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ABSTRACT
Background Optical coherence tomography (OCT) 
inner retinal metrics reflect neurodegeneration in 
multiple sclerosis (MS). We explored OCT measures as 
biomarkers of disease severity in secondary progressive 
MS (SPMS).
Methods We investigated people with SPMS from 
the Multiple Sclerosis- Secondary Progressive Multi- Arm 
Randomisation Trial OCT substudy, analysing brain 
MRIs, clinical assessments and OCT at baseline and 96 
weeks. We measured peripapillary retinal nerve fibre 
layer (pRNFL) and macular ganglion cell- inner plexiform 
layer (GCIPL) thicknesses. Statistical analysis included 
correlations, multivariable linear regressions and mixed- 
effects models.
Results Of the 212 participants recruited at baseline, 
192 attended at 96 weeks follow- up. Baseline pRNFL 
and GCIPL thickness correlated with Symbol Digit 
Modalities Test (SDMT) (respectively, r=0.33 (95% CI 
0.20 to 0.47); r=0.39 (0.26 to 0.51)) and deep grey 
matter volume (respectively, r=0.21 (0.07 to 0.35); 
r=0.28 (0.14 to 0.41)).
pRNFL was associated with Expanded Disability Status 
Scale (EDSS) score change (normalised beta (B)=−0.12 
(−0.23 to −0.01)). Baseline pRNFL and GCIPL were 
associated with Timed 25- Foot Walk change (T25FW) 
(respectively, B=−0.14 (−0.25 to −0.03); B=−0.20 
(−0.31 to −0.10)) and 96- week percentage brain volume 
change (respectively, B=0.14 (0.03 to 0.25); B=0.23 
(0.12 to 0.34)). There were significant annualised 
thinning rates: pRNFL (−0.83 µm/year) and GCIPL 
(−0.37 µm/year).
Conclusions In our cohort of people with SPMS and 
long disease duration, OCT measures correlated with 
SDMT and deep grey matter volume at baseline; EDSS, 
T25FW and whole brain volume change at follow- up.

INTRODUCTION
There are a large number of potential neuroprotec-
tive and remyelinating compounds in progressive 
multiple sclerosis (MS),1 but the current approach 
for testing new agents is time- consuming. Standard 

MRI- led phase 2b paradigms are expensive and 
require relatively long observation periods to detect 
meaningful change in relation to biological vari-
ability and slow accrual of atrophy.2 Hence, there 
is a need to develop more convenient non- MRI 
outcome measures to monitor disability progression 
in multisite clinical trials, and optical coherence 
tomography (OCT) is a clear candidate.

OCT uses low- coherence interferometry to 
obtain high- resolution images of the retina and its 
inner layers. Characteristic changes in the retina 
and optic nerve are found in most people with MS, 
regardless of their history of optic neuritis (ON), 
and are thought to reflect neuroaxonal loss.3–6 
OCT retinal measures correlate with MS markers 
of inflammatory disease and neurodegeneration, 
as defined by relapses, new T2 lesions,7 8 clin-
ical disability and MRI- derived brain atrophy.9 10 
OCT measures that correlate most strongly are the 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Many compounds may offer neuroprotection 
in progressive multiple sclerosis (MS); however, 
current outcome measures have limitations 
and are costly. Optical coherence tomography 
(OCT) has the potential to provide valuable and 
cost- effective outcome measures in progressive 
MS trials.

WHAT THIS STUDY ADDS
 ⇒ Only a few trials have studied OCT measures 
longitudinally in progressive MS, especially in 
secondary progressive MS (SPMS) with long 
disease duration. Our study presents novel OCT 
data in a well- characterised SPMS cohort not 
on disease- modifying drugs.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ OCT may have a prognostic role in SPMS and 
could be used in cognitive studies or as a 
predictor of physical impairment.
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peripapillary retinal nerve fibre layer (pRNFL) and macular 
ganglion cell- inner plexiform layer (GCIPL).

