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Abstract

Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive dis-
ease that affects nearly 400 million people and is the third leading
cause of death worldwide. Development of novel drugs for COPD is
lagging while diagnosis and staging is still driven by unspecific spirom-
etry measurements. Medical imaging, in the form of high-resolution
computed tomography (HRCT), is rarely included in the workup of
COPD but can provide a rich array of imaging biomarkers (IBs) which
could aid disease staging and management, as well as define exacer-
bations of COPD (acute episodes of disease worsening) directly from
imaging.

This thesis delivers novel medical image analysis and machine
learning techniques to model the progression of stable COPD and at-
tempt to define an imaging signature of exacerbations of COPD. First,
a disease progression model, SuStaIn, was used in a large cohort of
patients with stable COPD to discover two clinically important pheno-
types (AirwayTissue and TissueAirway) that had distinct progression
patterns. SuStaIn was then adapted to model infection of COVID-19
on a cohort of patients from the NCCID study: three COVID-19 phe-
notypes were discovered, which had different in-hospital outcomes. A
systematic review was then conducted to identify candidates for the
imaging biomarkers of exacerbations of COPD – this produced a list of
anatomical structures within the thorax, which could exhibit changes
during exacerbation. A novel automatic pipeline of segmentation and
quantification techniques was developed to extract the potential imag-
ing signature of exacerbation of COPD. The segmentation techniques
produced state-of-the-art results in two segmentation competitions. Fi-
nally, the pipeline was used on a small dataset of patients scanned
during exacerbation to quantify changes in their biomarkers upon re-
covery from exacerbation. The results for the majority of IBs were not
significant, but still represent an important clinical finding and motivate
additional investigation into the imaging definition of exacerbations of
COPD.
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Impact Statement

Often overlooked, Chronic Obstructive Pulmonary Disease (COPD)
is the third most-common cause of death worldwide. It resulted in
3.23 million deaths in 2019 and is projected to cost the global econ-
omy ∼INT$ 4.26 trillion between 2020 and 2050 [1]. Despite its enor-
mous burden, progress in tackling the disease has been slow, in part
due to the incomplete understanding of disease processes and the
marked heterogeneity of patients. High-resolution computed tomogra-
phy (HRCT) is increasingly being used in clinical practice and pharma-
ceutical trials. This thesis aimed to advance understanding of COPD
by making use of the wealth of information present on HRCT. It de-
veloped the necessary computational tools to extract several imaging
biomarkers of COPD, attempted to extract an imaging signature of ex-
acerbations (episodes of acute worsening) of COPD, and developed
machine learning techniques utilising the imaging biomarkers in order
to elucidate disease progression of stable COPD. This thesis is the
result of a multidisciplinary collaboration between clinicians from UCL
Respiratory, academics from the Centre for Medical Image Computing
(CMIC) and a pharmaceutical company – GlaxoSmithKline Research
& Development Ltd. It adressed an inherently open-ended clinical dis-
covery problem and produced results and technologies which are likely
to have impact in the clinical and academic contexts but also stand to
benefit industry or merit potential commercialisation.

Academic and Clinical Impact

The published Systematic Review advances the knowledge on the
potential imaging signature of exacerbations of COPD and will impact
future investigations on imaging endpoints. In addition, it proposed a
pathophysiological cascade of events in the thorax during exacerba-
tion, which may motivate further analysis. The segmentation models
produced as part of the thoracic imaging pipeline, can be used to auto-
matically label and extract a wide range of thoracic anatomy in various
diseases and have already been used in the study of Idiopathic Pul-
monary Fibrosis. The thoracic image analysis pipeline as a whole is
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a comprehensive suite of chest analysis tools, which would hopefully
empower the investigation of further respiratory disease or be used for
future studies of COPD. The disease progression model (DPM) trajec-
tories and phenotypes of stable COPD which were discovered have
already generated significant citations and are being considered in fu-
ture studies and clinical trial recruitment. The adapted version of the
DPM can be used for triaging in other infectious diseases.

Potential for Commercialisation
The thoracic image analysis pipeline is a suite of segmentation and

quantification tools for chest CT imaging, which produce robust and ac-
tionable measurements of various anatomical structures, which, once
validated, can impact clinical workflows. The implementation is cur-
rently in a form usable by technical persons but can be taken to a
mobile or a computer app which can be easily used by clinicians and
may eventually become a product.
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1. Introduction

Chapter 1

Introduction

1.1 COPD

Chronic Obstructive Pulmonary Disease (COPD) is a long-term, pro-

gressive respiratory condition with a markedly heterogeneous presen-

tation. Symptomatically, COPD patients suffer from a chronic cough,

increased sputum production, and shortness of breath (dyspnoea) caused

by varying degrees of airway anomalies (chronic bronchitis or bronchi-

olitis) and alveolar damage (emphysema) [2, 3]. COPD is a disease

of obstruction where air is unable to be fully expelled from the lungs

during exhalation, which often leads to air trapping. COPD progresses

over decades and is often characterised by periods acute worsening

called exacerbations of COPD. During these periods, patients are at

the greatest risk of mortality and accelerated disease progression.

1.1.1 Pathophysiology

Physiologically and within the lung, COPD is a disease of chronic in-

�ammation and cycles of injury and repair. The long-term in�amma-

tion caused by exposure to an offending agent leads to damage to

the bronchi, smaller airways, lung parenchyma and connective tissues.

Characteristic alterations in the larger airways are an increase in wall

area (due to remodelling), excess mucus production and reduced cilia

motility, which together make expectoration harder. These are col-

lectively known as chronic bronchitis. Excess mucus is also present

throughout the bronchial tree, leading to the narrowing and obstruc-

tion of the �ner airways, known as small airway disease. The alveolar

sacs, are gradually destroyed due to in�ammation which results in em-

physema: the rupturing and merging of their separating inner walls,

which leads to an overall decrease in the gas transfer surface area.
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1.1. COPD 1. Introduction

Furthermore, tissue remodelling in the COPD lung leads to a reduced

elastic recoil (a fundamental requirement for respiration) due to a de-

creased proportion of elastic �bres [4]. All of these pathophysiological

changes often result in hyperin�ation – a condition where a signi�cant

proportion of inspired air remains trapped in the lung upon expiration

leading to a distending effect and thoracic changes known as barrel-

chest in more extreme cases. Hyperin�ation contributes to dyspnoea

and fatigue by preventing the lung from emptying ef�ciently.

1.1.2 Burden of COPD

COPD is projected to become the third leading cause of death world-

wide by 2030 [5] and, based on different estimates and diagnostic def-

initions, currently affects between 173 [6] and 384 million [7] people

worldwide. In addition to its signi�cant mortality, COPD is also a lead-

ing and an increasing source of morbidity for patients [6], as well as a

disease which is often accompanied by comorbidities such as diabetes

mellitus, cardiovascular disease, depression and muscle wasting [8],

and is associated with lung cancer [9]. The burden of COPD varies ge-

ographically and by age, sex and socioeconomic status (SES). COPD

is more prevalent in men, individuals over 40 years of age and smokers

[7], while a low SES is also a risk factor for developing COPD [10]. Fur-

thermore, COPD is an immense and an increasing economic burden

on healthcare systems. Approximately 6 % of all healthcare spending

in the European Union (EU) is attributed to COPD, with the majority of

spending associated with the management of acute exacerbations of

COPD [11, 12].

Despite the most recent estimations placing the prevalence of COPD

worldwide at 10.3%, COPD remains one of the most overlooked and

under-diagnosed conditions [13]. Some studies have attempted to

quantify the percentage of people who meet the diagnostic criteria for

COPD, but have not been formally diagnosed and treated. The quoted

underdiagnosis �gures range from 72% to 93% [14] in different parts

of the world. The high underdiagnosis �gures are likely due to the

long time horizon of disease progression and the fact that individuals

with early COPD often overlook the disease hallmarks. Unfortunately,

this leads to most COPD being diagnosed at later and more advanced

stages of the disease, when lifestyle changes and treatment are less

effective. Because of the late diagnosis, the typical life expectancy of

a 65-yr old male former smoker with advanced COPD has been esti-

mated at only 11.7 years [15].
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1.1.3 Diagnosis and Risk Factors

The recommended guidelines for the diagnosis and treatment of COPD

are outlined by the Global Initiative for Chronic Obstructive Lung Dis-

ease (GOLD) [2] and are primarily guided by spirometric measure-

ments. Spirometry is the most commonly used lung function measure

in the clinic and quanti�es the volume and rate at which a patient can

exhale air from their lungs [16]. The procedure involves blowing air

into a tube attached to the spirometer (Figure 1.1), which records the

pressure trace of the exhalation and measures several spirometric lung

function parameters (Table 1.1).

Figure 1.1: An illustration of the common spirometric measurement.
Public domain.

The diagnostic criteria of COPD have evolved over time and, ac-

cording to the latest de�nitions, a patient can be diagnosed with COPD

if they present with "a non-fully reversible air�ow obstruction (FEV1/FVC

< 0.7 post-bronchodilation) measured by spirometry, in the presence

of an appropriate clinical context" [2]. Table 1.1 summarises the de�-

nitions of the spirometric parameters used in the diagnosis of COPD.

"Post-bronchodilation" indicates that the patient has been given bron-

chodilators - medicines which have the effect of widening the airway

and "appropriate clinical context" describes symptoms such as cough

and dyspnoea, and the common risk factors for developing COPD:

long-term tobacco smoking, old age, exposure to airborne toxins or

pollutants, or genetic and developmental abnormalities.

In the developed world, the primary risk factor for COPD is by

far tobacco smoke, while in middle to low income countries, indoor

pollution from cooking and heating with biomass-fuelled open �res in
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Parameter Description
FEV1 Forced Expiratory Volume in 1 second. The volume of

air an individual can exhale in 1 second.
FEV1% predicted The FEV1 of the individual divided by the average

FEV1 for a population of individuals of similar age, sex,
race and height, and converted to a percentage. Pro-
vides an indication of how the individual's lung function
compares to that of a relevant population.

FVC Forced Vital Capacity. The total volume of air an indi-
vidual can exhale from their lungs during a complete
exhalation (not limited by time).

FEV1/FVC The ratio of FEV1 and FVC of the individual – used to
quantify the presence of air�ow obstruction.

Table 1.1: De�nitions of common spirometric parameters used in diag-
nosis and staging of COPD.

poorly ventilated homes is a signi�cant contributor [10]. Additional risk

factors include environmental pollution (noxious gases and �ne par-

ticulate matter) and occupational exposures to chemical toxin fumes,

dusty or contaminated air, mining soot etc. Genetic factors such as

the rare abnormalities in the SERPINA1 gene, leading to � -1 antit-

rypsin de�ciency are also risk factors for COPD and, more recently,

developmental factors such as malnutrition, lung injury and infections

during infancy and childhood have shown to increase the chances of

COPD in later life [17]. In summary, COPD is the consequence of sus-

ceptible lungs which have been exposed to a suf�cient environmental

irritant [13].

The diagnosis of COPD is an active area of research. It is encour-

aging to see that in the last �ve years, the diagnostic de�nitions of

COPD have evolved and GOLD now recognises the shortcomings of

spirometry as a diagnostic technique at the individual level [2]. Further

diagnostic terms have been included. Young COPD is used for pa-

tients aged 20-50 with a diagnosis of COPD. Pre-COPD – for patients

with visible structural or functional respiratory abnormalities, but who

do not meet the spirometric de�nition for COPD. PRISm (preserved

ratio impaired spirometry) – patients whose FEV1/FVC ratio is higher

than 0.7 but have a FEV1 percent predicted lower than 80% after inhal-

ing a bronchodilator. Finally, Mild COPD is used to describe patients

with milder air�ow obstruction and is de�ned in order to avoid using

the term "early COPD" for such cases. These terms describe different

manifestations of COPD and also highlight an important attribute of the

disease – heterogeneity.
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1.1.4 Heterogeneity

Heterogeneity is a de�ning feature of COPD. Historically, the term

COPD was coined to encompass two disease processes leading to

air�ow obstruction - emphysema and chronic bronchitis [18]. The most

recent de�nitions of COPD also place an emphasis on the various pre-

sentations that it can have. Patients suffering from COPD can vary

greatly in terms of symptoms, degree of lifestyle impairment, patho-

biology, frequency and severity of exacerbations, rate of disease pro-

gression and response to therapy.

It is important to note that the current diagnostic criteria for COPD

are still based on noisy spirometric thresholds. While they might be

appropriate for describing large populations of patients, at the individ-

ual level, a patient can arrive at the FEV1/FVC < 0.7 threshold be-

cause of various environmental, genetic, anatomical, developmental,

lifestyle or age-related factors. This further complicates the quanti�ca-

tion of the severity of the disease, as individuals with vastly different

patterns and degrees of abnormalities in the lung can be placed at

similar spirometrically-guided disease stages.

