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ABSTRACT 

Background 

White matter hyperintensities (WMH) have been implicated in the pathogenesis of 

neuropsychiatric symptoms of dementia but the functional significance of WMH in specific 

white matter (WM) tracts is unclear. We investigate whether WMH burden within major WM 

fiber classes and individual WM tracts are differentially associated with different 

neuropsychiatric syndromes in a large multicenter study. 

Methods 

Neuroimaging and neuropsychiatric data of seven memory clinic cohorts through the Meta VCI 

Map consortium were harmonized. Class-based analyses of major WM fibers (association, 

commissural, projection) and region-of-interest-based analyses on 11 individual WM tracts 

were used to evaluate associations of WMH volume with severity of hyperactivity, psychosis, 

affective, and apathy syndromes. 

Results 

Among 2935 patients (50.4% female; mean age=72.2 years; 19.8% subjective cognitive 

impairment, 39.8% mild cognitive impairment, 40.4% dementia), larger WMH volume within 

projection fibers (B=0.24, SE=0.10, p=0.013) was associated with greater apathy. Larger 

WMH volume within association (B=0.31, SE=0.12, p=0.009), commissural (B=0.47, SE=0.17, 

p=0.006) and projection (B=0.39, SE=0.16, p=0.016) fibers were associated with greater 

hyperactivity, driven by the inferior fronto-occipital fasciculus (B=0.50, SE=0.18, p=0.006), 

forceps major (B=0.48, SE=0.18, p=0.009) and anterior thalamic radiation (B=0.49, SE=0.19, 

p=0.011), respectively. Larger WMH volume in the uncinate fasciculus (B=1.82, SE=0.67, 

p=0.005) and forceps minor (B=0.61, SE=0.19, p=0.001) were additionally associated with 

greater apathy. No associations with affective and psychosis were observed.  

Conclusions 



Tract-syndrome specificity of WMH burden with apathy and hyperactivity suggests that 

disruption of strategic neuronal pathways may be a potential mechanism through which small 

vessel disease affects emotional and behavioral regulation in memory clinic patients. 

 

Key Messages 

What is already known on this topic 

The impact of white matter hyperintensities (WMH) in individual white matter tracts is 

suggested to have functional differentiation in cognitive impairment but their influence on 

neuropsychiatric symptoms (NPS) is unclear. This study evaluates tract-specific WMH 

burden with different neuropsychiatric syndromes. 

What this study adds 

This study uncovers tract-syndrome associations of WMH volume within major white matter 

fiber classes and specific white matter tracts with apathy and hyperactivity syndromes, 

providing insights into potential neurobiological projections underlying emotional and 

behavioral dysregulation in memory clinic patients. 

How this study might affect research, practice or policy 

Our findings support the research utility of quantifying WMH at the level of specific white 

matter tracts to understand how disruption of strategic neuronal pathways may affect NPS in 

older adults.  



INTRODUCTION 

Neuropsychiatric symptoms (NPS) are highly prevalent in people with dementia,1 

indicating that these non-cognitive symptoms constitute a core clinical feature of the disease 

process. Most NPS develop progressively from preclinical or mild cognitive impairment (MCI) 

stages2 and these behavioral and psychological disturbances may occur in more than 90% of 

individuals with dementia.3 The associations of greater neuropathology with both increased 

severity of dementia and neuropsychiatric manifestation suggest an etiological commonality 

driven by underlying neural dysfunction.2  

In particular, the role of white matter hyperintensities (WMH) of presumed vascular 

origin as the neurobiological substrate of NPS has been widely examined. A higher burden of 

global WMH has been found to be associated with more severe depression,4 5 apathy,4 6 and 

increased hyperactive symptoms.7 However, a recent systematic review and meta-analysis 

found that there remains substantial inconsistency in the relationship between global WMH 

burden and NPS.8 In addition, as the distribution of WMH varies between individuals and white 

matter is known to have a functional differentiation rather than a bulk substance,9 global 

measures of WMH may have limited usefulness in determining the impact of inter-individual 

differences in WMH burden on NPS. This is further complicated by the presence of substantial 

heterogeneity in the clinical manifestation of NPS. Therefore, elucidating the relationships 

between the location of white matter lesions and different neuropsychiatric presentations could 

provide a finer understanding of the clinical impact of strategic WMH on NPS. 

