[−4εy+12ε
2(2xy+ y2)]

(6.43)

Then we got c1 =P/(8−24ε(2x+y)). Similarly, we got c2 =P/(8+24ε(2x+
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y)). Then we substituted all these values in equation (6.34) we can have

εMα
2(x+Cy) = c1R1 − c2R2

=
P(4−8ε(3x+ y))
8−24ε(2x+ y)

− P(4+8ε(3x+ y))
8+24ε(2x+ y)

= P
εy

1−9ε2(2x+ y)2 .

(6.44)

Because ε is small enough, thus we can rewrite the result as

Mα
2(x+Cy) = Py. (6.45)

We did the similar calculation to equation (6.30), then we can have

Iα
2y =

1
2

P(1−2C)y. (6.46)

From equation (6.46), we can solve the eigenvalue α by

α
2 =

P(1−2C)

2I
(6.47)

This implies that for such a particle, when its center of mass C < 1/2, the

equation has only imaginary solution. This will lead to a stable oscillation in our

model. When C = 1/2, we have neutrality. For C > 1/2, α has a real positive root

which implies that the interaction is unstable and a collision may happen readily

between the particle and the channel.

To test this, we use zero thickness, center of mass position at 0.1, mass equal to

2, moment of inertia equal to 0.4, p0 = 10, p3 = 0, dx = 0.001, dt = 0.01, total time

equal to 10, initial angle equal to 0.01, initial angular acceleration equal to 0, initial

height equal to 0.5, initial velocity equal to zero as the initial conditions. With the

above initial conditions, we find,from numerical solution of the system described at

the end of section 6.2, the θ graph as in figure 6.2,
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Figure 6.2: θ function up to time t = 10.

From the figure 6.2, we can read that the period is around 2. From the numeri-

cal data we find that the period is 1.98-1.99 closer to 1.99. At the same time, we can

use the above analysis to get α =
√

10 under these initial conditions. Thus, from

the analysis, we can predict that the period is about 1.987. These two values for the

period match each other quite well. In the following, we use the code to test the rest

of conditions.

6.3 Flat plate analysis

6.3.1 Trailing edge analysis

In the previous section, we demonstrated the accuracy of our method. In this chap-

ter, we will examine computationally the variation of the particle’s trajectory under

different initial conditions. First of all, we continue with the no thickness case. We

use zero thickness, center mass position at 0.5, mass equal to 2, inertia equal to

0.01, p0 = 1, p3 = 0,dx = 0.001,dt = 0.01, total time equal to 1, initial angle equal

to -0.5, initial angular acceleration equal to -0.5, initial height equal to 0.5, initial
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velocity equal to -0.5 as the initial conditions.

Figure 6.3: Test 1: Whole motion for zero-thickness case with [θ ,θ ′,h,h′]=[-0.5,-0.5,0.5,-
0.5].

We show figure 6.3 first. It is not difficult to see from the figure that the pro-

gression of the particle is to first move downward, and rotate counterclockwise when

the tail end approaches the bottom wall, but it does not quite collide with the bottom

wall. Later, the front end of the particle eventually collides with the bottom wall.

As far as the particle’s trajectory is concerned, there arises the question of whether

the trailing edge of our particle can ever collide with the lower wall,

We next modify the initial conditions so that the particle ends move closer to

the lower wall without colliding with it. Thus, we use initial velocity equal to -0.6

as our new initial condition, and keep all the other conditions the same as in the last

case. We obtain the results shown in figure 6.4.

It is notable that the interesting range of movements of the particle here and

in other cases studied in the present section is largely due to the pressure forces

acting on the particle. The gap pressures will be considered in detail in subsequent

sections of this chapter. For the present case, it is not difficult to see from figure

6.4 that at around t=0.43, the distance between the end of the particle and the lower
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Figure 6.4: Test 2: Whole motion for zero-thickness case with [θ ,θ ′,h,h′]=[-0.5,-0.5,0.5,-
0.6].

wall is very small, and there is almost a collision. The following table shows the

numerical data of our particle trailing end between time t=0.39 and time t=0.49. It

is observed from the table that t=0.43 is the position where the particle end is closest

to the wall, but the distance between them is still greater than zero. Therefore, again

our particle is not quite colliding with the lower wall.

From the results of the previous two tests, we found that when the initial veloc-

ity of the particle was increased, the distance between the trailing end of the particle

and the lower wall became smaller and smaller, but the test results of these two tests

indicated that the end of the particle would not collide with the wall. We want to

know if the end of the particle can ever actually collide with the lower wall, so we

continue to increase the initial downward velocity of the particle from -0.6 to -1.

The results are shown in figure 6.6.
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Figure 6.5: Trailing edge height (distance from the lower wall) at time t=0.39 to t=0.49 for
the case shown in 6.4.

Figure 6.6: Test 3: Whole motion for zero-thickness case with [θ ,θ ′,h,h′]=[-0.5,-0.5,0.5,-
1].