1.1.5 Staging

According to the GOLD Guidelines [19], COPD severity can be as-

sessed in a number of ways. The most commonly used method is the

GOLD 1 to 4 classi�cation, where patients are assigned a degree of

severity of air�ow obstruction based on their post-bronchodilator FEV1

% predicted values. GOLD 4 represents the most severe air�ow ob-

struction and GOLD 1 – the mildest (Figure 1.2. Importantly, studies

have shown that the GOLD grades are only weakly correlated with pa-

tient health status and symptom burden [20, 21], which means that

the spirometrically measured air�ow obstruction is often not re�ective

of disease severity. Once again, this highlights the relative individual-

level insensitivity of spirometry.

An important part of the assessment of the severity of COPD are

the several commonly used patient self-reported symptom question-

naires – the COPD Assessment Test (CAT) Score, the Saint George's

Respiratory Questionnaire (SGRQ), the Chronic Respiratory Question-

naire (CRQ) and the Modi�ed Medical Research Council (mMRC) Dys-

pnoea Scale:

• CAT Score - An 8 item questionnaire which quanti�es the severity

of symptoms such as cough, phlegm, breathlessness, autonomy
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Figure 1.2: GOLD grades, subdividing COPD patients according to
their degree of air�ow obstruction. Re-created based on the GOLD
guidelines [19].

and energy levels.

• mMRC Dyspnoea Scale - Assesses the patient's level of breath-

lessness on a 0 to 4 scale

• SGRQ Questionnaire and CRQ – longer, comprehensive symp-

tom assessment questionnaires, which are used less often in

clinical practice.

Symptom questionnaires are a better indicator of disease sever-

ity since they provide a more comprehensive measure of the impact

COPD has on the patients' quality of life and autonomy.

Finally, the frequency, severity and risk of exacerbations is a key

factor in COPD staging. Patients who experience more frequent and/or

severe exacerbations are at a greater risk of accelerated morbidity and

mortality. Hence, exacerbation severity and frequency, in addition to

the mMRC Scale and CAT Score were included in the 2023 GOLD

Combined Initial COPD Assessment [19], which is the latest COPD as-

sessment tool (Figure 1.3. In addition to the ai�ow obstruction GOLD

1-4 grades, it includes a severity classi�cation into categories A, B and

E (with E including the most severe cases of COPD and at the greatest

risk of decline).

1.1.6 Exacerbation of COPD

COPD is a long-term disease that progresses over many years, but

patients are at the highest risk of death and additional morbidity when
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Figure 1.3: The Combined Initial COPD Assessment tool, which com-
bines air�ow obstruction severity with considering the number and
severity of exacerbations and symptom questionnaires to de�ne the
GOLD A, B and E groups. Reproduced with permission from [19].

they experience exacerbations. The de�nition of an exacerbation of

COPD (ECOPD) has recently changed. Previously, an exacerbation

was de�ned as "an acute worsening of respiratory symptoms requir-

ing additional therapy"[22], which effectively made the diagnosis of an

exacerbation dependent on the physician's decision to prescribe ad-

ditional treatment or not. The updated de�nition of an exacerbation

follows the Rome proposal: "an event characterized by increased dys-

pnoea and/or cough and sputum that worsens in < 14 days which may

be accompanied by tachypnea and/or tachycardia and is often associ-

ated with increased local and systemic in�ammation caused by infec-

tion, pollution, or other insult to the airways" [23, 19]. The new def-

inition adds necessary precision to the diagnosis of ECOPD, but still

represents a clinical diagnosis of exclusion since various conditions

can lead to the described symptoms. Ultimately, it is the author's opin-

ion that the diagnosis of exacerbations of COPD, and especially acute

exacerbations, should be driven by the pathophysiological changes in

the chest, which can be quanti�ed on chest computed tomography

(CT). The differential diagnosis already includes imaging in the form of

a chest radiograph to exclude pneumonia, heart failure, pneumothorax

and pleural effusion, and CT angiography to exclude pulmonary em-
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bolism [19], so anchoring the diagnosis of ECOPD to imaging would

not be procedurally burdensome in the clinic.

According to the latest GOLD criteria, exacerbations of COPD are

also classi�ed in severity into mild, moderate and severe, and sever-

ity of exacerbations has been shown to associate with mortality risk

[24]. To stage exacerbations, the level of dyspnoea, respiratory and

cardiac rate, oxygen saturation and C-reactive protein (CRP) levels

are evaluated (Figure 1.4). The new diagnostic and severity de�nitions

of ECOPD are yet to be widely adopted in clinical practice and, impor-

tantly, have not yet been validated [25]. Still, they are a step in the right

direction to add speci�city to the diagnosis and management of COPD.

Discovering a more speci�c biomarker of lung injury in COPD and ex-

acerbations of COPD is a current and exciting research objective [2],

especially given the non-speci�c nature of CRP.

Prevention, reduction of the frequency, and severity of exacerba-

tions are major objectives in the management of COPD, but their di-

agnosis is still not grounded in observable changes within the lung.

More severe COPD is associated with more severe and more frequent

exacerbations [26]. Furthermore, the best predictor of having an ex-

acerbation is still having 2 or more exacerbations in the previous year

[26]. A deeper understanding of what physio-anatomical changes oc-

cur in the lung during an exacerbation is needed, which can produce

a quantitatively motivated positive diagnosis of exacerbation, instead

of the current clinical diagnosis of exclusion. In turn, de�ning exac-

erbations at this level can lead to discoveries in disease pathology,

motivate novel drug targets, lead to predictive models and improve

prevention. Medical imaging already offers the possibility to obtain

quantitative data from the lung; perhaps what is needed are precise

and automatic medical image analysis tools to extract insights from it.

1.1.7 Treatment

COPD is currently not curable and individuals diagnosed with COPD

are expected to continue declining for the rest of their lives. Hence, the

primary means to tackle COPD are through prevention – by attempt-

ing to reduce the proportion of people who develop COPD. Education,

awareness and aid programs are encouraging people to stop smok-

ing, improve the air quality in living spaces (especially important in low

to middle income countries), and appreciate unnecessary exposures

to harmful or polluted air. Reducing common comorbidities such as

obesity and poor cardiovascular health are also important axes of pre-
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Figure 1.4: Classi�cation of the severity of exacerbations of COPD.
Reproduced from [23], CC BY 4.0. Abbreviations: VAS - Visual Ana-
logue Dyspnoea Scale; RR - Respiratory rate; HR - Heart rate; SaO2

- Oxygen saturation; CRP - C-reactive Protein; ABG - Arterial Blood
gases; PAO2 and PACO2 - arterial pressure of oxygen and carbon diox-
ide.

vention.

For patients with diagnosed COPD, several treatment options ex-

ists. The objectives of treatment are slowing the rate of decline, im-

proving symptoms and potentially quality of life for the patient, pre-

venting and/or reducing the frequency and severity of exacerbations.

Education about preventing the circumstances leading to exacerba-

tions (e.g. viral and bacterial infections, exposure to allergens or other

irritants) and lifestyle changes can also be perceived as treatment for

COPD patients.

Annual vaccinations against respiratory diseases like in�uenza and

COVID-19 are recommended by GOLD [19] as they reduce the number
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or infection-caused exacerbations and reduce mortality in all COPD

patients of all stages. Further vaccinations such as diphteria, whoop-

ing cough, tetanus and shingles, which have been mandatory in a lot of

healthcare systems, are also highly recommended for COPD patients.

Pharmacotherapy for COPD is an ongoing area of research and fo-

cuses on reducing in�ammation and improving breathlessness. Most

COPD patients are prescribed a maintenance therapy of orally inhaled

bronchodilators. In more advanced COPD cases, long-acting mus-

carinic antagonists (LAMA), long-acting 2-agonists (LABA), or a com-

bination of both are also prescribed, either in a single inhaler for-

mulation or separately. An inhaled corticosteroid (ICS) can also be

prescribed in severe disease. Usage of these medications has been

shown to reduce symptoms of COPD, reduce the frequency of exacer-

bations and their severity, as well as slow down the rate of lung function

decline. During an exacerbation, increased doses of these medica-

tions are usually prescribed, in addition to antibiotics, in the case of

exacerbations of bacterial aetiology. In summary, pharmacotherapy

for COPD usually includes short or long acting bronchodilators, anti-

cholinergics, corticosteroids and antibiotics.

An important non-pharmaceutical treatment for COPD is pulmonary

rehabilitation. Pulmonary rehabilitation is a comprehensive program of

exercise, education, goal-setting and tracking which usually lasts 6 to

8 weeks and aims to improve the overall health status of the patient

and promote health improving behaviours in the long term [27].

Lung volume reduction surgery is also an available intervention for

a limited number of patients. To bene�t from the procedure, the patient

must have a low exercise capacity [28] and an emphysema pattern

which is speci�c to a particular lobe of the lung (usually upper lobe

emphysema) while the �ssures of the affected lobe remain complete.

The aim of the surgery is to remove the emphysema-damaged lobe

in order to increase the space within the thoracic cavity and promote

better expansion of the remaining lobes during respiration. Most re-

cently, the procedure has been performed through minimally invasive

bronchoscopic valve surgery, where a one-way valve is placed on the

bronchus of the affected lobe to de�ate it.
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1.2 Medical imaging for COPD

1.2.1 Computed Tomography

Computed tomography (CT) is an imaging technique which uses ion-

izing radiation to reconstruct high-quality three dimensional images of

the body. Invented more than 50 years ago by Sir Godfrey Houns�eld,

the idea of the CT scanner arose from the realisation that by passing

X-rays at all angles around an object, what was in it could be deter-

mined [29].

Modern CT scanners consist of several main components: a rotat-

ing gantry ring which hosts the X-ray source and detectors (at oppo-

site sides of the ring), a motorised table on which the patient lies and

a control console. During scanning, the gantry ring rotates around its

axis while the table moves through it. By capturing the tissue attenu-

ation for X-rays at all angles around it and using either mathematical

or numerical techniques, slice reconstructions are achieved. The units

used in CT are called Houns�eld Units (HU), named after its inventor

and de�ned on the Houns�eld Scale, which places air at -1,000 HU,

water at roughly 0 HU, and denser materials at positive HU values.

Because CT is a density-based technique, it is considered quantita-

tive, which means that tissues of similar densities will have similar HU

values, even across scanners.

There are several factors which in�uence the appearance and qual-

ity of a CT scan: CT scanning protocols, kernel reconstruction meth-

ods (KRM), radiation dose, motion and foreign object artefacts [30].

CT imaging can be performed for various anatomical structures and

on various parts of the body - e.g. head, abdomen, limbs, thorax,

which have tailored scanning protocols. The scanning protocol usu-

ally involves the different technical properties of the scan - whether the

injection of a contrast-enhancing agent is necessary, what the appro-

priate KRM is, what radiation dose is necessary, etc. KRMs are the

different convolutional kernels and algorithms used when reconstruct-

ing the 3D CT scan from the raw X-ray projection data, which in�uence

the frequency ranges which are considered and ultimately control the

level of contrast and noise present in tissues of different densities [30].

So, there exist different KRMs intended for imaging soft tissue, bone,

lungs, etc., which might change the appearance of structures. Ra-

diation dose is a calculation of the amount of ionizing radiation the

body absorbs after a CT scan. Exposure to ionizing radiation is the

main downside to CT imaging, but recent improvements have aimed
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to reduce this without sacri�cing image quality. Motion artefacts are

movements within the body during the CT scan. The CT reconstruc-

tion algorithm is based on a static object so any movement during the

can can cause distortion and artefacts in the scan. The most common

artefacts in the context of thoracic CT imaging are cardiac motion and a

failed breath-hold when the patient is unable to continue holding their

breath until the scan is �nished. Foreign object artefacts arise from

dense objects (e.g. metal jewellery) on the patient which can occlude

parts of the underlying tissue and lead to artefacts.

In the context of clinical lung imaging, modern CT is a very fast pro-

cedure and a complete thorax scan can usually be performed within a

single breath hold by the patient. Most thoracic scanning is performed

at full inspiration breath hold, but sometimes an additional scan is also

performed at full expiration. A CT provides detailed picture of the lung

and modern CT often has sub-millimetre resolution. Typically, chest

CT is viewed by the radiologist in three standard viewing planes - axial,

coronal and sagittal, with the greatest attention given to the axial plane.

Clinical CT viewing software usually allows for scrolling through the 3D

volume in a particular plane so anatomical structures can be traced.

Ultimately, time pressures in real healthcare systems mean that radi-

ologists spend on average less than two minutes per non-contrast CT

scan and are crucially looking for particular suspected problems [31].

