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A B S T R A C T

Although many models explain the spontaneous alternation between two distinct sleep states, Rapid Eye
Movement (REM) and Non-Rapid Eye Movement (NREM), new empirical evidence has accumulated regarding
consistent temperature changes during sleep stage transitions in small animals. The temperature dependence
of neuro-excitability and low-frequency (≤4 Hz) neuronal activity has also been investigated theoretically and
experimentally. Based on these phenomena, we constructed a stochastic thermodynamic model of the ultradian
sleep rhythm. The model was validated through simulation, demonstrating statistical properties that align with
experimental data from rats. This model would provide new insights into the mechanisms behind the REM
cycle and can be applied in new therapies for sleep disorders.
1. Introduction

For most animals, it has been found that there are generally two
behaviorally, metabolically, and electrophysiologically distinct states in
sleep: Rapid Eye Moving (REM) state and Non-REM (NREM) state [1,2].
Representatively, slow wave activity (SWA), which is shown as a syn-
chronized neuronal oscillation between depolarization (‘UP’ state) and
hyperpolarization (‘Down’ state) from 0.5 Hz to 4.5 Hz, is the highest in
NREM states and is significantly lowered and desynchronized in REM
states [3]. The NREM and REM states alternate each other throughout
sleep with distinct bodily state. However, the mechanism of the cycle
remains unclear.

The regulation of a sleep cycle is finely tuned by the activity of
several groups of neurons located in the basal forebrain, diencephalon
and brainstem, as well as by circadian and homeostatic mechanisms [4,
5]. The mechanism of periodicity of sleep has been mathematically
investigated in depth. Representatively, the two process theory explains
sleep and wake cycle with homeostatic rhythm, ‘S’, and external trigger,
‘C’, such as day light [6]. This model could simulate SWA dynamics that
decreases over a sleep period and simulate disruption of sleep-wake
cycle with desynchronized external signal and internal rhythm [7,8].

However, the objection to the theory of global homeostatic sleep has
been suggested with empirical discovery of presence of local sleep. As
well as the uni-hemispheric sleep of whales, predominance of SWA in
local brain region has been observed in waking rodents with increasing
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rates of mistake in the task [9,10]. The increment of amplitude of delta
wave (0.5 to 4 Hz) in the waking states was also found to be related to
pathological states, and motivational and affective function [11]. Even
in sleeping state, local SWA is more common than global SWA [9].

The function of SWA in NREM state is explained with restorative
role, such as replenishment of glucose and brain waste clearance in
astrocytic cells, which is shown with increasing risk of diabetes with
reduction of NREM sleep [11]. SWA in sleep also negatively associates
with sympathetic activity of cardiovascular activity and cortisol secre-
tory rate [11]. High infra-slow oscillation in frequency under 0.1 Hz,
one of characteristics of NREM sleep, are shown to be related to glial
metabolism and autonomic regulation across gastric, cardiovascular
and respiratory organ [12–15]. This strong association between auto-
nomic regulation and slow wave sleep has been explained with the
visceral theory that the sleeping state is switched into interoception
toward visceral signal rather than the exteroception mainly active in
waking state [16]. It was also empirically shown with synchronized
response of visceral organ and cortex in NREM sleep, which was absent
in REM sleep and waking state [17]. On the other hand, the function of
REM state is understudied but might be to check the restorative process
with memory recall in neural network strengthened with restored
astrocytic network, called ‘‘dream’’ [18].

The source of delta wave in the waking and sleep states was found
to be generally same, medial frontal cortex, although it is scattered
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over frontal cortex [11]. It implies that SWA is locally originated from
metabolic demand in occasional frequency during waking state and
spreads out across global brain in the sleeping state [19].

The smallest unit that can sleep has been also suggested to consist of
 to 8 neutrons and single astrocyte connected with the neurons [20].

Based on the restoration of glucose, glial energy source, during sleep,
overconsumption of glucose may lead to abated astrocyte’s potassium
ion buffer, which is essential to maintain neural membrane poten-
tial [21]. It can induce local synchronization of slow wave activity
through extracellular potassium ion diffusion into neighboring neurons
after single neural activity. The neural coupling induced by extracellu-
lar potassium medium and neuronal noise simulated local SWA with
ynchronized depolarization and hyperpolarisation state of regional

neurons [22].
Meanwhile, there has also been emerging evidence about a re-

ationship between temperature and vigilance state transition [23].
Brain and core temperature is kept nearly constant due to home-
ostasis in the waking state, but in the sleeping state, thermoregula-
tion is augmented. There are various fluctuations of temperature in
the body in the range of about 1.5 ◦C [24]. Especially when the
body goes from waking to sleeping, body temperature rapidly de-
creases due to vasodilation, and vice versa [23,25]. This correlation
between body temperature and sleep-wake cycle has been modeled
with temperature-dependent neuronal noise and applied in explanation
for many neurological pathologies [26,27].