From figure 6.6, we see that when we increase the initial downward velocity of

the particle to -1, the particle collides with the lower wall at t=0.22. This test tends

to indicate that if the initial velocity of the particle is large enough in the downward

direction, the trailing end of the particle can indeed collide with the lower wall.
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6.3.2 Leading edge analysis

In the previous analysis, we obtained some results about the trajectory of the par-

ticle’s rear end motion. In this section, we look at the trajectory of the particle’s

front end. For this examination we still use zero thickness, center mass position at

0.5, mass equals to 2, inertia equal to 0.4, p0 = 1, p3 = 0,dx = 0.001,dt = 0.01,

total time equal to 3, initial angle equal to -0.3, initial angular acceleration equal to

0.2, initial height equal to 0.5, initial velocity equal to -0.2 as the initial conditions.

The reason why we increase the inertia is because we want to examine whether the

whole process can last longer. Results are shown in the figure 6.7.

Figure 6.7: Test 4: Whole motion for zero-thickness case with [θ ,θ ′,h,h′]=[-0.3,0.2,0.5,-
0.2].

In figure 6.7, we see that according to the initial conditions we mentioned

earlier, the front end of the particle can collide with the lower wall. However, unlike

in the previous tail-end collision, with a larger inertia and other initial conditions the

front-end collision takes much longer, almost 13 times longer. In addition, we are

also interested in whether the particle can collide with the upper wall, and how long

that may take. Therefore, we set new initial conditions in which the initial angular

acceleration equals -0.3 and the other conditions keep the same values as previously.

The results are shown in figure 6.8.
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Figure 6.8: Test 5: Whole motion for zero-thickness case with [θ ,θ ′,h,h′]=[-0.3,-0.3,0.5,-
0.2].

From figure 6.8, we can conclude that the collision time between the front end

of the particle and the upper wall is shorter than that between the front end of the

particle and the lower wall. One possible explanation is due to the fact that under the

initial conditions we set, the acceleration of the particle moving clockwise is greater

than in the previous counterclockwise case. Thus, the resulting particle collides with

the upper wall more quickly. To test this conjecture, we modify the initial conditions

with an initial angular acceleration equal to -0.2 and give it a smaller initial angle

θ(0) =−0.2, giving the result shown in figure 6.9.
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Figure 6.9: Test 6: Whole motion for zero-thickness case with [θ ,θ ′,h,h′]=[-0.2,-0.3,0.5,-
0.2].

It can be seen from the diagram 6.9 that the collision time between the front

end of the particle and the upper side wall is still shorter than before. This seems

due to the influence of the initial angle of the particle.

In the next test, we choose a larger p0 value. In Poiseuille flows [79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91], the value of ux increases when we increase

p0. As ux increases, particle trajectories become more pronounced. Therefore, in

the next test, we use a larger p0 to more clearly observe the changes in the particle

trajectory. The following figure 6.10 shows the same tests as in figure 6.9 except for

the p0 increase from 1 to 10.
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Figure 6.10: Test 7: Particle motion for zero-thickness case with [θ ,θ ′,h,h′]=[-0.2,-
0.3,0.5,-0.2].

In figure 6.10, we see that the collision time of the particle is much shorter.

This also means that in the same amount of time, the particle’s trajectory is more

pronounced of course. Since zero-thickness particles are almost impossible to exist

in real life, we turn next to nonzero thickness cases.

6.4 Particle motion with thickness
In the previous section, we studied the motion trajectory of a zero-thickness particle

and obtained the different motion responses of the particle under different initial

conditions. Also at the end of the last section, we chose a larger p0 value in order

to make the trajectory of the particle clearer. In this section, we add thickness to the

particle in order to better simulate the possible trajectory of particles in reality.

Based on the above ideas, we set the initial condition as a = 0.3,b =

2,C = 0.1,M = 2, I = 0.4, p0 = 10, p3 = 0,dx = 0.001,dt = 0.01, tmax = 6,θ(0) =

0.1,θ ′(0) = 0.3,h(0) = 0,h′(0) = 0.5. This time we use f+ = a+x
1
2 (1−x)

1
2 ∗b as

the upper body shape and f− = a as the lower body shape. Then we perform the

computation and we find the following results.
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Figure 6.11: Test 8: Particle motion for particle with thickness case with
[θ ,θ ′,h,h′]=[0.1,0.3,0.3,0.5].

Figure 6.11 indicates the shape of the particle with the upper half being a

parabola and the lower side being flat. The initial conditions that we set lead to the

particle moving upwards. Previously, in the motion of the particle without thick-

ness, only the front and back ends of the particle collide with the upper (or lower)

channel walls, whereas in this case the middle-curved part of the particle is found

to collide with the upper wall.

Figure 6.12 shows the height variation of the front and back ends of the particle.
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Figure 6.12: Leading edge and trailing edge height for test 8.

