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Abstract

We propose a learning mechanism for intracellular synthetic genetic classifiers

based on the selective elimination (curing) of plasmids bearing parts of the clas-

sifier circuit. Our focus is on a two-input, two-plasmid classifier scheme designed

to solve a simple proof-of-concept learning problem. The problem is formulated

in terms of Boolean variables, and the learning process boils down to selecting

the classification rule from three options, given a set of training examples. We

begin with a Boolean description of the classifier circuit, demonstrating how it

implements the required learning algorithm. We then transition to a contin-

uous steady-state model and establish conditions on its parameters to ensure

that the learning process and the classifier output correspond to the Boolean de-

scription, at least approximately. The approach to intracellular classifier learn-

ing presented here essentially relies on two key prerequisites: (i) compatibility

among the plasmids constituting the classifier, such that they have independent

or weakly interacting copy number control systems, and (ii) conditional elimi-
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nation mechanism in each plasmid triggered by a signal from the gene network.

The feasibility of this approach is supported by recent experimental findings on

engineering compatible pairs and triplets of plasmids and controlled selective

plasmid curing. While learning by plasmid loss has certain limitations in uni-

versality, we anticipate that it provides greater persistence of a trained classifier

to internal and external fluctuations and to degradation over time, as compared

to alternative intracellular learning mechanisms outlined in the literature, such

as based on gene network dynamics or on variable copy numbers of plasmids

sharing a common copy number control system.

Keywords: classifier, learning, synthetic gene networks, intracellular

intelligence

1. Introduction

Since the identification of the molecular DNA structure by Crick and Watson

in 1953 [1] and the model for the regulation of enzyme synthesis in cells by Jacob

and Monod in 1961 [2], considerable scientific breakthroughs have been made in

the lapse of a few decades. As the desire to understand and delve deeper into

the way our molecular systems work has increased, the need for mathematical

tools modeling the way these system function has exponentially grown as well.

A specific field where substantial growth has been witnessed is synthetic biology,

which is defined as the science of the design and construction of novel functional

devices, systems, and organisms by applying mathematical, engineering and

computational principles [3, 4]. The principal aim in synthetic biology is to

create synthetic genetic designs or construct nanorobots which can perform

predictable functionalities [5]. This is achieved by using standardized biological

building blocks to design and create functional devices with various purposes.

For example, Nissim et al. developed a synthetic dual-promoter circuit that

works like a digital AND gate, to effectively recognise and kill cancerous cells.

It does so by releasing a toxic derivative only when both cancer-indicating signals

are present in the cell, resulting in targeted cancer cell death [6].
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The advancements made in synthetic biology provide possible industrial ap-

plications and new therapeutic opportunities for future gene and cell based

therapies [7], such as designing “smart” cells that can respond to the physi-

ological status of a patient, thus providing tailored treatment for the cellular

physiology of each individual [8].

As many essential functions in living cells depend on the interaction of a

network of bio-molecules, it is important that genetically programmed cells have

sensors that receive information, circuits that process the inputs, and actuators

to link the circuit output to a cellular response [9]. Due to the similarities in

topology between genetic networks and electronic devices, gene networks are

often referred to as “gene circuits” [10, 11]. Numerous gene regulatory circuits

have been designed and created to this day. One of the earliest examples of

a synthetic gene circuit is the repressilator [12], and the consequent further

developments in synthetic biology resulted in the engineering of a vast number

of networks such as transcriptional or metabolic oscillators, spatially coupled

and synchronised oscillators, calculators, inducers of pattern formation, learning

systems, optogenetic devices, memory circuits and logic gates. One of the much

awaited kinds of synthetic gene circuits with principally new functionality would

work as intelligent biosensors, for example, realized as genetic classifiers able to

assign inputs with different classes of outputs.

Implementing a learnable classifier in a synthetic gene circuit remains a

challenging problem because of current tight limitations upon synthetic gene

network complexity in a single cell. In [13, 14] it was proposed to address this

challenge by using an ensemble of cells, each harboring an elementary synthetic

gene circuit with non-identical parameters across the ensemble. It was shown

in [13, 14] that by combining the outputs of multiple non-identical cells, the

entire ensemble may act as a multi-cell “distributed” classifier, which is capa-

ble of implementing more complex classification rules than it is possible within

a single cell; moreover, this distributed classifier admits learning by adjusting

the composition of the cell ensemble, without requiring any intracellular learn-

ing mechanisms in the individual cells. Distributed classifier learning can be
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achieved by selection of cells using common methods of synthetic biology, e.g.

by means of fluorescense-activated cell sorting [15], based on the responses of

the individual cells to the training examples; two strategies of such selection

were proposed in [13, 14]. Note, however, that this approach in its original

multi-cell form does not solve the problem of implementing a learnable classifier

at the intracellular level, which becomes necessary e.g. when the classifier is

considered as part of a larger gene network within a cell.

The present study aims at filling this gap by adapting the selection-based

learning approach to the intracellular gene network level. We note that the

key idea behind distributed classifier learning is that parts of the gene network

constituting the classifier are selectively eliminated or kept during learning. In

order to adapt this approach to the intracellular level, we propose that the clas-

sifier gene circuit is distributed across plasmids within a cell, and these plasmids

are subject to selective elimination, depending on their responses to the train-

ing examples. In this paper we propose a structure of a synthetic gene classifier

circuit implementing this principle, we describe a learning strategy based on

selective plasmid loss for this classifier, and show by analyzing a mathematical

model that this strategy solves a simple classifier learning problem.

A similar principle based on controlling the ratio of copy numbers of two

plasmids within a cell (referred to as synthetic plasmid heteroplasmy) was sug-

gested in [16] for implementing intracellular memory; moreover, a learnable mul-

ticellular decision-making system (thus more similar to distributed classifiers of

[13, 14] than to intracellular classifiers) based on this principle was suggested

in [17]. Another approach to learning in synthetic gene networks suggested in

the context of associative memory [18, 19] is based on slow decay rates of inter-

mediate transcription factors, which act as learning parameters. The lifetime

of the learned state is then limited by the decay time of these transcription

factors; this lifetime can be extended using bistable genetic switches as memory

elements [20], but it still remains limited due to stochastic transitions in bistable

elements, and comes at the cost of increased gene network complexity, including

not only the genetic switch itself, but also the circuitry for memory storage and
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readout [20]. In contrast, plasmid loss is irreversible, thus the learned state

achieved by this mechanism is persistent, while the network complexity is kept

at a minimum. Alternative approaches to chemical intelligence in synthetic

biology, which are beyond the scope of the present study, are based on pro-

tein phosphorylation [18, 21, 22, 23] and DNA strand displacement reactions

[24, 25, 26].

