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Accounting for why discrimination between different perceptual contents is not always 37 
accompanied conscious detection of that content remains a challenge for predictive 38 
processing theories of perception. Here we test a hypothesis that detection is supported 39 
by a distinct inference within generative models of perceptual content. We develop a 40 
novel visual perception paradigm that probes such inferences by manipulating both 41 
expectations about stimulus content (stimulus identity) and detection of content 42 
(stimulus presence). In line with model simulations we show that both content and 43 
detection expectations influence reaction times on a categorisation task. By combining a 44 
no-report version of our task with functional neuroimaging we reveal that violations of 45 
expectations (prediction errors; PEs) about perceptual content and detection are 46 
supported by posterior and prefrontal cortex in qualitatively different ways: within 47 
posterior sensory cortex, activity patterns diverge only on trials with a content PE, but 48 
within these trials, further divergence is seen for detection PEs. In contrast, within 49 
prefrontal cortex, activity patterns diverge only on trials with a detection PE, but within 50 
these trials, further divergence is seen for content PEs. These results suggest rich 51 
encoding of both content and detection prediction errors and highlight a distributed 52 
neural basis for inference on content and detection of content in the human brain. 53 
 54 

 55 

Our perceptual experience is characteristically limited: at any given moment in time we are aware of 56 

only a subset of perceptual inputs. Such failures of awareness do not necessarily reflect failures of 57 

sensory processing. For instance, in a widely cited example of a dissociation between perceptual 58 

performance and awareness, a patient with blindsight is still able to respond above-chance to the 59 

identity of a stimulus, despite not seeing that stimulus (Persaud et al., 2011; Weiskrantz et al., 1974). 60 

Similar dissociations have been documented in otherwise healthy subjects using techniques such as 61 

masking, where the content of stimuli which are rendered invisible nevertheless continues to exert an 62 

impact on behaviour (Dehaene et al., 2001; Marcel, 1983; Peters & Lau, 2015, although see (Meyen 63 

et al., 2022). Within the framework of perceptual decision-making, dissociations between 64 

performance and awareness can be modelled as a distinction between discrimination – categorising 65 

some aspect of stimulus identity – and detection – responding as to whether a stimulus is perceived 66 

or not (Azzopardi & Cowey, 1997; Green & Swets, 1966; Peters & Lau, 2015). 67 

Predictive processing offers a powerful and general computational framework for modelling 68 

perception (Hohwy & Seth, 2020; Marvan & Havlík, 2021). Within this framework, the content of 69 

perception is realized by combining prior knowledge (expectations) with incoming sensory evidence 70 

(Bastos et al., 2012; Friston et al., 2006; Kersten et al., 2004; Kok et al., 2013). Mismatches between 71 

expectations and evidence about a particular feature result in prediction errors – tell-tale signatures 72 

of inference on that feature. Previous accounts have suggested that what we become aware of is 73 

determined by specific aspects of perceptual inference, for example, the perceptual hypothesis with 74 

the highest posterior probability (Hohwy, 2012) or the updating of perceptual hypotheses by 75 

unexpected signals (Hobson & Friston, 2014). However, these accounts struggle to accommodate 76 



dissociations between high-fidelity discrimination performance – presumably reflecting intact 77 

perceptual inference – and detection judgments (Lau, 2022). 78 

An alternative proposal is that detection arises from inferences that are distinct from 79 

inferences about content. We recently proposed a computational architecture (the higher-order state 80 

space (HOSS) model) in which a higher-order global inference about the presence or absence of first-81 

order perceptual content supports detection judgements (Lau, 2019; Lau, 2007; Morales, 2022). This 82 

processing step is proposed to be distinct to bottom-up salience or attention (Fleming, 2020). This 83 

model builds on a large body of prior work that associates awareness with changes in higher-order 84 

cognitive processes, including global workspace and higher-order theories of consciousness (Brown, 85 

2015; Dehaene & Changeux, 2011; Lau & Rosenthal, 2011; Mashour et al., 2020). A more general 86 

question that goes beyond these theories of consciousness is whether inferences on content and 87 

detection of content rely on distinct processes in the human brain. Addressing this question would 88 

provide initial empirical constraints on the architecture of predictive processing theories of perception 89 

and consciousness. 90 

 In this study, we investigated to what extent inferences about content and detection of 91 

content correlate with distinct neural substrates measured with fMRI. In what follows, we refer to 92 

predictions about perceptual content that are relevant for discrimination as “content expectations”, 93 

and to predictions about the presence (vs. absence) of content that are relevant for detection as 94 

“detection expectations”. We developed a novel experimental paradigm in which we independently 95 

manipulated expectations about perceptual content (stimulus identity) and detection (whether 96 

stimulus content will be present or absent). In line with a neural hierarchy supporting detection 97 

inferences, we hypothesised that prediction errors about perceptual content would be localized to 98 

sensory cortex (Bastos et al., 2012; Kok et al., 2013) whereas prediction errors on detection would be 99 

localized to prefrontal cortex (Merten & Nieder, 2012; van Vugt et al., 2018).  100 

To preface our results, we first show in a behavioural experiment that both content and 101 

detection expectations influence reaction times. Using a no-report version of the same task in 102 

conjunction with neuroimaging (Tsuchiya et al., 2015), we show that content prediction errors are 103 

predominantly encoded in sensory (visual) cortical areas whereas detection prediction errors are 104 

predominantly encoded in prefrontal cortical areas. However, a strict separation between content and 105 

detection of content is nuanced by findings of mutual interactions between the two types of 106 

prediction error signals in both visual and prefrontal cortices. Taken together, our findings suggest 107 

that inferences on content and detection of content rely on distinct but interacting neural substrates 108 

in the human brain.  109 

 110 



Materials and Methods 111 

Participants. To determine our sample size, we assumed medium effect sizes (Cohen’s d = 0.05) which 112 

require 34 participants to achieve a power of 80% to detect an effect at an alpha level of 0.05. To allow 113 

for drop-out, 36 participants gave written informed consent and participated in the study (mean age 114 

26.4, SD 7.2). All participants were included in the behavioural analysis. 9 participants were excluded 115 

from the MRI analyses:  2 participants took part in the behavioural session but could not be scanned, 116 

6 were excluded due to low catch trial accuracy (below 70%), 1 was excluded due to a technical error 117 

during response recording. 27 participants were included in the final fMRI analyses. Given that 118 

dropout for the MRI session was higher than anticipated, this reduced our power to detect a medium 119 

effect size to 71%. The study was approved by the University College London ethics committee 120 

(approval number 8231_001). Participants were paid £8 for the behaviour session and £10 per hour 121 

for the fMRI session.  122 

 123 

Stimuli. The experiment was programmed in MATLAB R2019 (MathWorks) using Psychtoolbox 124 

(version 3.0.16). In the behavioural session, stimuli were presented on a desktop monitor and in the 125 

scanner, stimuli were presented via a projector at an approximate viewing distance of 58cm. Stimuli 126 

consisted of 8 faces and 8 houses displayed in black and white and embedded in noise. The face stimuli 127 

were selected from the Karolinska Directed Emotional Faces database (Lundqvist, D., Flykt, A., & 128 