The red curve in figure 6.12 represents the trajectory of the trailing edge of

the particle, and the blue curve represents the trajectory of the leading edge of the

particle. According to these two curves and the motion process of the particle shown

in figure 6.11, we can deduce that the particle only moves upward in one direction,

and the top edge collides with the upper channel wall.

Besides these, the figure 6.13 shows the pressures at different times, i.e. the

upper and lower pressures acting on the particle. ’LP’ stands for lower pressure and

’UP’ stands for upper pressure. The number in the logo represents its corresponding

time step. For example, ’LP0’ represents the lower pressure at time t=0, ’UP0’

represents the upper pressure at time t=0, ’LP0.31’ means the lower pressure at

time t=0.31, etc.
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Figure 6.13: Upper and lower pressure for test 8.

From figure 6.13, we can see that the pressure on the lower side of the parti-

cle does not change significantly, but the pressure on the upper side of the particle

changes much more significantly. This is because the distance between the particle

and the upper wall at the collision point becomes very small, which leads to a de-

crease in the amount of fluid flow, but also causes the pressure on the upper side of

the particle to plummet after passing through the neighbourhood of the imminent

collision point.

At the same time, in the related paper ”Free motion of a slender particle in

lubricating channel flow”, by Liu, Jepson and Smith (2024), several other situations

are shown, for example, where the front end or the back end of the particle collides

with the lower channel wall.

In addition to the half-parabolic and zero-thickness particle models described

above, we have run other simulations, such as an elliptic particle simulation. This

time we still use f+ = a+ x
1
2 (1− x)

1
2 ∗ b as the upper body shape function and

f− = a− x
1
2 (1− x)

1
2 ∗ b as the lower body shape function. This is presented in

figure 6.14.We use a = 0,b = 0.3,C = 0.5,M = 2, I = 0.4, p0 = 10, p3 = 0,dx =

0.001,dt = 0.01, tmax = 1,θ(0) = −0.5,θ ′(0) = 0.4,h(0) = 0.5,h′(0) = −0.4 as

the initial conditions.
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Figure 6.14: Test 9: middle curve of the elliptical particle collides with the top wall.

The figure 6.14 represents the trajectory of the elliptical particle under the

above initial conditions. The particle initially moves down, but does not collide

with the underlying wall. The particle then moves up, and eventually the curved

upper edge of the particle collides with the upper wall. This is different from the

previous case with the individual upward motion, and the following figure shows the

height of the leading and trailing edges of the particle. Different from the previous

case, the height variation curve of the leading and trailing edges of the particles is

more obvious in this figure. This is also in line with the conclusion that we obtained

from figure 6.14 that the particle first moves down and then moves up.
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Figure 6.15: Leading edge and trailing edge height for test 9.

Same as in the previous figures, the figure 6.16 also shows the change of the

upper and lower pressures of the particle at different times.

Figure 6.16: Upper and lower pressure for test 9.

Unlike before, this time the particle’s top edge collision point is near x = 0.3.

So we can see in figure 6.16 that the particle’s upper pressure first suddenly drops

around x = 0.3.
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So far, the present tests have all ended with particles hitting the upper wall. We

are curious about how the particle can collide with the bottom wall. Thus, we mod-

ify the initial condition with b = 0.3,C = 0.5,M = 2, I = 0.4, p0 = 10, p3 = 0,dx =

0.001,dt = 0.01, tmax = 3,θ(0) = −0.5,θ ′(0) = 0.7,h(0) = 0.5,h′(0) = −1.3 and

the results are shown in figure 6.17.

Figure 6.17: Test 10: middle curve of the elliptical particle collides with the bottom wall.

It is easy to see from the figure that in this test, the curved part of the lower

edge of the particle collides with the lower wall successfully. In this test, we set a

relatively large downward initial speed. Because at the small initial velocity previ-

ously set, the particle will approach the lower wall but eventually collide with the

upper wall. This also means that if we set the initial velocity to a certain ”right”

value, our particle will ’touch’ the lower wall but not collide.

Also, in figure 6.18 we show the height variation of leading and trailing edges.
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Figure 6.18: Leading edge and trailing edge height for test 10.

From figure 6.18, we can conclude that with such a large initial downward

velocity, the particle will collide with the lower wall before it has time to move

upward. However, the particle has a tendency to move upward during the whole

process of motion. This conclusion can be drawn from the slope change of the

curve in figure 6.18, and the falling speed of the particle is reduced.

The following figure 6.19 shows the pressure changes.Different from the pre-

vious results, the collision occurs on the lower edge of the particle, and the position

is near the middle and back of the lower edge of the particle, around the position of

0.8.
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Figure 6.19: Upper and lower pressure for test 10.

