
1

Digital Twin Assisted Deep Reinforcement Learning
for Computation Offloading in UAV Systems

Kai Liang, Yawei Wang, Zan Li, Senior Member, IEEE, Gan Zheng Fellow, IEEE, Kai-Kit Wong Fellow, IEEE
and Chan-Byoung Chae Fellow, IEEE

Abstract—The emerging digital twin technology has the ability
to set up a digital clone of the physical world through techniques
such as computer simulation and machine learning, facilitating
management and decision-making of the physical world. This
paper proposes a DT assisted deep reinforcement learning (DRL)
approach to optimize the decision of computation offloading in
a unmanned aerial vehicle (UAV) based communication system.
We focus on minimizing the task processing delay by jointly
optimizing the task offloading and the UAV’s flight path. This
problem can be solved by the DRL method, but it requires
frequent interactions with the environment, which may increase
resource consumption and encounter risks from some “bad”
actions. In view of this, the proposed DT is made up of a
predictive model to predict the reward and next stage of the
physical environment, and a generative model to improve the
sample efficiency, where these two models are realized by a fully
connected neural network and a variational auto-encoder, respec-
tively. Then, a hybrid experience reply buffer can be generated to
facilitate DRL training, thus yielding faster convergence, better
performance, and fewer environmental interactions. Numerical
results show that the proposed method can achieve better delay
performance and training efficiency than state of the art methods.

Index Terms—Digital twin, mobile edge computing, deep rein-
forcement learning, generative and predictive models

I. INTRODUCTION

MOBILE edge computing (MEC) can provide computa-
tional capabilities at the network edge, enabling rapid

and efficient processing of data and content in proximity
to end-users [1]. Meanwhile, fast-moving unmanned aerial
vehicles (UAVs) are easier to deploy on-demand to places
where wireless network computing resources are insufficient.
This motives the UAV to extends the reach and capabilities
of MEC systems [2]. Traditionally, iterative optimization al-
gorithms are used to optimize the resource allocation and
computation offloading of UAV-assisted MEC, but they suffer
from high computational complexity and slow convergence
that cannot satisfy delay-sensitive or computation-intensive ap-
plications. Fortunately, the blossoming of deep reinforcement
learning(DRL) provides an efficient approach for UAV-assisted
MEC which has been widely studied [3], [4]. Although the
DRL approach exhibits performance improvement, it often

Kai Liang, Yawei Wang, and Zan Li (corresponding author) are with
the School of Telecommunications Engineering, Xidian University, Xi’an,
710071, China (email: kliang@xidian.edu.cn, yw.wang@stu.xidian.edu.cn,
zanli@xidian.edu.cn). G. Zheng is with the School of Engineering, University
of Warwick, Coventry, CV4 7AL, UK (Email: gan.zheng@warwick.ac.uk).
K.-K. Wong is with the Department of Electronic and Electrical Engineer-
ing, University College London, London, WC1E 6BT, UK (Email: kai-
kit.wong@ucl.ac.uk). Chan-Byoung Chae is with School of Integrated Tech-
nology, Yonsei University, Seoul, 03722, Korea (email: cbchae@yonsei.ac.kr).

requires frequent interactions with the physical environment
to obtain the reward value of the current action and the next
state, leading to more resource consumption and potential risk
to the system arisen from “bad” actions [5].

The emerging Digital twin (DT) can set up a virtual coun-
terpart to real-world systems and thus own the ability of low-
cost trial and error, which encourages the combination of DT
and MEC system. The works [6], [7] studied the computation
offloading problem in DT-assisted MEC, and only focused
on the system model of digital twin as a single copy of the
physical edge network. Nevertheless, how to utilize DT to
assist the training of DRL (e.g., reducing the interactions and
improving the performance) remains a challenge. In [8], Wu
et al. proposed a DT model in autonomous driving scenario,
which improves the data efficiency of DRL by establishing
a digital model to predict the transition dynamics of the
driving scene represented as images. This motives us to use
the DT to mimic the system transitions that offers improved
performance. However, the method in [8] obtains states and
corresponding actions from the physical environment, and a
large amount of data requires frequent interaction between the
agent and the physical environment.