In recent times, OCT has gained an important role as a prog-
nostic11–15 and diagnostic tool,16 easily transferable to clinical 
practice. However, the utility of OCT as an outcome measure 
in progressive MS (PMS) is still unclear. Additionally, most longi-
tudinal studies in the field of OCT have included relapsing–
remitting MS9 12 15 17–19 with limited application of OCT in 
progressive MS trials.19–22 Therefore, more longitudinal OCT 
clinical research in progressive MS is needed.

Here, we report a cross- sectional and longitudinal OCT 
substudy, embedded within the reported Multiple Sclerosis- 
Secondary Progressive Multi- Arm Randomisation Trial 
(MS- SMART), a phase 2b four- arm randomised controlled trial 
(RCT) investigating neuroprotection in secondary progressive 
MS (SPMS).23 24 The main trial results did not support any 
treatment effects for the three investigational agents (amiloride, 
fluoxetine and riluzole). The original preplanned OCT anal-
ysis also showed insufficient evidence for a difference in OCT 
measures between placebo and active arms overall.24 We report 
post hoc exploratory analyses that examine the value of pRNFL 
and GCIPL thickness as indicators of disease severity and 
progression in SPMS.

METHODS
We followed the Advised Protocol for OCT Study Terminology 
and Elements (APOSTEL) V.2.0 guidance for reporting quanti-
tative OCT studies.25 We quality- checked OCT imaging based 
on the recommendations of the international consensus quality 
check criteria OSCAR- IB.26

Study design and participants
The MS- SMART trial (NCT01910259) was a multicentre, phase 
2b four- arm RCT investigating neuroprotection in people with 
SPMS in the United Kingdom.23 From January 2015 to June 
2016, participants were randomised to receive amiloride, fluox-
etine, riluzole or placebo for 96 weeks. Key inclusion criteria 
were age 25–65, Expanded Disability Status Scale (EDSS) score 
4.0–6.5, evidence of disability progression in the preceding 2 
years, and no MS disease- modifying therapy. SPMS was defined 
as a gradual worsening due to disease progression rather than 
relapses as a major cause of increasing disability in the preceding 
2 years. People with relapses or treated with steroids within 
3 months of their baseline visit were excluded. The primary 
outcome was MRI- derived brain atrophy at 96 weeks. The study 
found no significant differences between the active treatments 
and placebo.23 24

Participants from two MS- SMART trial centres (University 
College London (UCL) and the University of Edinburgh) were 
invited to an optional OCT study, for which we excluded those 
with non- MS ocular pathology or refractive errors beyond±6 
dioptres. We obtained ocular pathology history from patient 
reports and available medical or ophthalmic records. We also 
excluded patients if we found evidence of unexpected non- MS 
retinal pathology on OCT. Medical histories of visual symp-
toms and previous ON were obtained from patient reports and 
records. For patients with indeterminate history of ON, we used 
p- RNFL normative data to infer previous ON according to age 
groups (18–29, 30–39, 40–49, 50–59, 60–69 year of age groups) 
using the reference table from Kennedy et al assuming a 99% 
CI.27 Additionally, subclinical ON was assumed when pRNFL 
inter- eye thickness difference exceeded 20%.15

Standard protocol approvals, registrations and patient 
consents
The MS- SMART trial adhered to the Declaration of Helsinki 
and ICH Good Clinical Practice guidelines. Ethics approval was 
granted (REC ID: 13/SS/0007), and all patients provided written 
informed consent. Additional consent was obtained for the OCT 
substudy.

Outcomes
All participants underwent OCT scanning for pRNFL and 
GCIPL thickness, clinical assessment and brain MRI at base-
line and 96 weeks. Clinical measures included EDSS, 9- hole 
peg test (9HPT), Timed 25- Foot Walk (T25FW), Symbol Digit 
Modalities Test (SDMT) and Sloan low contrast letter acuity 
(LCLA) 2.5% charts. MRI measures included T2 lesion volume, 
normalised whole- brain volume (WBV) and grey matter volume 
(cortical grey matter volume (CGMV) and deep grey matter 
volume (DGMV)) at baseline and 96 weeks, and percentage 
brain volume change (PBVC) from baseline to week 96.