Furthermore, there is also a correlation between brain temperature
nd the REM cycle, which is more subtle and complicated than the cor-

relations in the sleep-wake cycle. Typically, for small mammals, such as
rodents, the transition into the NREM state accompanies decrement of
rain temperature, and the transition from the NREM to the REM state
ccompanies an increment of brain temperature [28–32]. The relation-

ship is reliable enough that brain temperature can be predicted by the
sleep-wake state [33]. Brain temperature increment in REM state and
ecrement in NREM state was found in many homeotherms including
irds [1]. This relationship also induced theories that brain warming is
he function of REM against brain cooling in NREM state [1]. Although,

for larger mammals, such as anthropoids including humans, there is
no consistent polarity of brain temperature change in the transition of
sleep state, which weakened the theories, within a single cycle, rates
of brain temperature change in NREM is always smaller than those
n REM [34]. While not having temperature change pattern of small

homeotherms, poikilothermic animals, which have high variation of
rain temperature, have the highest EEG power in delta band even
n the waking state [11]. Furthermore, it has been shown that slight

changes in temperature can have dramatic effect on sleep content
in slow wave sleep; more specifically, half-a-degree increase in skin
temperature was associated with an increase in slow wave sleep; and

odulation of core temperature disrupted REM cycle pattern [35,36].
It is also known that humans have the highest portion of REM state
around 4AM, when the body temperature is the lowest. Especially in
he REM state, it shows a nonsynchronous relationship between body

and brain temperature, which depends on ambient temperature [37].
It is supposed to be associated with peripheral vasoconstriction in REM
state reduces volume of the core compartment of body [38–41].

In the neuronal level, resting membrane potential negatively corre-
lates with temperature [42]. In addition, neuronal noise with frequency
ess than 2 Hz induced by the fluctuations of ion channels negatively
ssociated with temperature due to shorter time constant in high
emperature, which has been shown empirically and theoretically [43,

44].
Brain cooling was suggested to be one of the function of NREM state

with correlation of amount of NREM portion with heat from exercise
n the waking state, with theory that slow wave sleep decreases the

body and brain temperature [45]. Some theories about brain warming
in REM state suggested increment of cerebral blood flow and others
suggested increment of neuronal activity in REM state as a cause of
 f

2 
brain temperature change with sleep stage transition [1]. The former
theories explained that the brain temperature change with increased
eat transfer from the core body via blood flow. However, it was
bjected with the empirical evidence that core temperature is always
ower than brain temperature [46,47]. This led to the other theory

that increased neuronal activity in REM state drives increment of brain
temperature [46,48]. However, the higher brain activity in REM state
ad not been experimentally verified.

The standard biological model to explain the NREM–REM cycle
is the reciprocal interaction model. The REM state is driven by re-
ciprocal inhibition of REM-on cells and REM-off cells [49]. It has
een simulated with a mathematical model with Lotka and Volterra
quations and successfully reproduced unit activity of REM-on and
EM-off cells experimentally acquired, which gave verification of the
iological model [50]. It has also been simulated with a mean-field

model considering voltage fluctuations and state-dependent connec-
tivities, which are found to change with switching on REM-on or
REM-off cells [49,51]. The model showed first-order phase transition
between REM and NREM state [51]. As illustrated in these examples,
mathematical models can help, under a few assumptions, inferring the
roles of different parameters in a given system, such as the ultradian
sleep rhythm. However, these models are yet to reflect recent empirical
discovery on local SWA and temperature-association of REM–NREM
transition.

Based on the empirical evidence above, we suggest a model to
explain the REM cycle with thermodynamics in the sleeping brain. For
simplicity of the model, we made these assumptions and approxima-
tions for the model.

∙ Spontaneous neuronal firing induced by neuronal noise is the only
neuronal activity in sleep.

∙ Heat transfers via heat conduction from the scalp into the room
and heat advection from the brain to the body for thermoreg-
ulatory process in sleep, neglecting core and brain temperature
change with circadian rhythm. It will be treated in the later part
of this paper.

∙ Neurons of the neocortex are regularly embedded in a half-sphere-
shell, globally sharing extracellular potassium medium.

To simulate the bodily thermodynamics, we constructed thermoreg-
ulatory model with segments of brain and body with heat generation
from neuronal firing and passive heat transfer. Many mathematical
formulation of thermoregulation has incorporated model with multi-
segments and multi-nodes [52]. One of them successfully simulated
body temperature decrements with protocols of therapeutic hypother-
mia to prevent hyperthermia due to inflammation in post-cardiac pa-
tients [53]. This network based viewpoint to analyze the interaction
within body or organ facilitates simpler quantification and formulation
of complex physiology in living system [54].

This paper is structured as followings. In the second section, we de-
scribe the model’s outline and construct the model from the beginning,
he derivation of the stochastic SWA of the model, and sequentially
evelop the model into the form previewed in the outline. In the
hird section, the method and result of verification of the model with
mpirical data analysis and computational simulation will be given, and
wo additional demonstrations from the model will be demonstrated in
he fourth section. We will discuss the limitations, and implications in
he fifth section.