In this paper, we formulate the task offloading optimization
problem in a UAV system with the aim of minimizing task
processing delay through the joint optimizing task offloading
and the UAV’s flight path. After recasting this non-convex
problem into a Markov decision process (MDP), we propose
a DT-assisted deep deterministic policy gradient (DDPG) ap-
proach based on generative and predictive models to solve this
problem. The main contributions of this paper are summarized
as follows: (i) We propose a DT-assisted DDPG approach,
where the DT is comprised of a generative model and a
predictive model. To be specific, the predictive model is
realized by a fully connected neural network (FCNN) and can
continuously fit the environment to predict the state transition
dynamics and reward feedback of the environment. To address
small size of sample sets, we further use a variational auto-
encoder (VAE) network to form the generative model which is
responsible for generating simulated samples and thus improve
the performance of the predictive model. The DDPG aided
by the proposed DT can combine the interaction between
the physical environment and the DT to improve the training
efficiency and reduce the number of interactions with the
physical world. (ii) We apply this approach to the UAV based
MEC system for solving optimization problem. Numerical
results show that our proposed approach achieves improved
processing latency and training efficiency of DRL.

2

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system comprises M mobile terminals (MTs) and a
UAV equipped with a MEC server. Denote the MT set as
M = {1, 2, · · · ,M}. The UAV has the capability to provide
communication and computing services and serves M MTs
simultaneously. Each MT has limited computation capacity to
handle computationally intensive tasks, so it offloads a portion
of the tasks to the MEC server through the wireless channel
to reduce the task processing delay. The entire time period
T of UAV operation is evenly divided into I time slots and
we denote the set I = {1, 2, · · · , I}. In three-dimensional
space, we assume that the UAV keeps flying at a fixed altitude
H , and it has the position coordinate u(i) = [x(i), y(i)]

T at
time slot i ∈ I. The position coordinate of MT m ∈ M is
pm(i) = [xm(i), ym(i)]

T . We assume that MTs move slowly
and randomly within a rectangular area of length L and width
W , and the UAV flies for a fixed period of time (i.e., tfly
which is less than the duration of time slot) at the beginning
of each time slot, hovering at a fixed position for the remaining
time to serve the MTs. We denote that the position of the UAV
at the (i− 1)-th time slot is u(i−1), and at i-th time slot, the
new position of the UAV can be expressed as:

u(i) = [x(i− 1) + v(i)tflycosθ(i),

y(i− 1) + v(i)tflysinθ(i)]
T ,

(1)

where v(i) ∈ [0, vmax] denotes UAV flight speed, θ(i) ∈
[0, 2π] denotes UAV flight angle.

Similar to [9] and [10], the communication links between
the UAV and the MTs are presumed to be dominated by the
line of sight (LoS) paths. The channel gain between the UAV
and the MT m is denoted as :

gm(i) = α0d
−2
m (i) =

α0

||u(i)− pm(i)||2 +H2
, (2)

where α0 denotes the channel gain when the reference distance
d = 1 meter, and dm(i) denotes the Euclidean distance
between the UAV and the MT m at time slot i. ‖ · ‖ denotes
the Euclidean norm operator. For the sake of simplicity, we
assume the overall bandwidth is evenly allocated to each MT,
and denote the bandwidth of each MT as B. The wireless
transmission rate can be given as:

Rm(i) = B log2

(
1 +

Pupgm(i)

σ2

)
, (3)

where Pup and σ2 respectively denote transmit power of the
MT and noise power. In our system, a partial offloading policy
is implemented for the tasks of MTs during each time slot [2].
To be specific, let λm(i) ∈ [0, 1] denotes the ratio of tasks
offloaded to the MEC server, and (1 − λm(i)) indicates the
ratio of tasks running locally in MT m. Then the local task
execution delay of the MT m can be given as:

tlo,m(i) =
(1− λm(i))Dm(i)k

fMT
, (4)

where Dm(i) denotes the computing task data sizes of MT m,
k denotes the CPU cycles required to process each unit bit,
and fMT denotes the MT’s computing capability.

The processing delay of the MEC server can be divided into
two parts, one is the transmission delay and the other is the
computation delay. In this system, the size of the computation
results provided by the MEC server is usually small enough
to be negligible [2], so the transmission delay of the downlink
is not considered here. The uplink transmission delay for MT
m with the UAV can be given as:

tup,m(i) =
λm(i)Dm(i)

Rm(i)
, (5)

The delay resulting from the computation at the MEC server
can be given as:

tUAV,m(i) =
λm(i)Dm(i)k

fUAV /M
, (6)

where fUAV denotes the computation frequency of MEC
server. The computational resource is equally shared among
all MTs. k denotes the CPU cycles required to process each
unit bit.