Elimination of plasmids from cells (typically referred to as plasmid curing)

is a standard operation in genome engineering [27]. However, in order that it

can be used to implement a required learning strategy for a gene classifier, the

process of plasmid curing must be controlled by the synthetic gene network.

Methods of synthetically controlled plasmid curing suitable for this task were

developed in recent studies [28, 29], which both use synthetic control of plasmid

replication by interfering into the plasmid intrinsic copy number control (CNC)

mechanism [30], while [28] additionally uses selective in-vivo plasmid digestion

by the I-SceI meganuclease [31, 32], which shortens the time scale of plasmid

elimination from around 24 hours to minutes.

Importantly, the selection-based learning approach requires that the plas-

mids constituting the classifier gene circuit must have orthogonal (independent)

mechanisms of synthetically controlled selective elimination (curing). The selec-

tivity of in-vivo plasmid digestion by a meganuclease is ensured by the presence

of a specific base pair sequence (referred to as the recognition sequence) in

the target plasmid DNA [28, 31, 32], so that selective curing of different plas-

mids can be achieved by using different meganucleases along with their specific

recognition sequences in the plasmids. In turn, implementing selective plasmid

curing by means of plasmid CNC mechanisms requires that these mechanisms

are different and independent among the plasmids; taking into account that

a number of different CNC mechanisms have been actually used for synthetic

control of plasmid replication [33, 34, 35, 36, 37], these may also be considered

as candidates for implementing classifier learning by plasmid selection.

Based on the results cited above, we assume that synthetically controlled

selective plasmid elimination, which is key in implementing the proposed learn-
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ing mechanism, is achievable by currently available means of synthetic biology.

We do not make any specific assumptions about the implementation details; for

definiteness, we refer to it hereafter as a controlled CNC mechanism.

The paper is organized as follows. In Sec. 2 we introduce basic notations and

models. In Sec. 3 we consider a simple classifier model described by a Boolean

expression, formulate a classifier learning problem and provide a learning algo-

rithm, which is shown to correctly train the classifier, given a proper training

set. In Sec. 4 we describe a synthetic gene circuit implementing this classifier

including the learning capability; for this circuit we construct models in terms

of Boolean and continuous variables and analyze the correspondence of the gene

circuit with the idealized Boolean model from Sec. 3. In Discussion we consider

limitations of our problem statement and of our model, from which we derive

some open problems for future studies.

2. Notations and basic classifier models

The classification problem is among the central in machine learning and

consists in choosing from a predefined finite set of decisions, given an input

value from a predefined set of inputs (further referred to as the input space) [38].

Typically, inputs are real vectors whose components are observable quantities;

we consider here only binary classification, where the output is chosen from two

options, which will be denoted as logical (Boolean) zero and one (i.e. “false”

and “true”), or equivalently as “negative” and “positive”.

Hereafter, Boolean variables will be distinguished by a “hat” symbol over the

variable name (e.g. Ôut), and Boolean values denoted as 0̂ and 1̂. Moreover, the

same variable name used with and without the hat symbol will denote a Boolean

variable and a continuous quantity representing this Boolean variable (equiva-

lently, a continuous variable given a Boolean interpretation); in such cases the

correspondence between Boolean and continuous values will be specified (see

Eqs. (5), (7) and (10) below).
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A binary classifier with d real inputs is described by a function

Ôut = f(x; p), (1)

where the input x ∈ Rd is a d-dimensional real vector, p ∈ P is a constant vector

of parameters (the parameter space P is arbitrary), and the output Ôut ∈ {0̂, 1̂}

is a Boolean variable. The function f(x) is referred to as the classification rule

and defines a splitting of the input space into regions corresponding to different

values of the classifier output.

Hypothesis testing is an important application of classification in decision

making, where an observable quantity (or a vector thereof) is assumed to depend

upon an underlying, directly unobservable discrete variable representing some

choice (often dichotomous, i.e. taking on either of two values), which is to be

guessed based upon the observation. Such are the problems of signal detection

and pattern recognition (e.g. in classifying electroencephalogram signals [39]),

as well as recognition of medical pathologies (e.g. determining whether a cell

is cancerous or not [6, 40]). Such problems often do not have a deterministic

solution (the hidden variable can not be determined unambiguously based on

the observable); in such cases a classifier is characterized by some inevitable

error rate (i.e. the proportion of incorrect answers among all trials).

Classifier learning problem consists in fitting the classifier parameters (here,

vector p in Eq. (1)) in order to maximize the performance of the classifier in

a specified sense (e.g. minimizing the error rate), given a set {πi} of training

examples, i.e. input-output pairs

πi =

(
x(i), Ôut

(i)
)
, (2)

which are apriori assumed to be correct.

A particular case of the general model (1) is the binary linear classifier

Ôut = 1(p1x1 + p2x2 + · · ·+ pdxd > 1), (3)

where 1(·) is the Boolean-valued indicator function defined to be 1̂ whenever the

condition in the parentheses holds, and 0̂ otherwise. The weights pj , j ∈ 1, d,

are constant parameters.
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Replacing the indicator function 1(·) in Eq. (3) with an arbitrary nonlinear

output function g(·) leads to a model with a continuous output variable

Out = g(p1x1 + p2x2 + · · ·+ pdxd). (4)

In particular, if a classifier is implemented as a real object, e.g. a synthetic

gene circuit, then its steady-state model (describing only the functional depen-

dence between the input and the output, while omitting possible dynamical and

memory effects [41]) in terms of continuous variables takes the form (4). A con-

tinuous output may be given a Boolean interpretation e.g. using a thresholding

operation

Ôut = 1(Out > Θ), (5)

where Θ is the threshold value.