In contrast-enhanced CT, where a density enhancing contrast agent is

injected into the patient, reading times are longer, but still less than 15

minutes [31].

1.2.2 The role of medical imaging in COPD

Medical imaging provides a tool to directly observe the lung abnormal-

ities characteristic of COPD. High-resolution chest computed tomog-

raphy (HRCT), in particular, provides detailed high-quality information

about the lungs, heart, and other tissues of the chest. While HRCT is

not routinely performed during the workup of COPD or exacerbation

of COPD, it is still common for many patients to receive one or sev-

eral CT scans – usually to exclude the potential presence of malignant

nodules since COPD is a risk factor for lung cancer, the leading cause

of cancer death in the world [32]. Recently, large-scale lung cancer

screening programmes (e.g. SUMMIT [33]) involving CT imaging were

established; since many patients who meet the lung cancer screening

criteria will have COPD, the resource of CT scans of COPD patients

will increase.
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The ample resource of chest imaging, especially CT, provides a

wealth of anatomical information on the patients lung structure and,

in the case of imaging at inspiration and expiration, can provide in-

sights into function, too [34]. Currently, most CT scans and chest X-

ray images are analysed by radiologists who perform qualitative as-

sessment of the lung and primarily look for abnormalities such as nod-

ules, emphysema and cancer. However, chest CTs contain an abun-

dance of quantitative information, which can be used to develop imag-

ing biomarkers of disease and perhaps discover patterns not apparent

to the human eye. Fundamentally, chest medical imaging provides

a complete snapshot of lung health, which is currently mostly under-

used. Changes in the lung, visible on imaging, can reveal insights into

anatomical and physiological changes, which can lay the foundation

for starting to treat distinct processes and root causes of COPD, rather

than managing symptoms. Examples, such as smokers with spirom-

etry which does not meet the FEV1/FVC ratio threshold for COPD di-

agnosis, but who have evident emphysema on CT and develop exac-

erbations [35], illustrate the shortcomings of current de�nitions used in

COPD care. Therefore, the author believes that imaging should play a

more central role in the diagnosis, monitoring of progression, and drug

development for COPD.

Imaging can further play an important role in the diagnosis, treat-

ment and prevention of exacerbations of COPD. Exacerbations are

perhaps the most insuf�ciently understood aspect of COPD. Medical

imaging can be used to discover or develop imaging biomarkers of

exacerbations. This is especially important given that the search for

predictive blood-based biomarkers of exacerbation has been largely

inconclusive and clinical parameters are still more useful [36]. These

imaging biomarkers have the potential to be used to diagnose exac-

erbations from imaging, search for biomarkers at stable COPD which

can predict exacerbations, disentangle phenotypes of stable and exac-

erbating COPD, and predict and objectively assess recovery from ex-

acerbation. Furthermore, imaging biomarkers could motivate potential

new pharmacological targets by identifying undiscovered disease pro-

cesses or measurable structural or functional changes in the thorax.

Regional anomalies in the lung and phenotypes of disease could also

be identi�ed through the use of imaging biomarkers. Establishing an

association between these metrics and disease outcomes or progres-

sion can thus inspire drugs targeting the particular underlying image-

quanti�able processes, or image-derived phenotypes of disease.
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1.3 Thoracic image analysis for COPD

There are several overarching medical image computing tasks in tho-

racic image analysis, which are relevant to the extraction of insights

from a three-dimensional medical image of the chest, such as a CT

scan:

• Segmentation: the process of identifying and delineating or voxel-

wise labelling (usually through a 3D mask) of any structure within

the scan such as the airways, vessels, lung, rib cage, etc.

• Quanti�cation: extracting measurements of various aspects of

these structures such as airway lumen diameter, airway wall thick-

ness, vascular volume and count, volume and distribution of em-

physema lung tissue, etc.

• Registration: a technique to �nd a geometric mapping of two

medical images and align them in the same coordinate system.

Comparison between scans at multiple timepoints, analysis of

deformation in inspiration and expiration and inter-patient com-

parisons often require registration as an initial step to the analy-

sis.

These well-established methods in image processing may be used

to derive an imaging biomarker of disease an objective indicator of dis-

ease state which can be used to characterise a pathological process,

provide information on disease progression, be used as a predictor of

disease events or quantify a treatment effect [37]. This biomarker, in

turn, can be either a single measurement of a structure or a composite

of multiple image-derived measurements which collectively inform on

disease state.

1.3.1 The role of Machine Learning in Thoracic Image

Analysis

In the investigation of biomarkers and distinguishing features of COPD

from imaging, computational modelling and machine learning are in-

valuable in making sense of the large resources of data. Both super-

vised (classi�cation, regression) and unsupervised (clustering, adver-

sarial approaches) learning have applications in medical image analy-

sis. Indeed, machine learning can be used for all of the above image

processing methods as an alternative to classic rule-based algorithms
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[38] and is now often outperforming them. Deep learning methods,

especially convolutional neural networks, are now the best performing

class of segmentation algorithms for medical imaging [38].

Machine learning still suffers from several drawbacks in the medi-

cal imaging domain: the need for signi�cant quantities of labelled data

(only obtainable from trained medical practitioners), the lack of clear

interpretability and explainability of results (especially for end-to-end

deep learning methods), the dif�culties of implementing algorithms

which perform well on everyday natural 2D image data (where they

are usually invented) to 3D imaging data, and the lack of generalis-

ability poor performance when testing on out of distribution data from

that on which the algorithm was trained (e.g. from different medical

centres, scanners, reconstruction techniques).

One of the ways to utilize deep learning for medical image analy-

sis is to use end-to-end models where the model does not does not

rely on hand-crafted features as inputs, but rather takes the image di-

rectly as input and learns the features while trying to minimize a cost

function for a given task. The input to a model utilizing a convolu-

tional neural network (CNN), for example, is dependent on the task,

but usually involves the whole or patches of the image in either 2D or

3D form. The convolution step passes a limited size �lter through the

raw image and this is done over multiple layers (with the number of

layers de�ning the netowrk's depth), some of which may not be con-

volutional, but pooling or fully connected layers. The essence of a

neural network is optimizing the state of thousands or millions of neu-

rons through back-propagation of the error to learn the weights and

biases which produce the best output depending on the task. In this

way a very complex function can be learned from a combination of nu-

merous simpler operations (e.g. convolution, differentiation, recti�ed

linearization) performed in parallel. CNNs can be used for many tasks

in medical image analysis. For example, for segmenting airways within

the lung, a network called a U-net can be given many example pairs of

raw images and their labelled image segmentations in order to learn

an optimal way to produce segmentations from the raw images [39].

Or, networks using encoders and residual nets (ResNets) can be used

to learn the optimal vector �eld deformation for registration of multiple

medical images [40]. Furthermore, convolutional neural nets can be

used to perform classi�cation, e.g. determining the type of lung condi-

tion, disease severity, etc. Such models have been shown to outper-

form the more classic hand-crafted machine learning techniques [38],
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but often they can lead to black-boxing a problem, where the justi�-

cation behind the algorithm's decisions is unclear. Answering why the

neural net has categorized a particular patient in a certain way, why it

has a certain sporadic error in the segmentations it produces or why

it does not generalize to a similar dataset from another study are all

situations which are currently resolved through heuristic approaches.

The inability to explain decisions in certain situations, especially in the

medical �eld, is a major barrier to the adoption of these models, espe-

cially in their end-to-end form. Endeavours to to make deep learning

more explainable are important in the �eld.

1.4 Research Problem

1.4.1 Problem statement

Even though COPD and exacerbations of COPD pose an enormous

burden on patients and healthcare systems around the world, progress

in understanding the underlying pathological processes and the devel-

opment of treatments has been slow. This thesis aims to harness

the power of medical imaging to advance the knowledge of COPD

and exacerbations of COPD by attempting to discover novel imaging

biomarkers of the disease. The overarching problem of discovering

novel biomarkers of disease is naturally open-ended and positive re-

sults are not guaranteed. In the case of COPD, medical imaging is

frequently used, but is not currently a core methods for either the di-

agnosis, severity assessment or staging of the disease. Hence, this

work set on the ambitious task to both develop the computational tools

necessary for extracting insights from HRCT, perform the data analy-

ses which demonstrate its utility and, by doing that, attempt to position

medical imaging as a more central technique in the management of

COPD. Particularly, it addresses the following problems:

1. Stable COPD is markedly heterogeneous, and there may exist

distinct phenotypes of the disease that could progress differently

and consequently merit distinct management strategies.

2. There is limited understanding of the changes in the thorax which

occur at exacerbation of COPD in comparison to stable COPD

and recovery from COPD.

3. Although the HRCT imaging resource for COPD is increasing

and may provide valuable insights into the pathophysiology and
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progression of the disease, there is a lack of appropriate compu-

tational analysis tools to ef�ciently perform the required analyses

of imaging data.

The work presented in this thesis is focused on all three of these

problems. Chapters 2 and 3 address Problem 1, and further expands

the context to infectious disease. Chapters 4 and 6 addresses Problem

2 and Chapter 5 tackles Problem 3.

1.4.2 Motivation

This thesis aims to study the progression of stable COPD and to look

for imaging-based disease phenotypes that could have distinct and

clinically valuable progression patterns.

This thesis also aims to discover quantitative imaging biomarkers

of exacerbations of COPD. They could be valuable by, for the �rst time,

achieving an objective, positive diagnosis of exacerbation in the clinic,

which would move away from the currently used clinical diagnosis of

exclusion. In turn, this could lead to less misdiagnosis and establish

the foundations for personalised care. The de�nition and quanti�ca-

tion of the imaging biomarkers of exacerbation could further lead to a

deeper understanding of the underlying pathophysiological processes

during an exacerbation of COPD. In addition to contributing to the over-

all medical de�nitions of COPD and exacerbations of COPD, insight

into the pathophysiology could motivate novel drug targets, which may

address root causes rather than treat symptoms. Furthermore, identi-

fying imaging biomarkers of exacerbation could quantify recovery from

exacerbation, which is meaningful both in the clinic and in clinical tri-

als, for predicting the patients' degree and rate of recovery or to quan-

tify drug effects. Finally, discovering quantitative imaging biomarkers

of exacerbations of COPD may help identify distinct clusters of exac-

erbating patients exacerbation phenotypes which may differ in their

recovery and severity patterns, have a complex interplay with stable

COPD phenotypes or even be predictive of future exacerbations.

1.5 Thesis contributions

This thesis investigates the imaging biomarkers and disease progres-

sion of COPD by conducting large scale analyses on imaging end-

points, delivering a systematic review on the imaging signature of ex-

acerbations of COPD and developing the required computational anal-
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ysis tools for the analysis of HRCTs and extraction of imaging biomark-

ers. Five key contributions are made:

1.5.1 A disease progression model which identi�es

two distinct subtypes and progression patterns

in the COPDGene study

1.5.2 Adapting and using Subtype and Stage Infer-

ence (SuStaIn) disease progression modelling

to stratify COVID-19 patients and predict their

risks of in-hospital death and deterioration.

1.5.3 A systematic review aiming to identify an imag-

ing biomarker signature of exacerbations of COPD

and differentiate it from stable COPD

1.5.4 A comprehensive pipeline for segmentation and

quanti�cation of chest anatomy in order to de-

�ne an imaging signature of exacerbation of COPD.

1.5.5 An analysis of the imaging biomarkers of pa-

tients during exacerbation of COPD and after

assumed recovery from it

1.6 Thesis outline

This thesis can be considered to focus on the analysis of imaging

biomarkers of both stable COPD and exacerbations of COPD. The cur-

rent chapter Chapter 1 provided an overview of COPD in both its sta-

ble and exacerbation phases, discussed the role of medical imaging

and current state of the art in computational image analysis for COPD.

Chapter 2 focused on advancing the knowledge of stable COPD.

I obtained access to an important large dataset - COPDGene, and

collaborated with Dr. Alexandra Young and Dr. Felix Bragman to con-

duct a large scale analysis of imaging biomarkers of stable COPD by

harnessing the power of an unsupervised disease progression model:

Subtype and Stage Inference (SuStaIn) [41]. Chapter 2 delivers Con-

tribution 1.5.1 by discovering and validating two distinct imaging biomarker

based phenotypes of COPD which have distinct progression patterns.
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This work was published in the American Journal of Respiratory and

Critical Care Medicine (AJRCCM).

Chapter 3 presents Contribution 2. The work was carried out be-

cause over the course of the PhD, the world faced an unprecedented

pandemic of viral disease, COVID-19, which was the cause of a lot of

morbidity and mortality by primarily affecting the lungs. To contribute

to tackling the pandemic, I adapted SuStaIn for modeling of short-term

infectious disease working on the National COVID-19 Chest Imaging

Database [42]. The work in this chapter was published in the journal

Nature Scienti�c Reports.