2. Construction of the model

In the model, the brain is the system, and the neocortex is a region
f interest, which is the main organ for SWA [55]. The room where the

one is sleeping is assumed as the heat reservoir with a constant temper-
ature. The body is connected to the system with a constant temperature
gap in the NREM state [47,56], while it is thermally disconnected
rom the system in the REM state based on the discrepancy of thermal
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Fig. 1. Concept of the model. (a) The main concept of the model (top) and plot (bottom) for brain temperature (blue line in bottom panel) and SWA power (orange line in
bottom panel) during a cycle. First, in the NREM state, the brain emits heat within the body and into the air, and its temperature decreases (green shades). At the same time,
heat generation from SWA in the brain increases, and temperature increases over the threshold of the REM state (yellow shades). Third, in high temperature of the REM state,
neural heat generation decreases, but heat dissipation into the body decreased (blue shades). Temperature decreases again, and it goes back into the first stage.(b) Simulated brain
temperature (top) and SWA power (bottom) in a series of REM cycles in 60 min. REM state is marked with blue shades. 𝜁 = 1.4258 ◦C/s and 𝛾 = 8.5659e−04 ◦C/s are used as
heat transfer parameters in simulation of (a) and (b).
response in brain and core in the state [37,38]. The model is briefly
described in Fig. 1 (a). In the NREM state, the brain dissipates heat
into the core through advection and the room through conduction. It
decreases brain temperature (green shade) and increases the probability
of SWA because lower brain temperature increases neuronal excitability
to generate SWA. Neural heat caused from SWA stochastically increases
the brain temperature. If it goes over the threshold of the REM state
(yellow shade), the brain-body gets thermally disconnected from the
body, as an approximation for the peripheral vasoconstriction [39,40],
and dissipates heat exclusively into the room. It makes temperature
rise in the REM state despite the low SWA. However, low SWA in
the REM state stochastically induces brain temperature to drop again
(blue shade), and the brain goes back into the NREM state. Figure 1
(b) displays simulation results of time series of stochastic REM cycles,
showing oscillating brain temperature and SWA power with the cycles.

First, the stochastic variable of heat generation from SWA is simu-
lated with local SWA model with temperature dependence. Next, the
heat generation is combined with heat dissipation to get differential
equation of brain temperature. The symbols and corresponding values
to be used in Eq. (1) to (14) and the simulation is in Table 1.

The simulation of SWA is based on Postnov’s model with stochastic
differential equations on membrane potential of neuron 𝑖, 𝑉𝑖, in the
set of neurons and neuronal noise [22]. The temperature dependent
neuronal current for thermal variation of membrane potential, 𝐼𝑇 ,
was added to the formula with potassium, sodium, leakage current,
𝐼𝑖,𝐾 , 𝐼𝑖,𝑁 𝑎, 𝐼𝑖,𝐿 in Eq. (1). The model is based on Leech P-neuron’s
parameters on Table 1, and Eq. (2), (3), (4), and (5) on 𝐼𝑖,𝐾 , 𝐼𝑖,𝑁 𝑎, 𝐼𝑖,𝐿,
and Eqs. (8) and (9) on potassium equilibrium potential [𝐾]0 and extra-
cellular potassium concentration [𝐾] are from the Postnov et al. 2007.
It assumes system of neurons and extracellular potassium medium
connected with reservoir of potassium ions with [𝐾]0, preventing bi-
ologically implausible sustained accumulation of potassium ions in
extracellular medium. It simulates SWA with coupling of neurons via
extracellular potassium ions and neuronal noise facilitating collective
firing.

𝐶𝑚
𝜕 𝑉𝑖
𝜕 𝑡 = −𝐼𝑖,𝐾 − 𝐼𝑖,𝑁 𝑎 − 𝐼𝑖,𝐿 + 𝐼𝑖,𝑎𝑝𝑝 − 𝐼𝑇 (1)

𝐼𝑖,𝐾 = 𝑔𝐾𝑛
𝑁
𝑖 (𝑉𝑖 − 𝐸𝑖,𝐾 ) (2)

𝐼𝑖,𝑁 𝑎 = 𝑔𝑁 𝑎𝑚𝑀
𝑖 ℎ𝐻𝑖 (𝑉𝑖 − 𝐸𝑁 𝑎) (3)
𝐼𝑖,𝐿 = 𝑔𝐿(𝑉𝑖 − 𝐸𝐿) (4)

3 
𝐼𝑖,𝑎𝑝𝑝 = 𝐼𝑎𝑝𝑝0 +
√

𝐷 𝜉𝑖(𝑡) (5)

𝐼𝑇 = 𝛽(𝑇 − 𝑇0) (6)

𝑉𝑖,𝐾 = 𝑅𝑇
𝐹

ln [𝐾]
[𝐾]𝑖

(7)

𝑊 𝜕[𝐾]
𝜕 𝑡 = 1

𝐹
𝛴 𝐼𝑖,𝐾 + 𝛾([𝐾]0 − [𝐾]) (8)