This paper focuses on minimizing the sum of processing
delay across all MTs as in [10], [11] by jointly optimizing the
UAV flight path and offloading allocation strategies. Specifi-
cally, the optimization problem is formulated as follows:

min
u,λ

I∑
i=1

M∑
m=1

max {tlo,m(i), tup,m(i) + tUAV,m(i)} (7)

s.t. 0 ≤ λm(i) ≤ 1,∀i,m, (7a)
u(i) ∈ {(x(i), y(i)) | x(i) ∈ [0, L], y(i) ∈ [0,W]},∀i,

(7b)
pm(i) ∈ {(xm(i), ym(i)) | xm(i) ∈ [0, L],

ym(i) ∈ [0,W]},∀i,m,
(7c)

I∑
i=1

M∑
m=1

Dm(i) = D, (7d)

where the constraint (7a) denotes the offloading ratio of the
computing task. Constraints (7b) and (7c) limit that UAV and
MT can only move in the given area. The constraint (7d)
specifies all of computing tasks to be completed in the whole
time period T .

III. DT ASSISTED DDPG FOR TASK OFFLOADING

In addressing the optimization problem (7), traditional opti-
mization algorithms face challenges such as exceedingly high
computational complexity or difficulty in solving due to the
dynamic nature of the system and the heterogeneity of tasks
generated by MTs. Conversely, DRL-based approaches have
been proved effective in tackling these challenges. Therefore,
we adopt the DDPG algorithm to obtain effective strategies
to solve this problem. However, note that during the learn-
ing process of the agent, a substantial amount of training
data is needed, which requires extensive interaction with the
environment and a large number of training iterations to
achieve convergence. To accelerate agent training, we propose
a DT assisted DDPG method facilitated by the generative and
predictive models, as shown in Fig. 1, which will be detailed
in the following.

3

Store
Real-time Interaction

Train

DDPG

Physical Environment

Digital Twin

physical interaction
Actor

Critic

experience

buffer

DT data

buffer

VAE

Generative model Predictive model

UAV

MTs

Offload link

FCNN

Fig. 1. DT-assisted DDPG method.

A. The DDPG Module

First, we present the formulated problem as a Markov
decision process (MDP), which consists of the following key
elements:

State: The system state at time slot i can be defined as:
si = {u(i),p1(i), ...,pM (i), Dr(i), D1(i), ..., DM (i)}, where
Dr(i) denotes the size of remaining tasks that the system needs
to complete in the whole time period T , and Dm(i) denotes
the task size randomly generated by MT m at time slot i.

Action: The state changes depending on which actions
are taken. The action space consists of the UAV’s flight
speed, the UAV’s flight angle, and the task offloading ratio.
Specifically, at time slot i, the action can be expressed as:
ai = {v(i), θ(i), λ1(i), ..., λM (i)}, where v(i) ∈ [0, vmax],
θ(i) ∈ [0, 2π], and λm(i) ∈ [0, 1].

Reward: The agent is able to perceive the current system
state, take each possible action to get a new state and receive a
reward. Our goal is to minimize the processing delay defined
in problem (7), so the reward is negatively correlated with the
processing delay. Thus, the reward can be defined as: ri =
−
∑M
m=1 max {tlo,m(i), tup,m(i) + tUAV,m(i)}.

Considering the continuity of the action space, we can use
the DDPG algorithm to obtain the effective strategy. DDPG
combines two neural networks, the actor network µ (s|θµ),
and the critic network Q

(
s, a|θQ

)
. In addition, both the

actor network and the critic network contain a target network
with the same structure as them. The actor network learns a
deterministic policy, meaning for a given state st, and directly
outputs a specific action:

at = µ (st|θµ) +Nt, (8)

where θµ is the actor network parameter and Nt is the
exploration noise that follows a normal distribution.