Emerging evidence demonstrates that WMH in tract-defined classes of white matter 

fiber bundles (i.e. association, commissural, projection)10 and individual white matter tracts 

have differential impact on cognitive impairment.11-13 Beyond cognitive function, WMH 

localization in bilateral anterior thalamic radiation has been associated with more severe apathy 

in a small sample of patients with MCI14 and greater WMH volume in the forceps minor and 



corticospinal tracts in association with greater self-reported depressive symptoms in patients 

with vascular brain injury.15 While these initial studies support the utility of quantifying WMH 

at the level of specific white matter tracts to understand their impact on neuropsychiatric 

manifestation, less is known about the effects of WMH within tract-defined classes on NPS. 

The disruption of strategic white matter pathways may be a key mechanism through which 

small vessel disease (SVD) affects not only cognition, but also the regulation of mood and 

behavior.  

In the current study, we analyzed tract-specific WMH to gain additional insights into 

the role of strategic WMH on neuropsychiatric impairment in a large multicenter memory clinic 

sample. Leveraging on a large sample size of our multi-center study with harmonized 

individual participant data and greater lesion coverage, we aim to elucidate how WMH burden 

within the three classes of white matter fibers and in individual white matter tracts are 

differentially associated with different neuropsychiatric syndromes (i.e. hyperactivity, 

psychosis, affective, and apathy). 

 

METHODS 

Study participants 

 This study analyzed data from a previously published Meta VCI Map consortium 

project in memory clinic patients.13 The Meta VCI Map consortium aims to examine the 

clinical impact of vascular lesions by performing meta-analyses on strategic lesion locations 

for vascular cognitive impairment using lesion-symptom mapping (https://metavcimap.org).16 

The full dataset involved individual patient data from 3,525 patients from 11 memory clinic 

cohorts (Figure S1). Eligibility criteria for the previously published study were: (1) patients 

who were evaluated with cognitive complaints at an outpatient clinic; (2) available MRI with 

T1 and T2 or FLAIR images; (3) available clinical and neuropsychological data. Patients 

https://metavcimap.org/


diagnosed with subjective cognitive impairment (SCI), MCI, or dementia of vascular, 

neurodegenerative, or mixed etiologies were included. Patients diagnosed with cognitive 

impairment due to non-vascular or non-neurodegenerative causes (e.g. brain tumor, traumatic 

head injury, multiple sclerosis, substance or alcohol abuse, primary psychiatric disorders), or 

monogenic etiology (e.g. CADASIL, presenilin mutations) were excluded. The exclusion 

criteria of each cohort are published elsewhere.13 Final cohorts (N = 2935 from 7 cohorts) for 

the present study were included based on the additional availability of neuropsychiatric data 

(Figure S1). Central data processing and analysis were conducted at the University Medical 

Center Utrecht, the Netherlands.  

Standard protocol approvals, registrations, and patient consents 

Ethical and institutional approval and written informed consent for data collection and 

data sharing were obtained by all cohorts following their respective local regulations.  

Evaluation of neuropsychiatric syndromes 

NPS were assessed using the Neuropsychiatric Inventory (NPI)17 in five cohorts (N = 

1,393) and NPI Questionnaire (NPI-Q) in two cohorts (N = 1,542).18 Both instruments are 

caregiver-based and retrospectively capture the presence and severity of 12 specific behavioral 

and psychological symptoms: delusions, hallucinations, agitation, anxiety, depression, 

euphoria, apathy, disinhibition, irritability, aberrant motor behavior, nighttime behavior, and 

appetite/eating behavior. Both the NPI and NPI-Q assess for the severity (1 - 3) of each 

symptom while the NPI additionally assesses for the frequency (1 - 4). Although frequency and 

severity ratings are highly correlated, symptom severity has been found to be more strongly 

associated with caregiver distress than symptom frequency.18 The severity ratings of all 

participants were harmonized for the current analysis, such that the total severity score 

represents the sum of individual symptom severity scores, ranging from 0 to 36. 