Besides these, we also find a possible test result for the close but non-colliding

model mentioned earlier. The initial conditions are as follows b = 0.3,C = 0.5,M =

2, I = 0.4, p0 = 10, p3 = 0,dx = 0.001,dt = 0.01, tmax = 3,θ(0) = −0.5,θ ′(0) =

0.5,h(0) = 0.5,h′(0) =−1.2. See figure 6.20.

Figure 6.20: Test 11: middle curve of the elliptical particle collides with the bottom wall.

The figure 6.20 shows a situation where the particle is very close to the wall

below, but does not collide with it. The smallest distance between the lower body
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shape and bottom wall is about 0.009 and this happens around time t=0.5. If we

keep modifying the initial conditions, we can obtain a case where the particle is

infinitely close to the wall below but does not collide with it. This is not the same as

a bouncing model. Although the motion trajectories are similar or identical, there

are no collisions under this model, just infinitely close. In the bouncing model, if

there is an elastic collision, the particles will have an inverted initial velocity after

the collision.

In this section, we have added thickness to our particles. Half-parabola and

elliptical shaped particles and their trajectories are also tested. From the numerical

test results, we conclude that particle can collide not only at the front and back ends,

but also at the curved parts of the particles. In addition to collision, being infinitely

close to the wall without collision is also a possible motion trajectory. In addition

to moving infinitely close to the wall without colliding, we can consider other ways

to increase the time that particles spend in the channel. Oscillation of the particle is

one possible solution. In the next section, we will carry out further analysis on the

oscillation of particle.

6.5 Particle oscillation
In the previous section, we discussed the motion states of a particle with differ-

ent shapes. It is also verified that almost all parts of the particle can collide with

the channel under the present low Reynolds number model. In this section, we

focus more on the effect of the particle’s center of mass on the particle’s motion.

In the second section above, we analyzed the influence of the center of mass on

the particle motion. See also equation (6.47). Thus in this section, we start with

C=0.1 for testing the trajectory of our particle. We use b = 0.1,C = 0.1,M = 2, I =

0.4, p0 = 10, p3 = 0,dx = 0.001,dt = 0.01, tmax = 50,θ(0) = 0.1,θ ′(0) = 0,h(0) =

0.5,h′(0) = 0 as the initial conditions and we find the results as in figure below.
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Figure 6.21: Test 12:Oscillation with COM C = 0.1.

The difference between this test and the previous tests is that we are able to

increase the maximum movement time of the particle to at least 50. The figure

shows that the particle has a regular motion trajectory, and the height of the particle

is maintained at a relatively stable height. This is consistent with the results of our

previous analysis. To verify our analysis, we further modify the initial condition

by changing the center of mass from 0.1 to 0.3, and the results are shown below in

figure 6.22.
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Figure 6.22: Test 12:Oscillation with COM C = 0.3.

There is no significant difference in the vibration amplitude of the particle in

figure 6.22 compared to the previous tests in figure 6.21. However, the particle does

oscillate a little bit less. In addition to this, the amplitude of the particle motion

becomes more unstable compared to the previous test, but the particle still does not

collide with the channel. According to these two tests, we judge that the ‘stability’

of the particle motion is related to the center of mass of the particle, and when the

center of mass of the particle is closer to 0.5, the particle motion amplitude will be

more ‘unstable’. In order to test this conjecture, we move the center of mass of the

particle closer to 0.5. We use b = 0.1,C = 0.4,M = 2, I = 0.4, p0 = 10, p3 = 0,dx =

0.001,dt = 0.01, tmax = 50,θ(0) = 0.1,θ ′(0) = 0,h(0) = 0.5,h′(0) = 0 as the initial

conditions, and figure below shows the results.
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Figure 6.23: Test 12:Oscillation with COM C = 0.4.

It can be seen from figure 6.23 that the motion amplitude of the particle in-

creases more, and the particle still maintains a regular motion trajectory; the os-

cillations here are interesting in being more clearly nonlinear. At the same time,

the particle still does not collide with the channel walls. This is in line with our

conjecture.

In the analysis of section 6.2, we also infer that the vibration of the particle will

disappear when the center of mass of the particle exceeds 0.5. See equation (6.47)

again. To test this, we move the center of mass of the particle to 0.6 and show the

results in figures 6.24, 6.25.
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Figure 6.24: Test 13:Elliptical particle’s leading edge, trailing edge and angular function
with COM C = 0.6.

Figure 6.25: Test 13:Collision time for COM C = 0.6.

It can be seen from figure 6.24 that the vibration of the particle does disappear,

and the particle does collide with the lower channel wall in the process of motion.

In addition, we believe that as we continue to move the particle’s center of mass
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further back, the collision time will be shorter. To this end, we set the center of

mass of the particle to 0.9.

Figure 6.26: Test 14:Elliptical particle’s leading edge, trailing edge and angular function
with COM C = 0.9.

Figure 6.27: Test 13:Collision time for COM C = 0.9.