Besides, DDPG is an off-policy algorithm that leverages
experience replay, which means that it learns from a replay
buffer DE of past experiences. This buffer stores the history
of state, action, reward, and next state 〈st, at, rt, st+1〉. During
training, it samples mini-batches of size B from DE . The critic

network uses Q-function to evaluate the selected action at and
updates its parameter θQ by minimizing the loss function:

L =
1

B

∑
i

(
yi −Q

(
si, ai|θQ

))2
, (9)

where yi = ri + γQ
′
(
si+1, µ

′
(
si+1|θµ

′)
|θQ

′)
, γ is the

discount factor, θµ
′

and θQ
′

are the parameters of the target
actor and critic network, respectively.

B. The DT Module

In the traditional DDPG algorithm, the experience buffer
records the interaction data from the physical environment.
The frequent interactions between agent and environment dur-
ing the training process result in significant resource consump-
tion and potential risks. Furthermore, we introduce generative
and predictive models into the DT, and establish an additional
buffer for storing virtual data, enabling the agent to learn from
mixed data and improving the interaction efficiency.

In DT, our predictive model can predict state transition
dynamics and reward feedback by learning data from the
physical world. Specifically, at time step t, the model MP

inputs state st and action at, while outputs next state s′t+1

and reward feedback r′t, denotes as:

s′t+1, r
′
t =MP (st, at). (10)

The predictive model is established by a deep neural
network, which we implement using fully connected neural
network (FCNN). This model uses a supervised learning
approach and the accuracy of the prediction is continuously
improved based on the agent’s interaction data with the
physical environment. When training the predictive model, we
use interaction data 〈st, at, rt, st+1〉 in the experience buffer
as training data. The mean squared error (MSE) loss is adopted
for the model, expressed as:

L =
1

N

N∑
i=1

∥∥(s′t+1, r
′
t

)
− (st+1, rt)

∥∥2 (11)

where N denotes the number of data in each training batch,
s′t+1 and r′t represent the predicted next state and reward
feedback by the model, while st+1 and rt are the actual next
state and reward feedback.

In predictive network, we obtain virtual interaction data
based on states and corresponding actions. However, state data
is only sampled from the data obtained through interactions
between the agent and the physical environment. These state
data only reflect the historical environmental information of
the system, making them relatively limited in scope. There-
fore, in DT, we introduce the generative model to learn the
probability distribution of the data, enabling the generation of
diverse and forward-looking state data. We use a VAE network
to form the generative model. The state st in the experience
buffer DE is used as input data to the VAE. The VAE network
outputs the generated state s′t. In addition, we create a digital
copy of the Actor network of the DDPG, i.e. µ̂

(
s|θµ̂

)
. It uses

the generated s′t to give the predict action a′t.

4

The VAE [12] structure consists of two parts: the encoder
and the decoder. The encoder is responsible for extracting
essential features from the input data and generating the
encoding: mean vector and deviation vector. Then the encoding
is used as an input to the decoder. The decoder outputs the
data similar to the original data. The loss function of the VAE
model is expressed as:

L(θ, φ) = −Ez∼qφ(z|x)[log pθ(x|z)] + KL(qφ(z|x)||p(z)),
(12)

where x is the input data point. z is the latent variable,
which represents the distribution parameters learned by the
encoder from the data point x. qφ(z|x) is the output of the
encoder, representing the distribution of the latent variable
z conditioned on the input x. pθ(x|z) is the output of the
decoder, representing the distribution of the generated data
point x conditioned on the latent variable z. KL(qφ(z|x)||p(z))
is the Kullback-Leibler (KL) divergence, which measures the
difference between the encoder’s output qφ(z|x) and the prior
distribution p(z).

C. Training Strategy

The tuples 〈st, at, rt, st+1〉, derived from interactions with
the physical environment, are stored in the experience buffer
DE . These data serve as the training set, fueling the training
process of the model in DT. The VAE network in the genera-
tive model learns the distribution and latent representation of
state data st, and then outputs diverse and forward-looking
state s′t which is fed into the digital copy of the Actor
network µ̂

(
s|θµ̂

)
to obtain action a′t. The input data for the

FCNN in the predictive model includes not only the states and
corresponding actions 〈st, at〉 from the physical environment,
but also the virtual states and actions 〈s′t, a′t〉 based on the
generative model. This makes the input data diverse and
capable of modeling possible future scenarios. The FCNN will
predict state transition dynamics and reward feedback.