Öhman, 1998) with a 50-50 male-female ratio and a neutral expression. The house stimuli were 129 

adapted from the Pasadena houses database collected by Helle and Perona (California Institute of 130 

Technology, Pasadena, California). We controlled for differences in spatial frequency between stimuli 131 

by calculating the frequency phase and magnitude for each stimulus in the set using Fourier 132 

transformation, and then combining the mean spatial frequency magnitude over stimuli with each 133 

individual image’s frequency phase information to create images that are perceptually similar to the 134 

original images but have the same spatial frequency profile. Noise was generated as matrices of 135 

random numbers uniformly distributed between 0 and 1 and combined with each stimulus image in a 136 

weighted sum with the weight on the stimulus image controlled by a visibility parameter. Face and 137 

house stimuli were each presented at 0.9 visibility. Noise images consisted solely of noise. To ensure 138 

participant engagement in the fMRI session, 20% of the trials were catch trials in which 10% of image 139 

pixels were turned green. Participants were instructed to press a button when they saw a green tinge 140 

to the image (more details below). 141 

 142 

Task and procedure. Participants attended the laboratory on two different days within a 5-day 143 

window. On the first day they completed a behavioural training session in which the task and cue-144 



stimulus associations were learned (Fig. 1A). On the second day participants completed the fMRI 145 

session during which they performed the same task but now without requiring a response (Fig. 1B). 146 

To facilitate investigation of whether prediction errors on detection are encoded differently from 147 

prediction errors on content, we independently manipulated the probability of whether any 148 

perceptual content (face or house) would be presented or not (the detection prior), and whether such 149 

content would be a face or a house (the content prior). These probabilities were reflected in the shape 150 

(detection) and colour (content) of the cues (Fig. 1C). For example, an orange circle indicates that most 151 

likely no stimulus would be presented, but that if one were presented, it would likely be a house. To 152 

prevent neural correlates of predictions being contaminated by responses to the physical cues, cue-153 

stimulus mappings within each level were swapped halfway through the experiment. For instance, the 154 

high-probability presence / high-probability face cue could be represented by a blue rectangle in the 155 

first half of the experiment, and an orange circle in the second half. Both mappings were also used 156 

during the behavioural training session to familiarize participants with possibility of such switches.  157 

 158 

 159 

Figure 1. Experimental paradigm. (A) Behavioural paradigm. Trials consisted of 500ms fixation followed by 160 
500ms cue, 700ms fixation, 100ms stimulus. After another 50ms fixation participants had to indicate whether 161 
they saw a face (F), house (H) or noise (N) using the ‘a’, ’s’ or ’d’ keyboard keys respectively. (B) The fMRI 162 
paradigm was the same as the behavioural paradigm except that no response was required, ensuring task-163 
related activations would not reflect reporting requirements. To ensure participants remained engaged with the 164 
task, they were instructed to press a button when the stimulus contained green pixels, which was the case on 165 
20% of the trials. (C) The shape of the cue indicated the probability a stimulus would be present or not (detection 166 
expectation) whereas the colour indicated whether that stimulus was likely to be a face or a house (content 167 
expectation). For example, a blue circle indicated a high probability that no stimulus would be presented but 168 
that if a stimulus were presented, it would likely be a face.   169 

 170 

Behavioural session. At the start of the experiment, participants were trained on the task and the 171 

relationship between the cues and stimuli in 3 phases. Within each phase, task instructions were 172 



presented to participants via a self-paced PowerPoint presentation interleaved with 20 practice trials, 173 

resulting in 60 practice trials in total. In phase 1, participants were introduced to how the colour of 174 

cues indicated stimulus content (e.g. blue: ‘70% chance of being a face’, orange: ‘70% change of being 175 

a house’). During each trial, a cue was presented for 500ms, followed by a fixation cross for 700ms, 176 

and then the stimulus for 100ms (Fig. 1A). After another brief 50ms fixation, a response screen 177 

appeared indicating the different response options (in this phase, only ‘F’ for face and ‘H’ for house 178 

responses were available). Participants were instructed to use the ‘a’ and ‘s’ keys to indicate whether 179 

they saw a face or a house respectively. After pressing the button, their selected category, ‘F’ or ‘H’, 180 

was highlighted for 200ms before continuing to the next trial.  181 

In phase 2, the noise category (absence of content) was added and participants were 182 

introduced to the shape dimension of the cues (e.g. square: ‘70% likely to be a picture (face or house)’, 183 

rectangle: ‘70% likely to be no picture/noise’). They then practiced 20 trials of face-house-noise 184 

categorisation with just the presence/absence shape cues. ‘N’ was added to the response options and 185 

participants used the ‘d’ key to select this ‘no picture’ answer. In the final phase 3, both cue 186 

dimensions were combined and their meaning was explained (e.g. blue square: ‘70% likely to be a 187 

picture AND that picture will likely be a face’). Then, participants completed two blocks of the main 188 

task with these cues, each taking approximately 6 minutes. After this, the cue-stimulus mappings were 189 

swapped, the new cues were explained and another similar training session was completed. Finally, 190 

the participants completed two blocks with these new cue-stimulus mappings.   191 

 192 

fMRI session. To ensure that any correlates of prediction errors were not confounded by response 193 

requirements in the MRI scanner, participants performed a no-report version of the task (Fig. 1B). 194 

During the initial setup scans, participants were presented with instructions reminding them of the 195 

cue-stimulus associations and introducing the catch trial task. To ensure participants continued to pay 196 

attention to the stimuli, we introduced a target detection task: participants were asked to detect 197 

stimuli in which green pixels were intermixed within the image (face, house or noise). Participants 198 

performed 73 practice trials with the first cue-stimulus mapping, lasting ~4 minutes. They then 199 

completed 3 × 8-minute blocks of the main task under the first cue-stimulus mapping, each with 145 200 

trials. After each block, the scanner was stopped and participants were asked whether they needed a 201 

break. Halfway through the experiment, while their structural scan was obtained, participants were 202 

reminded about the second cue-stimulus relationship via another set of instructions and 73 practice 203 



trials. They then completed a further 3 × 8-minute blocks of the main task under the second cue-204 

stimulus mappings. In total, participants performed 870 trials of the main task. 205 

Scanning took place at the Wellcome Centre for Human Neuroimaging, University College 206 

London, using a 3 Tesla Siemens Prisma MRI scanner with a 64-channel head coil. We acquired 207 

structural images using an MPRAGE sequence (1x1x1 mm voxels, 176 slices, in plane FoV = 208 

256x256mm2), followed by a double-echo FLASH (gradient echo) sequence with TE1 = 10ms and TE2 209 

= 12.46ms (64 slices, slice thickness = 2mm, gap = 1mm, in plane FoV = 192 x 192mm2, resolution = 3 210 

x 3mm2) that was later used for field inhomogeneity correction. Functional scans were acquired using 211 

a 2D EPI sequence, optimized for regions near the orbito-frontal cortex (3x3x3mm voxels, TR = 3.36s, 212 