See figures 6.26, 6.27. As expected, the particle collides faster than before.
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Also there are no oscillations.

In this section, in order to verify the previous analysis, we have considered

numerically the influence of different center of mass positions on the particle motion

trajectory. It is concluded that when the location of the center of mass of the particle

is less than 0.5 (thus the particle is then front-heavy), the particle will vibrate, and

the particle will not collide readily with the channel walls. At the same time, while

the center of mass of the particle is less than 0.5, the closer the center of mass is to

0.5, the larger the movement range of the particle is. In addition, when the center

of mass of the particle exceeds 0.5, the vibration of the particle disappears and

it collides readily (directly) with the channel walls. At this point, if we continue

to move the particle’s center of mass back towards the trailing edge, the particle

collision with the channel walls happens faster.

6.6 Conclusion

In this chapter, we first derived in a fairly classical manner the mass conservation

equation and momentum conservation equation as part of the original Navier-Stokes

equations. Next we derived the 2D Navier-Stokes equation based on the Cauchy

momentum equation, and then we obtained the 2D lubrication theory equation that

we needed in the current chapter based on the two-dimensional Navier-Stokes equa-

tion. With these inferences in place, we built our zero-thickness particle model and

examined the accuracy and properties of the results. We obtained our model data

with only a small percentage error approximately from the theoretical asymptotic

derivation in terms of period. Then we started to calculate the trajectories of the

particle in the zero-thickness model. In order to facilitate more obvious changes in

the movements of the particle, we changed the end-pressure difference from 1 to 10

and we kept this in the rest of the study.

After this we added thickness to the particle and tested the trajectories of two

different shapes of particle. Finally, we concluded that both the front end and the

back end of the particle can collide with the upper and lower walls in this case. In

addition to this, the middle-curved part of the particle can also collide with the upper
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or lower channel walls. Finally, we tested that vibration of the particle obtained in

the previous analysis only occurs when the COM (centre of mass location) is less

than 0.5, i.e. the COM is moved to be nearer the leading edge than the trailing edge

of the particle. Here it is found that when the COM of the particle is between 0 and

0.5, the closer the COM is to 0.5, the larger the vibration range of the particle is.

When the COM of the particle is between 0.5 and 1, the closer the COM is to 1, the

faster the particle’s front end will fall. The result is that the particle cannot move

for a long time without colliding with one of the channel walls.

In this chapter, we only studied (computationally to a large extent) the collision

model of a single particle. In future research, we suggest consideration of other

more complex cases. For example, the rebound model after a particle collision, the

multi-particles collision model, the particle stacking model (the particle viscosity is

very high, so that the particle will adhere to the wall after collision with the wall, and

then other particles will adhere to it, etc.), the cracking model (after particle stacking

together, it separates into multi small pieces), and the single-particle melting into

several particles.

At the end of this chapter, there are a few points we would like to mention.

First of all, the orders of magnitude show that in the model studied in this chapter

the density of the particle must be much greater than that of the fluid. Secondly, one

potential application of the current type of fluid-body interaction is to ice particles

travelling through air rather than water. Thirdly, the effects of moving channel walls

could be interesting. Next, the case α2 = 0 (when C = 0.5) remains to be followed

through. Finally, note that in the stability analysis we should include ‘Real Part’,

strictly.



Chapter 7

General Conclusions

As far as the work in this thesis is concerned, the question raised of when and how

a particle collides with a channel wall is answered by the different models from all

chapters. In this research, we started from a model of a single particle crossing a

parallel-walled channel. In the beginning of this research, we followed previous

researchers’ result ([19]) and we set the particle’s density as uniformly distributed.

With the above assumptions, and others, when we test the particle motion, the par-

ticle will always collide with the top or the bottom wall. After some analysis in

chapter 2, we found that when the particle’s centre of mass location COM < 1/3

(which corresponds to a non-uniform distribution of density), oscillations will hap-

pen to our particle. When the oscillation happens, we can observe from the figures

of our results that the particle will collide much later than for the previous uni-

formly distributed particle or even does not collide anymore if the initial conditions

are carefully chosen. From the end of chapter 2, we provide some more cases about

a shape changing model. In addition to these, we started a new chapter about a

multi-particles problem. Building on the motion equations of a single particle, we

derive the governing equations of the multi-particle motion problem. In this chap-

ter, we assume the presence of overlapping particles. Our aim here is again to avoid

collision happening; thus our research stops when the particle(s) collides with the

channel wall, or when the particles collide with each other. In all the previous

cases, we only considered particles moving in a fixed shape channel. Inspired by

the channel shape changing in chapter 3 and [50], we set up the channel shape partly
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changing with the pressure in chapter 5. Based on the different initial conditions,

we obtained a series of collision scenarios.