Note that a model of type (4) also describes a basic building block of a

multilayer perceptron [42], a paradigmatic model in artificial inteligence, where

elementary units of type (4) are arranged into layers, so that the outputs from

the previous layer are fed into the inputs of the subsequent. Implementing such

systems is a major challenge in synthetic biology of today [21, 22, 23, 43].

3. Boolean model of a learnable classifier

In this Section we formulate a problem statement for classifier learning,

which is simple enough to allow implementing a learnable classifier within an

intracellular synthetic gene network. For that sake, we limit the number of

inputs to d = 2 and simplify the linear classifier model (3) by reducing its for-

mulation to an entirely Boolean expression, where all variables and parameters

are assumed to be Boolean, while multiplication is replaced with logical AND

(conjunction), and summation with logical OR (disjunction). The classifier

model then reads

Ôut = p̂1x̂1 ∧ p̂2x̂2, (6)

where Ôut, p̂1,2, x̂1,2 are Boolean, multiplication stands for logical AND, and

the symbol “∧” denotes logical OR.

8



(A) p̂ = (0̂, 1̂) (B) p̂ = (1̂, 0̂) (C) p̂ = (1̂, 1̂)

Figure 1: Output of the classifier defined by Eqs. (6), (7) as a function of the continuous

inputs x1, x2 (white area — Ôut = 0̂, pale green area — Ôut = 1̂) for the 3 variants of the

Boolean parameter vector p̂, as indicated. Threshold xth separates the regions corresponding

to Boolean 0̂ and 1̂ along the axes. Examples of valid training sets which uniquely identify each

variant are shown as scatter plots with filled circles (red — Ôut
(i)

= 0̂, white — Ôut
(i)

= 1̂).

Notice that the training set in each panel does not match the classification rules in the other

panels.

We assume that the Boolean inputs x̂1,2 in the expression (6) correspond to

continuous quantities x1,2 according to a thresholding rule

x̂j = 1(xj > xth), j ∈ {1, 2}, (7)

where the threshold value xth is an implementation parameter; then Eqs. (6)

and (7) together constitute a model of a binary classifier of type (1) operating

on continuous inputs x1,2.

The Boolean parameter vector p̂ = (p̂1, p̂2) can take on the four distinct

combinations of 0̂ and 1̂ for its components p̂1 and p̂2. In the trivial case of

p̂ = (0̂, 0̂), the result of Eq. (6) is always 0̂. For each of the three remaining

variants, Eq. (6) produces a specific classification rule, all of which are shown

schematically in Fig. 1 with values along the axes x1,2 taken according to the

convention (7) for the correspondence between Boolean and continuous inputs;

these three classification rules are hereafter denoted as (A), (B) and (C), as

indicated in Fig. 1.

Consider the following problem statement of classifier learning, whereby it

is assumed apriori, that the correct classification rule is expressed by a formula

of type (6), where the parameter vector p̂ is unknown and has to be determined
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by learning (equivalently, one of the three classification rules (A), (B) or (C)

has to be chosen) based on a set of training examples {πi} of type (2), where

x(i) =
(
x
(i)
1 , x

(i)
2

)
. (8)

Moreover, all training examples in the set are assumed to comply to exactly

one “correct” classification rule out of (A), (B) and (C), meaning that the clas-

sification problem does not admit uncertainty of the answer (this assumption

corresponds to the “hard” learning problem in terms of [14]), and the training

set {πi} is assumed to be sufficient to identify this correct rule out of the three

options unambiguously; examples of valid training sets satisfying these require-

ments are shown as scatter plots in the respective panels of Fig. 1. Note that

the training examples are assumed to contain values of the continuous inputs

x
(i)
1,2 in order to allow their implementation by continuous physical quantities

(see Sec. 4.2); the corresponding Boolean values x̂
(i)
1,2 are defined according to

Eq. (7).

A classifier learning algorithm for the problem specified above can be ob-

tained by the following reasoning. The disjunction in Eq. (6) produces 1̂ in the

output, whenever at least one of its terms p̂1x̂1 or p̂2x̂2 equals 1̂. Assume that

a specific training example πi provides Ôut
(i)

= 0̂ as the correct answer. If any

of the equalities p̂1x̂
(i)
1 = 1̂ or p̂2x̂

(i)
2 = 1̂ holds given the input data (x

(i)
1 , x

(i)
2 )

of this training example, then the classifier output (6) equals 1̂, which does not

match the correct answer from the example. This classification error is to be

corrected by resetting the respective coefficient p̂1 or p̂2 to 0̂. Thus, starting

from p̂ = (1̂, 1̂) and iterating through the entire training set, we find the training

example(s) indicating which (or none) of p̂1 or p̂2 has to be reset to 0̂ in order

that the classification rule of the trained classifier matches the training data.

Note that assuming p̂ = (1̂, 1̂) at the start of the training process is equivalent

to starting from the classification rule (C) (see Fig. 1); subsequent resetting of

either p̂1 or p̂2 to 0̂ reduces the region of positive answer of the classifier from

the variant (C) to either (A) or (B), whenever a training example is encountered

that dictates such reduction.
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The reasoning above is formalized by the following learning algorithm.

• Initial data: set of training examples {πi} = {((x(i)1 , x
(i)
2 ), Ôut

(i)
)} com-

plying to exactly one of the classification rules (A), (B) or (C), as shown

in Fig. 1.

• Let p̂ = (p̂1, p̂2) = (1̂, 1̂).

• For each training example πi do

– if Ôut
(i)

= 0̂ and ∃j ∈ {1, 2} : p̂j x̂
(i)
j = 1̂, then let p̂j = 0̂.

• Result: trained classifier defined by Eq. (6) implementing the classifica-

tion rule (A), (B) or (C) that matches the training data.