For the parameters for activation variables in Eq. (9), the values
suggested for 𝛼𝜅 and 𝛽𝜅 in Postnov et al. 2006 were used. The Q factors
of time constant 𝑄𝜅 that variates the kinetic rates of ion channels
about temperature in Eq. (10), where 𝜅 = 𝑛𝑖, 𝑚𝑖, ℎ𝑖, slow down voltage
variation in action potential in lower temperature. It was empirically
shown in vitro and in vivo neurons and facilitate in collective firing in
lower temperature [42,59]. With 𝐼𝑇 in Eq. (6) that gives linearly de-
creasing resting membrane potential with increasing brain temperature,
the firing rates of the SWA model exponentially decay with increasing
temperature, as shown in Fig. 2 (a).
𝜕 𝜅
𝜕 𝑡 =

𝛼𝜅 (1 − 𝜅) − 𝛽𝜅𝜅
𝑄𝑗

(9)

𝑄𝜅 (𝑇 ) = 𝐴
− (𝑇−37)

5
𝜅 (10)

The firing rate 𝑅(𝑡) is converted into the rate of heat generation
from ATP after the firing as shown in Eq. (11). The heat from ATP
after single firing 𝑔 is calculated based on simulation of local SWA
model with Eq. (12), which calculates 25% of free energy of ATP to
return sodium concentration to equilibrium after action potential. The
rate of 25% has been suggested as the ratio of heat dissipation of ATP
to the total free energy of ATP during action potential in multiple
literatures [60,61]. The heat generation during action potential due
to ATPase in membrane was also empirically verified with in vitro
nerves [62,63].

𝑞(𝑡) = 𝑔 𝑁 𝑅(𝑡) (11)

𝑔 = 𝜆
4 ∫ 𝑔𝑁 𝑎𝑚𝑀ℎ𝐻 (𝐸𝑁 𝑎 − 𝑉𝑖)𝑑 𝑡 (12)

Then, the heat generation rate 𝑞(𝑡) is combined with the heat
dissipation rates, 𝜁 and 𝛾, to make out stochastic differential equation
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Table 1
Value of fixed parameter.

Symbol Meaning Value Unit

𝑇0 Standard brain temperature for linear temperature
dependence.

35 ◦C

𝑇𝑎 Ambient temperature 25 ◦C

𝐶𝑚 Neuronal membrane capacitance in Leech P-neuron
model

1 μF∕cm2

𝑔𝐾 Conductance of neuronal potassium current 6 mS∕cm2

𝑔𝑁 𝑎 Conductance of neuronal sodium current 350 mS∕cm2

𝑔𝐿 Conductance of neuronal leakage current 350 mS∕cm2

𝐸𝑁 𝑎 Equilibrium potential of neuronal sodium current 60.5 mV

𝐸𝐿 Equilibrium potential of neuronal leakage current 49 mV

𝛽 Negative Linear correlation between temperature
and resting membrane potential [42].

−10 mV/◦C s

𝑁 Activation subunits of neuronal potassium channel 2

𝑀 Activation subunits of neuronal sodium channel 4

𝐻 Inactivation subunits of neuronal sodium channel 1

𝐴𝐾 Q factor of potassium channel 2.3

𝐴𝑁 𝑎 Q factor of sodium channel 3

𝐼𝑎𝑝𝑝0 Neuronal injection current 12.2 μA∕cm2

𝐷 Variance of neuronal injection current noise 2700 μA2∕cm4

𝑊 Extracellular volume per unit area of cell surface 0.5 nl/cm2

[𝐾]0 Equilibrium extracellular potassium concentration 4 mM

𝑁 Number of neurons in neocortex [57]. 2.1e7

𝑔 Emission of thermal energy from ATP during
single action potential

1.3529e−08 J

𝜆 Energy supplied by a molecule of ATP during
action potential

4.9834e−20 J

𝑇 − 𝑇𝑐 𝑜𝑟𝑒 Difference between brain temperature and core
temperature in thermoregulation [47].

0.5 ◦C

𝑇𝑅𝐸 𝑀 Lower threshold for brain temperature of REM
state

35.5 ◦C

𝑇𝑎 Ambient temperature of the room 25 ◦C

𝐶𝑏𝑟𝑎𝑖𝑛 Heat capacity of brain [58]. 6.5340 J∕◦C
N

b
w

w
s

of brain temperature. Eq. (13) is for the brain temperature variation in
REM state, and Eq. (14) is for the brain temperature variation in REM

state, where 𝑇 is brain temperature, 𝑇𝑐 𝑜𝑟𝑒 is core temperature, and 𝑇𝑎 is
ambient temperature of the room; 𝜁 is the rates of temperature change
through heat transfer to the body, heat advection rate; and 𝛾 is the rates
of temperature change through heat transfer to the room, which is heat
reservoir, heat conduction rate. As explained above, 𝑇 − 𝑇𝑏𝑜𝑑 𝑦 and 𝑇𝑎
are constant parameters because room is heat reservoir with 𝑇𝑎, and
in NREM state, brain and body are thermally connected with constant
radient.