OCT scanning and analysis
We (FDA, JRC, DP) performed OCT imaging on a spectral 
domain OCT Spectralis device (Heyex V.6.9.4.0, Heidelberg 
Engineering, Heidelberg, Germany) at the two study sites, 
without pupillary dilatation. Ambient light was dimmed. Two 
scans per eye were acquired: (1) pRNFL circular scan (diameter 
12°, 1536 A- scans, 1 B- scan, automatic real time (ART) 100) 
manually centred on the optic nerve head with enabled eye- 
tracking modality. (2) Macular volume scans (UCL site settings: 
20°×20° volume scan, 25 B- scans, 1024 A- scans per B- scan, 
vertical alignment, ART 9; University of Edinburgh site settings: 
30°×25° volume scans, 61 B- scans, 768 A- scans per B- scan, 
posterior pole alignment, ART 12) centred about the fovea with 
eye tracking enabled. For longitudinal imaging registration, the 
‘follow- up option’ was selected. We extracted macular thickness 
values using a thickness map on a 3 mm- diameter Early Treat-
ment Diabetic Retinopathy Study grid. We obtained macular 
layer segmentation to quantify the GCIPL thickness with auto-
mated segmentation software provided by the vendor (Spectralis, 
V.6.8a, Heidelberg Engineering, Heidelberg, Germany). OCT 
imaging and retinal layer segmentation were visually inspected. 
We (FDA, JRC) manually corrected major segmentation errors 
and rejected scans that violated international consensus criteria.26 
FDA and JRC were blind to participant’s clinical and radiolog-
ical data at the time of quality check, manual segmentation or 
manual correction of automated segmentation errors to address 
potential bias.

MRI scanning and analysis
Brain MRI scans were obtained on a 3T Philips Achieva scanner 
(Philips Healthcare, Best, the Netherlands) at the UCL site and 
on a 3T Siemens Verio scanner (Siemens Healthcare, Erlangen, 
Germany) at the University of Edinburgh site. We acquired 
the following scans: axial proton density (PD)- weighted fast 
spin echo, in- plane resolution 1 mm2, slice thickness 3 mm; 
axial T2- weighted fast spin echo, in- plane resolution 1 mm2, 
slice thickness 3 mm; axial fluid- attenuated inversion recovery, 
in- plane resolution 1 mm2, slice thickness 3 mm; axial three- 
dimensional (3D)- T1 spoiled gradient- recalled echo with 1 
mm3 resolution. MRI scan quality control was performed at the 
central MRI facility (Queen Square MS Centre Trial Office).

To quantify T2 lesion volume at baseline, we manually 
contoured lesions on PD/T2 scans using a semi- automated tool 
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(JIM7, Xinapse Systems). T2 lesion masks were used to lesion- 
fill 3D T1- weighted images, and brain images were extracted 
to obtain WBV, grey matter volume (subsegmented into CGMV 
and DGMV), white- matter volume and total intracranial volume 
using the Geodesic Information Flows algorithm.28 Scaling 
factors for brain volume measures normalised against head 
size were estimated with Structural Image Evaluation, using 
Normalization, of Atrophy - Cross- sectional (SIENAX).29 30 For 
longitudinal analysis, we estimated PBVC with Structural Image 
Evaluation, using Normalization, of Atrophy (SIENA).24 29 30

Statistical analysis
All statistical analyses were performed with R, V.4.4.1 (R Foun-
dation for Statistical Computing).31 We describe quantitative 
variables using means and SD or medians and IQRs, and ordinal 
variables with absolute numbers and percentages.

As the trial included four agents (amiloride, fluoxetine, rilu-
zole and placebo), all statistical models were adjusted for treat-
ment arm, to account for any potential treatment effects during 
the trial period. Additionally, due to OCT scanning differences 
between UCL and Edinburgh, all statistical models were also 
adjusted by site. Finally, all statistical models were adjusted for 
history of ON at the eye or patient level as appropriate.

Baseline analysis
We used Pearson’s or Spearman’s correlations as appropriate 
to look at associations between baseline OCT, MRI and clin-
ical variables. This analysis was carried out at the patient level; 
therefore, to obtain a unique pRNFL and GCIPL value per eye, 
we averaged the OCT and LCLA 2.5% values across the eyes for 
patients with no history of ON and used only the values from 
the unaffected eye for those without previous history of ON. We 
removed patients with history of bilateral ON.