Consider the execution of the algorithm separately for each of the three

variants of the correct classification rule. If the training set follows the classi-

fication rule (C), then output Ôut
(i)

= 0̂ occurs among the training examples

only simultaneously with input values satisfying x̂
(i)
1 = 0̂ and x̂

(i)
2 = 0̂; thus,

the condition for resetting p̂1 or p̂2 never holds during the training process, and

the trained classifier remains with p̂ = (1̂, 1̂), which corresponds to the clas-

sification rule (C). In turn, if the correct classification rule is (A), then some

of the training examples contain x̂
(i)
1 = 1̂ (but not x̂

(i)
2 = 1̂) alongside with

Ôut
(i)

= 0̂; once such example is encountered during training, the condition for

resetting p̂1 is fulfilled, but the condition for resetting p̂2 never holds, thus the

classifier remains with p̂ = (0̂, 1̂), which corresponds to the classification rule

(A). Similarly, if the correct classification rule is (B), then only p̂2 gets reset

during training, and the classifier remains with p̂ = (1̂, 0̂), which corresponds to

the classification rule (B). Thus, in all three cases the classification rule which

results from the training matches the training data.

4. Gene network implementation of a learnable classifier

In this Section we propose a structure of a synthetic gene network imple-

menting the learnable Boolean classifier model from Sec. 3. A structural scheme
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Figure 2: Scheme of the gene network implementing the learnable Boolean classifier described

in Sec. 3. The network is composed of two parts located on separate plasmids. The network

inputs are x1, x2 — the classifier inputs, and FN (“Forced Negative”) — the logical negation

of the correct answer used in the learning mode only. Output is encoded by the gene denoted

as “Out”, which is present in both plasmids under different promoters. CNC1,2 denote the

independent copy number control systems of both plasmids. The outputs of the AND gates

AND1,2 trigger the elimination (curing) of the respective plasmid from the cell, as necessary

for the learning algorithm in Sec. 3.

of the network is shown in Fig. 2. The network is composed of two parts, which

are located on separate plasmids with independent CNC mechanisms. We as-

sume that the CNC system of each plasmid is regulated by an “elimination

signal” from the gene network (here, from the output of the respective AND

gate), so that when this signal is present, the plasmid gets eliminated (“cured”)

from the cell. Further we show that this controllable plasmid elimination allows

to implement the learning mechanism described in Sec. 3.

The network can function both in the “learning mode”, when the classifier

is trained by being sequentially provided with the training examples, and in the

“normal classification mode”, when the classifier produces a response to input

data according to a specific classification rule, which is expected to agree with

the training data after learning.

We assume that the inputs and the output of the network (as well as interme-
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diate signals within the circuit) are represented by intracellular concentrations of

the respective proteins (transcription factors). This way, instead of describing

a cell as a whole (which would require complementing the model with trans-

membrane signaling or sensory pathways for the inputs and a reporter protein

for the output), we focus on a fragment or a building block of a larger intra-

cellular synthetic network, whose functionality may generally reach beyond the

classification task per se.

We start with describing the network in terms of Boolean variables (assuming

that Boolean values 0̂ and 1̂ correspond to “low” and “high” concentrations

of proteins) in order to establish its correspondence with the Boolean classifier

model from Sec. 3, then we proceed to a quantitative model with concentrations

represented by continuous quantities, and establish its correspondence with the

Boolean formulation.

4.1. Boolean description

The combined circuit has 3 inputs: x1, x2 and FN (“Forced Negative”).

The inputs x1 and x2 in the normal classification mode are used as the classifier

inputs, and in the learning mode receive the input data of training examples.

The input FN is always zero in the normal classification mode, and is set to

Boolean 1̂ in the learning mode on condition that the correct answer in the

currently presented training example πi is negative (i.e. Ôut
(i)

= 0̂), while the

inputs x1 = x
(i)
1 and x2 = x

(i)
1 receive the input data from this training example.

The circuit implements the Boolean classifier (6) and its learning algorithm

in the following way. The parameters p̂j (j ∈ {1, 2}) in Eq. (6) are interpreted

as indicating the presence (p̂j = 1̂) or the absence (p̂j = 0̂) of the respective

plasmid. Both plasmids contain the same output gene (denoted as “Out” in the

scheme) with a promoter directly activated by the input x1 in the 1st plasmid,

and by x2 in the 2nd, so that each term p̂j x̂j in Eq. (6) indicates the activation

of the output gene expression on the respective plasmid. In particular, if p̂j = 0̂

(the jth plasmid is absent), then p̂j x̂j = 0̂ regardless of the input xj (an absent

plasmid produces no output); if p̂j = 1̂ (the jth plasmid is present), then p̂j x̂j =
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x̂j (the output gene of the jth plasmid is expressed, only when it is activated

by the respective input xj).

We assume that logical disjunction in Eq. (6) is implemented by the natural

summation of the expression rates of the output gene in both plasmids (further

in Sec. 4.2 we analyze this summation quantitatively, in terms of continuous

variables). Precisely, we base the Boolean description upon the assumption

that the combined network output is interpreted as Boolean 1̂, whenever the

Out gene is expressed in at least one of the two plasmids. Taking into account

the above interpretation of the terms p̂j x̂j as the expression of the output gene

in each plasmid, we conclude that the Boolean description of the circuit output

under the assumptions above coincides with the expression (6).

Classifier learning is implemented as follows. Initially, both plasmids are

present, so that p̂1 = p̂2 = 1̂. During learning, the training examples are

presented to the classifier sequentially, by supplying the example input data

to the classifier inputs (x1 = x
(i)
1 , x2 = x

(i)
1 ) simultaneously with the logical

negation of the correct answer supplied to the input FN (F̂N
(i)

= ¬ Ôut
(i)

,

which is defined to be 1̂ whenever Ôut
(i)

= 0̂ and vice versa).

The CNC systems of both plasmids (CNC1,2 in the scheme) are regulated

by the plasmid elimination signals obtained from the respective genetic AND

gates (AND1,2 in the scheme); we assume that the positive output of AND1

(AND2) leads to eliminating the plasmid 1 (plasmid 2), whenever F̂N = 1̂

and x̂1 = 1̂ (x̂2 = 1̂) hold simultaneously. The time duration of each training

example presentation must be sufficient for the plasmid elimination to take

effect, as discussed below in Sec. 4.2. Thus, once an example with Ôut
(i)

= 0̂

and x̂
(i)
1 = 1̂ (x̂

(i)
2 = 1̂) has been presented to the classifier during learning,

the plasmid 1 (plasmid 2) gets eliminated, which corresponds to resetting the

respective parameter p̂1 (p̂2) to 0̂. The above procedure exactly reproduces the

learning algorithm described in Sec. 3.
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4.2. Quantitative description

It is convenient to consider the circuit as two subsystems, which can be

modeled separately: namely, the learning subsystem, which consists of the AND

gates and the CNC mechanisms of both plasmids, and the output subsystem

consisting of the output genes with their different promoters activated by the

respective classifier inputs. In this Section we construct quantitative models

of the mentioned network components and analyze the network functioning in

both learning and normal classification modes. Note that the parameters p̂1,2

are inherently Boolean as indicating the presence of the respective plasmid. All

continuous variables are assumed to take on non-negative real values, since they

represent concentrations of proteins.