𝐶𝑏𝑟𝑎𝑖𝑛
𝜕 𝑇
𝜕 𝑡 = −𝐶𝑏𝑟𝑎𝑖𝑛(𝜁 (𝑇 − 𝑇𝑏𝑜𝑑 𝑦) + 𝛾(𝑇 − 𝑇𝑎)) + 𝑞(𝑇 ). (𝑇 ≤ 𝑇𝑅𝐸 𝑀 ) (13)

𝐶𝑏𝑟𝑎𝑖𝑛
𝜕 𝑇
𝜕 𝑡 = −𝐶𝑏𝑟𝑎𝑖𝑛𝛾(𝑇 − 𝑇𝑎) + 𝑞(𝑇 ). (𝑇 > 𝑇𝑅𝐸 𝑀 ) (14)

As Fig. 2(a) shows, the stochastic heat generation and the de-
terministic heat generation in NREM and REM state have different
stable points with high mean firing rate in low temperature and low
mean firing rate in high temperature, respectively. The firing rate is
close to Poissonian variables with standard deviation of firing rates
close to the mean firing rates in the temperature. The stochasticity of
heat generation from noise-induced firing allows the transition of the
sleeping state from NREM to REM state and from REM to NREM state.

While other all parameters are fixed, parameters for heat advec-
tion rate 𝜁 and heat conduction rate 𝛾 are main control parameters.
The diagram in Fig. 2(b) shows the regimes of sleep state dynamics
with different 𝜁 and 𝛾. First, when 𝛾 is too small, the transition
rom REM to NREM state is suppressed, making the regime ‘REM-
redominant’. Conversely, when 𝛾 is too high, the duration of REM state
4 
becomes very short because stable point in REM state has lower brain
temperature than the threshold temperature 𝑇1, making the regime
‘NREM-predominant’. In other words, 𝛾 is negatively associated with
duration of REM duration. Second, when 𝜁 is too small, stable point
in NREM has low firing rate, so the probability of the transition from

REM to REM state is rare. When 𝜁 is too high, with high firing rate,
the transition from NREM to REM is frequent. In other words, 𝜁 can
e said to modulate the instance of REM state, or period of REM cycle
ith negative association. Only the regime of gray color in Fig. 2(b)

has stable REM cycle with intermediate periods.

3. Verification of the model

3.1. Method of data analysis and simulation

We drew on Petersen et al.’s recent dataset of rats’ local field poten-
tial (LFP), brain temperature, and sleep scores for every second [64,65].
Adult male Long-Evans rats with 250–450 g, aged three to six month
old, were used. The rats’ LFP is measured in their bilateral hippocampus

ith 1250 Hz of sampling rates for two to twenty-four hours of ses-
ions, and their brain temperature is measured in their hippocampus.

The sleep score is classified into one stage among ‘WAKE,’ ‘NREM,’
‘Intermediate,’ and ‘REM’ with automatic sleep scoring [66]. It used
three features for sleep scoring: the first principal component of the
electrophysiological signal (PC1), electromyogram (EMG), and theta
wave. The ‘NREM’ state has high PC1, intermediate EMG, and low theta
wave; the ‘REM’ state has low PC1, low EMG, and high theta wave; and
the ‘WAKE’ state has low PC1, high EMG, and low theta wave [66].
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Fig. 2. (a) Mean firing rates with varying brain temperatures (blue line). The intersection of blue line with orange dotted line is firing rate of steady state in NREM state, and
the green dotted line is for the REM state. The blue shade marks the region of temperature over threshold of REM state in the model. The small insets shows time series of
membrane potentials of neurons in the brain temperature 34.4 ◦C (left) and 35.6 ◦C (right) with millivolts of y-axes. The mean firing rates exponentially decrease with increment
of temperature. 𝜁 = 1.4258 ◦C/s and 𝛾 = 8.5659e−04 ◦C/s are used as heat transfer parameters in the simulation.(b) Diagram of the regimes on the parameter for heat advection
rate 𝜁 and heat conduction rate 𝛾 regulating period of cycle and REM state duration, respectively. Green and blue shade mark ’NREM-predominant’ regime and ’REM-predominant’
regime, respectively, and the regime between them has stable REM cycle. The regime between two red dotted lines have the intermediate period of REM cycle. The gray regime
has stable REM cycle with intermediate period. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
We used nine rats’ data (MS12, MS13, MS21, MS22, TEMP R04,
TEMP R05, TEMP R07, TEMP R08, TEMP R09) among ten rats’ data
and excluded temperature-modulating range following related data
given in the sets. Also, the ‘WAKE’ sleep state is additionally classified
into ‘WAKE’ meaning long-term waking, and ‘Micro Arousal’ meaning
short-term waking following the standard in B. O. Watson et al.’s
paper [66]. For the data we analyzed, the ‘WAKE’ state is excluded
because the model is only for sleeping states, and the ‘MicroArousal’
state is included because the state is generally included in sleeping
states. We concatenated multiple sessions within a single animal, not to
put weight on the number of sessions in each animal. To get the power
of SWA, each animal’s LFP was Fourier transformed in overlapping time
windows of 20 s with 19 s of overlaps, and the power of signals in
the frequency range from 0.5 Hz to 4 Hz was summated in each time
window to make out time series SWA data.

