
A Comprehensive Survey of Benchmarks for Improvement of
Software’s Non-Functional Properties
AYMERIC BLOT, University of Rennes, France, University of the Littoral Opal Coast, France, and University
College London, UK
JUSTYNA PETKE, University College London, UK

Despite recent increase in research on improvement of non-functional properties of software, such as energy
usage or program size, there is a lack of standard benchmarks for such work. This absence hinders progress in
the field, and raises questions about the representativeness of current benchmarks of real-world software.

To address these issues and facilitate further research on improvement of non-functional properties of
software, we conducted a comprehensive survey on the benchmarks used in the field thus far. We searched
five major online repositories of research work, collecting 5499 publications (4066 unique), and systematically
identified relevant papers to construct a rich and diverse corpus of 425 relevant studies.

We find that execution time is the most frequently improved property in research work (63%), while multi-
objective improvement is rarely considered (7%). Static approaches for improvement of non-functional software
properties are prevalent (51%), with exploratory approaches (18% evolutionary and 15% non-evolutionary)
increasingly popular in the last 10 years. Only 39% of the 425 papers describe work that uses benchmark suites,
rather than single software, of those SPEC is most popular (63 papers). We also provide recommendations for
future work, noting, for instance, lack of benchmarks for non-functional improvement that covers Python,
JavaScript, or mobile devices. All the details regarding the 425 identified papers are available on our dedicated
webpage: https://bloa.github.io/nfunc_survey.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering →
Software post-development issues; Extra-functional properties; Empirical software validation.

Additional Key Words and Phrases: software performance, non-functional properties, benchmark

ACM Reference Format:
Aymeric Blot and Justyna Petke. 2022. A Comprehensive Survey of Benchmarks for Improvement of Software’s
Non-Functional Properties. ACM Comput. Surv. 1, 1 (January 2022), 35 pages. https://doi.org/10.1145/1122445.
1122456

1 Introduction
The primary focus of software developers is to write bug-free software. Even then, many issues
often arise throughout the development and production cycles, causing significant human resource
investment into code maintenance. Poor software quality is costly. For example, Krasner [225]
estimated that in 2022 the cost of poor-quality software on the US economy was 2.41 trillion dollars.
In order to deliver better software, many techniques and tools exist to diagnose software’s

potential flaws, refactor source code, optimise compiled machine code, and even use evolution to
automatically derive better software variants. To this purpose, many surveys have been conducted

Authors’ Contact Information: Aymeric Blot, University of Rennes, Rennes, France and University of the Littoral Opal Coast,
Calais, France and University College London, London, UK, aymeric.blot@univ-rennes.fr; Justyna Petke, University College
London, London, UK, j.petke@ucl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 ACM.
ACM 1557-7341/2022/1-ART
https://doi.org/10.1145/1122445.1122456

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0003-0485-5279
HTTPS://ORCID.ORG/0000-0002-7833-6044
https://bloa.github.io/nfunc_survey
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://orcid.org/0000-0003-0485-5279
https://orcid.org/0000-0002-7833-6044
https://doi.org/10.1145/1122445.1122456


2 Aymeric Blot and Justyna Petke

on techniques for functional improvement of software, particularly regarding automated bug
fixing [69, 139, 245, 292, 293]. We observed that studies in the field of automated program repair
often use well-crafted benchmarks1 (see, e.g., https://program-repair.org/benchmarks.html). It is
worth noting that since release of a now famous Defects4J benchmark [202], the publication rate in
the field has increased (https://program-repair.org/statistics.html), allowing for faster comparisons.

On the other hand, non-functional properties of software are often relegated to second place, often
leading to unneccessary bloat [3]. One type of non-functional properties are performance concerns,
such as execution time, memory or energy consumption. Their importance is ever increasing with
increased usage of battery-powered mobile smart devices. In fact, studies have shown that 1/3
of instances of Android users abandoning mobile applications and 59% of bad reviews were due
to poor performance [186, 258]. However, whilst more and more research is now conducted on
improvement of software’s non-functional properties (e.g., by automating this process using genetic
improvement [313]), the field still lacks standardised benchmarks. These would help drive the field
forward by providing a common baseline for newly proposed approaches.

Therefore, we conducted an in-depth literature review, both to better frame what has been done
and is currently conducted, as well as to identify the type of software that is most often targeted.
First, we conducted a preliminary search, hand-picking 100 research articles to identify the most
relevant keywords linked to improvement of software’s non-functional properties. We then queried
five major online repositories for related work from the past 45 years—ACM Digital Library, IEEE
Xplore, Scopus, Google Scholar, and ArXiV—grouping useful keywords into five subsets. Finally,
we repeated this search focusing on past four years to complement the main systematic search and
ensure relevance to current practices. Out of 5499 results returned we found 4066 unique papers
which we systematically checked for empirical work that improves non-functional properties of
software, providing potential benchmarks for future work. Ultimately, these three searches resulted
in a corpus of 425 unique relevant studies, that we then categorised with regards to the property
they target, the type of approach they use, and central to our survey, the benchmark they consider.

With our survey, we aim to answer the following research questions.
RQ1 (State of the Art) How prevalent is empirical work on improvement of non-functional prop-

erties of software?
(a) What type of non-functional property is most often improved?
(b) When optimised together, which combinations of non-functional properties are considered?
(c) Which approaches for non-functional improvement are used most often?
(d) How is software most often modified?

RQ2 (Existing Benchmarks) Which software is used to validate work on improvement of non-
functional properties of software?

(a) How often are existing software benchmarks reused?
(b) Which software is targeted most often for improvement?

RQ3 (Software Diversity) How representative are the benchmarks used in work on real-world
improvement of non-functional properties of software?

(a) What type of software is targeted most frequently?
(b) Which programming languages are targeted most frequently?

2 Survey Methodology
We conducted a systematic literature review in order to establish the state of the art in benchmarks
used in empirical studies improving non-functional properties of software. We started with a
preliminary search to construct a set of relevant keywords. These keywords were then used to

1See Section 3.4 for the definition of a “benchmark”.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://program-repair.org/benchmarks.html
https://program-repair.org/statistics.html


A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 3

Table 1. Keywords used in the systematic repository search. Wildcards (“*”) are used on digital libraries
supporting such queries; otherwise we list the alternative keywords used.

Group Category Keywords

Software code, program, software, application

Improvement optim* (optimize, optimizing, optimization), improv* (improve,
improving, improvement), automat* (automated, automati-
cally), reduc* (reduce, reducing)

Non-Functional Time time, runtime, speed* (speed, speedup), fast* (fast, faster)
Property Memory memory

Energy energy, power
Quality performance, effic* (efficient, efficiency), effective* (effective,

effectiveness), accura* (accuracy), precis* (precision)
Other functional* (functional, functionality), size, slim* (slimming),

bloat, debloating

conduct a systematic search across five online repositories. Finally, an additional search focusing
exclusively on the most recent work ensured relevance to current practices.

2.1 Preliminary Search
Whilst strongly anchored in the software engineering world, work on improving software’s non-
functional properties spans many different independent research fields that do not necessarily use
a consistent terminology, let alone share a unified one. In order to conduct an adequate literature
review, we first needed to make sure relevant keywords were used. To that purpose, we performed
a manual search, gathering a small and diverse set of relevant papers on improvement of software’s
non-functional properties. We used a simple criterion to establish whether a piece of work qualifies
as improving a non-functional property of software, namely if the intended semantics of the
transformed software is preserved. In that sense work on optimisation of runtime, energy, or
memory consumption is deemed relevant, whilst work on bug fixing or software transplantation
is not relevant, as, by definition, the input/output behaviour of the transformed software will
change. The only exception to this rule is software specialisation, where functionality could be
compromised for improvement of a non-functional property. Since the main focus of such work is
improvement of non-functional behaviour, we still consider it relevant.