We further classified the 12 individual symptoms into four neuropsychiatric syndromes that 

were previously derived using principal component analysis by the European Alzheimer’s 

Disease Consortium.19 The hyperactivity syndrome comprised of agitation, euphoria, 

disinhibition, irritability, and aberrant motor behaviors; psychosis syndrome comprised of 

delusion, hallucination, and nighttime behaviors; affective syndrome comprised of anxiety and 

depression; and apathy syndrome comprised of apathy and appetite/eating behavior. This 

classification is widely used7 20 21 and has been replicated in European22 and multi-ethnic Asian 

populations.20 

Neuroimaging data processing and harmonization 

WMH quantification. Segmentation of lesions was performed using T2-FLAIR images. 

Segmentations for ACE and UMCC were performed in Utrecht using an established technique 

as described previously13 while segmentations for the remaining cohorts were provided by the 

respective centers.  

Generation of WMH maps. The full registration procedure is described in detail in the 

Supplementary Material of prior work.13 Briefly, the T2-FLAIR images were first registered to 

the corresponding T1 images via linear registration using the established elastix toolkit.23 Next, 

the T1 images were registered to the T1 Montreal Neurological Institute (MNI)-152 brain 

template using linear and non-linear registration. The results of the registration were 

subsequently composed into a single transform and the final composed transform was applied 

to the binary WMH mask for spatial normalization24 (the source code of our registration 

workflow can be found on https://github.com/Meta-VCI-Map/RegLSM). An age-specific 

template in MNI space was used to improve registration quality. Both ADNI and AUCD 

provided WMH maps that were already registered to the MNI-152 space using in-house 

processing pipelines. Visual inspection was also performed to ensure overall lesion data quality 

and minor manual modifications were made where necessary.12 13 



Quantification of tract-defined WMH. Two approaches (Region-of-interest (ROI) based 

and class-based) were used to quantify tract-defined WMH. To evaluate the impact of lesion 

volume in predefined white matter tracts on NPS, 20 major white matter tracts were generated 

using the John Hopkins University (JHU)-atlas with a 10% probability threshold.25 Of which, 

eighteen bilateral white matter tracts were merged to create nine ROIs. In addition to forceps 

major and forceps minor, a total of 11 ROIs were generated for analysis. To evaluate how 

WMH within the three major classes of white matter fiber bundles (association, commissural, 

projection) were differentially associated with NPS, the WMH volumes of each tract were 

extracted and summed according to the class of fiber bundles (Figure 1). The association tract 

class consisted of the cingulum-cingulate gyrus, cingulum-hippocampus, inferior fronto-

occipital fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, superior 

longitudinal fasciculus temporal part, and uncinate fasciculus. The commissural tract class 

consisted of the forceps major and forceps minor. The projection tract class consisted of the 

anterior thalamic radiation and corticospinal tract. Log transformation (log10*(WMH 

volume+1)) was performed for WMH volumes of all ROIs and tract classes to adjust for data 

skewness.  

Computation of brain parenchymal fraction. As a measure of whole brain atrophy, the 

brain parenchymal fraction (BPF)26 of each subject was calculated using the Computational 

Anatomy Toolbox for SPM12 (https://neuro-jena.github.io/cat/).27 The BPF for ADNI and 

AUCD cohorts were computed using an automated extraction method as described 

previously.28 29  

Statistical analyses 

 Chi-squared test was used to explore differences in the prevalence of neuropsychiatric 

syndromes as a function of clinical diagnosis (SCI, MCI, and dementia) and further post-hoc 

tests were performed for statistically significant differences. Linear mixed models were used 

https://neuro-jena.github.io/cat/


to investigate whether greater WMH volume within each class of white matter fibers and 

individual ROI was associated with higher neuropsychiatric syndrome severity scores. The 

models were adjusted for age, sex, diagnosis as fixed effects, and study site as random effect. 