Heat transfer parameters 𝛾 and 𝜁 are fitted with data because the
heat transfer rate within the body is challenging to measure empiri-
cally. Simulation of membrane potential 𝑉𝑖 was done using 0.1 ms of
time bin and fourth order Runge–Kutta for 5 h of simulation times, 5
𝑥 3600 𝑥 10000 time bins. The firing rates 𝑅(𝑡), heat generation rate
𝑞(𝑡), applied current 𝐼𝑖,𝑎𝑝𝑝(𝑡), and temperature dependent current 𝐼𝑖,𝑇
were acquired in every second, or 10000 time bins. The summation of
membrane potential of all neurons 𝑉𝑖 was converted into power spectral
density, and the power of SWA in 0.5 to 4 Hz was acquired with same
length of time window and same length of overlaps with empirical
data analysis. In the model, the REM state is defined as the state with
temperature over than 𝑇𝑅𝐸 𝑀 , and the NREM state is the state that is
not REM state, while for experimental data, sleep score, ‘NREM’ and
’intermediate state’ was classified into the NREM state, and ‘REM’ was
classified into REM state, which were given for each second of the data.

Cumulative probability of normalized duration of SWA burst
𝑃 ( 𝑑𝑆 𝑊 𝐴

<𝑑𝑆 𝑊 𝐴> > 𝑥) in data is used to fit the parameters, which has
been suggested as a robust statistical property of sleeping states. It
is adjusted to be the magnitude of SWA over threshold voltage due
to the absence of theta wave in the model [67]. The threshold of
the SWA burst is set to the median value of time series of the SWA
power in each animal. 𝑃 ( 𝑑𝑆 𝑊 𝐴

<𝑑𝑆 𝑊 𝐴> > 𝑥) of each animal is separately
analyzed, and interquartile range and median value across all animals
were acquired as the blue shades and data points of circle in Fig. 3(a)
and (b). The cumulative probability of SWA burst of simulation is
acquired with same method with empirical data analysis. For validation
data, cumulative probability of REM duration was used. For reliable
5 
statistical analysis, six animals (MS12, MS13, MS22, R07, R08, R09),
which have instances of REM state over ten, were used for the analysis
of cumulative probability.

Maximum Likelihood Estimation was used to estimate fitness for
each set of parameters of 𝛾 and 𝜁 . With the model using each set of
parameters, the simulation generated the cumulative probabilities for
eight data points. Probabilistic likelihood 𝑃 (𝑦𝑖|𝜃) =

∏

𝑖 𝑃 (𝑦𝑖|𝜃) was
acquired for each set of parameters with Monte-Carlo method where
𝜃 is the set of parameters 𝛾 and 𝜁 , and 𝑃 (𝑦𝑖|𝜃) is probability for the
simulated cumulative probability with the parameters to be in 95%
confidence interval of median value of the cumulative probability of
data at the data point. The 95% confidence interval is acquired with
the method suggested by R. McGill [68]. The optimal set of parameters
is 𝜃 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝜃
(log10 𝑃 (𝑦𝑖|𝜃)). Then, we assessed predictive validity with

the parameters-fitted model, generating other statistical properties and
comparing it with one of the data. The other parameters are fixed
parameters that are generally drawn on from the results of empirical
research, as Table 1 about parameters shows.

3.2. Verification of the model

With the method suggested above, the model parameters were
fitted, and it was tested to see if it could reproduce another statistical
property, the cumulative probability of the normalized duration of the
REM state. Fig. 3 shows parameter fitting and testing for the model.
As explained in the Method section, the parameters of the model are
set to parameters with maximum likelihood to give the cumulative
probability of data for the normalized duration of SWA burst, which
are 𝜁 = 1.4258 ◦C/s and 𝛾 = 8.5659e−04 ◦C/s as in Fig. 3(a). We used
these parameters for all of the following results. With the parameters,
we generated a simulation result of the normalized duration of the REM
state. Fig. 3(b) shows it agrees relatively well with experimental data,
under consideration that the number of REM duration in empirical data
is limited for reliable statistical analysis. The model with parameters
fitted with the SWA burst data can reproduce cumulative probability
of the normalized REM duration in data. Beyond statistical property of
normalized value, as in Fig. 3(c) of empirical time series of SWA power
shows, the period of rat’s REM–NREM cycle is few minutes scale, and
the simulation result in Fig. 3(d) agrees well for the point as well [69].
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Fig. 3. Parameter fitting and testing for the model. (a) Cumulative probability for the normalized duration of SWA burst of data and simulation with fitted heat transfer parameters.
Median values of cumulative probability of data (blue line) with 95% confidence interval of the median values (light blue shade) are overlapped with values of cumulative probability
of simulation (orange star). The simulation parameters set of 𝜁 = 1.4258 ◦C/s and 𝛾 = 8.5659e−04 ◦C/s had maximum likelihood (0.875) for the normalized duration of the SWA
burst in data among sets of parameters. (b) Cumulative probability for the normalized duration of REM state of data and simulation with parameters in (a). Median values of
cumulative probability of data (blue line) with 95% confidence interval of the median values (light blue shade) are overlapped with values of cumulative probability of simulation
(orange star). The simulation of the model fitted with the empirical SWA power can reproduce REM durations close to those of data. (c) Representative empirical time series of
SWA power of a rat for 60 min. (d) Representative simulation of SWA power with the parameter fitted in (a) for 60 min. The time scale of SWA power dynamics is similar to
the data in (c).
Fig. 4. (a) Change of the REM portion depending on ambient temperature (23, 25, 27, 29 ◦C). REM state portions increase with increment of ambient temperature. (b) Hypnogram
(blue line) of the simulation of the model with consideration of the change of the circadian core temperature. The light blue shades show the REM state. In the nadir of body
temperature, around 2-3 h after onset of sleep, the simulation shows highest propensity to REM state. 𝜁 = 1.4258 ◦C/s and 𝛾 = 8.5659e−04 ◦C/s are used in simulation of (a)
and (b).
4. Demonstration of other characteristics of REM cycle with the
model