A logical AND gate for synthetic gene networks [44, 45, 46, 47] consists of

the gate output gene (here, encoding the intermediate transcription factor which

controls the dependent CNC mechanism) equipped with a hybrid promoter ac-

tivated simultaneously by two transcription factors, which are the gate inputs

(here, x1 and FN in the plasmid 1; x2 and FN in the plasmid 2). We adopt

the AND gate model from [45, Eq. (2)], which can be obtained as follows. The

stationary equilibrium concentration of the output protein can be found as the

stable equilibrium state of the kinetic equations for the output mRNA and pro-

tein concentrations, see e.g. [48, Eq. (1)], where the protein concentrations are

taken proportional to that of mRNA. Assuming linear decay of mRNA [48], the

stationary protein concentration is then proportional to the mRNA synthesis

rate, as given e.g. in [48, Eq. (3)], where the basal (leakage) gene expression

in the absence of induction is neglected. The resulting AND gate model [45,

Eq. (2)] is finally expressed as a product of two Hill functions [49, 50, 51], which

we write down using dimensionless (normalized) variables (as in [50]) in the

form

ej =
1

1 + x−µj

1

1 + f−ν
for xj > 0, f > 0, j ∈ {1, 2}, (9)

additionally defined to be 0, when xj = 0 and/or f = 0. Here f is a continuous

variable representing the FN input (according to Eq. (10) below), µ and ν are
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the cooperativity coefficients (Hill coefficients; see e.g. [51] for interpretation),

which are assumed here to be identical for the classifier inputs x1, x2, because

the classifier model in Sec. 3 does not impose any apriori asymmetry between

the inputs. The dimensionless gate outputs ej are normalized by (equivalently,

measured in the units of) the saturated stationary concentrations of the output

proteins (so that ej → 1 when fully activated, i.e. when both gate inputs xj

and f receive high values); the gate inputs x1,2 and f are normalized by the

values at which the activation of the respective promoter is half-saturated (so

that ej → 1/2 when xj = 1 and f � 1, or when f = 1 and xj � 1); for details,

see reasoning behind [48, Eqs. (1),(3)] and [50, Eq. (5)].

The classifier circuit is supposed to be part of a larger gene network intended

for some applied task, hence the classifier inputs x1,2 can actually take on ar-

bitrary values determined by the outer network, without any additional apriori

assumptions. In order to establish a correspondence between the continuous

model of the network and its Boolean counterpart from Sec. 4.1, we assume the

correspondence rule (7), where the threshold value xth is a design parameter

of the overall network; the analysis below leads to recommendations for the

optimal choice of this parameter.

In turn, the signal FN is used in the learning mode only, and thus can be

seen as an externally controllable parameter in the sense that its values can

be predetermined by the experiment design. In this view, we assume that the

continuous variable f takes on exactly two predefined real values corresponding

to either Boolean value of the input FN:

f =

f0, if F̂N = 0̂;

f1, if F̂N = 1̂.

(10)

Detailed quantitative modeling of the plasmid curing process is a compli-

cated problem, because plasmid copy number (PCN) in an individual cell is a

time-dependent stochastic quantity, which increases due to plasmid replication,

and decreases due to plasmid decay (e.g. by selective meganuclease-mediated

digestion [28]) and due to cell division. Normally, a plasmid CNC mechanism
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stabilizes PCN so that it fluctuates around some stable level [30]; in synthetic

controllable CNC mechanisms, this stable level depends on a controlling signal

[33, 34, 35, 36, 37]. In particular, synthetically controlled plasmid curing mech-

anisms [28, 29] provide that the stable PCN level drops to zero, when plasmid

curing is induced by a controlling signal. However, the time evolution of PCN

in a specific cell remains stochastic until it actually becomes zero (i.e. until

the plasmid is completely eliminated from the cell). It is therefore common to

characterize the process of plasmid curing in a population of cells by the time

dynamics of the proportion of cells containing (or devoid of) the plasmid, such

as the empirical dependencies in [28, Fig. 1(C)], [36, Fig. 4b]. To the best of

our knowledge, no mathematical models are currently available to describe this

process in time. We note that it is possible to specify a time scale and an allow-

able percentage of cells harboring the target plasmid, so that after the plasmid

curing system has been induced by the controlling signal for the specified or

greater time, the remaining percentage of cells still harboring the plasmid is

no greater than the specified value. For example, in an experimental study of

selective plasmid curing by in vivo meganuclease digestion [28, Sec. 3.1] it was

found that 20% of cells in the population retain the target plasmid after less

than 1 minute of plasmid curing being induced, and less than 10% after 20 min-

utes. Without the meganuclease digestion mechanism, plasmid curing process

becomes orders of magnitude slower, with characteristic time scales achieving

the order of 10 to 24 hours [28], [36, Fig. 4b].

The percentage of cells which lose (or retain) the target plasmid is expected

to depend also upon the magnitude of the signal inducing the plasmid curing

system, but this dependence for the meganuclease digestion mechanism [28] has

not been studied. In the context of implementing the Boolean learning rule, it

is essential that this dependence is of the threshold type, so that depending on

whether the controlling signal is below (above) a threshold, the vast majority

of cells in the population retain (lose) the plasmid. Although the actual de-

pendence may differ from this type (see e.g. [36, Fig. 4b], where the empirical

dependence of plasmid survival upon the inducer concentration is found to be
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quite smooth), thresholding can be introduced on top of the plasmid curing

system e.g. by means of protein sequestration [52]. In the following, we assume

that the threshold dependence as indicated above holds true, and the time dura-

tion of each training example presentation suffices to ensure that the percentage

of cells harboring a target plasmid after curing is negligible.