Longitudinal analysis
Statistical models were estimated separately for pRNFL and 
GCIPL as response variables.

To evaluate annualised OCT rates of change, we used linear 
mixed- effects models at eye- level accounting for within- patient 
and between- visit inter- eye measures (with random subject and 
eye- specific intercepts and random slopes in time). The fixed 
effects interactions allowed us to evaluate differences in rates of 
change between ON and non- ON eyes. Models were adjusted 
for age, sex, disease duration, site, treatment allocation.

To examine the associations between baseline OCT measures 
and clinical/MRI interval changes after 96 weeks, we used 
linear mixed- effects models at the eye level (subjects as random 
intercepts), adjusted for age, sex, disease duration, site, treat-
ment allocation, ON history. As visual acuity can affect SDMT 
performance, we also adjusted for low contrast visual acuity as 
appropriate.

To analyse the relationship between OCT measure thickness 
percentage change and brain volume percentage change, we 
performed multivariable linear regressions adjusting for age, sex, 
disease duration, site, treatment allocation and history of ON. 
This analysis was done at the patient level, removing eyes with 
previous ON. To achieve that, we first calculated the pRNFL 
and GCIPL percentage thickness change per each unaffected eye 
as follows:

 
{[(

96weekOCTmeasure − baselineOCTmeasure
)
÷ baselineOCTmeasure

]
× 100

}
 . 

Subsequently, we averaged the OCT percentage thickness change 
across both eyes, to obtain only one value per subject.

We considered p<0.05 to be statistically significant. We did 
not impute missing values. Multiple comparison corrections 
were not performed due to the exploratory nature of this study.

RESULTS
Baseline analysis
Baseline characteristics
Of the total 269 patients enrolled in the MS- SMART trial at the 
UCL and University of Edinburgh centres, 260 consented to take 
part in the OCT substudy. Of these, 214 ultimately underwent 
OCT scanning at baseline (figure 1). After quality checking of 
baseline scans, 13 eyes were excluded. Additionally, two subjects 
were excluded from the analysis as we could not determine if 
they had previously experienced ON. For 17 subjects, a history 
of ON was inferred using absolute pRNFL thickness thresholds 
based on normative data (n=6 classified as NON, n=8 as bilat-
eral ON and n=3 as unilateral ON). Six subjects were classi-
fied as having subclinical unilateral ON based on >20% pRNFL 
thickness difference between the two eyes. Details of the study 
profile are shown in figure 1.

Table 1 reports the baseline characteristics. Participants had 
average age of 54 years, had a long mean disease duration 
(around 22 years) and severe disability (median EDSS 6.0). Most 
of the participants had a disease duration longer than 5 years 
(97%), with a median disease duration of 21 years (IQR 16–29 
years).

There were no substantial differences in participant character-
istics between subjects that consented or not to take part in the 
OCT study or across the two study sites, but the UCL partici-
pants appeared to be slightly less impaired on EDSS and SDMT 
measures (online supplemental tables 1 and 2).

Correlation analyses
Results from the baseline correlation analysis are summarised in 
table 2.

The pRNFL and GCIPL thicknesses strongly correlated with 
visual acuity as measured by LCLA 2.5%. OCT measures were 
not correlated with baseline EDSS, T25FW or 9HPT values. 
However, they did show significant associations with the cogni-
tive measure SDMT (table 2).

Additionally, thicker retinal measures (pRNFL and GCIPL) 
correlated with larger DGMV. GCIPL only correlated with 
smaller T2LV.

No other significant correlations were noted between OCT 
and MRI measures.