The tests described above were all carried out at high Reynolds numbers. By

contrast, we modelled the fluid-particle interaction involving fluid motion at low

Reynolds numbers in chapter 6. In chapter 6, we simulated different particle trajec-

tories. We started from the zero-thickness test. Then we added nonzero thickness

to the particle shape and varied the particle shape for comparison. Inspired by the

earlier chapter 2, we also wanted to test the oscillation properties of the particle. We

found, unlike before, that the oscillation happens when the particle’s centre of mass

COM < 1/2. Moreover, when the oscillations occur for the particle, the particle can

move freely in the channel much longer (in time) than in the case of the particle

moving without oscillation.

The above points provide a summary of the present thesis. Further overall

points are given in the conclusions of the cited papers by the author and collabora-

tors. In addition, the author believes that the study of the contained particle motion

can be further advanced in terms of the several other significant aspects. For exam-

ple, in most of the tests presented in this thesis, the particle trajectories stop at the

time of a collision. In reality however, after such collisions, the particle continues

to move. Alternatively in the icing context the particle may adhere to the wall. The

particle can even split into two or more particles. At the same time, multiple par-

ticles may also collide with each other, affecting each other’s motion trajectories.

Multi-particle motion is more complicated and may cause more serious damage to

the channel wall. Therefore starting from the rebound model of regular particle(s)

may be an interesting and useful study. Appendix A provides a very basic model

of the rebound of a particle after collision. In the author’s opinion, it is difficult to

determine the collision point and rebound trajectory of a particle after adding in the

thickness of the particle. In addition, in Chapter 5, we only set a part of the channel

to be deformed under pressure. Therefore, in future studies, it would be interesting

to set the deformation of the whole channel to be influenced by the pressure.



Appendix A

Single particle bouncing model

A.1 Model creation
With respect to particle(s) movement problem, there must be some collisions on the

particles. Either the collisions between the particle(s) or the collisions between the

particle(s) and the wall. Because we would like to study more details about this

process. We may have to go back to the single particle movement problem first.

In the previous assumptions, we assume our particle is a long and thin ellipse.

As a consequence, the thickness of the particle does not influence the inertia of

the whole particle during the movement. Based on above assumptions, we create a

more ‘egregious’ model at the collision point as below,
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Figure A.1: The moment before the collision

Figure A.2: The moment after the collision

Above two figures A.1, A.2 are the moments before and after the collision. In

this model, we introduce several new variables. Here (hnew,θnew)=(hold ,θold), but

we expect the velocities (h′new,θ ′
new)=(h′old ,θ ′

old). We also know V1 =−h′old −bθ ′
old ,

where b is the distance between the COM and the trailing edge. During the test, we

still use the previous initial conditions to do the test such as a = 0.3,b = 0,COM =

0.5,h(0) = 0, dh(0)
dt = 0,θ(0) = −0.1, dθ(0)

dt = 0,M = 2, I = 0.01. The next key
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point is to solve the initial conditions after the collision. Recalling the previous

core equations,

Mhtt =
∫ 1

0
(p1 − p2)dx, Iθtt =

∫ 1

0
(x− 1

2
)(p1 − p2)dx. (A.1)

We do the integral to both of the equations with respect to dt and we can have

the equations as below,

Upward momentum :P = M(h′new −h′old). (A.2a)

Angular momentum :Pc1 = I(θ ′
new −θ

′
old). (A.2b)

Local relation :V2 = eV1. (A.2c)

Definition for V2 :V2 = h′new +bθ
′
new. (A.2d)

With above 4 equations, we can easily solve the 4 unknown variables P, h′new, θ ′
new,

V2. Because we assume the collision happens at the trailing edge, which means

x = 1. Thus we should have c1 = 0.5 during the calculation.

A.2 particle with zero-thickness bouncing model
In the previous research, we did a lot of research on single particle motion and we

stopped when our particle collided with the wall of the channel. In this chapter, we

would like to do more research on the single particle bouncing model.

Because we use the zero-thickness model to do the test. Thus, the collisions

only happen at either the trailing edge or the leading edge. We start to think about

the trailing edge collision case. We use β = 0, c = 0.5, M = 2, I = 0.01, θ(0) =

−0.1, θ ′(0) = 0, h(0) = 0.3, h′(0) = 0, e = 0.3 as the initial conditions and results

are shown in figure A.3
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(a) Particle position at t=0
(e = 0.3)

(b) Particle position at t=0.23
(e = 0.3)

(c) Particle position at
t=0.452 (e = 0.3)

(d) Particle position at
t=0.502 (e = 0.3)

(e) Particle position at
t=0.542 (e = 0.3)

(f) Particle position at t=0.557
(e = 0.3)

(g) Particle position at
t=0.569 (e = 0.3)

(h) Particle position at
t=0.575 (e = 0.3)

(i) Particle position at t=0.579
(e = 0.3)

Figure A.3: Particle motion with e = 0.3

Figure A.3 shows the bouncing motion of the particle movement. A.3a-A.3c

shows the first collision between the particle and bottom wall. A.3d and A.3e shows

the particle bouncing back after collision and collide again with the bottom wall.