From a perspective of intracellular classifier learning, if a cell fails to lose the

target plasmid while the selective plasmid curing system was active, it means

essentially that the cell fails to correctly process the particular training example

in the course of learning. As soon as the present study focuses on intracellular

learning (in contrast to [13, 14], where the entire cell population was considered

as a single classifier), we abstract here from the problem of improperly trained

cells which may remain in the ensemble due to various reasons, including the

one indicated above. The consideration below pertains to the cells which behave

during training as expected; this implies a threshold dependence of plasmid

elimination or retaining upon the control signal, which is here the output ej of

the respective AND gate (see Fig. 2).

Summarizing the above, we define the model of the selective plasmid curing

mechanism as follows: when ej exceeds a specific threshold eth, the plasmid j

is eliminated; until this condition holds, the plasmid is retained.

The Boolean model of the network in Sec. 4.1 assumes that the jth plasmid

must be eliminated (i.e. p̂j reset to 0̂), when and only when the inputs xj and

FN are set simultaneously to Boolean 1̂. Taking into account the correspon-

dence between the Boolean and continuous descriptions as defined by Eqs. (7)

and (10), the assumption above is equivalent to the requirements that (i) while

f = f0 (i.e. F̂N = 0̂), both plasmids must be retained, meaning that ej < eth

must hold regardless of xj :

ej |f=f0 =
1

1 + x−µj

1

1 + f−ν0

< eth for any xj ≥ 0, j ∈ {1, 2}; (11a)

and (ii) when f = f1 (i.e. F̂N = 1̂), the condition for the jth plasmid removal

ej > eth must be fulfilled if and only if the Boolean value of x̂j is 1̂, i.e. if
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xj > xth:

ej |f=f1 =
1

1 + x−µj

1

1 + f−ν1

> eth if and only if xj > xth. (11b)

Taking into account that the right-hand part of Eq. (9) is strictly increasing

in both xj and f , both requirements (11a,b) are fulfilled, provided the values of

f0, f1 and eth are chosen according to

eth =
1

1 + x−µth

1

1 + f−ν1

, (12a)

and
1

1 + f−ν0

< eth. (12b)

In particular, it means that for any given xth (which remains a free parameter

allowing further optimization, see below), other parameters of the system can

always be chosen so that the learning subsystem (i.e. conditional plasmid elimi-

nation) works exactly in accordance with the Boolean model of the circuit from

Sec. 4.1, and thus implements the Boolean classifier learning algorithm from

Sec. 3.

In the normal classification mode the input FN always remains at Boolean

0̂ (i.e. f = f0), hence we assume that the CNC mechanisms receive “low” input

from the AND gates, and thus the copy number of each plasmid is stabilized

by its CNC mechanism at the “normal” level [30] determined by the network

design, provided that the plasmid has not been eliminated during learning. Once

eliminated, the plasmid does not re-appear. Thus, the normal classification

mode admits only two options for the copy number of each plasmid — namely,

either zero (if p̂j = 0̂), or the stable normal level (if p̂j = 1̂). The stationary

concentration of the output protein due to the summary expression of the Out

genes (on both plasmids or on a single one, depending on the learning outcome)

is then expressed as a weighted sum of Hill functions

Out = p1
1

1 + x−m1

+ p2
1

1 + x−m2

, (13)

where the numerical parameter values p1,2 ∈ {0, 1} are hereinafter assumed

to be equivalent to the respective Boolean values of p̂1,2 ∈ {0̂, 1̂}, m is the
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cooperativity (Hill) coefficient for the output gene promoters; see comments to

Eq. (9) above. In general, m is not equal to µ from Eq. (9), because different

promoters may be used, but the Hill coefficients are assumed to be identical

for both inputs x1,2 due to the same reasons as in Eq. (9). The dimensionless

variable Out is normalized by the saturated stationary concentration of the

output protein obtained from each single plasmid; hereby we assume that these

saturated concentrations are identical for both plasmids. This assumption can

be fulfilled only approximately, because the plasmids use different promoters and

different CNC mechanisms, thus excluding their perfect symmetry; however, the

expression rates of the output genes on different plasmids may be balanced using

available techniques of synthetic gene network adjustment, e.g. by choosing

proper ribosome binding sites for these genes [53, 54].

We also assume for conciseness that the normalization of the input variables

x1,2 is the same in the expressions describing the AND gates (9) and the output

genes (13). This assumption is not essential; if it does not hold, then in the

expressions (9)–(12a) every occurrence of x−µj should be replaced with ajx
−µ
j

(likewise, x−µth with ajx
−µ
th ), where aj , j ∈ {1, 2}, are constant scaling factors

which account for the normalization difference. The plasmid elimination thresh-

old eth in Eqs. (12a,b) must be replaced with ethj , which generally may differ

for j = 1, 2; the inequality (12b) then must hold for both ethj . No changes

follow in the further outcomes.

In order to speak of the gene circuit as implementing the Boolean classifier

model from Sec. 3, we must ensure that the circuit output given by Eq. (13)

implements the classification rules of the Boolean classifier (as given by Eqs. (6),

(7) and shown in Fig. 1), at least approximately, for all variants of the Boolean

parameter vector p̂ = (p̂1, p̂2). We assume that the Boolean classifier output

Ôut is obtained from the continuous output given by Eq. (13) according to the

thresholding rule (5), where the value of the threshold Θ (similarly to xth) is a

design parameter of the gene circuit.

The cases p̂ = (0̂, 1̂) and p̂ = (1̂, 0̂) (respectively, panels (A) and (B) in

Fig. 1) are equivalent up to renumbering the inputs, thus it suffices to consider
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one of them, e.g. the case (B), p̂ = (1̂, 0̂); Eq. (13) then yields

Out|p̂=(1̂,0̂) =
1

1 + x−m1

. (14)

Taking into account the conventions for Boolean interpretation of the classifier

inputs and output according to Eqs. (7) and (5), and defining the threshold

value for the output in Eq. (5) as

Θ =
1

1 + x−mth
, (15)

we obtain the positive (negative) decision of the classifier, when x1 > xth (x1 <

xth); this coincides exactly with the classification rule (B), as required.