TE = 30ms, 48 slices tilted by 30 degrees with respect to the T > C axis, matrix size = 64x72, Z-shim = 213 

1.4). 214 

 215 

Model simulations. We used core functions of the Higher-Order State Space (HOSS) model 216 

(https://github.com/smfleming/HOSS) to simulate the expected pattern of prediction errors in our 217 

experiment (Fleming, 2020). The model is instantiated as a probabilistic graphical model, where nodes 218 

correspond to unknown variables and the graph structure indicates dependencies between variables 219 

(Fig. 2A). The model is generative, such that higher levels of the hierarchy generate expectations over 220 

variables in the layers below. The highest level, the detection (𝐴) state, is a simple scalar such that 221 

higher probabilities lead to the activation of content (face or house) states in the 𝑊 layer below.  𝑊 222 

is a 1 ×  𝑁 vector that encodes the relative probabilities of each of 𝑁 discrete perceptual states. Here, 223 

𝑁 = 3, reflecting the 3 possible stimulus categories of face, house or noise. To simulate multivariate 224 

sensory data 𝑋, we drew samples from one of three multivariate normal distributions conditioned on 225 

𝑊: ‘noise’ with 𝜇 = [0.5 0.5], ‘face’ with 𝜇 = [1.5 0.5] or ‘house’ with 𝜇 = [0.5 1.5]. The covariance 226 

matrix was specified as  Σ =  [0.1 0; 0 0.1]. The locations of samples in evidence space are arbitrary; 227 

what is important is the mapping between stimulus categories and the detection state. The likelihood 228 

of 𝑋 given 𝑊 is then: 229 

 230 

𝑃(𝑋 = 𝑥|𝑊)~𝑁(𝜇𝑊, Σ) 231 

 232 

Upon receipt of a sample of 𝑋, the model can be inverted to compute the posteriors over 𝐴 and 𝑊 by 233 

marginalising: 234 

 235 

𝑃(𝐴|𝑋 = 𝑥)  ∝ ∑ 𝑃(𝐴)𝑃(𝑊|𝐴)𝑃(𝑋 = 𝑥|𝑊)

𝑊

 236 

https://github.com/smfleming/HOSS


𝑃(𝑊|𝑋 = 𝑥)  ∝ ∑ 𝑃(𝐴)𝑃(𝑊|𝐴)𝑃(𝑋 = 𝑥|𝑊)

𝐴

 237 

 238 

We simulated four possible prior states, reflecting the four cues in the experiment: 𝑝(𝐴) =239 

0.8 & 𝑝(𝑊𝑓𝑎𝑐𝑒 = 0.8),  𝑝(𝐴) = 0.8 & 𝑝(𝑊𝑓𝑎𝑐𝑒 = 0.2), 𝑝(𝐴) = 0.2 & 𝑝(𝑊𝑓𝑎𝑐𝑒 = 0.8), 𝑝(𝐴) =240 

0.2 & 𝑝(𝑊𝑓𝑎𝑐𝑒 = 0.2). For each cue-target combination, prediction error was computed at both the 241 

detection (𝐴) and content (𝑊) layers as the Kullback-Leibler (KL) divergence between the prior and 242 

posterior distributions. The simulated categorisation response was determined by the 𝑊-state with 243 

the highest poster probability. Only correct trials were used to calculate the prediction errors. We 244 

simulated 300 trials per cue-target combination and 30 participants in total.  245 

 246 

Behavioural analysis. We first tested whether there was a congruency effect of the content and 247 

detection cues by comparing valid versus invalid trials for both cue types using simple t-tests on both 248 

accuracy and reaction time (RT). Trials with RTs faster than 200ms or slower than 2s were removed 249 

prior to analysis. For the content congruency effects, noise trials were ignored. To investigate the 250 

effects of W-level (content) and A-level (detection) prediction errors in more detail, we ran a linear 251 

mixed-effects analysis using MATLAB’s (R2021b) ‘lme.m’ function, with the following model: 252 

 253 

log (𝑅𝑇)~ 𝐾𝐿𝑤 + 𝐾𝐿𝐴 + 𝐾𝐿𝑊 × 𝐾𝐿𝐴 + (1 | 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 254 

 255 

where 𝐾𝐿𝑊 and 𝐾𝐿𝐴 are proxies for the qualitative patterns expected for W and A-level prediction 256 

errors per cue-target combination respectively, calculated using the HOSS model.  257 

 258 

fMRI pre-processing. Data pre-processing followed the procedure described in (Mazor et al., 2020; 259 

Morales et al., 2018): Imaging analysis was performed using SPM12 (Statistical Parametric Mapping; 260 

www.fil.ion.ucl.ac.uk/spm). The first five volumes of each run were discarded to allow for T1 261 

stabilization. Functional images were realigned and unwarped using local field maps (Andersson et al., 262 

2001) and then slice-time corrected (Sladky et al., 2011). Each participant’s structural image was 263 

segmented into gray matter, white matter, CSF, bone, soft tissue, and air/background images using a 264 

nonlinear deformation field to map it onto template tissue probability maps (Ashburner & Friston, 265 

2005). This mapping was applied to both structural and functional images to create normalized images 266 

in Montreal Neurological Institute (MNI) space. Normalized images were spatially smoothed using a 267 

Gaussian kernel (6 mm FWHM). We set a within-run 4 mm affine motion cut-off criterion. Pre-268 

processing and construction of first- and second-level models used standardized pipelines and scripts 269 

available at https://github.com/metacoglab/MetaLabCore/. 270 



 271 

Univariate analysis. To test where in the brain activation correlated with W and A-level prediction 272 

errors, we performed univariate analyses within SPM12 in MATLAB R2021b. Main effects of A 273 

(detection) and W (content) level prediction errors were characterised using the model-predicted KL 274 

divergence per trial type (Fig. 2). The general linear model (GLM) contained one regressor aligned to 275 

the onset of the stimulus with two parametric modulators, one for each type of prediction error. The 276 

onset of the cues and responses were included as nuisance regressors, as were movement 277 

parameters, their first derivates and the mean amplitudes of voxels containing white matter and 278 

cerebral spinal fluid (CSF). Regressors were specified per run. Significance testing was implemented at 279 

the group-level with a t-test of each KL regressor against 0. Correction for multiple comparisons was 280 

applied at the cluster-level (P < 0.05, family-wise error corrected), using a cluster-forming threshold 281 

of P < 0.001, uncorrected. Effects were small-volume corrected using either (a) a posterior mask that 282 

was generated by combining the following regions from the AAL atlas (Destrieux et al., 2010):  all 283 

occipital regions, inferior temporal gyrus, calcarine, cuneus, and lingual gyrus or (b) a frontal mask that 284 

included: all frontal regions, rectus, insula and anterior cingulate. For the representational similarity 285 

analysis (see below), beta weights per cue and target combination were estimated by running a 286 

separate GLM with the same nuisance regressors as before but now instead of the KL divergence, 287 

including a condition regressor per cue-target combination (12 in total), centred on the target onset.   288 