Starting from known related work, we iteratively built a purposely diverse corpus of 100 relevant
publications by querying specific research fields (e.g., “genetic improvement”, “code refactoring”,
“compiler tuning”), specific types of non-functional properties (e.g., “reliability”, “complexity”),
using synonyms (e.g., “software evolution” and “program evolution”, “energy consumption” and
“energy footprint”), etc. We then extracted, from the title and abstract of every selected publication,
every word that could potentially be used as a keyword during the systematic repository search.
We calculated how frequently each word occurs in the metadata of selected work. In addition, we
investigated the use of wildcards, grouping words sharing similar prefixes, and expressions (e.g.,
“execution time” or “running time”, as opposed to “time” alone). We also tried to singularise words,
removing final “s”-es when the pluralised versions of words were found.
Details of frequency analysis are presented in Figure 1. Note that we excluded prepositions,

articles, and other generic words clearly not useful for our literature survey (e.g., “result”, “paper”,
“is”, “are”). Surprisingly, word combinations did not result in particularly frequent expressions,

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



4 Aymeric Blot and Justyna Petke

0 10 20 30 40 50 60 70 80
structure
setting

improving
give

functional
faster

configuration
complexity

variant
quality
evolve

efficiency
refactoring
parameter
evolution
accura*

energy consumption
space

optimizing
increase

evolutionary
efficient
effective

performance improvement
size

reducing
functionality

energy
speed

runtime
fast*

source code
transformation

optimize
consumption

increas*
speed*
tuning

automatically
automated
effective*

genetic programming
reduce

transform*
functional*

effic*
source
compil*

genetic improvement
optimization

evol*
programming

reduc*
search

automat*
improve

application
genetic

time
software
program

performance
improvement

optim*
code

improv*

10%
10%
10%
10%
10%
10%
10%
10%
11%
11%
11%
11%
12%
12%
12%

13%
13%
13%
13%
13%
13%
14%
14%
14%
15%
16%
17%

19%
19%
19%

21%
21%
22%

23%

28%

30%
33%
36%

42%
42%

47%
50%
52%
54%
54%
54%

67%

12%

18%

20%
20%

22%

24%
25%
26%
28%

32%
35%

39%

57%
69%

12%

13%

18%

22%

28%

Number of papers matching keyword

Ke
yw

or
d
fo
un

d
in

tit
le
or

ab
st
ra
ct

Single keyword
Wildcard keyword

Keyword combination

Fig. 1. Preliminary search: frequent words in titles and abstracts. (≥10%)
ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 5

appearing significantly less often than their respective individual words. However, prefix wildcards
were very effective in providing usable search keywords. Then, a subset of the most frequent words
was derived and further classified into seven classes of potential keywords, as detailed in Table 1.
These keywords were used as a basis for the second step of our survey protocol.

2.2 Systematic Repository Search
Based on keywords found in our preliminary search, we performed a systematic search for relevant
work, largely inspired by the methodology proposed by Hort et al. [173]. We used three groups
of keywords: two that ensure papers relate to software’s non-functional property improvement
(Software and Improvement in Table 1) and one group of keywords targeting a specific non-functional
property (including Time,Memory, Energy, Quality, and Others). The addition of the supplementary
Improvement group of keywords is motivated by the large number of papers otherwise returned by
each search. In total, five separate queries are therefore constructed, one for each keyword from
the Non-Functional Property category. When applied on the preliminary dataset of 100 papers, they
collectively achieve 97% coverage, with only one paper missing a Software keyword ([295]) and
two missing an Improvement keyword ([128, 320]).

These five queries were used, to ensure good representation, on five major digital libraries: ACM
Digital Library, IEEE Xplore, Scopus, Google Scholar, and ArXiV, for a total of 25 searches. In
particular, Springer Link, Science Direct, or JSTOR were not considered due to their inability to
handle complex Boolean queries or queries with many keywords. Where filters allowed for it, each
search was restricted to the computer science research field (Scopus, ArXiV), as well as restricted to
conference proceedings and journal articles (ACM, IEEE, Scopus). We made no further restrictions.
Because of the high number of papers returned by the 25 queries, we only focused on the first 200
papers returned by the digital libraries, using the provided default relevance-based sort order.

The specifics of our systematic methodology are as follows.
Inclusion Criteria. A paper is deemed relevant when it fulfils the following four criteria:
(1) it must relate to a quantifiable non-functional property;
(2) it must contain an empirical study which applies a software improvement technique to

existing software;
(3) improvement of the targeted non-functional property must be the active focus of the paper

and not merely a side-effect;
(4) the approach used must result in a distinct software execution that can thus be compared

to the original software.

Selection Process. Publications are then processed according to the following three steps:
Title: first, publications whose titles clearly do not fit the spirit of the survey are discarded

without further reading;
Abstract: second, abstracts are inspected and publications are rejected when at least one

inclusion criteria clearly does not apply;
Body: only then remaining potentially relevant publications are read in full and included,

depending on the relevance of their content.
In total, the 25 queries yielded 5000 results. Papers with identical title were merged together

after manual verification, resulting in overall 3749 unique papers (25% redundancy between query
terms and online repositories). Note that in some rare cases individual queries resulted in fewer
than 200 unique papers; this is, for example, due to some papers having multiple DOIs2.
2E.g., a paper published in OOPSLA 2010 (https://doi.org/10.1145/1869459.1869473) also published in ACM SIGPLAN
Notices (https://doi.org/10.1145/1932682.1869473), or a paper published in ICCAD 2006 differently indexed by IEEE
(https://doi.org/10.1109/ICCAD.2006.320144) and ACM (https://doi.org/10.1145/1233501.1233551)

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1145/1869459.1869473
https://doi.org/10.1145/1932682.1869473
https://doi.org/10.1109/ICCAD.2006.320144
https://doi.org/10.1145/1233501.1233551


6 Aymeric Blot and Justyna Petke

40
hi
ts

80
hi
ts

12
0
hi
ts

16
0
hi
ts

20
0
hi
ts

0

50

100
ACM
IEEE

Scopus

Scholar
ArXiV

Depth of the repository search

U
ni
qu

e
re
le
va
nt

pa
pe
rs

Fig. 2. Cumulative number of unique relevant pa-
pers found in each digital library (across all five non-
functional property keyword groups).

ACM
(104)

71

IEEE
(117)

80

2

Scopus
(139)

8513

25

0

Scholar
(40)

30

3

3

2

0

0

10

Manual
(100)

80

5

0
3

2

0
0

7

0

0

02

0

1
0

0

ArXiV
(10)90

01

Fig. 3. Venn diagram of all 425 corpus papers accord-
ing to origin. Missing intersections (e.g., between
Google Scholar and ArXiV) are all empty.

Of these 3749 unique papers, we determined 2560 to be irrelevant based on their title alone
(e.g., “Memory training and memory improvement in Alzheimer’s disease: Rules and exceptions” is
clearly not relevant), 510 to be irrelevant based on their abstract, and finally 372 to be irrelevant
based on their actual content. Overall, this second step of the survey yielded 307 unique relevant
papers (8.19%). This manual step was conducted over the span of two months (FTE).

We observed that Scopus yielded by far the highest number of relevant papers, almost four times
the number from Google Scholar and ArXiV combined. All types of queries yielded similar numbers
of papers, with the exception of the “Time” keyword group, although Section 3 will show that
execution time is by far the most common non-functional property optimised in the literature.

As means to validate the threshold of 200 papers considered for every query, we investigated the
rate at which relevant work appears throughout the systematic repository search. Figure 2 shows,
for each of the five digital libraries, how many would have been returned had a smaller threshold
been used. Very surprisingly, the rate according to which relevant work is found is almost constant,
meaning that a considerable amount of relevant work can be expected to be found even after our
threshold of 200 papers per query. Similar rates are also observed when controlling for each of the
keywords categories, i.e., there is a lot more related work for all types of non-functional properties.

Finally, to complement the main systematic search—performed in July 2021—and ensure coverage
of more recent work, we repeated the same methodology in July 2024 with two main differences.
We restricted publication date to 2021–2024 to avoid overlaps, and we only considered the first 20
hits to avoid overfits. In total, the 25 queries yielded 499 results, resulting in 332 unique papers.
Out of these, we determined 155 papers to be irrelevant based on their title alone, 64 based on their
abstract, and 69 based on their actual content, resulting in 44 relevant unique papers.

Details of both steps of the systematic repository search are presented in Table 2 with a total of
345 unique papers (which excludes work found via our preliminary manual search). In particular,
for each class of query and each online digital library we present the total number of hits, and the
numbers of papers rejected at each step of the selection process, or ultimately classified as relevant.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 7

Table 2. Systematic repository search. For each of the 50 queries we detail how many papers were found,
how many unique papers were selected, and how many papers were considered after each of the three steps
of our selection process. We indicate for every step how many unique papers are found, both across all five
digital libraries (in the last column) as well as across all five types of queries (last rows).