In turn, the case p̂ = (1̂, 1̂) in Eq. (13) produces the output

Out|p̂=(1̂,1̂) =
1

1 + x−m1

+
1

1 + x−m2

. (16)

The region in the input space (x1, x2) corresponding to the positive answer of

the classifier is expressed by the inequality Out > Θ, which translates into

1

1 + x−m1

+
1

1 + x−m2

>
1

1 + x−mth
, (17)

where the output threshold Θ is taken according to the expression (15). The

solution to the inequality (17) is required to approximate the region of positive

decisions of the Boolean classifier (pale green area in panel (C) of Fig. 1); the

accuracy of this approximation determines the overall accuracy of the classifier

implementation.

In Fig. 3 we plot the classification boundary Out = Θ (obtained by sub-

stituting the equality sign into Eq. (17)) separating the positive and negative

classifier responses in the input space (x1, x2) for a range of integer values of

the cooperativity coefficient m from 1 to 6, for two values of the input threshold

xth = 0.5 and xth = 1. The positive answer is above and to the right of the

boundary. We find that all inputs corresponding to the positive answer of the

Boolean classifier (pale green area in Fig. 3, same as in panel (C) of Fig. 1)

produce also the positive answer of the gene classifier (according to Eq. (17));

in turn, all inputs producing the negative answer of the gene classifier (area
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Figure 3: Lines — the boundary separating the gene classifier responses according to Eq. (17),

corresponding to p̂ = (1̂, 1̂), for the integer values of the cooperativity coefficient m = 1, 6

(indicated next to the curves; the unlabeled curve is for m = 5), with xth = 0.5 (left panel)

and xth = 1.0 (right panel). Pale green area — region of the positive responses of the Boolean

classifier (6), same as in panel (C) of Fig. 1, which is to be approximated by the gene circuit.

Pale blue area Serr — region of false positive responses of the gene classifier for m = 6. Notice

that higher cooperativity m brings the classification boundary closer to the desired boundary,

and choosing the threshold value xth = 0.5 leads to a slight improvement over xth = 1.0.

below any classification boundary in Fig. 3) correspond to the negative answer

of the Boolean classifier. At the same time, however, the gene classifier may

also produce positive answers even when the Boolean classifier response is neg-

ative (shown as pale blue area for m = 6 in both panels of Fig. 3); considering

the gene classifier as an implementation of the Boolean, these answers must be

interpreted as false positive. As it follows from the consideration above, this is

the only unavoidable type of classification error, while other error types vanish

under the proper parameter choice; the applicability of this statement is lim-

ited by the considered model of the classifier implementation (see Discussion for

other possible sources of errors in real gene circuits).

A common quality measure for classifiers is the error rate (proportion of

classification errors among all trials). It, however, can not be calculated in the

context of the present study, because we do not specify the apriori probability

distributions for the classifier inputs neither answers. In order to characterize

the performance of the gene classifier without requiring any apriori knowledge

22



Figure 4: Classification error measure Serr/x2
th (characterizing the accuracy to which the

gene classifier approximates the Boolean model (6)) as a function of the threshold xth for

the integer values of the cooperativity coefficient m = 1, 6 (indicated next to the curves; the

unlabeled curve is for m = 5). Notice that higher cooperativity m and lower threshold xth

improve the accuracy.

about the classification problem other than stated in Sec. 3, we consider an

indicative accuracy measure for the approximation of the reference (Boolean)

classification rule by the gene circuit. We define this measure as the ratio of

the area corresponding to false positive answers of the gene classifier (which we

denote as Serr, see Fig. 3) to the total area x2th of negative answers of the Boolean

classifier (white region in panel (C) of Fig. 1). We plot the ratio Serr/x
2
th as

a function of the threshold xth for cooperativity coefficient values m = 1, 6 in

Fig. 4.

We observe that higher cooperativity of the output gene promoters improves

the approximation accuracy, which is further improved by lowering the threshold

xth. For example, accuracy Serr/x
2
th . 0.2 is achieved for m ≥ 3 along with

xth ≤ 1, while Serr/x
2
th < 0.1 requires m ≥ 5 if xth = 1, or m ≥ 4 if xth =

0.5. Further lowering the threshold below xth ≈ 0.5 leads only to a minor

accuracy improvement. Hence, our indicative recommendation is to use highly

cooperative promoters (with m ranging from 3 to 5) for classifier outputs, along

with threshold values xth in the range [0.5, 1]; recall that the normalization

of the variables xj implies that xth = 1 corresponds to half-activation of the

promoters. Values of the Hill coefficient in natural promoters with multiple
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DNA-binding sites typically range from 2 to 5, as indicated in [52] (see references

therein). Moreover, a method of engineered modification of transcription factors

and promoters with low natural cooperativity was suggested in [55], which was

shown to increase the Hill coefficient e.g. from 0.72 to 4.40. Preference for higher

Hill coefficients is a common requirement when digital logic is implemented

in gene circuits due to a steeper shape of the promoter response curve [56];

lowering the threshold xth shifts the working range of the transcription factor

concentrations towards the steeper part of the curve.

5. Discussion

In this study we propose an approach to implementing a learning strategy

in an intracellular synthetic classifier. A similar “hard” strategy consisting in

permanently removing parts of the network responsible for incorrect answers

was proposed in [14] for multicellular “distributed” classifiers, which learn by

selection of cells. The network design proposed in the present study follows the

same basic principle and adapts it to the intracellular level, where the object

of selection are plasmids, and selection is achieved by synthetically controlled

plasmid elimination (curing).

We considered a simple, proof-of-concept classifier learning problem, which

consists in choosing the correct classification rule out of the three available op-

tions, given a set of training examples that are assumed to determine the correct

choice unambigously. We show that this learning task can be solved by an in-

tracellular classifier consisting of only two plasmids, hence we expect that this

problem is the simplest to address in a possible experimental implementation.

At the same time, the hard learning strategy per se is applicable to more

complicated learning problems; for instance, a variant of this strategy was used

in [14] to approximate a convex classification border in the two-dimensional

input space. Increasing the complexity of learning problems within reach of

synthetic intracellular classifiers based on this strategy is a possible direction of

future studies, which would inevitably require increasing the number of plasmids
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involved, together with the number of independently controlled selective plasmid

curing subsystems.