The research conducted in Chapter 4 moves to investigating exac-

erbations of COPD. The work details Contribution 3 and is a systematic

review (SR) which was conducted to identify candidates for the imag-

ing biomarkers of exacerbations of COPD. Conducting the SR was

motivated by the multidisciplinary nature of the PhD and the close col-

laboration with clinicians. As I wanted to identify imaging endpoints

which were clinically useful and understandable by clinicians, but dis-

covering them was an inherently open-ended question, the systematic

review was necessary. It proved to be valuable as it produced a cata-

logue of potential imaging biomarker targets which motivated Chapter

5. The SR was also published as a journal article in the International

Journal of Chronic Obstructive Pulmonary Disease (IJCOPD).

Chapter 5 presents a suite of software image analysis tools, which

were necessary for the extraction of the biomarkers identi�ed in the

systematic review. In the later stages of the PhD, a unique dataset

became available from my industrial sponsor - GlaxoSmithKline R&D.

This dataset included 63 subjects who had HRCT imaging performed

during an exacerbation of COPD and then 12 and 28 days later. Ac-

cess to this dataset held the possibility of quantifying the potential

changes in the lung during an exacerbation, but to achieve this goal, I

needed to build the thoracic image analysis pipeline. The segmenta-

tion and quanti�cation tools produced are valuable not only in the con-

text of COPD but also to other diseases which have thoracic compo-

nents visible on HRCT. Chapter 5 details Contribution 4 and presents

each of the elements of the pipeline in addition to the particulars of the

engineering decisions when developing the methods. Chapter 5 has

not yet been published in its complete form, but parts of the pipeline

have been utilised in several published studies.

Chapter 6 is the application of the image analysis pipeline on the

GSK dataset. It presents the progress and results on the extraction
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and quanti�cation of the imaging biomarkers and forms Contribution 5.
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Chapter 2

Disease Progression Modelling

in COPD

This chapter describes the application of the disease progression model

Subtype and Stage Inference (SuStaIn) in the context of stable Chronic

Obstructive Pulmonary Disease and expands on Contribution 1 - the

discovery of two distinct subtypes of COPD and their corresponding

temporal progression patterns. This work was published as a jour-

nal article in the American Journal of Respiratory and Critical Care

Medicine in 2019. This was a longer term project involving several

changes and additions to the analyses performed. The experiments

were initially designed and performed by the joint �rst authors - Dr.

Alexandra Young and Dr. Felix Bragman. Upon the �rst revision, I

co-designed and performed parts of the analysis, contributed to fea-

ture selection for the �nal model, performed data preprocessing for the

COPDGene dataset, wrote parts of the manuscript and co-designed

and prepared the �gures.

The work detailed in this chapter resulted in the following publica-

tion:

Young A, Bragman F, Rangelov B, Han M, Galbán C, Lynch D,

Hawkes D, Alexander D, Hurst J. Disease Progression Modelling in

Chronic Obstructive Pulmonary Disease. American Journal of Pul-

monary and Critical Care Medicine, 2019 [43].

2.1 Introduction

The analysis in this chapter was motivated by the previously discussed

heterogeneity of COPD (section 1.1.4) and its long progression hori-

zon. While COPD remains one of the leading three causes of death

worldwide [44], signi�cant progress in understanding the disease mech-
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anisms and phenotyping patients is lagging. The gold standard of stag-

ing patients is currently through the GOLD framework [19], which has

undergone a series of changes in its criteria, but crucially still relies

on populationally de�ned spirometric measures (section 1.1.3). While

imaging provides a direct view into the organs and tissues in the chest,

as well as into potential pathology, its use in the long-term manage-

ment of COPD is currently limited and is still only reserved for speci�c

cases where patients do not respond to initial treatment [19].

The objective of discovering and understanding the different mani-

festations of COPD has been longstanding [45] and yet, to date, there

have not been any convincing developments to motivate changes in

clinical management or novel drug targets. This delay in de�ning clin-

ically meaningful phenotypes stems from an insuf�cient number of

quality long term data where patients are monitored across their dis-

ease progression or, where such studies exist, from inappropriate or

overly simplistic or noisy end points (spirometry, overall number of ex-

acerbations, etc). Such end points are important in predicting mortality

and guiding disease management in the clinic, but lack in speci�city

with regard to the disease pathophysiology.

The several studies where imaging (in the form of high resolution

CT scanning) was performed on patients with COPD have motivated

efforts to discover phenotypes of COPD through the use of quantitative

imaging biomarkers. Most investigations focused on techniques such

as clustering [46, 47], dimensionality reduction [48, 49] and probabilis-

tic modelling [50, 51] on data from a single time point. Crucially, such

approaches used to derive clusters of similar patients lack the capabil-

ity of modelling the temporal dimension of disease progression. This

may confound disease severity and disease subtype, clustering sub-

jects at various stages of disease in addition to possible phenotypes

together.

Following the primary objective of the thesis of discovering imaging

biomarkers of COPD, in this chapter an unsupervised machine learn-

ing model - Subtype and Stage Inference (SuStaIn) [41] was employed

to attempt and disentangle both phenotypes and progression stages

of COPD from cross-sectional imaging data. SuStaIn was deemed ap-

propriate since capturing the early stages of a long-term disease, such

as COPD, is particularly important as patients at earlier stages may be

more amenable to therapy and interventions. Discovering heterogene-

ity in the processes in the lung in less severe disease might further

enhance the understanding of disease pathophysiology. Furthermore,
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potentially identifying smokers who are likely to develop COPD is clin-

ically relevant as it may motivate prophylactic therapy and early treat-

ment has been shown to have the greatest effect [52].

2.2 Methods

2.2.1 Data

The data used in the initial phase of this analysis was from the �rst

phase of the large, multi-centre American dataset COPDGene (COPD

Genetic Epidemiology) study [53]. The study has a total of four phases

where close to 10,000 subjects were followed over 15 years. Each

phase represents a visit timepoint where subjects had an inspiratory

and an expiratory CT scan in addition to measures of various clinical

features such as symptom questionnaires, number of exacerbations,

Pulmonary Function Tests (PFTs) such as FEV1, FVC, etc. The sub-

jects in the study were split between con�rmed COPD at GOLD stages

2 to 4: 4,000 individuals, COPD "at risk" at GOLD stage 1 and GOLD

stage "U" (unclassi�ed) [54]: 2,000 individuals, "smoking controls" -

subjects who did not have a diagnosis of COPD but were long-term

smokers: 4,000 individuals, and a small sample of non-smoker con-

trols: 100 subjects. All subjects except the non-smoker controls had a

history of at least 10 pack-years of smoking.

To derive the disease progression subtypes and stages with SuS-

taIn, COPDGene subjects during their �rst visit were used. The popu-

lation was governed by data access conditions and logistics - although

the COPDGene study is ongoing and imaging has been done for time-

point 2 and 3, these have not yet been fully released except to the core

group of COPDGene researchers.

For the initial model, 3,479 smoking controls and 3,698 patients

with COPD were used. For replication, in order to con�rm the exis-

tence of subtypes and stages in an independent secondary dataset,

SuStaIn analysis was performed on 303 smoking controls and 1,809

patients with con�rmed COPD from the ECLIPSE (Evaluation of COPD

Longitudinally to Identify Predictive Surrogate Endpoints) study [52].

As a longitudinal validation, follow-up scan data from the second

timepoint (5 years after the �rst) of the COPDGene study was obtained

and used. This allowed investigating the relation between SuStaIn

stages and subtypes to the true long-term progression in individual

subjects. For this longitudinal validation two samples were used - a
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sample of 1,929 COPD subjects and 2,158 smoking controls who had

full imaging and spirometric measurements in both timepoints, and a

second sample of 1,675 COPD subjects and 1,939 smoking controls

who had only imaging biomarkers available at both timepoints. As a

validation that the discovered disease stages and subtypes are repre-

sentative of clinical deterioration, relationships with PFTs were sought.

2.2.2 Imaging Biomarkers

The imaging biomarkers used in the SuStaIn modeling were slightly

different between the COPDGene and ECLIPSE datasets. The four

COPDGene imaging biomarkers were extracted from the CTs using

commercial software by Thirona (Thirona, http://www.thirona.eu) based

on the inspiratory and expiratory scans' PRM map [34]. Since in the

ECLIPSE dataset only inspiratory scans were performed, the imaging

biomarkers used for modeling were only two and were derived using

the VIDA software [55]. The biomarkers are summarized in Table 2.1.

COPDGene Imaging Biomarkers
Imaging Biomarker De�nition
Emphysema Obtained through Parametric Response

Mapping
fSAD Functional Small Airways Disease from

Parametric Response Mapping
Pi10 SRWA A standard measure of bronchial wall area

de�ned as the Square Root of the Wall
Area of a hypothetical bronchus with an in-
ner perimeter of 10 mm

Segmental airway wall
thickness

The average wall thickness of the seg-
mental bronchi

ECLIPSE Imaging Biomarkers
Emphysema Based on an intensity threshold for inspi-

ratory scans
Pi10 SRWA A standard measure of bronchial wall area

de�ned as the Square Root of the Wall
Area of a hypothetical bronchus with an in-
ner perimeter of 10 mm

Table 2.1: Summary of the biomarkers used for SuStaIn modeling in
the COPDGene and ECLIPSE studies.

2.2.3 SuStaIn Modeling

SuStaIn is an unsupervised disease progression model which disen-

tangles pseudo-temporal progression trajectories of disease and dis-
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ease subtypes simultaneously from purely cross-sectional (single time

point) data. The model was initially developed for use in another long-

term progressive disease - dementia and was thus appropriate for this

analysis of stable COPD. SuStaIn takes as input quantitative informa-

tion in the form of imaging biomarker metrics and outputs disease phe-

notypes (subtypes) and stages.

SuStaIn belongs to a class of models known as disease progres-

sion models [56, 57], which model the progression of disease as a

sequence of events - particular clinical measurements or symptoms

presenting in a population of patients. These events could either be bi-

nary (e.g. a symptom occurring or not) or cumulative (e.g. a particular

clinical parameter increasing in value over time). Crucially, the disease

progression class of models posit that in a suf�ciently large popula-

tion of patients, all disease events will be present and that progression

and rely on �tting arbitrary sequences of these events to the data while

maximising the Log-Likelihood in order to �nd the most likely sequence

of events. The parameters of the model are thus the total number of

events in the disease progression sequence and the position of each

event in the sequence.

SuStaIn is an improvement to the initial Event Based Model [57] in

that it allows for the existence of more than one sequence of events

in the population. These distinct sequences are called SuStaIn sub-

types. Their number is chosen to balance model complexity and �t,

governed by information criteria. During model �tting, an increasing

number of subtypes is �t to the data iteratively and the model with the

best �t chosen. Once the optimal number of subtypes has been es-

tablished, Markov Chain Monte Carlo (MCMC) sampling is performed

to �t different permutations of the SuStaIn stage positions while eval-

uating model �t, in order to estimate the uncertainty of each disease

stage.

Several versions of the SuStaIn model have been developed in re-

cent years. For this analysis, z-score SuStaIn was most appropriate

so it was the model selected since the imaging biomarkers chosen

represent measurable increases in pathology within the lung (either

tissue pathology or airways pathology). In this implementation, each

biomarker from the "disease" population - in this case patients with

con�rmed diagnosis of COPD, is converted to a z-score in relation to a

control population (the smoking controls). Pseudo-temporal progres-

sion of disease is de�ned as a sequence of stages where a stage is

represented by a biomarker crossing a prede�ned z-score threshold.
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Z-score thresholds are de�ned based on heuristics and can be con-

sidered hyperparameters. Before z-scoring the imaging biomarkers

in relation to the control population, they were log transformed to im-

prove normality and the effects of age, gender, height, race smoking

history and scanner model regressed out. In this way, by z-scoring

the imaging biomarkers in relation to the control population, the effects

of disease on the subjects could be modelled while accounting for all

other factors which could in�uence the imaging measurements.

In SuStaIn, a subtype is de�ned as a particular sequence of stages.

The model begins by �tting a single subtype sequence of stages and

then attempts to split this subtype into two or more in a hierarchical

manner. The model �t is controlled by information criteria which bal-

ance model complexity and accuracy. In addition to this, SuStaIn es-

timates a probability of each subject belonging to each subtype and

stage of disease by using MCMC sampling of different model parame-

ters.