 289 

Representational similarity analysis. To investigate the representational structure of the different 290 

types of prediction errors, we performed a searchlight representational similarity analysis (RSA). RSA 291 

was performed using MATLAB R2021b and Timo Flesch’s RSA toolbox 292 

(https://github.com/TimoFlesch/fmri_utils/tree/master/RSA) in combination with custom MATLAB 293 

code. We defined 5 different model RDMs (Representational Dissimilarity Matrices) encoding 294 

dissimilarity between (1) the presented stimuli, (2) content priors, (3) detection priors, (4) content 295 

prediction errors and (5) detection prediction errors (Fig. 5A). Neural RDMs were generated per 296 

participant by calculating the Euclidean distance between the activation patterns of different 297 

conditions. All within-run comparisons were set to NaN, distances along the diagonals of all model and 298 

neural RDMs were also set to NaN, and the lower-triangles were transformed into distance vectors. 299 

Per searchlight, a GLM was run to predict the neural RDM from the model RDMs. Group-level 300 

inference was performed by testing the inferred beta weights per RDM regressor over participants 301 

against 0 using a one-sample t-test. Correction for multiple-comparisons was performed using family-302 

wise error correction (p < 0.05) at the whole-brain level, using a cluster-forming threshold of p < 0.001, 303 

uncorrected (as before).   304 

https://github.com/TimoFlesch/fmri_utils/tree/master/RSA


 305 

Results 306 

To independently manipulate predictions about perceptual content and detection of content, we 307 

developed a novel perceptual discrimination task with compound cues (Fig. 1). In the behavioural 308 

version of the experiment, the task was to infer whether a briefly shown stimulus was a face, a house 309 

or noise (Fig. 1A). Preceding the stimulus was a compound cue in which the shape indicated the 310 

probability of seeing a stimulus (face or house) versus noise, regardless of its identity – an expectation 311 

about the detection of content, rather than content itself. In contrast, the colour of the cue indicated 312 

the probability of a stimulus being a face or a house, regardless of whether it was likely to be present 313 

– an expectation about content, rather than detection of content. For example, a blue circle indicated 314 

that there was a high likelihood no stimulus would be shown (detection expectation) but that if a 315 

stimulus was shown, it would likely be a face (content expectation; Fig. 1C).  316 

 317 

Simulations predict diverging patterns of prediction error on content and detection. 318 

We used the higher-order state space (HOSS) model (Fleming, 2020) to simulate expected patterns of 319 

prediction errors (PEs) for content and detection expectations in our experiment. HOSS specifies a 320 

Bayesian network in which higher-order “detection states” (A) furnish expectations about the 321 

presence of content, with content-specific “content states” (W) nested under the detection state layer 322 

(Fig. 2A). In the current experiment, content states W denote [face, house, noise] and detection state 323 

A encodes [present, absent] irrespective of content (face and house are mapped to “present”, and 324 

noise to “absent”). We simulated the model with priors for the W and A layers set to the empirical 325 

prior probabilities used to construct the compound cues. Upon receipt of a multivariate sensory input 326 

X, the model is inverted and posterior probabilities over both content and detection of content can 327 

be derived. 328 

HOSS naturally nests high-dimensional perceptual content (the W layer) within a more 329 

abstract state that tracks the magnitude or reliability of higher-dimensional perceptual signals. 330 

However, HOSS is only one of several possible architectures that could support dissociable inferences 331 

on content and detection of content – for instance, a “flat” architecture with no explicit representation 332 

of global presence vs. absence may suffice (Whyte & Smith, 2021). The more general point is that 333 

inferences on detection of content are proposed to be distinct from inferences on specific contents, 334 

with the former being factorised with respect to the latter (Fleming, 2020). 335 

 This can be appreciated in the pattern of prediction errors simulated from the model (Figure 336 

2). Simulated prediction errors (Kullback-Leibler divergences) within the detection and content layers 337 

for each cue-target combination are shown in Figures 2B and 2C, respectively. In Figure 2B, inferences 338 



about detection of content are predominantly sensitive to expectations about presence vs. absence, 339 

and not about specific stimulus contents. For example, a large detection PE is generated when the 340 

model expects to see something, but only noise is presented, irrespective of whether the content layer 341 

is expecting a face (prFace) or house (prHouse, Fig. 2B; two green bars on the left). In contrast, within 342 

the content layer, the largest PEs are observed when content expectations are violated, irrespective 343 

of detection expectations. For example, a large PE is generated when a face is expected but a house 344 

is presented, regardless of whether the detection layer expected to see a stimulus (prFace) or not 345 

(abFace, Fig. 2C; dark blue bars). Note that in the content layer, prediction errors for noise are low 346 

because a noise patch contains an absence of information about either feature (face or house). 347 

Strictly, in the model, noise is an absence of any input supporting either of the two features – whereas 348 

in our experimental paradigm, we use a noise patch to indicate the ‘absence’ of content. As noise does 349 

not contain meaningful content at the level of object categories such as faces and houses, this is a 350 

reasonable approximation to the simulations. Crucially, the shared variance between the A and W PEs 351 

is low (correlation of -0.14 between the two simulated condition vectors), showing that our 352 

experimental design allows us to independently investigate neural and behavioural correlates of 353 

content and detection PEs.  354 

 355 

 356 

Figure 2. Simulated prediction errors within content and detection layers of the higher-order state space 357 
(HOSS) model. (A) Graphical representation of the HOSS model. Perceptual states W and detection state A are 358 
inferred based on sensory input X. Simulated prediction errors per cue-target combination within the A-359 
detection layer (B) and W-content layer (C) are plotted. The x-axis reflects the cues, with the first two letters 360 
indicating whether the cue indicated high probability of the presence (pr) or absence (ab) of content (the 361 



presence expectation), followed by whether it indicated a high probability of being face or house (the content 362 
expectation). The y-axis indicates the simulated KL-divergence between the prior and the posterior at the 363 
different levels of the model (a proxy for prediction error, or how much belief change is induced by a sensory 364 
sample). Error bars indicates standard errors of the mean (SEM) over simulation samples.  365 

 366 

Content and detection expectations both influence behaviour. 367 

We next investigated whether detection and content expectations separately modulated 368 

discrimination reaction times in a behavioural experiment. The logic of our approach is grounded in 369 

previous findings that expected stimuli lead to faster responses, whereas violations of expectations 370 

(prediction errors) lead to behavioural slowing (Brodersen et al., 2008; Carpenter & Williams, 1995; 371 

Mars et al., 2008). Thirty-six participants performed the behavioural version of the task (Fig. 1A). We 372 

first ran a model-free analysis to investigate whether there were congruency effects of content (only 373 

face and house trials) and detection cues on reaction time (RT). RTs were indeed faster for trials with 374 

a valid content cue (M = 631.38ms, SD = 101.63ms) compared to trials with an invalid content cue (M 375 