Our model is agnostic of the particular mechanism of selective plasmid cur-

ing, but in our opinion the meganuclease-mediated selective in vivo digestion

method [28] presents a very promising approach to this end. The method is fast,

providing elimination of the target plasmid from 80% of cells in the population

within 1 minute [28]. The target plasmid is destroyed due to a double-strand

break induced in the plasmid DNA by a meganuclease protein, which targets

a specific DNA recognition sequence of 14 to 22 base pairs in length [31, 32],

thus providing high selectivity. The recognition sequence has to be synthetically

introduced in the target plasmid. Note that the gene encoding a meganucle-

ase can not be located on the plasmid that is cured by this meganuclease (in

other words, a plasmid can not produce a meganuclease for its own elimination)

[28]; this requirement can be easily fulfilled in a multi-plasmid system, where

the plasmids are assigned to eliminate one another. Independently controlled

selective curing can be organized for a number of plasmids using the respective

number of meganucleases with different recognition sequences. A list of avail-

able meganucleases along with their recognition sequences can be found e.g. in

[57, Fig. 2a] and contains as many as 11 entries; this number leaves enough

headroom for increasing the number of selectively cured plasmids and currently

is not the main factor to limit the classifier complexity.

Our model essentially assumes mutual independence of the CNC systems,

which in reality can be fulfilled only approximately. Minimizing the dependence

among a number of different CNC systems co-existing in a single cell is a topical

problem in synthetic biology of today. For instance, pairs and triplets of CNC

systems were studied for independence in [58], and the triplet with best mutual

compatibility (i.e. the least mutual dependence) was identified. Based on these

results, we expect that the currently attainable number of plasmids in a multi-

plasmid classifier amounts to 3. Further progress in increasing this number

depends upon advancements in studies of plasmid CNC systems interaction, and

also on the overall progress in increasing complexity of synthetic gene networks.
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The main limitations of the treatment in the present study are due to using

steady-state deterministic models for all network components, thereby leaving

the dynamical and noise effects out of the scope of the study. Our results

apply to the stable state of the system, which takes time to establish after

any change in the inputs. In particular, the time scale of the plasmid curing

system (of the order of minutes in case of meganuclease digestion) is essential

in determining the minimal duration of training example presentation during

learning, as discussed in Sec. 4.2. The time scale of signal propagation through

a gene network, which depends upon the degradation rates of the transcription

factors, also typically in the range of a few to tens of minutes [59], determines

the classifier response time.

Stochasticity in the system arises from transcriptional noise in the gene

network due to the molecular discreteness of matter [60], and as well from PCN

fluctuations (see Sec. 4.2). Although the interplay of dynamics and noise in

synthetic classifiers is a subject of great interest and may manifest in a nontrivial

way [41, 61, 62], incorporating these effects into our model of classifier learning is

currently impeded by the lack of an accepted model of PCN dynamics in multi-

plasmid systems. While a stochastic description of PCN dynamics is available

for a single plasmid (i.e. for a single CNC system) [63], only a conceptual

deterministic model of the Lotka-Volterra type has been suggested so far for

multiple, possibly interacting CNC systems [58]. This model was shown to

reproduce certain qualitative patterns of multi-plasmid copy number dynamics

[58], but accurate fitting of the model parameters to describe quantitatively a

particular combination of plasmids remains a major challenge.

Despite leaving out stochasticity and dynamics effects from the model, we

expect that learning by removal of classifier fragments (here, plasmids), while

limited in universality due to its discrete nature, has a distinctive competitive

advantage through its inherently greater robustness to noise and interference,

as compared to available alternative intracellular synthetic learning mechanisms

based on quantitative changes in network variables. The latter mechanisms suf-

fer from susceptibility to deterioration of the memory state due to dynamics
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and noise; in particular, the ratio of copy numbers of two plasmids sharing a

common CNC mechanism is unstable against PCN fluctuations in the individ-

ual plasmids [16]; concentrations of transcription factors decay on certain time

scales even without noise [18]; in turn, genetic switches, although having two

stable states, are still subject to stochastic transitions due to noise [20]. In view

of the mentioned deterioration effects, these mechanisms are considered in the

literature mainly in the context of associative learning, which is supposed to

persist on limited time scales. In contrast, a multi-plasmid classifier trained by

selective plasmid curing with independent CNC systems, as we propose here,

is highly persistent due to the stability of plasmid copy numbers. Namely, if a

plasmid survives the training procedure, then its copy number, although subject

to inevitable fluctuations, is stabilized by the CNC system around a normal level

(the attainable relative precision of PCN stabilization in three-plasmid config-

urations amounts to about 10%, as found in [64, Fig. 4] for specific plasmids in

Escherichia coli); in turn, if a plasmid gets eliminated (cured), then it has no

way to re-appear in a cell except by being acquired from another cell (or from

the environment). This may generally occur through the three mechanisms of

horizontal gene transfer: conjugation, transduction, and natural transformation

[65]. Plasmid transmission by bacterial conjugation requires the presence of a

dedicated DNA sequence (so-called origin of transmission) in the plasmid; al-

though this mechanism has been considered in the literature as a means for

multicellular computing [66] and plasmid selection [67], in the context of the

present study it is unwanted and easily avoided due to the absence of the origin

of transmission in the plasmids. The transduction mechanism is mediated by

phages, which can be excluded in an experiment. In turn, natural transfor-

mation means acquiring a plasmid from the environment, and the frequency of

such events is negligibly low, estimated as ranging under different conditions in

E. coli from 10−10 to 10−7 in 1 day [68], and in Bacillus subtilis (alone and in

co-cultures with E.coli, in an experiment aimed at achieving efficient plasmid

transfer) from 10−6 to 10−3 in 6 hours [69].

We anticipate that learnable artificial intracellular systems open up per-
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spectives for applications in biotechnology and medicine, such as in creating

intelligent biosensors and targeted drug delivery, where intracellular classifiers

will control the synthesis of a drug or a signaling molecule depending on the

local conditions in an organism or in a bioreactor.
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