Longitudinal analysis
Annualised change of OCT measures
Figure 2 shows the annualised rates of change of pRNFL and 
GCIPL in the overall group including all eyes regardless history 
of ON, with statistically significant thinning demonstrated by 
mean values of −0.83 µm/year (95% CI −1.04 to −0.62) and 
−0.37 µm/year (95% CI −0.53 to −0.21), respectively (figure 2). 
Mean changes of thinning when looking at eyes with history ON 
were −0.69 µm/year (95% CI −1.04 to −0.34) for pRNFL and 
−0.25 µm/year (95% CI −0.50 to 0.002) for GCIPL, compared 
with mean changes of −0.97 µm/year (95% CI −1.18 to −0.76) 
and −0.49 µm/year (95% CI −0.65 to −0.33) for eyes without 
history of ON (figure 2). There was no statistically significant 
difference in the rate of thinning between the groups based on 
ON history. There was no statistically significant association 
between disease duration and retinal layer thinning in the mixed 
effect models (CI −0.28 to 0.09 for the relationship between 
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pRNFL and disease duration; CI −0.36 to 0.04 for the relation-
ship between GCIPL and disease duration).

As the GCIPL acquisition protocols differed between the two 
sites, we conducted an additional analysis focusing on the rate of 
GCIPL change at each study site separately (online supplemental 
fig. 1 and online supplemental table 5–7). This analysis indi-
cated that the overall study’s GCIPL thinning rate was primarily 
influenced by the UCL site, where the rate of change was −0.23 
µm/year (95% CI −0.38 to −0.08), compared with Edinburgh, 
where the rate of change was −0.76 µm/year (95% CI −1.86 
to −0.34). However, the number of GCIPL scans available at 
the UCL site (n=231) was more than double that of Edinburgh 
(n=94).

Associations between baseline OCT measures and clinical and MRI 
change
Significant associations were found between thinner baseline 
pRNFLs and GCIPLs and greater clinical disability worsening 
and/or thinner brain volumes. Table 3 shows that thinner pRNFL 
at baseline was associated with greater disability as measured by 
EDSS after 96 weeks. Larger pRNFL and GCIPL at baseline were 
associated with slower T25FW speed at follow- up. Also, larger 
baseline OCT measures were associated with reduced rates of 
whole brain atrophy (PBVC) at 96 weeks. No associations were 
seen between OCT measures and changes in 9HPT, SDMT or 
other MRI variables.

Figure 1 Study profile. Total number of MS- SMART trial participants randomised at UCL= 176 (172 consented the OCT substudy). Total number of 
participants randomised at Edinburgh = 93 (88 consented the OCT substudy). *For n=11 subjects excluded due to poor OCT imaging quality possible 
underlying retinal abnormalities were not systematically recorded. GCIPL, ganglion cell- inner plexiform layer; NON, no history of optic neuritis; OCT, optical 
coherence tomography; ON, optic neuritis; pRNFL, peripapillary retinal nerve fibre layer; UCL, University College London.
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Relationship between percentage OCT retinal thickness change and 
PBVC over 96 weeks
pRNFL mean (SD) percentage thickness change was −2.00% 
(2.82), calculated at the patient level as the average between 
left and right eye. There was no significant association between 
percentage thickness change of pRNFL and PBVC (β=0.07%, 
95% CI −0.22 to 0.37).

GCIPL mean (SD) percentage thickness change was −1.11% 
(2.17). The associations between GCIPL percentage thickness 
change and PBVC was statistically significant (β=0.25%, 95% 
CI 0.01 to 0.50).

DISCUSSION
We report a large prospective longitudinal OCT study carried 
out within an RCT of people with SPMS using a Heidelberg 
Spectralis device. We observed significant mean annualised 
retinal thinning of −0.83 µm/year for pRNFL and −0.37 µm/
year for GCIPL. This indicates that OCT can detect retinal 
changes even in patients with long- standing MS of over 20 years, 
as highlighted in a recent study.32 However, we also noticed that 
the retinal layer thinning was more evident in the unaffected 
eyes, suggesting that, after more than 20 years from MS onset, 
there may be a floor effect in retinal thinning, especially in eyes 
that previously experienced ON, as found elsewhere.33 Further-
more, this floor effect appears to affect the GCIPL more than 
the pRNFL. We also found that OCT measures, and especially 
GCIPL, are significantly associated with information processing 
speed and DGMVs at baseline, in support of previous research 
suggesting that OCT changes may reflect a loss of higher brain 
functions and overall neurodegeneration.5 34 Although OCT did 
not correlate with the most common MS disability measures at 
baseline, both baseline pRNFL and GCIPL thickness appeared 
to have prognostic value, as they were associated with increased 
disease severity (EDSS and walking speed worsening) and brain 
volume loss (PBVC).