Further adjustment for BPF was performed to determine whether these effects were robust, 

even after accounting for global neurodegeneration. Lastly, we tested for interactions between 

WMH volume and diagnosis in all models to determine if the associations of WMH volume 

with neuropsychiatric severity scores were influenced by degree of cognitive impairment. Total 

WMH was not added as a covariate in these models to prevent multicollinearity. For all linear 

mixed models, p-values were additionally corrected for multiple testing at a false discovery 

rate (FDR) of q < 0.05 for three classes of white matter fibers or 11 ROIs. 

 

RESULTS 

Participant characteristics 

 Four cohorts without neuropsychiatric data were excluded from the analysis (Figure 

S1), leaving a total of 2,935 participants (mean age = 72.2 ± 8.4 years; 50.4% female; 19.8% 

SCI, 39.8% MCI, 40.4% dementia) from seven eligible cohorts: Austria (PRODEM); the 

Netherlands (ACE, TRACE-VCI, UMCC); Singapore (Harmonization); and the USA (ADNI 

(http://adni.loni.usc.edu), AUCD) (Table 1). The characteristics of the individual cohorts are 

summarized in Table S1.  

In this study, 69.6% of participants reported a presence of NPS (NPI score ≥ 1; 49.6% 

in SCI, 63.7% in MCI, 85.3% in dementia). The most common neuropsychiatric syndrome was 

hyperactivity (46.7%), followed by affective (40.1%), apathy (38.1%), and psychosis (29.2%). 

The hyperactivity syndrome was driven by the irritability symptom, while depression, apathy, 

and nighttime behavior were most frequent within affective, apathy, and psychosis syndromes, 

respectively (Figure 2). The presence of all syndromes was more common in patients with 

http://adni.loni.usc.edu/


dementia compared to MCI and SCI participants while MCI patients tended to have more 

affective, apathetic, and hyperactive symptoms compared to SCI participants (Table S2).  

Class-based WMH and Neuropsychiatric Syndromes 

 Larger WMH volume within the class of projection fibers (B = 0.24, SE = 0.10, p = 

0.013), but not association (B = 0.11, SE = 0.07, p = 0.116) or commissural fibers (B = 0.10, 

SE = 0.10, p = 0.340), was associated with higher apathy severity scores, which remained 

significant after further adjustment for BPF (Table 2). Larger WMH volume within all classes 

of association fibers (B = 0.31, SE = 0.12, p = 0.009), commissural fibers (B = 0.47, SE = 0.17, 

p = 0.006), and projection fibers (B = 0.39, SE = 0.19, p = 0.011) were associated with higher 

hyperactivity severity, independent of BPF (Table 2). All associations remained significant 

after FDR correction for multiple testing (q < 0.05). No significant associations between class-

based WMH volume and affective or psychosis syndrome scores were observed (Table 2). 

There was no significant interaction (p > 0.05) between class-based WMH volume and 

diagnostic group in all models. 

ROI-based WMH and Neuropsychiatric Syndromes 

 Larger WMH volume in the uncinate fasciculus (B = 1.82, SE = 0.67, p = 0.005) and 

forceps minor (B = 0.61, SE = 0.19, p = 0.001) were associated with higher apathy severity 

scores. Larger WMH volume in the inferior fronto-occipital fasciculus (B = 0.50, SE = 0.18, p 

= 0.006), forceps major (B = 0.48, SE = 0.18, p = 0.009), and anterior thalamic radiation (B = 

0.49, SE = 0.19, p = 0.011) were associated with higher hyperactivity severity scores. These 

associations remained significant after FDR correction for multiple comparisons and were 

independent of BPF (Table 3). No significant associations between tract-specific WMH 

volume and affective or psychosis syndrome scores were observed. There was also no 

significant interaction (p > 0.05) between WMH volume and diagnostic group in all models. 