SuStaIn has a number of assumptions. First, it assumes that the

sample of subjects to which the model is �tted include examples of all

disease subtypes and stages. Since our sample size included more

than 3,698 COPD patients and a similar number of smoking controls,

this assumption was met. Second, SuStaIn, assumes that disease

progresses monotonically in each biomarker. In COPD, fSAD is fre-

quently a precursor to emphysema - damage in the small airways

spreads to alveolar destruction with time. In effect, this may lead to a

decrease in fSAD accompanied by an increase in emphysema in some

patients. Thus, for the COPDGene dataset, the fSAD and emphysema

biomarkers were summed to a single "tissue damage" biomarker which

measures air trapping. Another, less strict assumption of SuStaIn is

that each biomarker follows an approximately Gaussian distribution.

Hence, before converting the biomarkers to z-scores in relation to the

control population, a log-transform was applied to each one to improve

its normality.

2.2.4 Validation with an External Dataset

To con�rm whether the COPD subtypes and stages discovered by

SuStaIn in the COPDGene dataset existed in another, external dataset,

303 smoking controls and 1,809 patients with con�rmed COPD from

the ECLIPSE were analysed. As previously mentioned, in the ECLIPSE

dataset only inspiratory CT imaging was performed. Fortunately, simi-

lar biomarkers derived only from inspiratory scans were also available
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from the CODPGene study. To compare like for like, SuStaIn was re-

�tted to 4,152 patients with COPD and 4,102 smoking controls with in-

spiratory biomarkers for emphysema and Pi10 SRWA (Table 2.1), pro-

ducing a model based on these biomarkers. These data are referred to

as the Inspiratory COPDGene dataset. While a perfect validation of the

subtypes and stages discovered by the SuStaIn analysis would have

included a dataset with both inspiratory and expiratory scans (and thus

the ability to derive the fSAD imaging biomarker), such data was not

available at the time. In addition, the results of the SuStaIn model �t-

ted on just the inspiratory COPDGene scans (Inspiratory COPDGene

dataset) were consistent with both the model �tted on the paired scan

COPDGene dataset and with the ECLIPSE dataset.

2.2.5 Using the Trained Model to Subtype and Stage

Individuals

Once the SuStaIn model was trained on the phase 1 COPDGene

dataset, individual subjects from both ECLIPSE and COPDGene were

assigned to their most probable subtype and stage. Staging and sub-

typing was performed for both patient visits (time points) and for both

the COPD patients (GOLD stages 1-4) and the smoking controls. The

same procedure was repeated using the model trained on the �rst visit

of the Inspiratory COPDGene dataset for both timepoints of the two

datasets.

2.2.6 Statistical Analysis

Clinical Characteristics of the Subtypes

The demographic and clinical measures of patients assigned to

each subtype were compared using two sample t-tests, chi-squared

tests or Mann-Whitney U tests depending on whether the variables

were continuous, categorical or frequency.

Correlation between SuStaIn Stage and Spirometry

Correlation analysis was performed between SuStaIn stage and

the standard measures of spirometric lung function - the Forced In-

spiratory Volume in One Second Percent Predicted (FEV1%) and the

ratio between FEV1% and the Forced Vital Capacity (FVC) of the lung

- FEV1%/FVC. To assess if SuStaIn stage can be used as a predictor

for lung function decline with time, correlations between baseline SuS-

taIn stage and spirometric lung function change between time point 2

and timepoint 1 were investigated.
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Longitudinal Consistency of Subtype and Stage

Since SuStaIn patient strati�cation was performed to both pheno-

type (subtype) stable COPD and stage it, the longitudinal second time

points in both datasets allowed for studying consistency. It was ex-

pected that in the �ve years of time between the two visits, subjects

would progress in stage, but would remain in their pre-assigned sub-

types. For subtypes, consistency was de�ned as the fraction of sub-

jects who remained in their original subtype. For stages, consistency

was assessed by comparison of the distributions of SuStaIn stages at

the �rst time point and second time point using two sample t-tests. For

this test, subjects were split into two groups: GOLD 1-2 and GOLD

3-4.

Analysis of Smoking Controls

The statistical analyses were also performed on the COPDGene

smoking control groups to assess whether the learned Subtypes and

Stages might provide value for detecting individuals at risk of develop-

ing COPD.

2.3 Results

2.3.1 Subtypes and Stages of COPD

The SuStaIn model was trained on the COPDGene population detailed

in Table 2.2.

Table 2.2: Demographics of the COPDGene smoking controls and
COPD patients. GOLD = Global Initiative for Chronic Obstructive Lung
Disease stage; NA = not applicable.

The SuStaIn model discovered two subtypes of COPD, named Tis-

sue! Airway (Subtype I) and Airway! Tissue (Subtype II) to signify

the sequence in which the bronchial or parenchymal damage biomark-

ers became abnormal in the two subtypes. 70.4% of subjects were
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assigned to the Tissue! Airway subtype, in which fSAD and emphy-

sema preceded larger airway damage while 29.6% of subjects were

assigned to the Airway! Tissue, where early disease started with dam-

age to the airways and later stages of disease continued with lung tis-

sue damage Figure 2.1. The two subtypes were also reproduced in

the independent dataset ECLIPSE 2.2.

Figure 2.1: Disease progression patterns predicted by Subtype and
Stage Inference (SuStaIn). Two distinct subtypes of COPD were dis-
covered by SuStaIn. In the Tissue! Airway subtype (70% of patients;
top left) the presence of emphysema and functional small airway dis-
ease (fSAD) is characteristic in the beginning of disease followed by
later pathology in the larger airways. In the Airway! Tissue subtype
(30% of patients; top right), disease progression starts by pathology in
the larger airways before the development of fSAD and emphysema.
At each SuStaIn stage a new z-score event occurs when a feature
transitions to a new severity level, as indexed by a z-score with re-
spect to the control population; z-scores of z = 1 (orange) and z = 2
(red). Higher opacity represents a higher con�dence in the ordering.
The bottom row visualizes the parametric response mapping images
and airway wall thickness values for representative patients at differ-
ent SuStaIn subtypes and stages. The airway wall thickness values
are visualized using a purple color scale on top of an airway tree seg-
mentation, with the minimum value of the color scale corresponding to
the �rst percentile of airway wall thickness values across the popula-
tion and the maximum value of the color scale corresponding to the
99th percentile. In the Tissue! Airway subtype, the �rst example pa-
tient image (early stage) has early tissue damage visible at the outer
edges of the lung but no airway wall changes, the second individual
(middle stage) has visible tissue damage but no airway changes, and
the third individual (late stage) has severe tissue damage together with
airway wall thickening. In the Airway! Tissue subtype, the �rst individ-
ual (early stage) has early signs of airway wall thickening but no visible
tissue damage, the second individual (middle stage) has clear signs
of airway wall thickening but very little visible tissue damage, and the
third individual (late stage) has severe airway wall thickening and tis-
sue damage
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Figure 2.2: Disease subtypes and stages as derived in the validation
datasets ECLIPSE and Inspiratory COPDGene using the reduced set
of ispiratory-only imaging biomarkers.

Clinical and Demographic Pro�le of SuStaIn Phenotypes

The demographic and clinical characteristics of the two subtypes

were investigated Table 2.3. There were more male subjects in the

Airway! Tissue subtype compared to Tissue! Airway group ( 66.5%

vs 52.3%, P<0.001). Subjects in the Tissue! Airway group had a sig-

ni�cantly lower body mass index (BMI) than those in the Airway ! Tis-

sue group (26.65 vs. 30.54 kgm2; P<0.001) and a lower prevalence

of chronic bronchitis (25.1% vs. 31.8%; P<0.001). Spirometric lung

impairment, measured by the FEV1% predicted and FEV1/FVC ratio,

was only slightly worse in Subtype I patients as compared to Subtype

II patients (53.63% vs. 58.64%; P<0.001 and 0.49 vs. 0.56; P<0.001).

Further statistical results of the relationships between subtype, stage,

degree of breathlessness and exacerbations are reported in Table 2.4.

SuStaIn Stage and Spirometric Lung Function

To con�rm that SuStaIn stage can be used as a measure of dis-

ease severity, correlation analyses to spirometrically measured lung

function were performed. A strong correlation between SuStaIn stage

and FEV1/FVC Figure 2.3 A and between SuStaIn stage and FEV1%

predicted Figure 2.4 was found. The relationship between stage and

FEV1/FVC and between stage and FEV1% predicted in the Tissue! Air-

way group were at r=-0.63 (P<0.001) and r=-0.66 (P<0.001), while

the same relationships in the Airway! Tissue group were at r=-0.58
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Table 2.3: Demographics of the patients assigned to each of the two
SuStaIn subtypes. BMI = body mass index; fSAD = functional small
airway disease; GOLD = Global Initiative for Chronic Obstructive Lung
Disease; SRWA = square root of wall area. Continuous variables com-
pared with two-sample t-tests, chi-squared tests for categorical vari-
ables, and Mann-Whitney U test results for frequency data. Only pa-
tients at SuStaIn stages > 1 were included

(P<0.001) and r=-0.51 (P<0.001). The relationship of SuStaIn stage

and spirometric lung function was nonlinear in the Tissue! Airway sub-

type and linear in the Airway! Tissue subtype (Figure 2.3). The corre-

lations between baseline lung function and SuStaIn stage were repli-

cable in the ECLIPSE dataset (Figures 2.5, 2.6).

2.3.2 Longitudinal Validation of Disease Progression

SuStaIn Stage and Longitudinal Decline in Lung Function

To investigate whether disease progression derived from SuStaIn

stages (in pseudo-time) is consistent with lung function decline (as-

sessed by spirometry), a population of patients (demographics in Table

2.5) who had spirometry readings at the �rst and second COPDGene

timepoint, �ve years apart, was analysed. Results suggested that ear-

lier SuStaIn stages correlated with a faster individual level progression

of FEV1/FVC ratio and FEV1% predicted between the two time points.

Since spirometric data was available for only two time points, 5 years

apart, annualised values for the change in spirometry were �rst de-

rived to represent a rate of decline in spirometry. For the GOLD 1 and

2 group of patients (Figure 2.3 B for FEV1/FVC ratio and Figure 2.4
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Table 2.4: Relationships between exacerbations and dyspnoea with
SuStaIn stage and subtype. Data is reported as median (interquartile
range).

B for FEV1% predicted), baseline-derived SuStaIn stage was corre-

lated with the rate of decline in FEV1/FVC and FEV1% predicted in

both subtypes. The correlation ratios for baseline SuStaIn stage to

annual decline in FEV1/FVC were r = -0.16 (P<0.001) and r= -0.14

(P=0.011) for the Tissue! Airway and Airway! Tissue group and for

baseline SuStaIn stage to annual decline in FEV1% predicted – r= -

0.20 (P<0.001) and r= -0.14 (P=0.011), respectively. In the GOLD 3-4

patient group, for subtype Tissue! Airway there was no signi�cant cor-

relation between baseline SuStaIn stage and change in FEV1/FVC (r=

-0.001; P=0.98) or for FEV1% predicted (r= -0.019; P=0.69). For pa-

tients assigned to the Airway! Tissue subtype of the GOLD 3-4 group,

correlation between baseline SuStaIn stage and change in FEV1/FVC

(r= -0.23; P=0.005) was found, but not in SuStaIn stage to FEV1%

predicted (r= -0.15; P=0.069).

Stability of SuStaIn Subtypes and Progression in Time

Subtype assignment in SuStaIn has the assumption that patients

would belong to a single subtype and progress only in stage over time.

Using the 5 year follow-up data from COPDGene, a sample of pa-

tients who had complete imaging biomarkers at both time points were

subtyped and staged using the original SuStaIn model (trained on the

baseline data). 1,283/1,472 (87%) patients remained in their original

subtypes at the follow-up time point. Moreover, SuStaIn stages were

strongly correlated between the �rst and second time point and pa-
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Table 2.5: Demographics of the subjects (controls and COPD patients)
who had imaging biomarkers available at both time points and who
were used to study the longitudinal relationship between lung function
decline and SuStaIn subtype and stage.

tients progressed in stage, but remained in their subtypes with time

(Figure 2.7), suggesting the derived model is a good representation

of real disease progression. Individuals in the GOLD 1-2 group pro-

gressed more rapidly in stage between the two time points as com-

pared to those in the GOLD 3-4 group. Since GOLD stage is de�ned

by spirometric thresholds, these �ndings pointed to the clinically impor-

tant hypothesis that disease progresses at a faster rate earlier, while

spirometrically more advanced disease is less active.