OCT has been used as an outcome measure in only a few RCTs 
of people with progressive MS to date.

In the lipoic acid phase 2 study in SPMS,21 35 non- statistically 
significant mean pRNFL and GCIPL atrophy rates were found, 
and there were no correlations between OCT changes and whole- 
brain or grey matter atrophy. Our participants had higher base-
line pRNFL and GCIPL mean thicknesses (around 83 µm and 75 
µm, respectively), compared with those in the lipoic acid study 
(77 µm and 67 µm, respectively). Additionally, our sample size 
was larger, participants were younger and had shorter disease 
duration (22 vs 30 years).21

The OCT substudy of the SPRINT- MS trial (ibudilast vs 
placebo)22 36 37 did not report significant pRNFL thinning. 
However, they used different OCT devices (Zeiss Cirrus vs 
Heidelberg Spectralis) and included people with PPMS, with 
an overall shorter disease duration (approximately half that in 
MS- SMART), which could account for different changes in OCT 
measures over time. Although PPMS and SPMS share similar 
neuropathological mechanisms, they may differ clinically.38

We found an association between baseline OCT measures 
and DGMV at baseline. In a study that included people with 
progressive MS, Saidha et al found that both pRNFL and GCIPL 
thicknesses were significantly associated with CGMV.39 The 
same research group carried out a 4- year longitudinal study and 
suggested that, over time, GCIPL loss mirrors whole- brain and 
grey matter atrophy, especially in people with progressive MS, 
thereby reflecting underlying disease progression.5

We also found that baseline OCT measures and GCIPL 
percentage thickness change, and not pRNFL, were associated 
with PBVC after 96 weeks, which is in keeping with previous 
reports suggesting that GCIPL may reflect global neurodegener-
ation better than pRNFL.5

Regarding disability, we did not find significant associations 
between OCT measures and EDSS at baseline, likely due to 
the narrow EDSS range at baseline. However, the longitudinal 

Table 1 Baseline characteristics of participants
n=212

Age, years mean (SD) 54.4 (7)

Female sex, number (%) 149 (63)

Disease duration, years
mean (SD)
median (IQR)

22.3 (9.8)
21 (16–29)

Progression duration, years mean (SD) 8.2 (5.8)

EDSS, score median (IQR) 6.0 (5.5–6.5)

9HPT, sec mean (SD) 39.8 (53.7)

T25FW, sec mean (SD) 18.5 (22.9)

SDMT, number of correct answers median (IQR) 48 (39–53)

LCLA 2.5%, number of correct answers median (IQR) 18 (10–28.125)

pRNFL thickness, µm mean (SD) 83.3 (13.4)

GCIPL thickness, µm mean (SD) 75.2 (13.9)

WBV, mL mean (SD) 1426.9 (75.1)

DGMV, mL mean (SD) 45.2 (3.8)

CGMV, mL mean (SD) 797.4 (39.4)

T2LV, mL mean (SD) 11.9 (11.4)

9HPT is calculated as the average of the mean of the two attempts with each hand. OCT and LCLA 
measures are calculated as right- and left- eye value means.

CGMV, cortical grey matter volume; DGMV, deep grey matter volume; EDSS, Expanded Disability Status 
Scale; GCIPL, ganglion cell- inner plexiform layer; 9HPT, 9- hole peg test; LCLA, low contrast letter acuity; 
pRNFL, peripapillary retinal nerve fibre layer; SDMT, symbol digit modalities test; T25FW, Timed 25- Foot 
Walk; T2LV, T2 lesion volume; WBV, whole- brain volume.