 

DISCUSSION 

This large multicenter study characterizes the neuropsychiatric profile of tract-defined 

WMH in memory clinic patients. We identified significant associations of larger WMH volume 

with greater severity of apathy and hyperactivity syndromes, but not with affective and 

psychosis syndromes. The associations of WMH with apathy syndrome were found within the 

projection fibers and in specific tracts of the uncinate fasciculus and forceps minor. In contrast, 

widespread associations of greater WMH with hyperactivity syndrome were found within all 

three classes of association, commissural, and projection fibers. The strongest associations 

were found in the inferior fronto-occipital fasciculus, forceps major, and anterior thalamic 

radiation, respectively. These results suggest that the impact of WMH on neuropsychiatric 

syndromes may depend on the location of pathology, with specific tract-syndrome relationships 

that are particularly evident for apathy and hyperactivity syndromes.  

Consistent with previous reports, caregivers of dementia patients reported the highest 

presence across all symptoms as compared to MCI or SCI patients.1 3 We also observed 

significant differences between MCI and SCI in the rates of hyperactive, affective, and apathy 

syndromes that were often associated with progressive cognitive decline.30 The increased rate 

of NPS across disease stages is also consistent with increasing severity of neuropathology 

across the dementia spectrum, particularly with higher WMH burden in earlier disease stages.31  

Within the association fibers, the association of greater WMH with hyperactivity was 

strongest in the inferior fronto-occipital fasciculus, one of the longest fiber tracts that integrates 

auditory and visual cortices with the prefrontal cortex.32 The inferior fronto-occipital fasciculus 

was found to be involved in peripheral vision and visuospatial information processing 

including facial emotions,33 and has been implicated in greater deficits in executive function 

and language.13 Hence, WMH in the inferior fronto-occipital fasciculus resulting in disruption 



to cross-network of cognitive control may contribute to the occurrence of emotional 

dysregulation and disinhibition associated with hyperactive disturbances. In contrast, the 

association of greater WMH with apathy was found in the uncinate fasciculus that connects the 

frontal and temporal lobes via the amygdala.32 Traditionally considered as part of the limbic 

system, the uncinate fasciculus may play an important role in attaching emotional salience to 

visual information, regulating emotional responses to auditory stimuli, and supporting 

emotion-associated cognitive tasks.33 Disruption of the uncinate fasciculus resulting in 

emotional dysregulation may be a potential pathway for impaired motivated behaviors that is 

central to the apathy syndrome.  

In the commissural tracts that primarily integrate sensory, motor, and higher-order 

cognitive information from both hemispheres,34 we found that greater WMH in the forceps 

major, that provides connection between the occipital lobes was associated with greater 

hyperactivity, while greater WMH in the forceps minor, that connects both frontal cortices was 

associated with greater apathy. Based on their topographical organization, the forceps major 

supports transfer of somatosensory information in posterior regions while the forceps minor 

support the processing of higher cognition and emotional functions anteriorly,34 

complementary to the strategic association tracts for hyperactivity and apathy respectively. 

Although not much is known about the neuropsychiatric impact of WMH in these specific 

tracts in dementia, a review of studies has found a common reduction of white matter integrity 

within these tracts in patients with major psychiatric disorders.35 Previously, it had also been 

found that WMH burden within the inferior fronto-occipital fasciculus was associated with 

reduced functional connectivity in tract-connected default mode network in Alzheimer’s 

disease.36 The default mode network has been linked with processing of affective valence and 

arousal and may be an important brain network for constructing discrete emotional 

experience.37 Together, this evidence suggests that differential microstructural damage of white 



matter pathways or disrupted neural circuitry involved in the integration of cognition and 

emotion in the commissural tracts (i.e. forceps major for hyperactivity and the forceps minor 

for apathy) may be potential mechanisms underlying strategic WMH and these 

neuropsychiatric dysfunctions. 