Main search Complementary search
(first 200 results, –2021) (first 20 results, 2021–2024)

Step

AC
M

IE
EE

Sc
op
us

Sc
ho
lar

Ar
Xi
V

AC
M

IE
EE

Sc
op
us

Sc
ho
lar

Ar
Xi
V Unique

Ti
m
e

Total hits 26K 216K 375K 6.3M 1268 13K 62K 124K 6.3M 158 –
Unique work 200 199 200 200 200 20 20 19 20 20 1091
Selected (Title) 60 84 16 55 31 12 16 13 11 6 299
Selected (Abstract) 39 52 3 18 13 7 14 12 9 1 164
Selected (Body) 16 29 1 7 2 3 7 3 4 0 72

M
em

or
y

Total hits 6326 30K 57K 5.2M 273 2851 8000 18K 667K 19 –
Unique work 200 199 198 200 199 20 20 19 20 19 1030
Selected (Title) 78 89 84 66 56 11 14 16 13 6 396
Selected (Abstract) 42 62 62 33 28 7 7 11 10 2 236
Selected (Body) 18 38 32 14 5 5 1 5 4 0 105

En
er
gy

Total hits 7907 140K 154K 5.1M 727 4416 42K 59K 1.5M 161 –
Unique work 199 200 198 200 200 20 20 20 20 20 1049
Selected (Title) 93 80 111 47 41 7 10 17 6 6 386
Selected (Abstract) 56 46 84 8 18 3 6 14 4 1 215
Selected (Body) 16 27 41 1 2 1 2 5 3 0 82

Q
ua
lit
y

Total hits 44K 351K 591K 5.7M 1439 18K 94K 190K 1.6M 139 –
Unique work 200 200 199 200 200 20 20 20 20 20 1071
Selected (Title) 97 79 94 43 36 13 18 16 6 6 389
Selected (Abstract) 55 50 71 15 14 8 16 10 3 1 229
Selected (Body) 26 34 31 7 2 3 13 3 1 0 111

O
th
er
s

Total hits 8166 63K 116K 6.1M 826 17K 74K 145K 1.2M 240 –
Unique work 199 198 192 200 199 20 20 19 20 20 1025
Selected (Title) 93 75 99 39 35 15 17 13 11 6 360
Selected (Abstract) 67 47 82 14 15 11 15 11 7 1 231
Selected (Body) 36 32 56 6 2 8 11 9 2 0 129

O
ve
ra
ll Unique work 952 806 962 934 603 77 74 78 90 48 4066

Selected (Title) 405 315 391 246 122 41 51 60 42 13 1356
Selected (Abstract) 249 194 286 103 52 26 36 47 29 3 785
Selected (Body) 104 117 139 40 10 15 17 15 13 0 345

2.3 Corpus
In preliminary search we identified 100 relevant papers. The main systematic repository search
then yielded 307 unique relevant papers. Finally, The complementary systematic repository search
yielded 44 unique papers. Combined, they resulted in 425 unique relevant papers on the topic of
improvement of non-functional properties of software, as shown in Table 3.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



8 Aymeric Blot and Justyna Petke

Table 3. Summary of the 425 unique corpus papers, according to the main types of non-functional property
targeted, the types of multi-objective focuses, the types of search approaches, and the types of modifications
applied to the original software. An interactive and more comprehensive artefact for this data is available
both in the supplementary materials and also live at https://bloa.github.io/nfunc_survey whilst raw data can
be accessed at https://github.com/bloa/nfunc_survey.

Criteria Relevant papers

Property time (268): [1, 5, 8–12, 14, 15, 17–20, 22–24, 26, 27, 29, 32–35, 38, 43–45, 47–49, 52, 53, 59, 60, 64, 65, 67, 70, 72–74, 76–
79, 81–83, 85–87, 90–96, 98–100, 105, 107–109, 111, 112, 114–119, 121–123, 125, 126, 130, 134, 136, 138, 141, 143, 146, 147,
149, 150, 152, 155, 156, 160, 162–165, 167, 169–171, 174, 176–179, 183, 184, 187, 188, 190–192, 194, 197–200, 203, 204, 206–
208, 210, 211, 214–219, 222, 223, 227–231, 234–236, 238–241, 243, 246–248, 250–252, 256, 257, 259–261, 263–268, 270, 275,
276, 276, 277, 279–282, 284, 286–288, 290, 291, 294, 298, 299, 302, 305–309, 314–318, 322, 326, 327, 329, 330, 332–337, 340–
342, 345–353, 355, 356, 359, 361, 363–366, 369, 371, 373, 375, 376, 379, 381–383, 385–387, 390–394, 396–408, 411, 414, 415,
419, 420, 423–432, 435], energy (77): [2, 16, 22, 23, 28, 40, 46, 52, 54, 58, 61, 62, 66, 68, 71, 81, 84, 91, 92, 96, 97, 100, 102–
104, 110, 114, 124, 126, 132, 133, 135, 137, 137, 153, 154, 172, 181, 182, 189, 205, 217, 220, 226, 250, 253–255, 272, 273, 275,
300, 301, 303, 304, 310–312, 317, 326, 327, 338, 339, 341–344, 352, 354, 362, 364, 366, 377, 384, 387, 416, 436], size (71):
[4, 7, 21, 25, 41, 50, 51, 55, 56, 63, 75, 80, 90, 92, 101, 106, 113, 116, 127, 137, 137, 140, 143, 157, 166–168, 170, 194–196, 201,
224, 230, 246, 247, 249, 252, 278, 281–283, 289, 296, 319, 321, 323–325, 328, 331, 352, 357, 358, 367, 368, 370, 374, 380, 388, 390,
402, 409, 410, 412, 413, 418, 421, 422, 433, 434], other (61): [4, 6, 13, 28, 31, 36, 37, 42, 43, 46, 57–59, 64, 88, 89, 103, 120, 124,
128, 129, 131, 142, 144, 151, 158, 161, 168, 175, 193, 213, 219, 221, 224, 232, 237, 242, 244, 262, 264, 265, 267–269, 271, 288, 295–
297, 299, 308, 320, 321, 358, 360, 378, 395, 404, 405, 412, 413], memory (37): [12, 26, 32, 33, 39, 40, 43, 47, 77, 96, 141, 145,
148, 159, 164, 180, 185, 194, 200, 208, 209, 211, 212, 217, 226, 230, 233, 274, 284, 285, 308, 372, 389, 414, 417, 423, 435]

Multi-
objective

focus (58): [12, 13, 26, 32, 40, 52, 64, 77, 90–92, 96, 100, 103, 116, 137, 137, 141, 143, 164, 167, 168, 194, 200, 208, 211, 217, 219, 224,
226, 230, 246, 247, 250, 252, 268, 275, 281, 282, 284, 288, 296, 299, 308, 320, 321, 327, 341, 342, 352, 358, 364, 366, 390, 412–414, 423],
report (56): [5, 7, 25, 27, 53, 56, 89, 98, 110, 113, 128, 134, 142, 147, 148, 154, 155, 158, 159, 172, 177, 181, 185, 189, 195, 196, 199,
203, 214, 215, 228, 236, 248, 251, 262, 272–274, 285, 301, 304, 312, 319, 324, 337, 351, 359–361, 372, 373, 376, 384, 389, 395, 432],
search (30): [4, 22, 23, 28, 33, 43, 46, 47, 58, 59, 81, 86, 87, 114, 124, 126, 170, 174, 213, 264, 265, 267, 269, 317, 326, 387, 402,
404, 405, 435]

Search static (217): [1, 5–7, 11–14, 17, 19, 21, 24, 26, 29, 32, 34, 38, 39, 49–51, 53, 56, 57, 63, 64, 71, 75, 77–79, 89, 90, 97, 98, 101,
104, 107, 109, 116, 117, 121, 123, 127, 129–131, 134, 135, 137, 137, 140–147, 151, 152, 155–158, 165–167, 169, 172, 175, 177, 182,
183, 187, 189–193, 196–201, 203, 204, 206–208, 212, 216, 217, 221–224, 226, 228–231, 244, 247–249, 251, 253, 255, 257, 260–
262, 266, 272–276, 276, 278, 281, 282, 286, 287, 290, 291, 294, 296, 298–305, 307, 309, 310, 312, 318–325, 328, 329, 331–334, 336–
340, 343, 348–351, 355, 357–363, 366–370, 372–375, 378–381, 384–386, 388–390, 392, 395–397, 400, 401, 406–410, 414, 415, 417,
418, 420, 423, 426, 429, 430, 432–434, 436], evolutionary (77): [4, 9, 22, 23, 28, 31, 33, 37, 42, 44–47, 58, 61, 62, 66, 67, 80, 81,
84, 86, 87, 93–95, 99, 105, 106, 108, 112, 113, 124, 126, 138, 150, 161, 162, 174, 195, 213, 214, 219, 227, 232, 234–243, 263–265, 267–
270, 280, 283, 297, 314–316, 345, 346, 352, 387, 404, 421, 422, 428, 435], exploratory (52): [15, 20, 41, 43, 45, 48, 59, 60, 65, 68,
70, 74, 85, 88, 92, 96, 111, 113–115, 118–120, 132, 133, 149, 153, 168, 179, 195, 233, 252, 254, 289, 306, 317, 326, 330, 335, 346, 365,
376, 382, 393, 394, 402, 403, 412, 413, 425, 428, 431], sampling (48): [8, 18, 35, 52, 59, 73, 74, 76, 83, 91, 100, 110, 122, 125, 148,
154, 160, 163, 170, 171, 176, 178, 180, 194, 209, 215, 218, 246, 256, 259, 277, 279, 288, 295, 317, 341, 356, 371, 391, 393, 394, 405,
411, 416, 419, 424, 427, 428], manual (46): [2, 10, 16, 25, 27, 36, 40, 54, 55, 72, 82, 102, 103, 128, 136, 156, 159, 164, 181, 183–
185, 188, 189, 205, 210, 211, 220, 250, 271, 284, 285, 308, 311, 327, 342, 344, 347, 353, 354, 364, 377, 383, 398–400]