This model can also generate other phenomena of rats’ sleep with
the change of specific parameters. First, we will show that it can
generate some sleep phenomena discovered in previous empirical re-
search with the following results. Fig. 4(a) shows that simulation
reproduces general trends of REM portion change in the total simula-
tion period depending on ambient temperature discovered in empirical
literature [70]. According to the literature, rats’ REM portion of sleep
significantly increases when ambient temperature increases. At 22
degrees Celsius of ambient temperature, 88.6% of the rat’s total sleep
was in the NREM state, but at 29 degrees Celsius, 86.3% of the rat’s
total sleep was in the REM state. We tried simulation with all other
parameters the same as previous simulations, but various ambient
temperatures 𝑇𝑎 from 22 to 29 degrees Celsius. Though the simulation
result did not give the same number for the REM portion — 12.8% of
REM and 87.2% of NREM at 21 ◦C, and 35.1% of REM and 64.9% of
NREM at 29 ◦C, it reproduced overall trends of REM portion change
that increases with ambient temperature increases.

In contrast to human circadian rhythm with highest body tempera-
ture in noon and the lowest in the midnight, rodents have their lowest
6 
body temperature in the noon and the maximum body temperature
in the midnight [71]. However, rodents and humans commonly have
the highest propensity to REM state in time with the lowest body
temperature [72]. Up to this point, the effect of circadian rhythm
was excluded for simplicity, but to see if the model can reproduce
the effect of body temperature variation, the sinusoidal variation of
body temperature of 0.2 ◦C is added to the model. In Fig. 4(b), with
body temperature minimizing at 2.5 h (orange line), we can see the
REM portion (blue shade) increasing around the minimal point of
body temperature. Even with opposite circadian rhythm across species,
humans and rodents have same relationship between pattern of REM
portion and body temperature, which implies the robust association
between REM cycle and body temperature, and it can be simulated with
this thermodynamic model.

Also, Human has longer duration of REM state and period of REM
cycle with tens of minutes than the rats used in this paper. It can be
explained with lower ratio of heat dissipation rates to heat generation
rate. As aforementioned, Fig. 2(b) shows that 𝛾 and 𝜁 decide the length
of REM duration and cycle period respectively. While the rodents would
have higher ratio of 𝛾 and 𝜁 to 𝑞(𝑡) to have the shorter lengths, human
would have lower ratio, which can be explained with lower ratio of
body surface to volume.
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5. Discussion

Collective spontaneous neuronal activity of slow wave activity in-
reases with decreasing temperature due to slower dynamics of action
otential and hypo-polarized resting membrane potential. The heat
nduced from slow wave activity can increase brain temperature. The
ssociation between slow wave activity and temperature can be the
rinciple of the NREM–REM cycle. We suggested the model to explain
he mechanism of the NREM and REM cycle with thermodynamics and
emperature-dependent neuronal states. The model considers genera-
ion of local SWA from neuronal noise, heat generation from neuronal
ctivation, and heat dissipation from the brain to the core and air for
hermoregulation. The model also considers the breakage of core ther-
oregulation in the REM state with disconnection of thermal contact

etween the brain and core. Two stochastic differential equations for
EM and NREM states describe brain temperature change with stochas-

ic heat generation and deterministic heat dissipation, simulating the
pontaneous REM–NREM cycle.

The model was parameter-fitted with the probabilistic distribution
of duration of SWA bursts, and it was validated with the prediction of
probabilistic distribution of duration of REM states, which is distinct
property from SWA burst. Then, other phenomena about the cycle
f sleep stage were demonstrated with the model: Change of REM
ortion with different ambient temperature and varying pattern of REM

cycle riding on circadian rhythm. In this section, we will discuss the
limitation of the research, the bespoken point in the Results section,
nd the consistency of this model with other precedented research.

However, there are several limitations in the research. First, there
is a limitation of physiological reality in the model. It did not include a
hysiologically plausible response function in heat diffusion and extra-
ellular ion concentration but assumed heat diffusion from the brain to
he body in a second and instant equilibrium of extracellular medium

concentration. Also, without consideration of spatial heterogeneity of
eural distribution and extracellular potassium concentration, local

SWA model is applied on global brain situation. Despite the simplicity,
the model could reproduce the statistical property of the REM cycle,
which might imply that it includes the core of the mechanism. How-
ever, the delay in heat diffusion and reaching heat equilibrium might
explain the species-dependent difference of temperature correlation in
the sleep stage transition. Compared with rodents, which show evident
temperature change, primates, which have bigger brains and bodies
than rats’ brains and bodies, have a weaker temperature correlation
with sleep stage transition. The model considering response time for
heat diffusion from neuronal activity should be investigated further.