= 644ms, SD = 109ms; t(35) = 2.12, p = 0.041, d = 0.12) and also faster for trials with a valid detection 376 

cue (M = 629ms, SD = 109ms) compared to trials with an invalid presence cue (M = 638ms, SD = 104ms, 377 

t(35) = 2.04, p = 0.049, d = 0.08). The interaction between the two cue dimensions (content and 378 

detection) was not significant (t(35) = -1.92, p = 0.063).   379 

We next ran a model-based linear mixed-effects regression analysis predicting reaction times 380 

from the simulated content and detection PEs obtained from the HOSS model (entered as random 381 

effects) with random intercepts for each participant (Fig. 3B). Both content PEs (beta = 0.028, 382 

t(16508.07) = 3.01, p = 0.0026; Fig. 3B, blue bar) as well as detection PEs (beta = 0.022, t(16508.04) = 383 

2.21, p = 0.027; Fig. 3B, red bar) led to significant increases in reaction time. The interaction between 384 

content and detection PEs was again not significant (t(16508.04) = -0.63, p = 0.53; Fig. 3B, grey bar).  385 

 386 

 387 

Figure 3. Behavioural results. (A) Reaction times (RTs) separated by valid and invalid expectations on content 388 
(blue) and detection (red). Points represent individual participants (B) Results of a linear mixed-effects analysis 389 
using simulated prediction errors (Fig. 2) as predictors of response times. The green bar reflects the beta 390 
estimate for a model including a predictor consisting of the sum of the simulated content and detection 391 



prediction errors on each trial. * p < 0.05, ** p < 0.005, *** p < 0.0005. Error bars reflect standard errors of the 392 
mean (SEM).  393 

 394 

To explore whether the effects of content and detection PEs on reaction times were additive, we also 395 

tested another model in which the PEs of the two components were summed (i.e. the sum of the K-L 396 

divergences displayed in Fig. 2A and B) to create one combined PE regressor per trial. This summed 397 

predictor was associated with a significant increase in reaction time, as expected (beta = 0.027, 398 

t(16541) = 3.19, p = 0.0014; Fig. 3B, green bar). Model comparison indicated that a model containing 399 

the summed PE (BIC = 417.81) was a more parsimonious explanation of the reaction time data than a 400 

model with independent PE terms (BIC = 426.23).   401 

Taken together, our analysis of reaction time effects reveals that, at the level of behaviour, 402 

detection and content PEs both lead to significant slowing, and that their influence is best modelled 403 

as a linear sum of the two PE terms. On the basis of behavioural data alone, we are unable to conclude 404 

whether inferences on content and detection of content are supported by distinct (neural) 405 

computations. Therefore, in order to investigate this, we next turned to neuroimaging to ask how 406 

these two types of PEs are encoded in the brain.  407 

 408 

Neural correlates of content and detection prediction errors. 409 

Twenty-seven of the participants who had completed the behavioural experiment went on to perform 410 

a no-report version of the same task while undergoing whole-brain functional neuroimaging (Fig. 1B). 411 

Participants passively viewed the compound cues and stimuli without being required to explicitly 412 

categorise each stimulus. Instead, to ensure attention, a button press was required on catch trials 413 

(indicated by green pixels within the stimulus, 20% trials). Given that the catch manipulation was 414 

independent of our main effects of interest, these trials were included in subsequent analyses. 415 

We pursued two complementary analysis approaches that aimed to identify a) univariate 416 

signals and b) multivariate patterns covarying with either content or detection PEs. First, to identify 417 

univariate brain activity modulated by detection and content PEs, we ran a whole-brain GLM entering 418 

the simulated K-L divergences from the detection and content layers of the HOSS model as regressors. 419 

Content and detection PEs correlated with activation in different brain areas (Fig. 4). To test our a 420 

priori hypotheses that content PEs would be observed in visual sensory areas and detection PEs in 421 

prefrontal areas, we applied small-volume corrections based on posterior and frontal masks.  422 

 423 



 424 

Figure 4. Univariate correlates of prediction errors on detection and content. (A,B)  Brain areas that 425 
significantly correlated positively with the KL W regressor (A) and negatively with the KL A regressor (B) 426 
thresholded at p < 0.001 uncorrected. (C) Activation profile of the region that showed a significant (p<0.05, FWE-427 
small-volume corrected) effect of the KL A regressors, circled in blue in (B). Activation is z-scored per participant 428 
to account for large variations in mean amplitude between participants. Error bars reflect SEM.  429 

 430 

A positive effect of the content PE regressor in the fusiform gyrus (Fig. 4A) did not survive correction 431 

for multiple comparisons and we therefore refrain from interpreting it further (t(26) = 4.77, cluster-432 

level pFWE-corrected = 0.052). The detection PE regressor showed a negative correlation with activation in 433 

the left inferior frontal cortex when applying small-volume correction within a frontal mask (IFC; t(26) 434 

= 5.55, cluster-level pFWE-corrected = 0.026; Fig. 4C), close to voxels showing (uncorrected) effects of the 435 

content PE regressor. There was no significant detection PE effect when applying small-volume 436 

correction within a posterior mask (all p-values > 0.338). Within this region, when presence was 437 

expected (prFace and prHouse) activation tended to be higher when this expectation was confirmed 438 

and content was presented (irrespective of whether this stimulus was a face or a house) compared to 439 

when noise was presented (Fig. 4D). Conversely, when no content was expected (abFace or abHouse), 440 

activation was higher when this expectation was confirmed, and noise was presented, compared to 441 

when a face or house was presented (Fig. 4D). These results show that activity in left IFC decreases 442 

when detection predictions are violated. 443 

 444 

Rich representations of content and detection prediction errors in sensory and prefrontal brain 445 

networks.  446 

While univariate analyses can reveal low-dimensional neural signatures of content and detection 447 

prediction errors, they are blind to changes in distributed neural codes that might support prior and 448 

posterior beliefs in richer representational spaces. Therefore, we next investigated whether prediction 449 

errors were also encoded in multivariate patterns rather than univariate amplitude differences, using 450 

representational similarity analysis (RSA). We formulated representational dissimilarity matrices 451 



(RDMs) that identified dissimilarities between conditions in either the prior (cue), stimulus or 452 

prediction error, with prior and prediction error RDMs being specified separately for the content and 453 

detection layers of the model (Fig. 5A). These RDMs were designed to test whether the activity 454 

patterns in one set of conditions sharing a specific feature (e.g. all conditions in which a face was 455 

presented) were more similar to each other (lower distance between them) than to conditions with a 456 

different feature.  457 

For the prediction error RDMs, we hypothesized that if an area coded for PEs at a given level, 458 

the presence of a PE would lead to convergence towards a specific activity pattern. In contrast, in the 459 

absence of a PE at that level, activity patterns would reflect noise, and be random (uncorrelated). 460 

Therefore, for both content and detection PEs, we assumed that conditions with a PE would be similar 461 

to other conditions with a PE, whereas conditions without a PE would be dissimilar both to each other 462 

and to conditions with a PE (Fig. 5A). Note that for all RSA analyses, the diagonal elements were 463 

removed before computing similarity with neural data. 464 

We found strong positive correlations between the stimulus RDMs and posterior brain regions 465 