Table 2 Correlation analysis between OCT and clinical and MRI 
measures at baseline

pRNFL GCIPL

Clinical variables

  EDSS, score r −0.08 −0.12

CI −0.22 to 0.06 −0.25 to 0.03

  9HPT, s r 0.03 0.03

  CI −0.11 to 0.17 −0.11 to 0.17

  T25FW, s r 0.02 −0.02

  CI −0.12 to 0.16 −0.16 to 0.12

  SDMT, number of correct answers r 0.33 0.39

  CI 0.20 to 0.47 0.26 to 0.51

  LCLA 2.5%, number of correct answers r 0.45 0.48

CI 0.33 to 0.58 0.37 to 0.60

MRI variables

  WBV, mL r 0.16 0.15

  CI 0.02 to 0.30 0.01 to 0.29

  DGMV, mL r 0.21 0.28

  CI 0.07 to 0.35 0.14 to 0.41

  CGMV, mL r 0.11 0.11

  CI −0.03 to 0.25 −0.03 to 0.25

  T2LV, mL r −0.16 −0.24

CI −0.30 to −0.02 −0.37 to −0.10

Eyes with history of optic neuritis were removed (number of subjects analysed=193). Person’s or 
Spearman’s correlations were used according to the variable nature (continuous or categorical, 
respectively). Correlation coefficients of magnitude below 0.2 (very weak) were considered non- 
significant.
CGMV, cortical grey matter volume; DGMV, deep grey matter volume; EDSS, Expanded Disability Status 
Scale; GCIPL, ganglion cell inner- plexiform layer; 9HPT, 9- hole peg test; LCLA, low contrast letter 
acuity; pRNFL, peripapillary retinal nerve fibre layer; SDMT, symbol digit modalities test; T2LV, T2 lesion 
volume; WBV, whole- brain volume.
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data showed that baseline pRNFL measure could predict EDSS 
changes, consistently with other studies.14 15 Additionally, both 
baseline GCIPL and pRNFL were inversely associated with 
worsening in mobility (T25FW), suggesting that retinal thinning 
may reflect clinical worsening in SPMS.

In the cross- sectional analyses, pRNFL and GCIPL thickness were 
associated with SDMT. Already in 2013, Wieder et al found that 
information processing speed measured with PASAT and SDMT and 
visual function tests were correlated in relapsing MS.40 However, 
there is a paucity of studies investigating the relationship between 
OCT and cognition in MS. Recently, Alba- Arbalat and colleagues 
found that a strong relationship between the decrease in retinal 
thickness in people with MS and cognitive decline throughout the 
course of the disease, with a more pronounced effect observed after 
5 years from disease onset.41 Baetge et al analysed 50 subjects with 
MS (n=44 RRMS, n=6 SPMS) and found that OCT- derived retinal 
measures were correlated with cognitive flexibility but not with 
information processing speed (SDMT). However, the study partici-
pants had mild to moderate disability (mean EDSS 2.59) and relative 
short disease duration (median about 7 years).42 Coric et al found 
that atrophy of the pRNFL and GCIPL was significantly associated 
with increased odds of being cognitively impaired in a group of 
217 people with MS (SPMS 26%, PPMS 13%).34 Bsteh et al found 
that OCT measures were predictors of cognitive decline.14 In our 

study, the associations between OCT measures and SDMT were 
not maintained in the longitudinal analyses, suggesting that retinal 
atrophy occurs more rapidly than the development of an established 
processing speed deficit.

Our study has several limitations. We lacked a healthy control 
group, which prevented us from ruling out normal ageing as the cause 
of the retinal thinning observed, rather than MS- related atrophy. To 
account for the effect of ageing on retinal atrophy, we adjusted all 
our statistical models for age. As reference, the IMSVISUAL consor-
tium recently reported normative data from healthy volunteers, 
showing a decline of −1.31 µm in pRNFL and −1.05 µm in GCIPL 
per decade.27 The rate of thinning we observed for GCIPL (−0.37 
µm/year) is in keeping with other studies, which suggest thinning 
rates in people with MS ranging from −0.30 to −0.55 µm/year, 
compared with −0.20 µm/year in healthy controls.19 In contrast, the 
rate of pRNFL annualised atrophy in our study (−0.83 µm/year) was 
only slightly lower than rates described in other investigations, which 
have reported annual thinning rates of 1–2 µm/year in people with 
MS. However, compared with GCIPL, pRNFL thinning has shown 
greater variability across different studies.19