Second, the reduction of heat transfer from the brain to the body
n the REM state assumed in this model is not verified empirically.
owever, it was assumed based on discovery of peripheral vasocon-

triction in REM state. The difficulty of measuring heat transfer in the
ody and in real-time would prevent us from exploring this possibility

empirically, and it could be indirectly verified with this computational
simulation.

Lastly, the model is under the assumption that the body is a pas-
ive system in thermodynamic interaction with the environment for
implification. It only switches the REM state on and off with brain tem-

perature. However, bodily thermodynamics is an active and more com-
plex system beyond the assumption of temperature-dependent neuronal
noise and thermodynamics. Especially the hypothalamus is known to
actively modulate bodily state to be in preferable temperature, which
is explained by the active process of homeostasis or allostasis [73,74].
This oversimplification of this model would explain the discrepancy
between the simulation and the data.

This model can seem to be in contradiction with the sleep-wake cy-
cle model based on temperature-dependent neuronal noise. The sleep-
wake cycle model suggests that low core temperature induces high
neuronal noise in wake-promoting neurons to increase the propensity
to the brief waking state, which is called the ‘microarousal’ state [27].
7 
Then, high core temperature induces low neuronal noise in wake-
romoting neurons, facilitating a lower frequency of waking and deeper
leep, which is also validated with experiments [27]. On the other

hand, in our model, in low brain temperature, the NREM state, in
other words, ‘deep sleep,’ is promoted, and the promoted NREM state
lso triggers high brain temperature and REM state, making the cycle
pontaneous. It might seem contradictory with the previous theory.
owever, the core temperature in Dvir’s paper is the mean temperature
ver the entire sleep period [27]. On the contrary, the brain tempera-

ture in our model is an instantaneous temperature for each time step,
and it is unsynchronized with the core temperature in the REM state.
Also, as mentioned with Fig. 4(b), when the mean body temperature is
he lowest, the REM portion is the highest in the model. In the REM
tate, the short term waking state, microarousal state, is more frequent
han in the NREM state, so the result agrees that low body temperature
rigger wake-promoting cells. [75]. In addition, Fig. 4(a) shows that

high ambient temperature induces a sustained state in REM state, which
is the same conclusion as Dvir’s paper in 2018. Therefore, our model is
onsistent with conclusion of Dvir’s model.

In empirical research to monitor cortical and hypothalamic temper-
ature in the transition of vigilance state, it was found that for sleep-
wake transition, hypothalamic temperature change precedes cortical
temperature change, while for NREM–REM transition, cortical tempera-
ture change precedes hypothalamic cortical temperature change. It was
discussed to support the suggestion that the neocortex dominantly leads
temperature change in the NREM–REM transition, and the hypothala-
mus dominantly leads temperature change in the sleep-wake transition
in the paper, which supports separated circuits for sleep-wake cycle
and NREM–REM cycle [31]. This suggestion is also consistent with our
model that brain temperature change across NREM and REM states is
explained by neuronal activity in the cortical cortex.

The results of simulation on this thermodynamic model of REM–
REM cycle imply strong association of brain temperature change with

he oscillation of sleep stage. However, it is unclear if the brain temper-
ature change drives the cycle or the sleep stage transition induces the
brain temperature change. Many previous brain warming and cooling
theories suggests that NREM sleep decreases the brain temperature with
ower metabolic demands, and brain in REM state increase temperature
ith increased neuronal activity, stating thermoregulation function of
EM cycle [1,45]. On the other hand, in this model, brain does not

actively regulate temperature, but the influence is bidirectional: brain
temperature induces neuronal activity of NREM state, and the neuronal
activity warm up the brain. The advantage of bidirectional regulation
over one-directional regulation is the energy efficiency of the REM
ycle. The existence of the effect from brain temperature to sleep
tage cycle can be implied by many experiments that ambient or body

temperature modulation also affects sleep stage pattern [35,36]. For
direct evidence to know if brain temperature induces transition of sleep
stage, delay in coupling between temperature and sleep stage phases
an be analyzed from experimental data. It can show if temperature

change precedes transition from NREM to REM state and from REM
o NREM, although it should be considered that the time resolution of
elay would be limited by the low frequency of SWA.

In this research, we suggested a thermodynamic model to explain
the mechanism of the REM cycle. This model has successfully repro-
duced the REM cycle with merely thermodynamical processes. The

odel can be contribute in many research to enhance sleep quality.
nterdependence between thermoregulation and sleep-related disorders
uch as insomnia can be investigated further in new perspectives [76].

It can contribute to development of treatment using temperature con-
trol for better quality of sleep in insomnia patients, which is being
actively studied in medical engineering [35]. Also, the model may be
the base to understand the change of REM and NREM phase pattern in
babies with relation to weaker thermo-regulation [77].
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