Besides, we build an additional DT data buffer DT to
store data from digital interactions. The digital interaction data
generated by predictive model includes 〈st, at, r̃t, s̃t+1〉 and〈
s′t, a

′
t, r
′
t, s
′
t+1

〉
. During DRL learning, we sample a mini-

batch experiences from both the experience buffer DE and the
DT data buffer DT with a certain ratio, e.g., data from DT
accounts for 0.35 of the mixed data. By combining interactions
between the physical environment and the digital simulated
environment, the DDPG training process can be significantly
optimized in terms of time efficiency, simultaneously reducing
the number of interactions between the agent and the environ-
ment.

IV. NUMERICAL RESULTS

In this section, we illustrate the proposed DT-assisted DRL
method in the UAV task offloading system through numerical
simulations. Unless otherwise specified, the system parameters
is set as follows. In the UAV task offloading system, M = 4
MTs are randomly distributed in an area of 100 × 100 m2,
while the UAV has a fixed flight height H = 100 m [4]. The
entire time period T = 320 s is divided into I = 40 time

slots. At each time slot the UAV’s flight time tfly = 1 s [2]
and the UAV’s maximum flight speed vmax = 10 m/s. We set
the bandwidth for each MT B = 1 MHz, and the channel gain
α0 = −30 dB at a reference distance of 1m. The noise power
σ2 = −100 dBm [2], the transmission power Pup = 20 dBm
[4], and the required CPU cycles per bit k = 1000 cycles/bit
[2]. We set the computing capability of the MT fMT = 0.6
GHz and that of the MEC fUAV = 4.8 GHz.

In DDPG, the size of the experience buffer DE is 10000.
Both actor network and critic network realized by FCNNs,
which include three hidden layers with 400, 300, and 10
neurons per layer in that order. All hidden layers use the
ReLU activation function. In the actor network, the output
layer has 6 neurons and uses the Tanh activation function to
output deterministic actions. In the critic network, the output
layer has a neuron to output the Q value. In DT, the buffer DT
size is 40000. The predictive model uses a FCNN with two
hidden layers, both with 64 neurons. The hidden layer uses
the ReLU activation function, and the output layer uses the
Sigmoid activation function. In the generative model, We use
a VAE with encoder and decoder. In the encoder network, two
hidden layers are used and the LeakyReLU activation function
is used. The output layer uses two fully connected layers to
output the mean and logarithmic variance, respectively [12].
The decoder network adopts two hidden layers with the ReLU
activation function, and the output layer uses the Sigmoid
activation function.

For comparison, four methods are described as follows:
• The proposed method: DT-assisted DDPG with predictive

model and VAE model (denoted as DT with PM+VAE).
• The DDPG method.
• DT-assisted DDPG with predictive model only (denoted

as DT with PM). In this method, only the predictive
model is used to assist.

• DT-assisted DDPG with predictive model and generative
adversarial network (GAN) model (denoted as DT with
PM+GAN). GAN [13] has demonstrated excellent per-
formance in computer vision and image generation tasks.
Therefore, we replace the VAE in the generative model
with GAN and compare the performance.

Fig. 2. Training performance of different approaches.

Fig. 2 shows the reward with the increasing training steps.
We trained a total of 3.8 × 104 steps. Our proposed method

5

achieves the highest reward level and the fastest convergence
speed. We observe that the number of training steps to reach
convergence for the DT with PM method, the DT with
PM+GAN method, and proposed method are 33.1K, 13.3K,
and 9.6K, respectively. The performance of the DT with
PM+GAN method and our proposed method performs better
than the DT with PM method in the training stage. This
indicates that the generated diversity and forward-looking state
data can better assist the predictive model in predicting the
transformation characteristics of the physical environment and
improve sample efficiency. The reward of the DDPG method
obtains the lowest reward and convergence speed, indicating
that the traditional DDPG algorithm is inefficient for training.

Fig. 3. Delay at different task sizes with 10K training steps.

Using the results obtained from training 10K steps, we
compare these methods under different task sizes and the result
is shown in Fig. 3. For the same task size, the processing
delay of the proposed method is the lowest among the four ap-
proaches. This indicates that our method improves data sample
efficiency during training, and good exploration results can be
achieved by fewer training steps. The DDPG method always
has the largest latency among the compared methods under the
condition of fixed number of training steps, indicating that the
DDPG algorithm requires a large space to be explored and is
inefficient in training. For instance, with the task size of 480
Mbits, the latency of the proposed method is approximately
28.26%, 20.08%, and 13.80% lower than the DDPG, the DT
with PM, and the DT with PM+GAN methods, respectively.