Change semantic (218): [2, 4–7, 10–13, 16–19, 21, 24–29, 35–37, 39, 41, 48, 50, 51, 53–58, 63, 64, 71, 75, 78, 82, 89, 90, 92, 97, 98, 101,
102, 104, 107, 108, 116, 117, 121, 123, 127–133, 135–137, 137, 140–144, 146, 155–159, 164, 166–168, 170–172, 180, 182–184, 187–
190, 192, 193, 196, 197, 199, 201, 205, 206, 210–213, 220–223, 226, 228–231, 244, 246–253, 255, 260, 262, 266, 271, 272, 275, 276,
276–278, 281, 284–287, 289–291, 296, 297, 299–303, 307–310, 312, 319–321, 323–325, 328, 329, 331, 333, 334, 336, 338, 339, 342,
343, 347, 349, 351, 353–355, 357–359, 361–364, 368–370, 372–375, 377–381, 383, 385, 386, 388–390, 392, 395, 398, 399, 403, 405–
407, 410, 412–415, 418, 426, 429–432], loops (99): [1, 7, 11, 17, 22, 26, 32, 34, 37, 49, 72, 73, 77, 91, 92, 109, 111, 121, 122,
134, 145, 147, 151, 152, 154, 156, 165, 171, 182, 187, 191, 198, 200, 203–205, 207–211, 214–217, 219, 226, 230, 250, 257, 270, 272–
274, 276, 276, 277, 279, 280, 286, 294, 298, 305, 317, 318, 322, 326, 328, 332, 334–337, 340, 348, 350, 353, 356, 358, 360, 364, 366, 384,
391, 401, 403, 407–409, 415, 419, 420, 423–425, 430, 433, 434, 436], destructive (85): [10, 14, 15, 31, 33, 38, 40, 42, 44–47, 58, 60–
62, 65, 66, 84, 93–95, 100, 103, 112, 113, 120, 123, 124, 136, 149, 150, 153, 161, 162, 172, 175, 177, 210, 212, 219, 232–243, 254, 257,
261, 263–265, 267–269, 282, 283, 300, 304, 311, 314–316, 344, 352, 353, 361, 367, 371, 376, 384, 396, 400, 404, 416, 417, 421, 422],
configuration (83): [2, 8, 9, 20, 23, 40, 43, 47, 48, 52, 58, 59, 67, 68, 70, 73, 74, 76, 79–81, 83, 85–88, 96, 99, 105, 106, 110, 111,
114, 115, 118, 119, 125, 126, 136, 138, 148, 160, 163, 169, 172, 174, 176, 178, 179, 181, 185, 194, 195, 212, 218, 224, 227, 233, 256,
259, 272, 288, 295, 306, 317, 324, 327, 330, 341, 345, 346, 365, 382, 387, 393, 394, 397, 402, 406, 411, 427, 428, 435]

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://bloa.github.io/nfunc_survey
https://github.com/bloa/nfunc_survey


A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 9

Figure 3 presents the source distribution of the 425 corpus papers. The set of papers originating
from ArXiV (10 papers) is very small and almost disconnected from the other sets of work. In
fact, the vast majority of publications (84%) is only found once, and with the exception of Scopus
covering a non-negligible number of publications from ACM (23) and IEEE (29). Despite this, the
corpus contains three papers simultaneously returned from four different sources [330, 358, 413].
We note that despite a theoretical 97% coverage, only 20 of the 100 papers from the preliminary
search were actually rediscovered during the two systematic repository searches. This can be
explained by the large number of hits returned by every query (see Table 2) and the consistent
rate at which relevant work is found (see Figure 2). Recall that in the systematic search we only
considered relevant work located in the first 200 results of the 25 queries of the repository search.
On the one hand, this means that only 20% of our hand-picked papers appear within that threshold,
once again corroborating the idea that many more relevant pieces of work exist in the literature.
However, on the other hand, it also means that most of the relevant work identified in the systematic
search is new, reducing potential unconscious bias from the preliminary search.
By combining all three searches we thus construct a very rich and diverse corpus of relevant

publications, that is, by construction, both relevant in terms of coverage of the different aspects of
non-functional improvement, as well as in terms of statistical representativity, as much as this is
possible using digital library searches.

3 Empirical Work on Non-Functional Properties of Software
Section 2 described the literature review process that resulted in a corpus of 425 papers related to
improvement of non-functional improvement of software. In this section, we examine these 425
papers in more detail, focusing on extracting information according to the following four criteria:
Research landscape. For each paper we note the publication or release date, and the name and

the type of venue in which it appeared.
Non-functional property. [RQ1a&b] We note the non-functional properties targeted, and in

the cases where multiple properties are reported, whether they have been actually used to
produce improved software variants or simply measured at the end of the experiments. We
note how each of the non-functional properties was measured.

Search Approaches. [RQ1c&d] We note both the type of approach used to generate software
variants and the type of modifications applied to the original software.

Benchmark. [RQ2&3] We note the number and names of software used in the empirical evalua-
tion. We note if it was selected from an existing benchmark, as well as its size, programming
language it was written in, its origin, and the platform on which it was run.

Unless explicitly stated otherwise—i.e., Figure 10 and Figure 11, that focus on the 345 papers
yielded by the systematic search—all analyses in this section use the full corpus of 425 corpus
papers (i.e., including preliminary manual search results).

3.1 Research Landscape
Figure 4 shows the publication year distribution of all 425 corpus papers; almost all papers appeared
after 1995, with a clear upward trend. While it can be an artefact of the relevance sort of the online
repositories, there is no doubt that work on software’s non-functional properties is increasingly
widespread. Finally, most related work is published in conferences, although we note a fair number
of workshop papers and a very high number of journal articles in 2021.
Figure 5 details the origin (i.e., preliminary search or digital library), by publication year, of all

425 corpus papers. With the exception of two papers published in 2019, all relevant work obtained
in the main systematic search through Google Scholar appeared before 2011. Conversely, ArXiV

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



10 Aymeric Blot and Justyna Petke

1980 1990 2000 2010 2020
0

10

20

30

Publication year

U
ni
qu

e
co
rp
us

pa
pe
r

Fig. 4. Publication year distribution of all 425 unique
corpus papers.

1980 1990 2000 2010 2020
0

10

20

30

40

50

Publication year

Cu
m
ul
at
iv
e
co
rp
us

pa
pe
r ArXiV (10)

Google Scholar (40)
Manual search (100)

ACM (104)
IEEE (117)
Scopus (139)

Fig. 5. Publication year distribution of all 425 unique
corpus papers, according to origin (preliminary man-
ual search or digital library). Papers found multiple
times are counted multiple times.

0 10 20
SC

ASPLOS
ASE

ACM TACO
IPDPS
ICPP
CCS

PACT
OOPSLA
IEEE TSE
ESEC/FSE

PLDI
ICS

IEEE TPDS
ArXiV
ICSE
CGO

GECCO

5
5
5
6
6
6
7
7
7

9
9

17
18

20

5

7

10
10

Number of papers by venue

Pu
bl
ic
at
io
n
ve
nu

e

Conference
Journal
ArXiV

Fig. 6. Most frequent publication venues (≥5) across
all 425 unique corpus papers.

1980 1990 2000 2010 2020
0

10

20

30

40

Publication year

Cu
m
ul
at
iv
e
co
rp
us

pa
pe
r Memory (37)

Other (61)
Size (71)

Energy (77)
Time (268)

Fig. 7. Publication year distribution of all 425 unique
corpus papers, according to the types of non-
functional software property targeted. Papers tar-
geting multiple property types are counted multiple
times.

only yielded papers from 2019 onwards and ACM Digital Library from 2008 onwards. However,
both IEEE and Scopus yielded papers for every year since 1998.