The macular OCT acquisition protocols, and specifically the 
number of B scans, were not the same between the two study sites 
(UCL and Edinburgh), which we need to keep in mind when inter-
preting the results. The GCIPL has been repeatedly shown to be 

Figure 2 . Annualised rates of change for pRNFL and GCIPL. Mixed effect models are analysed at the eye level adjusted for history of optic neuritis. 
The bars represent annual mean changes in thickness (µm). Error bars represent confidence intervals. Eye are grouped as: overall group (including all eyes 
regardless history of optic neuritis); ON group (only eyes with history of optic neuritis), NON group (only eyes without history of optic neuritis). GCIPL, 
ganglion cell- inner plexiform layer; NON, no history of optic neuritis; ON, optic neuritis; pRNFL, peripapillary retinal nerve fibre layer.

Table 3 Baseline OCT measures associated with changes of clinical variables over 96 weeks
Variable change between baseline and week 96

Predictor variable at baseline EDSS score 9HPT sec T25FW sec SDMT correct answers PBVC % DGMV mm3 CGMV mm3

pRNFL, µm β −0.12 0.04 −0.14 0.05 0.14 −0.003 −0.03

CI −0.23
−0.01

−0.08
0.17

−0.25
−0.03

−0.08
0.17

0.03
0.25

−0.11
0.11

−0.14
0.08

GCIPL, µm β −0.11 0.07 −0.20 0.07 0.23 −0.01 0.04

CI −0.22
0.003

−0.06
0.20

−0.31
−0.10

−0.06
0.20

0.12
0.34

−0.13
0.10

−0.07
0.15

The data presented are normalised.
Mixed- effect models adjusted for age, sex, disease duration, trial site, history of optic neuritis and treatment allocation. When 9HPT and SDMT were the predictors, models were also adjusted for visual acuity.
CGMV, cortical grey matter volume; DGMV, deep grey matter volume; EDSS, Expanded Disability Status Scale; GCIPL, ganglion cell- inner plexiform layer; 9HPT, 9- hole peg test; PBVC, percentage brain volume change; 
pRNFL, peripapillary retinal nerve fibre layer; SDMT, symbol digit modalities test; T25FW, Timed 25- Foot Walk; WBV, whole- brain volume. ; β, standardised regression coefficient from mixed- effects model.
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superior to the pRNFL as a measure of neurodegeneration, with 
high reproducibility. Using a small number of B scans, like in the UCL 
OCT protocol, we may have underestimated the change of GCIPL 
over time. In addition, the observed mean (SD) thickness percentage 
changes in pRNFL and GCIPL after 96 weeks were less than 2%, 
reflecting a small effect size. We speculate that this may be due to 
floor effect33; however, the acquisition parameters need to be kept in 
mind. Advances in OCT acquisition and processing could at least in 
part reduce this variability in future studies. However, mindful of the 
different GCIPL acquisition protocols between UCL and Edinburgh, 
we adjusted all the statistical models by site.

Another limitation of our study was the potential effects of drugs 
with putative neuroprotective effects in the treatment arms of the 
MS- SMART clinical trial, which may have had unknown effects on 
our OCT measurements. However, the main trial results did not 
show any neuroprotective effects of amiloride, fluoxetine or riluzole 
on brain atrophy measures. Additionally, we adjusted all statistical 
analyses for trial arms.

In conclusion, our study suggests that, despite long disease dura-
tion, pRNFL and GCIPL thinning is detectable over a 96- week 
period and is likely to reflect ongoing neuroaxonal loss (neurode-
generation), but there seem to be a floor effect in the retinal thin-
ning especially for the GCIPL and for eyes with previous ON. This 
is supported by the observed association between OCT measures, 
grey matter volume and PBVC. OCT measures correlated signifi-
cantly with information processing speed measure (SDMT) in cross- 
sectional analyses and were predictors of clinical worsening (EDSS 
and T25FW) after 96 weeks. These findings may help inform future 
research utilising OCT measures in people with SPMS.
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