Fig. 4 shows the convergence performance of DDPG and
the proposed method with different computing capabilities of
MEC. We can find that when fUAV = 4.8 GHZ, the DDPG
method still does not reach convergence after 38K training
steps and the delay is always higher than the proposed method.
When fUAV = 5.2 GHZ, the DDPG method converges at
about 18K steps and the proposed method converges at about
8K steps. It shows that our proposed method can perform bet-
ter than the traditional DDPG algorithm in different scenarios.

V. CONCLUSION

In this paper, we propose a DT assisted DRL approach
and apply it to computation offloading in UAV assisted MEC
system. We focus on minimizing the task processing delay

Fig. 4. Performance of DDPG and DT(PM+VAE)-DDPG under different
computing capabilities of MEC.

by jointly optimizing the task offloading and the UAV’s
flight path. Then we transform the problem into a serialized
MDP. The proposed DT is made up of a predictive model
to predict the reward and next stage of physical environment,
and a generative model to improve the sample efficiency. This
method enables the DDPG algorithm to learn from physical
and virtual interactions, improving the sample efficiency of
the algorithm training process, which is effectively validated
in task offloading problem. Numerical results show that our
method can significantly accelerate the learning process of
reinforcement learning and achieve better delay performance.

REFERENCES

[1] N. Abbas, et al., “Mobile edge computing: A survey”, IEEE Internet
Things J., vol. 5, no. 1, pp. 450-465, Feb. 2018.

[2] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao and G. Y. Li, “Joint offloading
and trajectory design for UAV-enabled mobile edge computing systems”,
IEEE Internet Things J., vol. 6, no. 2, pp. 1879-1892, Apr. 2019.

[3] N. Cheng et al., “Space/Aerial-Assisted Computing Offloading for IoT
Applications: A Learning-Based Approach,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 5, pp. 1117-1129, May 2019.

[4] Y. Wang, W. Fang, Y. Ding and N. Xiong, “Computation offloading opti-
mization for UAV-assisted mobile edge computing: A deep deterministic
policy gradient approach”, Wireless Netw., vol. 27, pp. 2991-3006, 2021.

[5] J. J. Alcaraz, F. Losilla, A. Zanella and M. Zorzi, “Model-based rein-
forcement learning with kernels for resource allocation in RAN slices”,
IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 486-501, Jan. 2023.

[6] W. Sun, H. Zhang, R. Wang and Y. Zhang, “Reducing offloading latency
for digital twin edge networks in 6G”, IEEE Trans. Veh. Technol., vol.
69, no. 10, pp. 12240-12251, Oct. 2020.

[7] Y. Lu, S. Maharjan and Y. Zhang, “Adaptive edge association for wireless
digital twin networks in 6G”, IEEE Internet Things J., vol. 8, no. 22, pp.
16219-16230, Nov. 2021.

[8] J. Wu, Z. Huang, P. Hang, C. Huang, N. De Boer and C. Lv, “Digital
twin-enabled reinforcement learning for end-to-end autonomous driving”,
Proc. IEEE 1st Int. Conf. Digit. Twins Parallel Intell., pp. 62-65, 2021.

[9] S. Jeong, O. Simeone and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning”, IEEE
Trans. Veh. Technol., vol. 67, no. 3, pp. 2049-2063, Mar. 2018.

[10] N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang and D. Niyato, “Multi-agent deep
reinforcement learning for task offloading in UAV-assisted mobile edge
computing”, IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6949-
6960, Mar. 2022.

[11] J. Almutairi, M. Aldossary, H. A. Alharbi, B. A. Yosuf and J. M. H.
Elmirghani, “Delay-optimal task offloading for UAV-enabled edge-cloud
computing systems”, IEEE Access, vol. 10, pp. 51575-51586, May 2022.

[12] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes”, Proc.
Int. Conf. Learn. Representations, 2014.

[13] I. Goodfellow et al., “Generative adversarial nets”, Proc. Int. Conf.
Neural Inf. Process. Syst., pp. 2672-2680, 2014.