2.3.3 Analysis of Smoking Controls

Detection of Patients at risk of developing COPD using SuStaIn

The aforementioned �ndings motivated using the derived disease

progression model to stratify the large population of smoking controls

(who did not have a diagnosis of COPD) from the COPDGene dataset.
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Most (71%) control patients were assigned to SuStaIn stage 0 - a null

assignment which represents normality and no stage or subtype. The

remaining 29% were assigned to the Tissue! Airway subtype (641

subjects, 18% of all controls) and to the Airway ! Tissue subtype (381

subjects, 11% of all controls). Within each subtype,a small proportion

of subjects were assigned to more advanced (� 3) SuStaIn stages: 37

subjects in Subtype I and and 40 subjects in Subtype II.

SuStaIn Stage and Lung Function in the Control Population

In the population of patients in the control population, who were as-

signed to non-zero SuStaIn stages, associations were found between

SuStaIn stage and baseline spirometric lung function, as well as SuS-

taIn stage and longitudinal decline in spirometric lung function (Figure

2.8 for FEV1/FVC ratio and Figure 2.9 for FEV1% predicted). This sug-

gests that SuStaIn stage could be used as a marker of early disease.

SuStaIn Subtype and Stage over time in the Control Population

Assignment to the same subtype remained consistent in the the 5

year follow up for 86% of subjects in the control population. SuStaIn

stages also remained broadly similar at the second time point for the

controls: baseline and follow-up stages were well correlated at r=0.48

(P<0.001) in the Tissue! Airway subtype, and r=0.61 (P<0.001) in the

Airway! Tissue subtype (Figure 2.10).

Conversion to COPD in the Control Population

The most important �nding from the control population analysis

was the identi�cation of a group of patients who were at higher risk

of being diagnosed with COPD at the second timepoint (moving to

GOLD stage 1). For control subjects assigned to SuStaIn stage 0,

only 8.7% progressed to GOLD stage 1 during follow-up. However,

23% of subjects in the Tissue! Airway subtype progressed to GOLD

1 and 20.9% of subjects in the Airway! Tissue subtype progressed to

GOLD 1. The higher conversion rate to clinically diagnosed COPD for

subjects assigned to SuStaIn subtypes as compared to those with nor-

mal imaging metrics was signi�cant ( P<0.001, chi-squared test). This

suggests that SuStaIn subtypes and stages can be used as imaging-

derived biomarkers of early COPD.
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Figure 2.3: Relationship between Subtype and Stage Inference (SuS-
taIn) stage and lung function expressed as FEV1/FVC. (A) Scatter-
plot of cross-sectional spirometry versus SuStaIn stage for the Tis-
sue! Airway and Airway! Tissue subtypes. A linear and a quadratic
model are �tted to the data via a least-squares estimation to assess
the relationship between SuStaIn stage and markers of lung function.
In the Tissue! Airway subtype, there is a visible nonlinear relationship
between lung function and SuStaIn stage, with a more rapid decrease
in lung function at earlier SuStaIn stages. The decline in lung func-
tion in the Airway! Tissue subgroup is linear and less rapid at earlier
SuStaIn stages. (B) Scatterplot of measured decline in spirometry ver-
sus baseline SuStaIn stage for the Tissue! Airway and Airway! Tis-
sue subtypes in Global Initiative for Chronic Obstructive Lung Disease
(GOLD) 1-2 subjects. In both subtypes, SuStaIn stage at baseline cor-
related with future decline in lung function measured using FEV1 /FVC
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Figure 2.4: Relationship between SuStaIn subtype and stage to lung
function in the form of FEV1% predicted.

52 of 180



2.3. Results 2. Disease Progression Modelling in COPD

Figure 2.5: Relationship between SuStaIn stage and lung function in
the form of (A) FEV1/FVC and (B) FEV1% predicted in the ECLIPSE
cohort.
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Figure 2.6: Relationship between SuStaIn stage and lung function in
the form of (A) FEV1/FVC and (B) FEV1% predicted in the Inspiratory
COPDGene dataset. The SuStaIn stage and subtype in this dataset
were derived by only using the reduced set of imaging biomarkers
which were available in both the ECLIPSE and Inspiratory COPDGene
datasets.

Figure 2.7: Correlation of SuStaIn stages at baseline and at 5-year
follow-up in subjects assigned to the two SuStaIn subtypes. The black
diagonal line indicates perfect correlation - subjects remaining in the
same stage. Most subjects appear above the diagonal, indicating an
increase in stage, driven by worsening of their tissue or airway imaging
biomarkers in the 5 years interval.

54 of 180



2.3. Results 2. Disease Progression Modelling in COPD

Figure 2.8: Relationship between lung function and SuStaIn stage in
the smoking controls. Baseline SuStaIn stage is associated with cross-
sectional and longitudinal changes in air�ow obstruction in smoking
controls. (A) Scatterplot of baseline values FEV1/FVC versus SuStaIn
stage in the control population. (B) Scatterplot of longitudinal change
in FEV1/FVC per year versus SuStaIn stage in the control population.
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Figure 2.9: Relationship between SuStaIn stage and lung function
measured by FEV1% predicted in the control population.

Figure 2.10: Correlation between baseline and 5-year follow-up SuS-
taIn stage for the patients in the smoking controls population who were
assigned at a non-zero SuStaIn stage at baseline.
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2.4 Discussion

This work was the �rst analysis of disease progression of COPD with

the unsupervised machine learning model SuStaIn based on imaging-

derived biomarkers. Two clinically meaningful phenotypes (subtypes)

of COPD with distinct pseudo-temporal disease progression stages

were discovered using large datasets of subjects at various disease

severity. Importantly, the results were validated by the use of a large

external and independent dataset - ECLIPSE, and by the use of a sec-

ond time point at 5 years follow-up from the COPDGene study. SuStaIn

stages associated with both cross-sectional and longitudinal spiromet-

rically measured lung impairment. Earlier SuStaIn stages associated

with greater rate of lung function loss and subjects were progressing

through earlier SuStaIn stages more rapidly in real time. Most subjects

also stayed in their subtypes at 5-year follow-up while progressing in

stage. SuStaIn subtypes and stages can also be used as a biomarker

of early COPD in smokers without a diagnosis of COPD.

The heterogeneous nature and long timescale of COPD (spanning

decades), complicates the investigation of long-term disease progres-

sion, particularly on the level of the individual. Using disease pro-

gression modelling, which inherently disentangles temporal progres-

sion and disease subtypes, based on the rich information from high-

resolution lung CT, provides a detailed picture of the disease. The two

different trajectories discovered and validated in this work might be

associated with different endotypes and motivate distinct treatments.

Furthermore, the SuStaIn analysis provides a method for identi�cation

of at-risk individuals who might bene�t from early intervention while

their spirometry is still within the normal range. This is also supported

by the �nding that progression through stages is faster at earlier stages

and slows down at later stages.

To a degree, the two subtypes derived from the SuStaIn analy-

sis – Tissue! Airway and Airway! Tissue, are consistent with older

classi�cations of COPD patients into "pink puffers" and "blue bloaters"

[58], while providing the distinct patterns of damage in the parenchyma

and airways, derived from imaging. Historically, "pink puffers" were

characterised by emphysema and lower BMI, while "blue bloaters" had

greater levels of chronic bronchitis and higher BMI. These characteris-

tics were also re�ected to a degree in the analysed populations: sub-

jects in in the Tissue! Airway subtypes had lower BMI and lower inci-

dence of chronic bronchitis compared to those in the Airway! Tissue

subtype.
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Many studies have shown that in�ammatory changes in the small

airways are fundamental processes driving the progression and sever-

ity of COPD. The results also suggest that the small airways, emphy-

sema, and bronchitis are the principal drivers of COPD progression

but that these occur in different proportions and at different times in

the two different groups. In a study by Hogg et al. [59], it was demon-

strated that a cascade of in�ammatory processes lead to small airway

disease and lung function impairment. It is possible that the distinct

subtypes identi�ed in this study are a function of these distinct in�am-

matory mechanisms with consequent differences in progression pat-

terns. The ability of SuStaIn to separate patients into distinct subtypes

at early stages could enable the characterization of different COPD

endotypes.

There are several limitation related to the analysis undertaken in

the present section. First, the usage of quantitative imaging biomark-

ers as modelling inputs is associated with various sources of noise

related to the scanning procedure and methods used for biomarker

quanti�cation. Scanner manufacturers, reconstruction kernels, radia-

tion dose, inspiration level all affect the voxel attenuation value. Partial

volume effects could also in�uence the accuracy of biomarker quan-

ti�cation. The current study used large amounts of data from two sep-

arate studies, which was collected and analysed in different clinical

centres and geographies. Still, the consistency of the results across

datasets is an indicator that the data-driven approach employed is able

to disentangle the signal from the noise.

The usage of the SuStaIn disease progression model also has sev-

eral limitations. First, even though the results are signi�cantly more ex-

plainable than deep learning based clustering and progression models,

they might still be dif�cult to communicate to clinicians. Utilization of

a simpler clustering algorithm could thus have been bene�cial, but it

is likely that it would have missed the crucial temporal element of dis-

ease progression. Second, the usage of pseudo-time in the model is

still a limitation as it makes the interpretation of results somewhat dif�-

cult. Inherently, SuStaIn models only the sequence of disease events,

which is statistically governed, but the real time between events is not

guaranteed to be �xed and is currently unknown. Future studies to

map SuStaIn stage sequences to real time are needed and are an

ongoing area of research. A key assumption of SuStaIn is also the

unidirectional monotonic progression of disease, while it is known that

regression can occur in early COPD. In fact, this phenomenon is some-
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what evident in Figures 2.7 2.10 where a portion of the patients seem

to have regressed in stage over time. As with any data-driven model,

perfect accuracy is unfeasible while the vast majority of patients (87%)

either remained or advanced in their SuStaIn stage over the 5 year

follow-up.

The present study was the �rst use of SuStaIn to study disease

progression in COPD. Several important clinical �ndings were discov-

ered. First, there are two distinct subtypes of COPD – most patients

develop small airway disease and emphysema before large airway wall

changes, but a signi�cant minority (30%) develop large airway wall

changes �rst. Second, the relationship with lung function in these

subtypes is different, with a more rapid initial decline in lung func-

tion (greater disease activity) observed in the Tissue! Airway group.

This may explain the heterogeneity observed in FEV1 decline across

COPD populations. Finally, the results suggest that data-driven mod-

elling such as SuStaIn can disentangle a set of smokers who are likely

to develop COPD on the basis of their lung imaging biomarkers.
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Chapter 3

Disease Progression Modelling

in COVID-19

During the course of this doctorate, the global pandemic of SARS-CoV-

19 (COVID-19) affected broad plains of human life over the course of

years. The widely spread novel viral respiratory virus strained health-

care systems worldwide and highlighted the need for appropriate, sen-

sitive and reliable tools to diagnose, triage and stage disease. Be-

cause my work focused on developing computational tools to analyse

COPD, I felt compelled to join the effort to alleviate strain on the health-

care system by putting my skills to the analysis of data gathered during

the course of the pandemic. The work in this chapter details Contri-

bution 2: The adaptation and usage of the Subtype and Stage Infer-

ence (SuStaIn) disease progression model for short-term COVID-19

infection and prediction of in-hospital outcomes. This work was initially

intended to include COVID-19 CT image analysis, but because of the

data collection timelines in the pandemic environment, only analysis

based on routinely collected clinical data was possible. Still, the work

presented in this chapter represents a condituation of the disease pro-

gression modelling work in Chapter 2 and is the �rst adaptation and

application of SuStaIn for short-term infectious disease.

A.Y., W.L., E.G., S.A., P.T., Y.H. and J.J. advised on forming the

main objectives and the statistical modelling and analysis. Q.Y. shared

insights to data preparation and pre-processing. I conducted the data

selection, cleaning, preparation and analysis. I also performed the

necessary modi�cations and tuning of the machine learning model,

with advice from Alex. Eyjolfur advised on and helped with coding up

the statistical analysis in R. I wrote the main manuscript and all authors

contributed to its editing and proo�ng.

Most of the work in this chapter was published in the journal Nature
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Scienti�c Reports :

Rangelov, B., Young, A., Lilaonitkul, W., Aslani. S., Taylor, P, Gud-

mundsson, E., Yang, Q., Hu, Y., Hurst, J., Hawkes, D., Jacob, J. and

the NCCID Collective. Delineating COVID-19 subgroups using routine

clinical data identi�es distinct in-hospital outcomes. Nature Scienti�c

Reports, 2023 [60].