A.3f and A.3g shows the third bounce and collision. While A.3h and A.3i represents

the forth bounce and collision. After the forth bounce and collision, the bouncing

height of the particle is too small to calculate and all the tests stopped. The figure

A.4 shows the zoom in case for figure A.3d which is the first bouncing.
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Figure A.4: Zoom in figure for figure A.3d

From the figure A.4, there is a very tiny gap between the particle’s trailing edge

and the bottom wall. But the bouncing height is not high enough to be observed

easily. Thus, we keep all the initial conditions same and change the values of elastic

coefficient e. Let the whole bouncing process slightly change the collision from

inelastic to elastic. Since our initial conditions have not changed, the trajectory of

the particle’s first collision is the same as the A.3a to A.3c. The figures below show

the particle motion after first collision with e = 0.5.

(a) Particle position at
t=0.542 (e = 0.5)

(b) Particle position at
t=0.602 (e = 0.5)

(c) Particle position at
t=0.632 (e = 0.5)

(d) Particle position at
t=0.662 (e = 0.5)

(e) Particle position at
t=0.674 (e = 0.5)

(f) Particle position at t=0.685
(e = 0.5)

Figure A.5: Particle motion with e = 0.5

The figure A.5 shows the particle motion after first collision. While the par-

ticle motion for the first collision is same as figure A.3a to A.3c. A.5a and A.5b

represents the first bounce and second collision. A.5c and A.5d are for the sec-

ond bounce and third collision respectively. A.5e and A.5f are for the third bounce
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and forth collision respectively. From the figures we notice that, because we use a

larger elastic coefficient, the particle bounce higher than e = 0.3 case. With a higher

bounce height, the particle can move for a longer time. This test stops at the bounce

height is small enough which is the forth collision.

For next test, we increase the elastic coefficient to e= 0.7 and results are shown

in figure A.6 Same as last test, we present the particle motion after first collision.

(a) Particle position at
t=0.572 (e = 0.7)

(b) Particle position at
t=0.682 (e = 0.7)

(c) Particle position at
t=0.722 (e = 0.7)

(d) Particle position at
t=0.762 (e = 0.7)

(e) Particle position at
t=0.778 (e = 0.7)

(f) Particle position at t=0.795
(e = 0.7)

Figure A.6: Particle motion with e = 0.7

A.6a and A.6b are for the first bounce and second collision.A.6c and A.6d show the

second bounce and third collision. A.6e and A.6f represent the third bounce and

forth collision. With the same reason, the bounce height is too small, we stop the

test for e = 0.7 case.

For the next test, we keep increase the elastic coefficient to e = 1 which is the

elastic collision. The results are shown below,
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(a) Particle position at
t=0.652 (e = 1)

(b) Particle position at
t=0.852 (e = 1)

(c) Particle position at
t=0.922 (e = 1)

(d) Particle position at
t=0.953 (e = 1)

(e) Particle position at
t=0.963 (e = 1)

(f) Particle position at t=0.973
(e = 1)

Figure A.7: Particle motion with e = 1

Figure A.7 shows the particle motion after elastic collision. Same as before,

all the elastic collision happens between the particle and the bottom wall. Figure

A.7a and A.7b shows the particle motion after first collision. Figure A.7c and A.7d

shows the particle motion after second collision. Figure A.7e and A.7f shows the

particle motion after third collision. But different as previous cases, this test stops

because the leading edge of the particle collide with the top wall.

This part of the research gives 4 cases about zero-thickness particle bouncing

motion. We start with e = 0.3. Because when we use a smaller value of e. The

bounce height is too small to be observed. Even with e = 0.3, the second and the

third bounces are roughly been observed. Then we gradually increase the value of

e. The particle bounce height are gradually increasing as well.At the same time, the

particle motion ”till the forth collision” becomes longer. Also another interesting

thing is when we increase the elastic parameter to e = 1 which means the whole

motion of the particle bounces are elastic collisions. Instead of colliding with the

bottom wall, the particle collide with the top wall. In the future, there could be

more tests, for example, after collision with the top wall, the particle collide with

the bottom wall again. Or we can add thickness to the particle. Because in this

appendix, all the collision happens at the leading and trailing edge. If we add some

thickness to the particle, the collision may happen at the upper edge or lower edge
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of the particle. Besides these two cases, make the particle becoming a front-loaded

particle or back-loaded particle is also interesting.



Appendix B

Explanations for ignoring the effects

of viscosity and gravity

This research works in non-dimensional scaled quantities, which are are used in the

frame moving with the particle at speed U∗, such that

x∗ = L∗× x,u∗ =U∗×u;

y∗ = ε
∗× y,v∗ =U∗× εv;

t∗ =
L∗× t

U∗ , p∗ = ρ
∗× (U∗)2 p;

g1
∗ = gx,g2

∗ = gy.