Figure 6 presents the venues inwhich the papers appearmost frequently in (i.e., at least five papers
published in a given venue). With the notable exception of GECCO, an evolutionary computation
conference with the highest figure of 20 related papers, venues are thematically split between
applied computing (with CGO, IEEE TPDS, ICS, PLDI, OOPSLA, PACT, CCS, ICPP, IPDPS, ACM
TACO, ASPLOS, and SC), for a total of 93 papers, and general software engineering (with ICSE,
ESEC/FSE, IEEE TSE, and ASE), for a total of 36 papers.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 11

1980 1990 2000 2010 2020
0

5

10

15

Publication year

U
ni
qu

e
co
rp
us

pa
pe
r Joint optimisation (28)

Reports multiple (56)
Secondary focus (58)

Fig. 8. Publication year of all 142 corpus papers that
consider more than one non-functional property, ac-
cording to their multi-objective philosophy.

Time Other EnergyMemory Size

Time

Other

Energy

Memory

Size

4 7 8 4 2

7 2 4 1 1

8 4 0 0 0

4 1 0 0 0

2 1 0 0 0

Property optimised

Pr
op

er
ty

op
tim

is
ed

Fig. 9. Correlation between non-functional proper-
ties considered in multi-objective work.

3.2 Non-functional Properties
Figure 7 shows the distribution of all 425 corpus papers over the years, according to the types
of non-functional software property they target. In order to increase readability, properties have
been grouped thematically: e.g., “Time” includes mostly execution time (63% of all papers), but also
test or compilation time (≈1%), “Memory” encompasses both optimisation of the total amount of
resource used, but also its actual usage during execution (e.g., minimising cache misses), and “Size”
groups binary size on disk as well as source code size (e.g., in terms of lines of code).
By far the most frequent non-functional property targeted for improvement is time efficiency.

Time is optimised in 268 of the 425 corpus papers, followed by energy usage (77 papers), software
size (71 papers) and memory usage (37 papers). 61 papers also targeted other types of properties,
including mostly the quality of the output, the software’s attack surface, or the overall writing
quality of source code. The remaining papers targeted other properties, such as copyright or security
issues, code complexity, or source code obfuscation.

Answer to RQ1 (a): Empirical work on optimisation of non-functional properties of software
most frequently focuses on improvement of execution time. We found 268 out of 425 papers that
describe such work. Code size follows with 71 papers (20 more as a secondary objective), while
energy usage is targeted in 77 papers (and only 5 more as a secondary objective). Memory usage
is considered in 37 papers, and in further 16 as a secondary objective. Work on improvement of
other non-functional properties of software is more rare, with the next most frequently targeted
property, “output quality”, being improved in 28 papers, while “attack surface” improved in 12.

Furthermore, as shown in Figure 8, the authors of 142 papers considered more than one non-
functional property. We can distinguish 28 papers that proposed work that actively optimised
multiple non-functional properties of software simultaneously, 58 papers that had a secondary focus
on at least another property, and finally 56 other papers where authors simply reported on more
than one property. Figure 9 shows the pairs of property types considered in work simultaneously
optimising at least two non-functional properties during search. As expected, execution time
is also the most popular non-functional property considered. We also note a few papers where
both software’s energy consumption and output solution quality was targeted. Overall, whilst the

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



12 Aymeric Blot and Justyna Petke

Time Size Energy Other Memory

Other

Memory

Quality

Energy

Time

68 87 14 33 8

94 19 3 5 29

97 16 17 9 9

37 6 82 7 5

61 6 4 11 4

Property optimised

Pr
op

er
ty

ke
yw

or
d
ca
te
go

ry

Fig. 10. Correlation between non-functional prop-
erty keyword category and category of actual tar-
geted property (345 repository papers).

Time Size Energy Other Memory

Scopus

IEEE

ACM

Scholar

ArXiV

84 61 56 23 19

116 37 33 17 24

113 32 25 12 5

36 3 2 8 5

8 1 4 5 2

Property optimised

D
ig
ita

ll
ib
ra
ry

Fig. 11. Correlation between digital library of origin
and category of targeted property (305 repository
papers).

number of such “multi-objective papers” is undeniably growing, work toward proper multi-objective
improvement of non-functional properties is still quite rare.

Answer to RQ1 (b): There is little work on multi-objective improvement of non-functional
properties of software (only 28 relevant papers found). In addition to being the most frequent
objective (found 25 times), in most cases execution time is one of the targeted properties, often
used as a trade-off to energy usage (eight times) or solution quality (seven times).

Figure 10 shows the correlation between the non-functional property keyword categories used
in the systematic repository search and the actual primary property types targeted in the relevant
papers. Surprisingly, only “energy” and “other” keywords —the latter including bloat- and size-
related terms— are effective in yielding thematically relevant papers. Furthermore, “quality” and
“memory” keywords are far more effective in yielding papers optimising software speed than their
expected properties, even more than “time” keywords.

Conversely, Figure 11 shows the correlation between the repositories and the primary targeted
non-functional property. First, as already pointed out, search through ArXiV and Google Scholar
really wasn’t effective. Then, whilst yielding many more relevant results, both the ACM and the
IEEE digital libraries show a bias towards work targeting running time improvements, the most
frequent non-functional property overall. Finally, surprisingly, Scopus library does not seem to
exhibit that strong of a bias, yielding high numbers of papers targeting size and energy concerns.

3.3 Search Approaches
Five main types of search approaches are distinguished. (1) static approaches in which decisions
about softwaremodifications are takenwithout remeasuring the non-functional property; typically a
single software variant is generated and compared to the original software. (2) sampling approaches,
in which a given number of variants are generated and evaluated, the best variant being only
determined at the end of the procedure. We include in that category both random and systematic
sampling, as well as exhaustive enumeration. (3) exploratory (non-evolutionary) approaches, in
which multiple software variants are iteratively generated and evaluated in order to produce a
final software variant. Exploratory approaches differ from sampling approaches in that they are
trajectory-based, intermediary variants being used to guide the search. This category includes,

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 13

1980 1990 2000 2010 2020
0

10

20

30

Publication year

Cu
m
ul
at
iv
e
co
rp
us

pa
pe
r Sampling (39)

Manual (46)
Exploratory (62)
Evolutionary (78)

Static (217)

Fig. 12. Publication year distribution of all 425
unique corpus papers, according to the types of
search approaches. Papers using multiple search ap-
proaches are counted multiple times.

1980 1990 2000 2010 2020
0

10

20

30

40

Publication year

Cu
m
ul
at
iv
e
co
rp
us

pa
pe
r Destructive (85)

Configuration (85)
Loops (99)

Semantic (238)

Fig. 13. Publication year distribution of all 425
unique corpus papers, according to the types of
software modifications. Papers considering multiple
types of modifications are counted multiple times.

for example, local search algorithms and greedy approaches, specifically excluding evolutionary
approaches. (4) evolutionary approaches, that expand on exploratory approaches by using biology-
inspired procedures such as, for example, genetic algorithms or genetic programming. Finally,
(5) manual approaches in which the software is modified by hand.

Figure 12 shows the distribution of types of search approaches by year of publication. Static
approaches are the most frequent (217 papers), and constitute with manual (46 papers) and sampling
(39 papers) approaches almost all publications until around 2005. Both exploratory (62 papers) and
evolutionary (78 papers) approaches start to appear around 2000, being more prevalent after 2005.
Finally, most evolutionary approaches appear after 2014.

Answer to RQ1 (c):Most of the work on improvement of non-functional properties of software
use static approaches (51%). However, for the past ten years evolutionary (18%) and exploratory
(15%) approaches have been increasingly popular.

Similarly, we distinguished between four types of softwaremodifications. (1) Loop transformations,
encompassing, for example, loop merging, splitting, unrolling, polyhedral transformations of nested
loops, but also many other modifications specifically targeting loops in source code. (2) Semantic-
based modifications, with, for example, template-based code generation or refactorings, which
are meant to guarantee semantics preservation. (3) Potentially destructive modifications that do
not guarantee semantics preservation; they can preserve semantics, but do not come with such
guarantees, typically leaving change acceptance to a code review process. (4) Configuration-based
modifications, in which parameter values at known decisions points are changed.

Figure 13 shows the distribution of types of software modifications by year of publication. The
vast majority of work applies semantic modifications to the software at hand (238 papers). Loop
transformations (99 papers) are especially prevalent in compiler work. Configuration (85 papers)
has been regularly tackled from around 2005, while destructive modifications (85 papers) have been
very popular in the last ten years. Unsurprisingly, the use of software destructive modifications can
be linked to the increased use of evolutionary search in software engineering and the introduction
of genetic improvement [313].

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



14 Aymeric Blot and Justyna Petke

0 20 40 60
Perfect Club

Parboil
SPEC (Java)

SPLASH, SPLASH-2
PolyBench

MediaBench (I, II)
DaCapo
Rodinia
PARSEC

NAS
MiBench

SPEC (C/C++/Fortran)

5
6
7
8
12
13
13
14
14
14
14

56

Number of papers

Be
nc
hm

ar
k
su
ite

Fig. 14. Most frequent software benchmark sets
(≥ 5) across all 425 unique corpus papers.