3.1 Introduction

The COVID-19 pandemic, caused by the rapid spread of the original

SARS-CoV-2 virus (and its follow-on variants) was one of the great-

est health challenges faced in the modern age. As of May 2022 the

global death toll exceeded 6.3 million people with more than 544 mil-

lion con�rmed infections [61]. Even though large-scale vaccination

programs mitigated the death toll and hospitalizations, seasonality of

spread and new virus variants continue to cause new waves of in-

creased infection. COVID-19 still puts strain on healthcare systems

worldwide. Even though the pandemic was contained in most coun-

tries, recent examples of virus resurfacing, e.g. the 2022 surge in

Shanghai, China [62] (due to mutations, lack of containment mea-

sures, and vaccine resistance) suggest the world is still in danger of

further waves. The pandemic demonstrated the relative unprepared-

ness of healthcare systems to deal with many infected patients while

providing adequate care to them. One aspect of this unpreparedness

can be attributed to the lack of robust and appropriate disease mod-

els. Through the pandemic, there was a signi�cant effort to develop

algorithms and decision-support systems to aid triaging and patient

management. While it is still dif�cult to say which models and AI tools

have been useful, most studies relied on either established or newly-

designed clinical scores (e.g. the NEWS-2 score [63], ROX index [64],

ISARIC-4C score [65]), classic machine learning classi�cation (e.g.

Support Vector Machines [66]), or neural networks/Deep Learning for

either imaging [67] or clinical data [68] to predict patient outcomes. Of

the methods utilised, clinical scores showed most promise. Yet per-

haps due to the rapid development and testing of methods, the ma-

jority of existing studies showed signi�cant limitations – e.g. lack of

independent test dataset [67, 66], over�tting, miscalibration [69] (es-

pecially for imaging-based deep learning models), non-availability of

code implementation, lack of explainability, small sample size, or bi-

ased data selection [67, 69].
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To overcome these limitations, I adapted the usupervised machine

learning model SuStaIn [41], to be deployed to data from the �rst wave

of the COVID-19 pandemic. SuStaIn has already shown great promise

in in tackling several chronic diseases [43, 70, 71], but it can now be

used to gain insights and aid management of shorter-term, infectious

disease. I used 11 routinely collected clinical measures on admission

to hospital to disentangle distinct clusters of patients (subtypes) and

severity stages of the disease within subtypes, both of which were pre-

dictive of inpatient hospital outcomes. Predictions from SuStaIn pro-

vide insight into both disease subtypes and severity – a nuance which

many models miss. The model further balances model complexity, to

capture biomarker dynamics, and explainability, which positions it as a

useful clinical tool for triaging patients based on their SuStaIn subtype

and stage. Unlike other predictive scales or deep-learning models, it is

now readily deployable to future infectious disease epidemics and the

model implementation is available.

3.2 Methods

3.2.1 Population

In this chapter, I analysed data from the National COVID-19 Chest

Imaging Database (NCCID), which comprised COVID-19 positive and

negative patients [72, 42]. All patients in the study were admitted to

hospital with suspected COVID-19 infection. In patients with a con-

�rmed positive Polymerase Chain Reaction (PCR) SARS-CoV-2 RNA

test, NCCID also collected imaging: Computed Tomography (CT) and

Chest X-ray (CXR), as well as clinical information, where the imaging

was performed during the hospitalisation period and the salient clini-

cal readings were acquired at admission. The study also included a

group of patients who were hospitalized but were subsequently found

to be negative for COVID-19. To meet the negative diagnosis, these

patients had to have tested negative on repeated PCR for COVID-19

and not have been admitted to hospital in the subsequent month. All

data used was collected from patients admitted to hospital in the UK

from January 2020 to January 2021. The data was collected from 14

NHS Hospital Trust centres in the UK, comprising 52 hospitals, which

submitted a variable number of cases each.

All data was previously gathered as part of the NCCID study and

was stored and analysed in accordance with the established study
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guidelines as outlined in an earlier work describing the dataset [72].

Ethical approval was granted by the UK Health Research Authority

and the Scottish Public Bene�t Privacy Panel (PBPP), and was also re-

viewed by NHS Information Governance [72]. Usage of pseudonymised

patient data for this study was allowed under a nationally issued No-

tice under Regulation 3(4) of the Health Service Control of Patient In-

formation Regulations 2002 (COPI). This notice required all hospitals

and NHS centres to share and process con�dential patient informa-

tion for COVID-19 purposes (protecting public health, providing health-

care services to the public and monitoring and managing the outbreak)

[42]. Subject consent for publication was not required as all data was

pseudonymised [72]. All data collection, processing and sharing in

the NCCID study was done under the rules and conditions outlined in

the Notice. Approval for the retrospective analysis of clinical data and

imaging data in NCCID was obtained from the local research ethics

committees and Leeds East Research Ethics Committee: 20/YH/0120.

3.2.2 Data preparation

Although NCCID enrolled many centres in data collection, the signi�-

cant load imposed by the COVID-19 pandemic led to many instances

of missing data, especially in the clinical readings at admission. As a

result, I used a portion of the NCCID dataset, primarily driven by data

completeness. A total of 1,344 subjects (referred to as case popula-

tion) were used, in addition to 137 COVID-19 negative patients who

were utilised as controls for the disease progression model (please

see 3.2.3). Manual data quality assurance, curation and standardisa-

tion was performed on all clinical data.

I selected eleven clinical tests as biomarkers for disease progres-

sion modelling: creatinine, urea, C-reactive protein, lymphocyte count,

platelet count, white cell count, respiratory rate, temperature, heart

rate, systolic and diastolic blood pressure. Several of these measures

have been suggested as being prognostically important in previous

survival analyses [63, 65, 73]. The choice of clinical tests to include

in the current model was driven by previous use in research and by

practicality. All clinical test results were recorded on admission of the

patients to hospital.

The 1,344 covid-positive cases were split randomly into a training

and validation sample of 672 subjects after matching the two popula-

tions for age. All model training and tuning was performed solely on the

training population and the patients in the validation population were
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used only at testing.

NCCID data was accessed through a UCL-owned XNAT instance.

The Microsoft Azure platform and tools from Microsoft Project Inner-

Eye Open Source Software were used for cloud-based modelling and

analysis (https://aka.ms/InnerEyeOSS).

3.2.3 Subtype and Stage Inference model

Subtype and Stage Inference (SuStaIn), discussed previously (See

2.2.3), is an unsupervised learning algorithm that simultaneously iden-

ti�es clusters (subtypes) and progression sequences (stages) of dis-

ease based on worsening biomarker readings. Uniquely, it extracts

a pseudo-temporal evolution of disease from single-timepoint, cross-

sectional data to account for the inherent progression of diseases. The

present work is the �rst to apply SuStaIn to an infectious disease in its

acute phase.

I adapted linear z-score SuStaIn, in which each of the eleven clini-

cal biomarkers was transformed to a z-score with reference to the con-

trol population. The fundamental assumption of SuStaIn that imaging

biomarkers would only be declining in time was not necessarily valid in

the routinely collected hospital data. Thus, when preparing and trans-

forming the distributions of the clinical parameters, I inverted the over-

all z-score progression direction, enforcing positive z-score progres-

sion across the input measurements. Since this was a simple multi-

plicative operation, the �nal progression sequences could be inverted

again to ensure better interpretability of the derived progression se-

quences while adhering to the model's assumptions. The control pop-

ulation for this study consisted of 137 patients who were suffering from

acute disease (initially suspected to be COVID-19) and were hospi-

talised but were later determined to not have COVID-19. This popula-

tion was favourable for usage as controls to SuStaIn since all patients

were unwell enough to be admitted to hospital but were not infected

with COVID-19. By z-scoring the 11 biomarkers in reference to this

population, the effects of COVID-19 infection on the biomarkers were

separated from the effects of other acute disease.

Several data preparation steps were carried out prior to initiating

modelling with SuStaIn to isolate the COVID-19 signal from other po-

tential covariates. First, the effects of age and sex on all 11 biomarkers

were learned in the control population and regressed out from the en-

tire population. Second, the normality of the distributions of biomarkers

was investigated through the Shapiro-Wilk and D'Agostinos K2 test.
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If a biomarker distribution failed any of the normality tests, a power

transform (either the Box-Cox or Yeo-Johnson) was used to improve

the normality of its distribution. The transformations were applied both

on the control and case populations and were necessary since normal

distributions are assumed by the linear z-score SuStaIn model.

Finally, each biomarker was transformed into a z-score with ref-

erence to the control population, as described earlier. Since some

biomarkers were expected to increase or decrease with disease pro-

gression, those found to decrease in the case population with refer-

ence to the control population (implying negative z-scores), were in-

verted to ensure all biomarker progression was represented by mono-

tonically increasing z-scores.

Several hyperparameters (model parameters which are not auto-

matically learned, but are instead chosen and optimised) were se-

lected – namely the z-score thresholds which represent a stage of pro-

gression and the maximum number of subtypes (clusters) to search

for. These were tuned and the best-�tting model selected. Table 3.1

outlines the z-score thresholds selected for each biomarker. When a

biomarker reached a certain z score value (e.g. z=1 or z=2), this rep-

resented a new disease severity stage.

3.2.4 Frailty Cox proportional hazards models

To model the survival of patients admitted with COVID-19 infection,

the Cox Proportional Hazards (PH) model was used. I used 5 pre-

dictor variables in the model: age, sex, subtype, weighted stage, and

the subtype-weighted stage interaction. Two outcomes were predicted:

time to in-hospital death and time to escalation of patient management.

Escalation was de�ned as in-hospital deterioration which resulted in ei-

ther ITU admission, intubation or death. The earliest of these 3 events

was used as the measure of time to escalation for each patient. Ob-

servations were right censored to 6 months after hospital admission

as this was the maximum hospital stay for some patients (before dis-

charge or death). To account for the signi�cant variability between

centres, a frailty Cox PH model [74] was adopted with NHS centre as

the frailty variable, modelling the random effects in the population.
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Biomarker Unit Included Z-score thresholds

z = 1 z = 2

Creatinine � mol/L x
Urea mmol/L x
Respiratory rate breaths/min x x
C-reactive protein mg/L x x
Temperature � C x
Systolic BP mmHg x
Diastolic BP mmHg x
Heart rate beats/min x x
Lymphocyte count 109/L x x
Platelet count 109/L x
White cell count 109/L x

Table 3.1: Z-score thresholds included for the biomarkers used in SuS-
taIn modelling. After the model was trained (on the training population),
each subject was assigned a SuStaIn subtype and stage. Subtype
was assigned by selecting the most probable cluster. Instead of as-
signing a simple integer stage to each subject, a weighted stage was
designated. For each subject, each stage was weighed by the prob-
ability of the subject belonging to that stage and the result was then
summed, producing a continuous weighted stage. Subjects in the val-
idation population were subtyped and staged using the model trained
on the training population.

3.3 Results

3.3.1 COVID-19 subtypes and severity progression

SuStaIn discovered 3 clinical subtypes of COVID-19 (based on the

training population), characterised by distinct in-hospital disease pro-

gression. SuStaIn has previously been used to model long-term dis-

ease like Alzheimers or COPD, which span years, but I adapted it for

the relatively short time span of an infectious disease (in-hospital mon-

itoring for up to 6 months). Hence, the disease stages can be inter-

preted as sequences of progression in the severity of disease within

each subtype. We named the three subtypes General Haemodynamic,

Renal and Immunological (Figure 3.1).

Subtype 1: General Haemodynamic

In this subtype, less severe disease was characterised by high di-

astolic blood pressure, temperature, respiratory and heart rate, which

was then followed by further heart rate increases, elevated CRP and a

decrease in lymphocyte levels.

Subtype 2: Renal

The Renal subtype was characterised by early elevations in creati-
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Figure 3.1: COVID-19 subtypes and disease severity progression. The
warm colours represent disease stages progressing towards positive
z-scores (z=1, z=2) and the cold colours - towards negative z-scores
(z= 1, z= 2). Increased colour transparency signi�es greater uncer-
tainty. The f-value next to each subtype represents the fraction of the
training population which was classi�ed as belonging to this subtype.

nine and urea levels, followed by a decrease of systolic blood pressure

and an increase in CRP. Unlike the other 2 subtypes, which only exhibit

abnormal creatinine and urea in late-stage disease (SuStaIn severity

stages 12+), patients with the Renal subtype experienced these ab-

normalities early in their disease severity progression.

Subtype 3: Immunological

In the Immunological subtype, COVID-19 began with abnormally

low systolic blood pressure, followed by a cascade of decreases in

lymphocyte and platelet count and then elevated temperature, heart

rate and CRP levels at more advanced disease.

In all subtypes, abnormalities in the systolic and diastolic blood

pressures seemed to be separated – being placed at the opposite ends

of SuStaIn stage in all three subtypes.

3.3.2 Data Exploration

SuStaIn modelling revealed a large proportion of patients were as-

signed to SuStaIn stage 0 – a disease state, which was very similar

to the control population. These patients were grouped into a sep-
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arate, Normal-appearing Subtype 0 – 290 patients from the training

population and 317 patients from the validation population were found

to belong to this subtype. These subjects had a milder COVID-19 pre-

sentation and were later found to have a much higher probability of

survival.