(Fig. 5B, Appendix A - Table 1) indicating that within these regions, stimuli belonging to the same 466 

category were encoded in similar activation patterns, irrespective of prior expectations. Furthermore, 467 

we found that the detection prior RDM showed significant positive correlations with activity patterns 468 

in the ventromedial prefrontal cortex (vmPFC; Fig. 5C, Appendix A - Table 2), indicating that in this 469 

region, the activity patterns of conditions in which presence was expected were more similar to each 470 

other than to conditions in which stimulus absence was expected, and vice-versa, irrespective of 471 

expectations about content (face or house). We did not find any significant correlation with the 472 

content-level prior RDM.  473 



 474 

Figure 5. RDM hypotheses and similarity coding of stimulus- and prior-related information. (A) 475 
Representational Dissimilarity Matrices (RDMs) reflecting different hypotheses about the similarity of neural 476 
patterns of different conditions based on encoding of content prior, detection prior, stimulus, content prediction 477 
error and detection prediction error. Darker colours indicate higher similarity, i.e. lower distance, between 478 
conditions. Only the Stimulus and Detection Prior RDMs showed significant positive correlations with brain 479 
activity. (B) Similarity in stimulus category encoding (FWE-corrected at p < 0.05): conditions in which stimuli of 480 
the same category were presented were more similar than those in which different stimuli were presented. Beta 481 
values for region of interest (ROI) based on this contrast encircled in blue are shown below. All RDMs significantly 482 
predicted activation patterns in this ROI, except the content prior, with all p-values < 0.006 (uncorrected). (C) 483 
Similarity in detection prior encoding (FWE-corrected at p < 0.05): conditions in which presence was expected 484 
were more similar to each other than to conditions in which absence was expected and vice-versa. Beta values 485 
for the blue encircled ROI are shown below. All RDMs significantly predicted activation patterns in this ROI, 486 
expect the content prior, with all p-values < 0.0006 (uncorrected). Statistical maps in (B) and (C) are thresholded 487 
at p < 0.001 uncorrected; see Tables 2 and 3 for details of clusters surviving whole-brain correction including the 488 
EVC and vmPFC ROIs. 489 

 490 

When inspecting the beta weights for each of the five RDMs in selected brain regions, we observed 491 

that activity patterns in both early visual cortex (EVC) as well as vmPFC showed strong negative 492 

relationships with both our hypothesized content and detection PE RDMs (see Fig. 5 beta plots below 493 

panels B and C). Negative relationships indicate that the conditions that are hypothesized to show 494 

similar patterns of activity in fact show dissimilar patterns of activity in the brain, and vice versa. 495 

Within the RSA literature, both similarity- and dissimilarity-based neural coding schemes have been 496 

hypothesized (Kriegeskorte et al., 2008). For example, in the fusiform face area, faces are encoded as 497 

more similar to other faces than to houses (positive correlation with a category membership RDM) 498 

whereas in face-selective parts of the inferotemporal cortex (IT), faces are encoded as more dissimilar 499 

to other faces, indicating exemplar encoding, revealing that this region is sensitive to the identity of 500 



the face (negative correlation with a category membership RDM (Kriegeskorte et al., 2008). In the 501 

current context, negative correlations with the hypothesized PE RDMs would therefore be in line with 502 

the corresponding brain region being sensitive to the identity of the PE (e.g. whether it tracks a 503 

violation of face or house predictions). 504 

Therefore, to further explore these negative correlations, we expanded our search to examine 505 

negative correlations with content and detection PE RDMs in a whole-brain searchlight analysis. This 506 

approach indeed revealed significant dissimilarity PE encoding in several brain areas (Fig. 6). Content 507 

PE-related patterns were predominant in posterior sensory regions (Fig. 6A, Appendix A – Table 3) and 508 

detection PE-related patterns were predominant in prefrontal regions (Fig. 6B, Appendix A -Table 4). 509 

However, directly comparing detection PE RDMs against content PE RDMs in a whole-brain contrast 510 

revealed no significant differences between the two PE maps. Together these results indicate that 511 

while neural patterns associated with content and detection PEs are predominantly expressed in 512 

different parts of the brain, this distinction is graded rather than discrete.  513 

To further characterize the relationship between content and detection PEs within different 514 

brain areas, we examined activity patterns within functional ROIs selected for their dominance of 515 

content- or detection-PE effects: the early visual cortex (EVC) and the Precuneus for content PEs and 516 

the ventromedial prefrontal cortex (vmPFC) for detection PEs (encircled in blue in Fig. 6A&B). Note 517 

that effects of the other RDMs in these ROIs cannot be explained by collinearity between the RDMs, 518 

as the maximum correlation between regressors was low (0.11). Besides the expected content PE 519 

effect, both the EVC and the Precuneus also showed a significant negative correlation with the 520 

detection PE RDM (EVC: t(26) = -3.68, p = 0.0011; Precuneus: EVC: t(26) = -4.93, p = 0.0008; Fig 6C&E). 521 

Furthermore, the vmPFC ROI defined based on the detection PE effect also showed a significant 522 

negative correlation with the content PE RDM (t(26) = -3.99, p = 0.0005). This suggests that the brain 523 

regions that are modulated by content PEs are also sensitive to detection PEs and vice versa.   524 

 525 



 526 

Figure 6. Dissimilarity coding of prediction errors. (A) Dissimilarity in the encoding of content prediction errors: 527 
conditions in which there was a prediction error on content (e.g. a face was expected and a house was 528 
presented) were more dissimilar/less similar to each other than to conditions without a prediction error on 529 
content. (B) Dissimilarity in the encoding of detection prediction errors: conditions in which there was a 530 
prediction error on detection (e.g. noise was expected but a face or house was presented) were more 531 
dissimilar/less similar to each other than to conditions without a prediction error on detection. (C, E, G) Beta 532 
values for the three blue encircled regions of interest (ROI) for each of the RDMs. * indicates the RDM 533 
significantly predicted activation pattern in this ROI (Bonferroni corrected). (D, F, H) Multidimensional scaling 534 
(MDS) of activation patterns for each cue-target combination in the three ROIs. Top: MDS in 3 dimensions with 535 
each cue-target combination plotted separately. Bottom: MDS in 2 dimensions in which conditions are grouped 536 
together based on whether they contain prediction errors on both content and detection (green), only on 537 
content (blue), only on detection (red) or on neither (black). Statistical maps in (A) and (B) are thresholded at p 538 
< 0.001 uncorrected; see Tables 4 and 5 for details of clusters surviving whole-brain correction including the EVC, 539 
precuneus and vmPFC ROIs. 540 
 541 

To further characterize the representational structure of activity profiles in these regions, we 542 

performed classical multi-dimensional scaling (MDS) on the similarity of the activation patterns. MDS 543 

visualizes the similarity in neural patterns between conditions by projecting the data into a lower 544 

dimensional space in which similar conditions are plotted nearby to each other. We note that such 545 

visualisations were expected to recapitulate the RDM used to identify the ROI – for instance, we 546 

expect that within vmPFC we should see detection PEs as being encoded distinct from other trial types. 547 