1990 2000 2010 2020
0

10

20

30

Publication year

Cu
m
ul
at
iv
e
co
rp
us

pa
pe
r Other MediaBench PolyBench

DaCapo MiBench NAS
PARSEC Rodinia SPEC

Fig. 15. Publication year of all 167 corpus papers that
reuse an existing benchmark set.

Answer to RQ1 (d):Most of the work on non-functional properties of software use semantic
modifications (56%). However, similarly to RQ1 (c), destructive source code changes (20%)
have been increasingly popular in the past ten years. Other types of modifications are loop
transformations (23%) and configuration tuning (20%), steadily appearing in the literature for
the past twenty years.

3.4 Benchmarks3

Empirical studies on improvement of non-functional program properties are evaluated on particular
sets of instances to measure performance improvement. Although almost all contain the name of
the software that was improved, many lack details regarding the dataset they were evaluated on.
In what follows, we denote by benchmark any pair of both a given software code to execute

and the necessary input data required to make execution reproducible, so that performance across
different environments can be fairly and reliably compared. A benchmark suite is a collection of
benchmarks; whilst theoretically designed to be executed as a whole, many studies only consider
subsets of one or more benchmark suites to solely focus on specifically chosen benchmarks.
In 167 of the 425 papers on empirical work on improvement of non-functional properties of

software authors reused existing benchmark suites (39%). Figure 14 shows the most commonly used
benchmark suites. For SPEC, we distinguished Java benchmark suites (SPECjbb, SPECjvm) from the
C/C++/Fortran benchmark suites (mostly SPEC CPU when specified). One issue we encountered
was that many times authors simply mention “SPEC” without specifying which version of that
benchmark suite was used, which specific software was used, or even which programming language
was targeted. Similarly, we grouped together the original and revised versions of both MediaBench
(MediaBench II) and SPLASH (SPLASH-2).

SPEC is the most frequently used benchmark suite in work on non-functional property im-
provement of software. This is partly due to the longevity of its various benchmark suites that
are regularly updated (e.g., SPEC CPU has been revised five times since its inception). Figure 15
shows that despite a great number of benchmark suites being reused, and an increasing number of
reuse taking place over the years, no particular suite appears to be prevalent. One reason might be
the increasing difficulty of compiling older software on newer systems, making benchmark suites
quickly outdated, issue that SPEC may avoid by updating their benchmarks suites more frequently.
3Details on all benchmarks, including URLs and references, are available at https://bloa.github.io/nfunc_survey/benchmarks

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://bloa.github.io/nfunc_survey/benchmarks


A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 15

0 10 20 30
xalan (–/DaCapo)

SP (–/LoneStar/NAS/Rodinia)
perlbench (SPEC)
omnetpp (SPEC)

mgrid (NAS/SPEC)
JACOBI-2D (–/PolyBench/RAJAPerf)

h264ref (SPEC)
Cholesky (–/PolyBench/SPEC/SPLASH-2)

Blackscholes (–/CUDA SDK/PARSEC)
bitcount (–/cBench/MiBench)

astar (–/SPEC)
vpr (SPEC)

twolf (SPEC)
Tomcatv (–/SPEC)

swim (SPEC)
sphinx3 (SPEC)

Spark
povray (SPEC)
parser (SPEC)
milc (SPEC)

libquantum (SPEC)
hmmer (SPEC)

compress (–/SPEC/SPECjvm)
sjeng (SPEC)

SHA (–/cBench/CHStone/MiBench/Perl Oasis/RiCeps)
adi (–/Livermore Loops/PolyBench/SPEC)

ADPCM (–/cBench/CHStone/MediaBench/PARSEC)
LU (–/NAS/PolyBench/SPLASH-2)

JPEG (–/cBench/MediaBench/MiBench)
FFT (–/DSPstone/MiBench/Perfect Club/SPLASH-2)

LBM (–/Parboil/SPEC)
gzip (–/Chisel/SIR/SPEC)

gcc (–/SPEC)
mcf (SPEC)

bzip2 (–/cBench/Chisel/MiBench/SPEC)

10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
12
12
13
15
16
16
17
18
18
19

23
34

Number of papers

Be
nc
hm

ar
k
so
ftw

ar
e

Fig. 16. Software most often targeted (≥ 10 papers) accross all 425 unique corpus papers.

Answer to RQ2 (a): Whilst many software benchmark suites have been proposed, they are
used in less than half (39%) of the papers surveyed. SPEC, with its multiple types of benchmarks,
is by far the most commonly reused benchmark suite. However, it was originally proposed for
raw performance evaluation of hardware systems and may not be suitable for all non-functional
property improvement purposes.

Figure 16 presents software most frequently targeted in the 425 papers, as well as when relevant,
the benchmark suite it was explicitly taken from (we use “–” to indicate that no benchmark suite
was specified in the paper). Unsurprisingly, the most frequently targeted software come from
the SPEC benchmark suites (23 of the 35 software targeted ten times or more). With the notable
exception of Spark (found eleven times), frequently targeted in the context of big-data software
parameter configuration, software not being part of benchmark suites are not frequently reused,
meaning that most studies consider new benchmark and do not directly compare to previous work.

Answer to RQ2 (b): Unsurprisingly the most often targeted software are those originating from
the SPEC benchmarks, including, for example, bzip2, mcf, gcc, or gzip.

Figure 17 shows the distribution of the programming language of the targeted software relative
to the publication year. Targeted software are most frequently written in C or C++, with 51% of all
papers. An additional 8% of papers target GPU software (e.g., CUDA) essentially also written in
C/C++. Java follows with 16% of papers, then Fortran (5%, appearing in only two papers since 2010),
Scala (3%), and Javascript (2%). Other languages (including Python, Erlang, Haskell...) only appear

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



16 Aymeric Blot and Justyna Petke

1980 1990 2000 2010 2020
0

10

20

30

40

Publication year

Cu
m
ul
at
iv
e
co
rp
us

pa
pe
r Other (46)

Scala (14)
Fortran (21)
GPU (33)

Unknown (60)
Java (69)

C/C++ (218)

Fig. 17. Publication year distribution of all 425 corpus
papers, according to the programming language of
the software targeted. Papers with more than one
programming language are counted multiple times.

1980 1990 2000 2010 2020
0

0.2

0.4

0.6

0.8

1

Publication year

Ra
tio

of
co
rp
us

pa
pe
r Block

Function
File

Project
Application
Unknown

Fig. 18. Publication year distribution of all 425
unique corpus papers, according to the ratio of size
of software targeted.

in 1% or fewer papers. Surprisingly, in 14% of papers the programming language of the targeted
software is not explicitly stated.

As for the type of the targeted software, 59% of the papers include real-world software, usually
freely available online, while 50% considered toy examples specifically written for research purposes;
in 10% of the papers the origin of software was unclear. Regarding papers with real-world software,
which seem to be increasingly favoured, we find that 56% is academic in origin, 49% come from the
open-source community, 7% come from industry; 16% is unknown.
For each paper we noted the approximate size of the software targeted within, with categories

such as “block” (a few lines of code; 11% of papers), “function” (a small number of functions; 15% of
papers), “file” (typically one or two files; 17% of papers), and “project” (26%) and finally “application”
(44%) for larger software with more files and a much larger code base. In 35% of papers the size of
the targeted software was neither specified nor obvious. Figure 18 details proportions by publication
year. Whilst results appear relatively constant, it can still be noted that the proportion of both
small software (i.e., “block”, “function”, and “file”) and software of unknown size seem to be slowly
decreasing, in favour of large software.

Finally, we looked at the environment in which software was executed. Unfortunately, in 51% of
the papers this was not specified and could not be inferred. In 38% of papers software was run on a
Unix or Linux machine, 3% on Windows, and 2% on Mac specifically. Additionally, 7% of the papers
considered software running on a mobile device (Android: 6%, iPhone: 1%).

Answer to RQ3 (a): The most frequently considered software for improvement of its non-
functional behaviour is, statistically, a large real-world Linux application written in C or C++;
this might be a direct consequence of the prevalence of work based on SPEC.

There are obvious discrepancies between real-world software engineering and the papers identi-
fied in our survey. In many aspects, our survey fails to reflect that richness of software development.
First, despite 59% of the papers targeting real-world software, C/C++ software is vastly over-

represented (58%), as is Unix/Linux software (40%). According to the TIOBE index4—an indicator
of online popularity—Python has recently become the most popular programming language. In
4https://www.tiobe.com/tiobe-index

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://www.tiobe.com/tiobe-index


A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 17

contrast, only six papers in our survey (1%) consider Python software, with five also coincidentally
considering C, C++, or Java software. Whilst real-world software systems often integrate multiple
languages, such as Python software often relying on C/C++ libraries for performance-critical opera-
tions, our survey found no example of work specifically targeting such systems. Moreover, we posit
that automating the improvement of polyglot software presents a significant challenge, requiring
holistic strategies that go beyond the isolated optimisation of individual software components.