Furthermore, for a number of biomarkers, progression represented

a decrease rather than an increase in the real-value biomarker read-

ings: systolic blood pressure, lymphocyte count and platelet count.

This meant that for these 3 biomarkers, the average biomarker read-

ings were lower in the case population as compared to the control pop-

ulation. Advancing of SuStaIn stages for these 3 biomarkers, there-

fore, represented decreases in their absolute values. For clinical con-

text, Table 3.2 presents an overview of the absolute values of each

biomarker for each subtype. General demographic data for the train-

ing and validation populations, in aggregate, and also split by subtype,

can be found in Table 3.3.
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Creatinine (mol/L) Urea (mmol/L) Respiratory rate (breaths/min)

Subtype Mean Std Median Mean Std Median Mean Std Median

0 82.8 30.9 76.0 a 5.9 2.8 5.3 a 20.1 3.9 20.0 a
1 104.7 99.1 87.0 a 7.9 5.4 6.4 b 28.2 7.6 28.0 b
2 228.7 211.7 156.5 b 15.8 8.9 13.8 c 23.4 7.5 21.0 c
3 102.9 80.2 86.0 a 8.3 6.0 7.1 b 22.8 5.7 21.0 c

Temperature (°C) Systolic BP (mmHg) Diastolic BP (mmHg)

Subtype Mean Std Median Mean Std Median Mean Std Median

0 37.0 0.9 36.9 a 134.3 23.2 131.0 a 75.1 12.6 75.0 a
1 38.1 1.0 38.2 b 148.9 23.3 147.0 b 88.9 16.7 87.0 b
2 37.2 1.1 37.1 a 120.9 20.4 120.0 c 68.3 12.6 69.0 c
3 37.6 1.1 37.7 d 118.4 20.2 118.0 c 68.2 12.3 68.0 c

Lymphocyte count (109/L) Platelet count (109/L) WCC count (109/L)

Subtype Mean Std Median Mean Std Median Mean Std Median

0 1.4 2.0 1.1 a 242.7 104.2 225.0 a 7.4 3.7 6.7 a
1 1.0 0.7 0.8 b 249.8 173.4 223.0 a 8.7 4.1 7.8 b
2 1.3 1.9 0.9 a, b 256.7 128.7 233.5 a 12.1 6.8 10.8 c
3 0.5 0.2 0.4 c 159.4 76.7 158.0 b 6.9 5.5 5.8 a

CRP (mg/L) Heart rate (beats/min)

Subtype Mean Std Median Mean Std Median

0 62.3 64.2 40.2 a 84.7 16.1 84.0 a
1 116.7 117.6 90.0 b 105.8 19.9 104.0 b
2 165.2 107.0 148.1 c 91.3 19.3 91.0 c
3 105.6 76.8 89.5 b 92.4 19.3 90.5 c

Table 3.2: Descriptive statistics for the 11 biomarkers in the entire case
population, split by subtype. Subtype 0 represents the 'normal' looking
subtype, which is most similar to the control population. Std – standard
deviation. One-way ANOVA with the Tukey post-hoc tests was per-
formed between subtypes for each biomarker: results indicated with
labels (a, b, c, d) – subtypes with a signi�cant pairwise difference have
different labels, while subtypes which were not signi�cantly different
share the same labels.
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Training

All Subtype 0 Subtype 1 Subtype 2 Subtype 3

Age [mean (std)] 70.0 (16.2) 67.0 (16.9) 69.2 (15.0) 74.3 (15.5) 73.0 (15.1)
Sex [% male] 59.8 55.2 63.4 60.6 67.0

Smoking status [%]

N: 32.7 N: 32.8 N: 36.1 N: 30.5 N: 31.3
E: 20.0 E: 20.4 E: 19.4 E: 16.1 E: 27.7
C: 3.4 C: 3.2 C: 3.7 C: 2.6 C: 4.8

U: 43.4 U: 43.6 U: 40.7 U: 50.8 U: 36.1
Mortality [% died] 32.9 18.6 38.2 52.8 38.5
Days to death [mean (std)] 125.5 (78.5) 149.3 (64.4) 115.4 (82.8) 93.3 (83.7) 116.1 (81.5)
Escalation [% escalated] 41.1 22.4 58 57.7 48.6
Days to escalation [mean (std)] 110.5 (83.9) 142.4 (70.2) 78.5 (86.8) 84.4 (83.7) 98.1 (85.0)

Validation

All Subtype 0 Subtype 1 Subtype 2 Subtype 3

Age [mean (std)] 69.5 (16.2) 66.2 (17.1) 71.8 (14.9) 73.9 (14.4) 71.4 (14.7)
Sex [% male] 61.6 59.3 68.2 63.0 59.8

Smoking status [%]

N: 31.7 N: 31.7 N: 31.1 N: 32.5 N: 31.9
E: 20.2 E: 18.3 E: 23.7 E: 20.2 E: 22.0
C: 4.6 C: 4.2 C: 6.5 C: 3.5 C: 5.5
U: 43.4 U: 45.8 U: 38.7 U: 43.9 U: 40.7

Mortality [% died] 29.9 18.9 32.7 47.1 37.4
Days to death [mean (std)] 130.3 (76.8) 149.1 (64.6) 124.4 (80.4) 101.5 (85.1) 117.6 (81.4)
Escalation [% escalated] 37.6 25.2 45.5 55.8 43.0
Days to escalation [mean (std)] 115.5 (83.4) 137.4 (73.9) 101.2 (87.0) 83.4 (86.6) 107.1 (84.7)

Table 3.3: Demographics per population and subtype. Smoking status: N – never, E – ex-smoker, C – current smoker, U – unknown. No
signi�cant differences were found in any variable between the training and validation populations (using t-tests for continuous variables and
chi-squared tests for nominal and binary variables).
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3.3.3 Cox proportional hazards (PH) frailty model

SuStaIn subtype and weighted stage was found to be a signi�cant

predictor of both in-hospital escalation of patient management and in-

hospital mortality for patients admitted with COVID-19. Cox PH mod-

els were �tted separately on the training and test populations and then

set against one another to con�rm consistency of the results. The

Kaplan-Meier curves and model coef�cients were examined as a form

of validation, as suggested previously [75].

Predicting escalation of patient management using SuStaIn Ta-

ble 3.4 is a summary of the multivariable Cox proportional hazards

models �tted to both the training and validation population, with a frailty

term accounting for bias between submitting NHS Hospital Trusts. The

results were consistent between populations, suggesting that SuStaIn

subtype and stage generalise as predictors of escalation between 2

randomly selected populations (albeit in patients whose data was col-

lected as part of the same study). The interaction of subtype and

weighted stage, moreover, produced the greatest overlap in coef�-

cients. It should be noted that the hazard ratios of the interaction terms

are not trivial to interpret. In statistical terms, the interaction coef�cient

represents the additional multiplicative effect on the hazard ratio be-

yond what would be expected from the main effects alone. As can be

seen Subtypes 1, 2 and 3 already dramatically increase the risk of in-

hospital escalation, as does the weighted SuStaIn stage on its own.

The subtype and weighted stage interaction term, however, should be

interpreted as an increase in stage risk, over the baseline subtype risk.
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Training Validation
Covariate HR Lower 95% Upper 95% p-value HR Lower 95% Upper 95% p-value
age 1.01 1.00 1.02 0.01 1.01 1.00 1.01 0.29
sex 0.80 0.62 1.03 0.08 0.59 0.45 0.78 0.00
subtype 1 4.05 2.08 7.88 0.00 2.69 1.32 5.47 0.01
subtype 2 3.73 1.85 7.49 0.00 2.77 1.41 5.45 0.00
subtype 3 5.04 2.37 10.74 0.00 2.58 1.28 5.17 0.01
weighted stage 2.74 1.35 5.56 0.01 2.99 1.58 5.66 0.00
subtype 1:wstage 0.44 0.22 0.90 0.02 0.39 0.20 0.75 0.00
subtype 2:wstage 0.42 0.21 0.86 0.02 0.42 0.22 0.80 0.01
subtype 3:wstage 0.35 0.17 0.72 0.00 0.38 0.20 0.73 0.00

Table 3.4: Multivariable Cox Proportional Hazards modelling of Time to Escalation in the training and validation population. The hazard
ratios, HR, (and consequently the exponent of model coef�cients) between the training and validation populations show signi�cant overlap.
The effects of the frailty variable – NHS Hospital trust, are not shown as there are 14 centres in the population. wstage: weighted SuStaIn
stage; sex 0: female; sex 1: male; variable interactions denoted with :
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Model concordance was good and was nearly equal in the Cox

models �tted to both the training (C index of 0.69, 95% CI 0.660.72)

and validation (C index of 0.69, 95% CI 0.650.72) populations.

Early SuStaIn stages and Subtype 0 were found to predict much

less frequent in-hospital escalation of treatment as compared to the

other 3 subtypes (Figure 3.2). Among the three subtypes, patients

assigned to the Immunological subtype (subtype 3) were least likely

to experience escalation of treatment, while the General Haemody-

namic (Subtype 1) and Renal (Subtype 2) subtypes were more likely

to require treatment escalation while hospitalised (Figure 3.2). The

Kaplan-Meier curves for SuStaIn subtypes were generally consistent

in the training and validation populations. The only subtype showing

poorer calibration between populations was the haemodynamic sub-

type where the KM curves differed between populations.

Figure 3.2: KaplanMeier plots for 6-month in-hospital escalation of
treatment for the training (left) and validation (right) population. wstage
– weighted SuStaIn stage.

SuStaIn stage on its own had signi�cant discrimination for the need

for escalation of treatment (Figure 3.3) and was a better predictor of

escalation than patient age or sex.

Mortality prediction using SuStaIn SuStaIn subtype and stage were

also good predictors of in-hospital mortality. As shown in Table 3.5, the
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Figure 3.3: SuStaIn stage provides better discrimination of time to es-
calation of treatment than age or sex: left-training population, rightval-
idation population. wstage – weighted SuStaIn stage. sex 0 – female,
sex 1 – male.

hazard ratio con�dence intervals show good overlap between train-

ing and validation populations. For determining mortality, subtype and

weighted stage on their own were better predictors than the subtype-

stage interaction (which did not achieve signi�cance at the 0.05 thresh-

old in the training population). Model concordance for both the training

and validation populations was equal: C index of 0.74, 95% CI 0.71-

0.77 on the training population and C index of 0.74, 95% CI 0.71-0.77

on the validation population, showing a slightly better concordance

than the models for escalation of patient management.
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Training Validation
Covariate HR Lower 95% Upper 95% p-value HR Lower 95% Upper 95% p-value
age 1.04 1.03 1.05 0.00 1.04 1.03 1.05 0.00
sex 0.85 0.65 1.13 0.26 0.69 0.51 0.94 0.02
subtype 1 2.35 1.07 5.14 0.03 2.35 1.00 5.51 0.05
subtype 2 3.39 1.58 7.26 0.00 2.28 1.04 5.03 0.04
subtype 3 3.07 1.30 7.25 0.01 2.55 1.14 5.68 0.02
weighted stage 2.32 1.01 5.30 0.05 2.72 1.28 5.78 0.01
subtype 1:wstage 0.52 0.22 1.19 0.12 0.42 0.19 0.90 0.03
subtype 2:wstage 0.49 0.21 1.12 0.09 0.47 0.22 1.01 0.05
subtype 3:wstage 0.44 0.19 1.02 0.06 0.43 0.20 0.92 0.03

Table 3.5: Multivariable Cox proportional hazards analyses modelling time to death in the training and validation groups. HR: hazard ratio;
wstage: weighted SuStaIn stage; sex 0: female; sex 1: male.
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SuStaIn Subtype 0 was, as with the models of treatment escala-

tion, characterised by signi�cantly lower in-hospital mortality. The Re-

nal subtype demonstrated the highest risk of dying in hospital, showing

consistent results of only approx. 50% survival at 6 months in both the

training and validation populations. Subtypes 1 and 3 had very similar

prognoses in the training population (at approx. 70% 6-month sur-

vival), but subtype 3 showed slightly worse calibration in the validation

population and a slightly worse survival.

SuStaIn stage was also, independently, associated with higher risk

of in-hospital mortality (Figure 3.4).

Figure 3.4: KaplanMeier plots for 6-month in-hospital mortality for the
training (left) and validation (right) population. wstage – weighted SuS-
taIn stage.

As expected, age was a strong predictor of in-hospital mortality,

with older patients being at higher risk. Sex had a smaller effect on

mortality, but calibration for sex was poor (Figure 3.5), probably as a

consequence of the random sampling used when creating the training

and validation populations, which led to a slightly different proportion

of men and women (Table 3.3).
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