However, it is possible that the nature of voxel patterns within these candidate ROIs diverge in other 548 

interesting ways.  549 

Within the EVC, all conditions that did not contain a content PE were represented as similar 550 

to each other (Fig. 6D, red and black dots) whereas conditions containing a content PE were dissimilar 551 

to each other as well as to other conditions, as expected from the content PE RDM (Fig. 6C, green and 552 

blue dots). Interestingly, however, and in line with the observation that the detection PE RDM also 553 

showed a significant effect in this region, content PEs that also violated detection predictions (green 554 

dots) were dissimilar both to each other and to prediction errors on content only (blue dots). Together, 555 



this suggests that in the EVC, once a content prediction is violated, activation diverges according to (a) 556 

the exact type of content violation (face > house or house > face) and (b) whether the detection 557 

prediction is also violated or not. Note that in the EVC, prediction errors on detection only (red dots) 558 

were represented as similar to conditions in which no prediction error occurred (black dots), 559 

suggesting that the EVC is only modulated by detection PEs when content predictions are violated. 560 

Within the vmPFC, in contrast, all conditions that did not contain a detection PE were 561 

represented as similar to each other (Fig. 6F, blue and black dots) whereas conditions containing a 562 

detection PE were dissimilar to each other as well as to other conditions, as expected from the 563 

detection PE RDM (Fig. 6F, green and red dots). However, and going beyond the hypothesis RDM, MDS 564 

showed that trials that additionally violated content predictions (green dots) were also dissimilar to 565 

each other and to prediction errors on detection only (red dots), in line with the observation that 566 

content PEs also modulate activity patterns in this region. Note that in the vmPFC, in contrast to the 567 

EVC, conditions with prediction errors on content only (blue dots) were represented as similar to 568 

conditions in which no prediction error occurred (black dots), suggesting the vmPFC is only modulated 569 

by content PEs when detection predictions are violated as well. Finally, the (pre-)cuneus showed a 570 

significant effect of both the content and detection PE RDMs and closer inspection of the activity 571 

patterns in this region (Fig. 6 H) showed that, in contrast to the EVC and vmPFC, in the (pre-)cuneus 572 

all conditions with any kind of PE were associated with diverging activity patterns.  573 

 574 

Discussion 575 

In this study we set out to test whether inferences about perceptual content (what is perceived) and 576 

inferences about detection of that content (whether something is perceived) are underpinned by 577 

distinct neural substrates. To this end, we developed a novel experimental paradigm that used 578 

compound cues to separately induce expectations about perceptual content and detection of that 579 

content. We found that both content and detection expectations influenced reaction times, with 580 

higher probability stimuli being identified more quickly. Using a no-report version of this paradigm in 581 

conjunction with fMRI, we found that prediction errors on content correlated most strongly with 582 

posterior visual brain areas, whereas prediction errors on detection correlated most strongly with 583 

prefrontal brain areas. However, contrary to our hypothesis, these representations were not 584 

orthogonal. Instead, prediction errors on one level gated the expression of prediction errors at the 585 

other level. Taken together, our results suggest that inferences on content and detection of content 586 

rely on distinct but interacting neural computations.  587 

We observed a negative univariate effect of detection prediction errors in IFC, indicating that 588 

in this region, activation was higher when a detection prediction was confirmed. One possibility is that 589 



this region encodes a detection prior, with activity being strengthened in conditions in which these 590 

priors are reinforced by matching input. However, within most neuronal models of predictive 591 

processing, priors and prediction errors are assumed to be encoded within the same brain region 592 

(Bastos et al., 2012). An alternative possibility is that a confirmation effect in IFC reflects a signature 593 

of perceptual confidence (Cortese et al., 2016; Hilgenstock et al., 2014; Shekhar & Rahnev, 2018), 594 

which is likely to be higher when predictions are confirmed compared to when they are violated. 595 

Further work is needed to identify neural substrates supporting putative detection-specific confidence 596 

signals, and distinguish these from other aspects of metacognition (Mazor et al., 2020, 2022). 597 

Furthermore, our representational similarity analyses (RSA) revealed that prediction errors at 598 

both content and detection levels were encoded as being dissimilar to each other. The pattern of 599 

dissimilarity that we found indicates a sharp distinction in the initial trigger for PE coding in EVC and 600 

prefrontal cortex – in EVC, the trigger for coding PEs is a violation of content expectations, whereas in 601 

vmPFC, the trigger for coding PEs is a violation of detection expectations. Specifically, a divergence in 602 

activity patterns in EVC is triggered by a content PE – here, a violation in the expectation of face or 603 

house. Once a content PE is triggered, then EVC activity patterns go on to represent the type of PE 604 

within the full compound cue space, tracking violations of both content and detection expectations. 605 

In contrast, a divergence in activity patterns in vmPFC is triggered by a detection PE – whether an 606 

absence expectation has been violated by stimulus presence, or whether a presence expectation has 607 

been violated by stimulus absence. Once a detection PE is triggered, then vmPFC activity patterns also 608 

go on to represent the type of PE within the full compound cue space, inheriting information about 609 

content (face vs. house) violations. The Precuneus shows an intermediate effect, representing 610 

diverging patterns for every type of PE.  This pattern dissimilarity suggests that prediction errors are 611 

encoded in an exemplar specific way, similar to individual faces in IT (Kriegeskorte et al., 2008). Further 612 

work is needed to fully understand what this dissimilarity-based coding implies for the computational 613 

underpinnings of inferences about perceptual content and detection. 614 

As our neuroimaging results were obtained in the absence of reports, they provide evidence 615 

in favour of an architecture in which detection prediction errors are automatically elicited even under 616 

passive viewing conditions. Our results are consistent with other studies observing prefrontal 617 

correlates of subjective detection in the absence of overt report (Hatamimajoumerd et al., 2022). We 618 

note that the focus of the current study is on distinguishing between neural signatures of inference 619 

on content, and detection of content, and did not set out to measure variation in subjective perception 620 

or awareness. However, our results bear on the possible neural architectures supporting predictive 621 

processing accounts consciousness, as inferences on detection – i.e. whether subjects are “aware” or 622 

“unaware” of particular stimulus features – are the cornerstone of conscious reportability. We also 623 



note that our findings cannot be explained by mere stimulus effects, as our focus here is on how the 624 

stimulus interacts with an experimentally-manipulated expectation, thereby generating a prediction 625 

error signal. Future studies are necessary to investigate whether the inferences on content and 626 

detection we identify here relate to changes in conscious experience while keeping stimulus input 627 

near threshold (Frith et al., 1999; Leopold & Logothetis, 1996).  628 

One example of such an approach is a recent MEG study which revealed a neural signature of 629 

the content of false percepts in the occipital lobe, whereas confidence in stimulus detection was 630 

reflected in a parieto-frontal network (Haarsma, Hetenyi, et al., 2024). Combining such a false percept 631 

paradigm with the type of compound content-detection cue employed here (Haarsma, Kaltenmaier, 632 

et al., 2024) is a promising avenue to investigate how the neural correlates identified here relate to 633 

fluctuations in conscious experience. To ensure that effects are not due to reports in that case, future 634 

research could develop no-report read-outs of perceptual content such as eye movements (Frassle et 635 

al., 2014; Frässle et al., 2013) to capture aspects of both discrimination and detection. Finally, It would 636 

also be interesting to seek to causally intervene on regions (such as vmPFC) exhibiting signatures of 637 

detection prediction error (for instance, using multivariate neurofeedback (Taschereau-Dumouchel et 638 

al., 2021)), and ask whether and how such interventions alter conscious experience. 639 