The 2024 Stack Overflow’s annual developer survey5 provides more practical insight regarding
developers demographics. In particular, JavaScript (69% of professional respondents), SQL (51%),
Python (41%, “most wanted language” for the fifth year), NodeJS/TypeScript (36% both), C# (30%),
or Bash/Shell (28%) are all technologies very popular in industry that are apparently completely
missing from academic research, as is Rust (“most loved language” for the sixth year). Likewise,
most professional developers use Windows (41%, whilst 30% use MacOS and 25% use a Linux-based
distribution), which again is not reflected in our own survey.

Finally, only 7% of the identified relevant work target software in mobile devices. In the meantime,
in 2024 the number of active Android devices is reported to be as high as 3.9 billions (2.2 billions
for iOS devices). For these mobile devices, non-functional properties such as memory usage and
energy consumption are absolutely critical [186, 258].
Answer to RQ3 (b): Benchmarks revealed in our survey are not representative of real-world
software as a whole, with, for example, Java (69 papers, 16%), Javascript (nine papers, 2%), or
Python (six papers, 1%) software being extremely underrepresented in view of their actual
popularity.

4 Recommendations
Our survey shows that there is yet no standard benchmark specifically tailored to the improvement
of non-functional properties of software. Lack of such a benchmark hinders reproducibility and
reliable comparisons with state of the art, hindering fast progress.
Whilst SPEC is the closest thing, it was proposed with hardware comparison and compiler

optimisation in mind, and is not particularly well suited for potentially destructive evolutionary
approaches. Indeed, SPEC is designed for applications in which semantic changes are not expected.
As such, running the optimised software on few known inputs is sufficient to adequately compare
performance. However, as soon as potential semantic changes are introduced (e.g., through param-
eterisation, or destructive source code changes), it becomes essential to control for correctness and
generalisation. Hence, benchmarks crafted for general improvement of non-functional properties of
software should ideally consider software providing a comprehensive test suite or at least software
for which a large amount of input data is available.

In terms of experimental protocol, one should generally follow the example of machine learning
research, that provides a variety of strong procedures to ensure that the performance improvements
are generalisable and reproducible. Whilst the simplest isolated holdout method —in which training
and parameterisation should be performed on data disjoint from the data used for actual performance
comparison— may seem reasonable, especially for stochastic methods and methods introducing
semantic changes we strongly advocate cross-validation.
Representation in terms of the choice of target software is critical. We highlight five software

characteristics that should be considered when considering how techniques that improve non-
functional properties of software might generalise. Whilst some opportunities for improvement
might be universal, e.g., bloat removal, it is sensible to think that some can only be detected and
specially taken care of when considering a large panel of diverse software.
5https://survey.stackoverflow.co/2024/

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://survey.stackoverflow.co/2024/


18 Aymeric Blot and Justyna Petke

Programming language. Programming languages are driven by different coding paradigms and
development best practices, have access to entirely different libraries, and follow different syntax.
The vast majority of published research target C/C++ or Java software, ignoring the popularity
of languages such as Python, JavaScript, PHP, or SQL. Work is also almost entirely centred on
imperative programming features, neglecting functional functionalities essential, e.g., for languages
such as Haskell or Scala.
Software size. Software size is the second most indisputable critical characteristic. Small pro-

grams can be maintained much more rigorously, expose fewer and harder inefficiencies, and overall
provide much less material for repairs, which may impede some types of approaches [30]. On the
other hand, large software with hundred or more files may be difficult to improve for the complete
opposite reasons, as inefficiencies may be more numerous and potentially simpler to deal with, but
also be much harder to locate.

Architecture/Application. There are as many types of software as there are types of applica-
tions, and each may expose different specific types of inefficiencies. It is important that research
is conducted on all types of software, including for example GUI and terminal-based/command-
line software, single- and multi-purpose software, model-view-controller and monolithic soft-
ware, single-core and message-passing software, desktop/mobile/embedded software, or general
libraries/APIs and specific applications.

Application. Similarly, the application domain the selected software targets may strongly impact
the types of inefficiencies it might expose. We can cite for example system software (e.g., kernels,
compilers, drivers, general utility tools), media-related software (e.g., compression, image/video),
scientific software (e.g., machine learning, genomics), or games.
Number of contributors. Industry practices, as well as large open-source software, involve

many contributors that often don’t share a clear or deep understanding of the system in its entirety.
As with other characteristics, software written by a single developer, a small team, multiple teams,
or many infrequent contributors, may expose different types of inefficiencies.

5 Threats to Validity
Keywords used in the repository search may not cover all relevant literature. Due to its
restrictive nature, there might be whole types of relevant work that a keyword search is not able to
reveal. To mitigate that threat, we conducted first a preliminary search to discover all potential
keywords. We tried to hand-pick a large number of papers (100) using very diverse traits, including
research fields, types of non-functional properties improved, programming language, various
synonyms, etc. We then extracted from their titles and abstracts generic terms and performed a
frequency analysis, subsequently used to select the most potentially effective keywords.

Not all major publishers have been directly queried. Indeed, online libraries such as Springer
Link or Science Direct haven’t been considered due to their lack of complex query ability. Tomitigate
this threat, we considered a healthy combination of primary and secondary sources of work. First,
we choose ACM and IEEE, two of the main publishers in computer science6, both for conferences
and journals. Then, we considered Scopus, as in addition to being the online library of Elsevier it
also indexes many other publishers and in particular Springer, who publishes the Lecture Notes in
Computer Science (LNCS) series covering many conference proceedings in all areas of computer
science. Finally, we considered both Google Scholar and ArXiV to further increase the potential
coverage of the survey.

The repository search wasn’t exhaustive. Another threat is the very high number of papers
returned by the digital libraries (as clearly shown in Table 2), despite the restrictive compound

6https://www.spinellis.gr/blog/20170915/index.html

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://www.spinellis.gr/blog/20170915/index.html


A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 19

queries. We choose to consider the 200 first papers returned by each query, rather than use even
more restrictive queries, to make sure not to miss papers otherwise covered. We also assume that
200 hundred papers, i.e., for example ten pages down on Google Scholar, is a reasonable limit to
what would be investigated manually. The repository search methodology, adapted from [173],
then ensures that such a large number of papers (up to 5000) can be effectively considered.

Relevant work may not have been correctly identified. The identification of relevant work
was a long repetitive manual task, and involuntary errors may impact conclusions drawn from
our survey. The main concern here is the relevance of the paper selection during the survey. To
mitigate this threat, we sampled 100 entries uniformly at random from the 3749 unique papers
yielded by the repository search and cross-checked that the resulting relevant work was the same
when processed independently by both authors of the survey.

Finally, the classification used in Section 3’s survey may not reflect the state of the art. In
order to validate both our results and our conclusions we turned toward prominent authors of the
literature. In total 1080 authors have been identified throughout our main survey step (on average
2.8 authors per paper). More precisely, we found 31 authors of three relevant papers, nine authors
of four papers, and seven authors of five or more papers. All 47 authors thus identified have been
contacted and their feedback has been used to improve this survey.

6 Conclusions
Our comprehensive survey of benchmarks in empirical work on the improvement of non-functional
properties of software provides several key insights:
(1) We observed a substantial body of literature on this topic, dating back approximately 25 years

and gaining significant traction in recent years.
(2) We were only able to find very few prominent software benchmarks, which poses a challenge

to reproducibility and hinders fast comparison with state of the art.
(3) We identified clear discrepancies between the characteristics of software studied in academic

research and those reported by industry and online surveys.
To address these issues, we compiled a detailed list of benchmarks used in the literature and

formulated specific recommendations for future work. Our findings emphasize the need for stan-
dardized benchmarks and a better alignment between academic research and real-world software
practices. We hope our survey and the accompanying artifact will drive further research and
foster improvements in the enhancement of non-functional properties of software. All the details
regarding the 425 identified papers, including the raw data pertaining to the systematic survey, are
available on our dedicated webpage: https://bloa.github.io/nfunc_survey.

Acknowledgments
This work was supported by UK EPSRC Fellowship EP/P023991/1. We would like to thank the
members of the community who kindly provided feedback on an earlier draft of this paper.