 Beyond these differences between apathy and hyperactivity, both syndromes were 

associated with greater WMH within the projection fibers, which consist of tracts that 

interconnect cortical areas with the deep nuclei and cerebellum, brainstem, and spinal cord.32 

These nuclei are responsible for producing neurotransmitters such as serotonin, noradrenaline, 

and dopamine, which have been implicated in mood and behavioral changes in dementia.38 39 

Studies have found that WMH in the projection tracts was associated with poorer memory, 

attention, and executive functioning.10 13 Specifically, the anterior thalamic radiation consists 

of projections from the anterior thalamic nuclei to the anterior cingulate cortex, which is known 

to be critical for emotion-motivational functions in AD.40 One previous study has found that 

WMH in the anterior thalamic radiation is associated with apathy but not with other NPS in a 

small sample of MCI patients.14 Impaired white matter integrity within the anterior thalamic 

radiation was also associated with deficits in emotional regulation and motivated behaviors.41 

Hence, WMH-associated apathetic and hyperactive manifestations in the projection tracts may 

signify a common disruption of cortico-subcortical neural pathways with neurochemical 

changes sub-serving complex human behaviors. 

We did not identify any strategic localization of WMH for psychosis. In contrast to 

more radiologically observable white matter disease such as WMH, some evidence suggest 

that psychotic disorders may be more associated with other changes in white matter, possibly 

induced by cellular dysfunction resulting in degraded white matter integrity and cerebral 

dysconnectivity.42 Others have found that psychotic symptoms were involved in 

neurodegenerative pathologies such as increased cortical atrophy43 and abnormal dopamine 



receptor function on positron emission tomography imaging.44 We also did not find any 

associations of tract-defined WMH with affective syndrome to support previous finding that 

WMH in the corticospinal tract and forceps minor were modestly associated with self-reported 

depressive symptoms, especially in patients with SCI.15 Taken together, the contribution of 

vascular brain injury to affective syndromes is likely complex, heterogeneous, and dependent 

upon a multitude of factors such as the assessment tool implemented, degree of clinical 

cognitive impairment, and the contribution of other neurobiological dysfunction. Studies on 

strategic macrostructural white matter damage in milder symptoms of depression or anxiety 

are still limited and further investigations are warranted to dissect the specific contributions of 

vascular brain injury on affective syndromes. 

Strengths of this study include the large and geographical diverse sample which 

increases the generalizability of our results. The study cohorts also had similar neuropsychiatric 

scales, which benefited harmonization of data and interpretation of results. The analytic 

approach of examining of both class-based and ROI-based white matter tracts aids evaluation 

of tract-specific effects that reflect the systematic organization of white matter neuroanatomy. 

However, this study also has several limitations. Firstly, merging data from multiple cohorts 

that have different inclusion criteria, assessment protocols, and scanners may have resulted in 

heterogeneity in the pooled data. To minimize the heterogeneity, we have statistically adjusted 

for study site as a random effect and used previously established imaging processing pipelines 

to create uniform WMH maps in standardized space, allowing us to pool imaging data 

generated with different scanners and sequences. Secondly, the overall burden of NPS may 

have been underestimated as only the severity scores were harmonizable due to the different 

versions of NPI used. Although the neuropsychiatric syndromes used in this study have been 

replicated in large cohorts, possible misclassification of symptoms may have affected the 

results. Thirdly, future investigations may consider controlling for the potential effects of other 



SVD (e.g. lacunes, microinfarcts), comorbidities, sociodemographic variables or 

neuropsychiatric medications that were not accounted for in this study. Future longitudinal 

studies investigating the impact of changes in strategic WMH with neuropsychiatric 

progression will be needed to elucidate possible causal relationships.  

In conclusion, the tract-syndrome associations uncovered in this study provide insights 

into potential neurobiological projections that may be implicated in the manifestation of apathy 

and hyperactivity syndromes. Higher tract-defined WMH burden disrupting strategic cortico-

cortical or cortico-subcortical networks may be a key mechanism through which SVD affects 

emotion and behavioral regulation in memory clinic patients.   
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TABLES 

Table 1. Characteristics of the combined cohort. 