Several ideas have been advanced to accommodate conscious awareness (in the form of 640 

subjective detection) within a predictive processing framework (Clark et al., 2019; Doerig et al., 2020; 641 

Fleming, 2020; Hobson & Friston, 2014, 2012; Hohwy et al., 2008; Hohwy & Seth, 2020). One 642 

instantiation of such an architecture proposes that conscious detection arises from inferences deep 643 

within a perceptual hierarchy. Interestingly, in line with this hierarchical view, detection PEs were 644 

preferentially localised to a vmPFC region overlapping with the default model network (DMN) (Raichle, 645 

2015) which is proposed to occupy a deep position within a cognitive hierarchy (Margulies et al., 2016). 646 

Other work has linked the vmPFC to carrying information about latent (unobservable) perceptual 647 

spaces, such as hidden states governing task structure, or links between arbitrary stimuli on a graph 648 

(Park et al., 2020; Schuck et al., 2016). Another key node of the DMN, the Precuneus, was also evident 649 

in the PE RSA analysis, and showed clear detection- as well as content-related prediction error effects 650 

(Raichle, 2015). Other research has shown that the Precuneus is modulated by both the level of 651 

awareness (Bisenius et al., 2015; Cavanna, 2007; Kjaer et al., 2001) and represents stimulus content 652 

(Doesburg et al., 2009) – consistent with it inhabiting an intermediate position in a perceptual 653 

hierarchy. 654 

In conclusion, using a novel experimental paradigm we show that prediction errors on 655 

perceptual content and detection of content are encoded in distinct but interacting activity patterns 656 

in the human brain. These results are consistent with a proposal that detection may require distinct 657 



neural computations that go beyond those required for inferences on content itself. More generally, 658 

our findings provide a framework for future empirical and theoretical studies that incorporate and 659 

model detection and discrimination as distinct dimensions within powerful predictive processing 660 

accounts of perception and cognition. 661 
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Appendix A 874 

Table 1. Stimulus-encoding RSA clusters. All clusters are significant at p < 0.05 FWE corrected for multiple 875 
comparisons within the whole brain volume, with a cluster-forming threshold of p < 0.001 uncorrected. Clusters 876 
are included in the table if they surpass a threshold of 50 voxels. T-values, labels and coordinates are given for 877 
the peak within each cluster.  878 

N voxels t-value AAL label X Y Z 

7541 9 Cuneus R 8 -74 40 

6226 7.8 Hippocampus R 20 -39 1 

5986 7.8 Cerebellum L -1 -79 -8 

5921 8.2 Cerebellum Crust1 R 38 -74 -22 

4289 8.6 Hippocampus L -23 -38 4 

3068 6.9 Cerebellum L -32 -64 -24 

1129 7.4 - -4 19 37 

1121 7 Vermis 8 -5 -63 x -31 

877 7 - 2 9 -5 

812 7.2 Cingulum Mid R 3 -16 34 

612 6.8 Frontal Mid L -43 34 32 

560 6.7 Cerebellum L -32 -43 -27 

498 7.1 Precuneus L -10 -43 -27 

372 7.8 Parietal Sub L  -22 -64 51 

347 7.8 - -23 22 -5 

126 6.4 - -15 -2 25 

107 7 Cerebellum R 25 -53 -41 

104 6.4 Cerebellum R -14 -64 -36 

93 6.7 Frontal Inf Oper L -43 9 23 

79 6.3 Cerebellum L -12 -56 -48 

55 6.6 Frontal Inf L -43 23 22 

 879 

Table 2. Detection prior RSA clusters. All clusters are significant at p < 0.05 FWE corrected for multiple 880 
comparisons within the whole brain volume, with a cluster-forming threshold of p < 0.001 uncorrected. T-values, 881 
labels and coordinates are given for the peak within each cluster.  882 

N voxels t-value AAL label X Y Z 

318 7.2 Rectus R 10 32 -18 

119 6.3 Frontal Mid Orb R 28 39 -12 

 883 

 884 



Table 3. Content prediction error RSA clusters. All clusters are significant at p < 0.05 FWE corrected for multiple 885 
comparisons within the whole brain volume, with a cluster-forming threshold of p < 0.001 uncorrected. Clusters 886 
are included in the table if they surpass a threshold of 50 voxels. T-values, labels and coordinates are given for 887 
the peak within each cluster.  888 

N voxels t-value AAL label X Y Z 

10443 10.1 Precuneus 8 -72 46 

8147 8.2 Putamen 22 -40 -2 

4441 7.9 Cerebellum Crus R 39 -74 -22 

3506 8.7 Cingulum Mid L 1 18 68 

1951 9.4 Parietal Sup L -20 -69 50 

1899 8.0 Cingulum Mid R 2 -17 34 

1370 7.4 Parietal Sup R 31 -55 57 

902 6.8 - -17 18 -5 

368 6.7 Occipital Inf L -43 -75 -10 

358 6.4 - -14 -2 24 

299 6.5 Frontal Sup R 22 54 32 

206 6.3 Frontal Mid L -41 33 33 

144 6.3 Frontal Sup Medial L -1 60 15 

140 6.7 Precuneus L  -10 44 72 

122 6.5 Frontal Mid L -26 40 30 

115 6.7 Frontal Inf Oper L -42 8 24 

65 6.2 Caudate R -7 13 8 

 889 

Table 4. Detection prediction error RSA clusters. All clusters are significant at p < 0.05 FWE corrected for 890 
multiple comparisons within the whole brain volume, with a cluster-forming threshold of p < 0.001 uncorrected. 891 
Clusters are included in the table if they surpass a threshold of 50 voxels. T-values, labels and coordinates are 892 
given for the peak within each cluster.  893 

N voxels t-value AAL label X Y Z 

6599 8.9 Rectus R 2 40 15 

4616 8.7 Cerebellum -31 -51 24 

2488 7.7 Angular L -39 -69 45 

1757 7.0 Cerebellum R 21 -44 -19 

1340 6.7 Precuneus R 4 -56 21 

1252 7.4 Frontal Mid Orb R 33 40 -11 

1077 7.2 Frontal Mid L -39 13 34 

609 7.1 Vermis -3 -64 -31 



302 6.6 Amygdala R 28 1 -14 

269 6.7 Frontal Sub Orb L -33 59 -2 

223 7.9 - -23 -18 20 

221 6.8 - 16 -2 25 

145 6.3 Caudate L 13 15 10 

139 6.9 Precuneus L -12 -70 39 

120 6.5 Frontal Mid L -26 46 39 

99 6.5 Frontal Mid R 32 50 12 

97 6.5 Cerebellum L -14 -53 -14 

89 6.6 Cerebellum R 26 -50 -42 

86 6.7 - -16 -36 42 

67 6.9 Hippocampus L -35 -35 -6 
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