(B.1)

where ε = d∗

L∗ , d∗ represents the gap width and L∗ represents the particle length

and L∗ ≫ d∗. Recalling from the Navier-Stokes equations expressed in Cartesian

coordinates in two spatial dimensions (x,y) and time t,

ρ(
∂ux

∂ t
+ux

∂ux

∂x
+uy

∂ux

∂y
) =−∂ p

∂x
+µ(

∂ 2ux

∂x2 +
∂ 2ux

∂y2 )+ρgx, (B.2)

ρ(
∂uy

∂ t
+ux

∂uy

∂x
+uy

∂uy

∂y
) =−∂ p

∂y
+µ(

∂ 2uy

∂x2 +
∂ 2uy

∂y2 )+ρgy. (B.3)

where ρ is the density, u is the flow velocity, p is the pressure, t is time, g represents

body accelerations which can be treated as gravity, µ is dynamic viscosity.

Next, we substitute the above non-dimensional scaled quantities into above
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x-dimensional Navier-Stokes equation,

ρ
∗(

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

)× U∗2

L∗ =−ρ
∗∂ p

∂x
× U∗2

L∗ +µ(
∂ 2u
∂x2 +

∂ 2u
∂y2 )×

U∗

L∗2 +ρg1
∗,

(B.4)

After simplifying the equation, we get

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+
µ

ρ∗U∗L∗ (
∂ 2u
∂x2 +

∂ 2u
∂y2 )+

g1
∗L∗

U∗2 . (B.5)

In the equation (B.5), Re = ρ∗U∗L∗

µ
and Fr2 = U∗2

g1∗L∗ which are estimated in

a recent work [23] with Re = 102 ∼ 103 and Fr ∼ 106. In consequence, we can

formally ignore the last two terms in equation (B.5), and equation (B.5) can be

simplified into x-momentum equation as below,

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

. (B.6)

Similarly, we substitute non-dimensional scaled quantities into the y-dimensional

Navier-Stokes equations and use the same steps to simplify the equation to get,

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

=−∂ p
∂y

. (B.7)

In the model of this research, the assumptions require the relevant length scale

along the walls is much greater than the height between the walls which causes ε

to be a small constant. Thus, with the assumptions in the previous non-dimensional

scaled quantities, we can find the velocity v can be neglected. We can use this

condition in equation (B.7) to get,

0 =−∂ p
∂y

. (B.8)

From equation (B.8), we can deduce the pressure function only with respect to (x, t)

which is the same as we got in equation (4.4c).



Appendix C

Deductions for oscillations

For small β (=εβ say, the particle thickness is very small) and small disturbances

or perturbations of order ε , where the constant ε is asymptotically small in strict

terms, we can rescale the parameters and functions as below,

(h,θ , pn) = ε(hE ,θ E , pn
E)+ . . . , (C.1a)

( f−, f+,H1,H2) = (α,α,α,1−α)+ ε( f−E
, f+E

,H1
E ,H2

E)+ . . . , (C.1b)

(d1,d2) = (α,1−α)+ ε(d1
E ,d2

E)+ . . . , (C.1c)

where these functions or parameters are similar to the functions or parameters intro-

duced in chapter 4. In the functions, time t and the constants α and c are assumed to

be of order unity. The unknowns with superscript ’E’ are taken to be of O(1). Then

we substituting these back into the system and can have the pressure difference as

below,

p1
E − p2

E = A1 ∗ x
1
2 (1− x)

1
2 +A2 ∗ (x−1)θ E , (C.2)

where A1 = −β E ∗ 1−2α

α(1−α) , A2 = 1
α(1−α) are known constants. After substituting

the pressure difference into the particle motion functions we have the relations as

below,

M
d2hE

dt2 =
∫ 1

0
A1 ∗ x

1
2 (1− x)

1
2 +A2 ∗ (x−1)θ Edx, (C.3)

I
d2θ E

dt2 =
∫ 1

0
(x− c)(A1 ∗ x

1
2 (1− x)

1
2 +A2 ∗ (x−1)θ E)dx. (C.4)
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At the same time, we can rewrite the functions as below,

M
d2hE

dt2 = B1 +B2θ
E , (C.5)

I
d2θ E

dt2 =C1 +C2θ
E , (C.6)

where B1,B2,C1,C2 are constants. We can use Beta function and the factorial of a

fraction to solve these equations to find out the constant values as below,

B1 =
π

8
A1,B2 =−1

2
A2,C1 = (

π

16
− π

8
c)A1,C2 =

1
2
(c− 1

3
)A2. (C.7)

From the parameter B2, we notice that the A2 is positive for 0 < c < 1. Therefore,

if we choose c < 1
3 , C2 will be a negative value. This will cause the solution of θ

from equation C.6 shows that there will be an oscillation exist.
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