 Total 

 N = 2935 

Age (years), mean (SD) 72.2 (8.4) 

Sex, n (%)  

Male 1457 (49.6) 

Female 1478 (50.4) 

Education (years), mean (SD) 13.0 (4.5) 

Diagnosis, n (%)  

Subjective cognitive impairment 581 (19.8) 

Mild cognitive impairment 1167 (39.8) 

Dementia 1187 (40.4) 

MMSE, mean (SD) 24.9 (4.7) 

CDR sum-of-boxes, median (IQR) 0.5 (0.5) 

Neuropsychiatric syndrome, n (%)  

Affective 1178 (40.1) 

Apathy 1119 (38.1) 

Hyperactivity 1372 (46.7) 

Psychosis 858 (29.2) 

WMH volume (mL), median (IQR)  

Total WMH volume 6.2 (15.1) 

Association WMH 0.98 (3.00) 

Commissural WMH 1.10 (1.87) 

Projection WMH 0.96 (2.04) 

Brain parenchymal fraction, mean (SD) 0.70 (0.05)# 

CDR = clinical dementia rating, MMSE = mini-mental state 

examination, WMH = white matter hyperintensities.  
#missing in 344 (13.1%) cases. 

 

  

  



 

 

 

 

 

 

 

 

 

 

 

  

Table 2. Associations of class-based white matter hyperintensities volume with neuropsychiatric syndrome severity scores. 

 Affective Apathy Hyperactivity Psychosis 

WMH (volume) B SE p B SE p B SE p B SE p 

Association fibers -0.02 0.08 0.801 0.11 0.07 0.116 0.31 0.12 0.009* -0.03 0.06 0.701 

Commissural fibers 0.07 0.11 0.539 0.10 0.10 0.340 0.47 0.17 0.006* 0.05 0.09 0.607 

Projection fibers -0.05 0.10 0.582 0.24 0.10 0.013* 0.39 0.16 0.016* 0.03 0.09 0.759 

Adjusted for age, sex, diagnosis, study site. Bold indicates significance after FDR correction for multiple comparisons (q < 0.05). 

*remained significant after further adjustment for brain parenchymal fraction (missing 13.1% of cases) (data not shown).  

WMH = white matter hyperintensities. 



 

Table 3. Associations of ROI-based white matter hyperintensities volume with neuropsychiatric syndrome severity scores. 

 Affective Apathy Hyperactivity Psychosis 

WMH (volume) B SE p B SE p B SE p B SE p 

Cingulum cingulate gyrus -1.24 0.54 0.021 0.15 0.51 0.766 0.98 0.86 0.256 -0.17 0.47 0.723 

Cingulum hippocampus -10.8 8.84 0.222 -1.5 8.43 0.859 -1.42 14.2 0.920 2.19 7.76 0.777 

Inferior fronto-occipital fasciculus -0.01 0.11 0.987 0.25 0.11 0.024 0.50 0.18 0.006* 0.02 0.10 0.811 

Inferior longitudinal fasciculus -0.11 0.19 0.572 0.15 0.18 0.422 0.52 0.31 0.089 0.01 0.17 0.942 

Superior longitudinal fasciculus -0.04 0.09 0.681 0.13 0.08 0.108 0.28 0.14 0.042 -0.08 0.08 0.312 

Superior longitudinal fasciculus (temporal) -0.50 0.77 0.517 1.15 0.73 0.115 2.72 1.23 0.027 0.46 0.67 0.496 

Uncinate fasciculus 0.28 0.65 0.669 1.82 0.67 0.005* 2.41 1.03 0.020 -0.10 0.56 0.866 

Forceps major 0.10 0.12 0.379 0.02 0.11 0.890 0.48 0.18 0.009* 0.03 0.10 0.733 

Forceps minor -0.08 0.20 0.683 0.61 0.19 0.001* 0.54 0.32 0.090 0.15 0.17 0.384 

Anterior thalamic radiation -0.07 0.12 0.590 0.28 0.12 0.015 0.49 0.19 0.011* 0.03 0.11 0.775 

Corticospinal tract -0.06 0.13 0.657 0.29 0.13 0.022 0.35 0.22 0.101 0.05 0.12 0.688 

Adjusted for age, sex, diagnosis, study site. Bold indicates significance after FDR correction for multiple comparisons (q < 0.05). 

*remains significant after further adjustment for brain parenchymal fraction (missing 13.1% of cases) (data not shown).  

ROI = region of interest, WMH = white matter hyperintensities. 