References
[1] Khaled Abdelaal and Martin Kong. 2021. Tile size selection of affine programs for GPGPUs using polyhedral

cross-compilation. In ICS 2021. ACM, 13–26.
[2] Sarah Abdulsalam, Donna Lakomski, Qijun Gu, Tongdan Jin, and Ziliang Zong. 2014. Program energy efficiency: The

impact of language, compiler and implementation choices. In IGCC 2014. IEEE, 1–6.
[3] Mathieu Acher, Luc Lesoil, Georges Aaron Randrianaina, Xhevahire Tërnava, and Olivier Zendra. 2023. A Call for

Removing Variability. In VaMoS 2023. ACM, 82–84.
[4] Felix Adler, Gordon Fraser, Eva Gründinger, Nina Körber, Simon Labrenz, Jonas Lerchenberger, Stephan Lukasczyk,

and Sebastian Schweikl. 2021. Improving Readability of Scratch Programs with Search-based Refactoring. In SCAM
2021. IEEE, 120–130.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://bloa.github.io/nfunc_survey


20 Aymeric Blot and Justyna Petke

[5] Philipp Adler and Wolfram Amme. 2014. Speculative optimizations for interpreting environments. Softw. Pract. Exp.
44, 10 (2014), 1223–1249.

[6] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Georgios Portokalidis. 2019. Nibbler:
Debloating binary shared libraries. In ACSAC 2019. ACM, 70–83.

[7] Aatira Anum Ahmad, Abdul Rafae Noor, Hashim Sharif, Usama Hameed, Shoaib Asif, Mubashir Anwar, Ashish
Gehani, Junaid Haroon Siddiqui, and Fareed Zaffar. 2022. TRIMMER: An Automated System for Configuration-based
Software Debloating. IEEE Trans. Softw. Eng. (2022).

[8] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang, Christian Billian, and Andrew Pavlo.
2021. An Inquiry into Machine Learning-based Automatic Configuration Tuning Services on Real-World Database
Management Systems. Proc. VLDB Endow. 14, 7 (2021), 1241–1253.

[9] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation
Hyperparameter Optimization Framework. In KDD 2019. ACM, 2623–2631.

[10] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Valente. 2016. Learning from Source Code History
to Identify Performance Failures. In ICPE 2016. ACM, 37–48.

[11] Farhana Aleen, Vyacheslav P. Zakharin, Rakesh Krishnaiyer, Garima Gupta, David Kreitzer, and Chang-Sun Lin Jr.
2016. Automated compiler optimization of multiple vector loads/stores. In CF 2016. 82–91.

[12] Mohammad A. Alkandari, Ali Kelkawi, and Mahmoud O. Elish. 2021. An Empirical Investigation on the Effect of
Code Smells on Resource Usage of Android Mobile Applications. IEEE Access 9 (2021), 61853–61863.

[13] Abdullah Almogahed, Mazni Omar, Nur Haryani Zakaria, Ghulam Muhammad, and Salman A. AlQahtani. 2023.
Revisiting Scenarios of Using Refactoring Techniques to Improve Software Systems Quality. IEEE Access 11 (2023),
28800–28819.

[14] Peter Amidon, Eli Davis, Stelios Sidiroglou-Douskos, and Martin C. Rinard. 2015. Program fracture and recombination
for efficient automatic code reuse. In HPEC 2015. IEEE, 1–6.

[15] Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. 2019. PyGGI 2.0: Language Independent Genetic Improvement
Framework. In ESEC/FSE 2019. ACM, 1100–1104.

[16] Hina Anwar, Dietmar Pfahl, and Satish Narayana Srirama. 2019. Evaluating the Impact of Code Smell Refactoring on
the Energy Consumption of Android Applications. In SEAA 2019. IEEE, 82–86.

[17] Hamid Arabnejad, João Bispo, Jorge G. Barbosa, and João M. P. Cardoso. 2018. An OpenMP Based Parallelization
Compiler for C Applications. In BDCloud 2018. IEEE, 915–923.

[18] Davide Arcelli, Vittorio Cortellessa, and Catia Trubiani. 2012. Antipattern-based model refactoring for software
performance improvement. In QoSA 2012. ACM, 33–42.

[19] Rafael Asenjo, Rosa Castillo, Francisco Corbera, Angeles G. Navarro, Adrian Tineo, and Emilio L. Zapata. 2008.
Parallelizing irregular C codes assisted by interprocedural shape analysis. In IPDPS 2008. IEEE, 1–12.

[20] Amir H. Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John Cavazos, and Cristina Silvano. 2016.
COBAYN: Compiler Autotuning Framework Using Bayesian Networks. ACM Trans. Archit. Code Optim. 13, 2 (2016),
21:1–21:25.

[21] Thanassis Avgerinos and Konstantinos Sagonas. 2009. Cleaning up Erlang code is a dirty job but somebody’s gotta
do it. In ERLANG 2009. ACM, 1–10.

[22] Naeem Z. Azeemi. 2006. Compiler Directed Battery-Aware Implementation of Mobile Applications. In ICET 2006.
IEEE, 251–256.

[23] Naeem Z. Azeemi. 2006. Multicriteria Energy Efficient Source Code Compilation for Dependable Embedded Applica-
tions. In IIT 2006. IEEE, 1–5.

[24] Abdel-Hameed A. Badawy, Aneesh Aggarwal, Donald Yeung, and Chau-Wen Tseng. 2001. Evaluating the impact of
memory system performance on software prefetching and locality optimizations. In ICS 2001. ACM, 486–500.

[25] Mourad Badri, Linda Badri, Oussama Hachemane, and Alexandre Ouellet. 2017. Exploring the Impact of Clone
Refactoring on Test Code Size in Object-Oriented Software. In ICMLA 2017. IEEE, 586–592.

[26] Otto Skrove Bagge, Karl Trygve Kalleberg, Magne Haveraaen, and Eelco Visser. 2003. Design of the CodeBoost
Transformation System for Domain-Specific Optimisation of C++ Programs. In SCAM 2003. IEEE, 65.

[27] J. Eugene Ball. 1979. Predicting the effects of optimization on a procedure body. In CC 1979. ACM, 214–220.
[28] Saeid Barati, Lee Ehudin, and Hank Hoffmann. 2021. NEAT: A Framework for Automated Exploration of Floating

Point Approximations. CoRR abs/2102.08547 (2021).
[29] Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. 2013. Interprocedural strength reduction of critical sections in

explicitly-parallel programs. In PACT 2013. IEEE, 29–40.
[30] Earl T. Barr, Yuriy Brun, Premkumar T. Devanbu, Mark Harman, and Federica Sarro. 2014. The plastic surgery

hypothesis. In SIGSOFT FSE 2014. ACM, 306–317.
[31] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2014. Playing regex golf with genetic

programming. In GECCO 2014. ACM, 1063–1070.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 21

[32] Rajeev Barua, Walter Lee, Saman P. Amarasinghe, and Anant Agarwal. 2001. Compiler Support for Scalable and
Efficient Memory Systems. IEEE Trans. Computers 50, 11 (2001), 1234–1247.

[33] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. 2018. Darwinian data structure selection. In
ESEC/FSE 2018. ACM, 118–128.

[34] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. 2010. Automatic C-to-CUDA Code Generation for
Affine Programs (LNCS, Vol. 6011). Springer, 244–263.

[35] Thomas Henry Beach and Nicholas J. Avis. 2009. An Intelligent Semi-Automatic Application Porting System for
Application Accelerators. In UCHPC-MAW@CF 2009. ACM.

[36] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. 2005. Classbox/J: Controlling the scope of change in Java.
In OOPSLA 2005. ACM, 177–189.

[37] Benoît Bertholon, Sébastien Varrette, and Sebastien Martinez. 2013. ShadObf: A C-Source Obfuscator Based on
Multi-objective Optimisation Algorithms. In NIDISC@IPDPS 2013 in IPDPS 2013 Workshops. IEEE, 435–444.

[38] Suparna Bhattacharya, Kanchi Gopinath, and Mangala Gowri Nanda. 2013. Combining concern input with program
analysis for bloat detection. In OOPSLA 2013. ACM, 745–764.

[39] Suparna Bhattacharya, Mangala Gowri Nanda, Kanchi Gopinath, and Manish Gupta. 2011. Reuse, Recycle to De-bloat
Software. In ECOOP 2011 (LNCS, Vol. 6813). Springer, 408–432.

[40] Suparna Bhattacharya, Karthick Rajamani, Kanchi Gopinath, and Manish Gupta. 2012. Does lean imply green? – A
study of the power performance implications of Java runtime bloat. In SIGMETRICS 2012. ACM, 259–270.

[41] Priyam Biswas, Nathan Burow, and Mathias Payer. 2021. Code Specialization through Dynamic Feature Observation.
In CODASPY 2021. ACM, 257–268.

[42] Brian Blaha and Donald C. Wunsch II. 2002. Evolutionary programming to optimize an assembly program. In CEC
2002. IEEE, 1901–1903.

[43] Aymeric Blot, Holger H. Hoos, Laetitia Jourdan, Marie-Éléonore Kessaci-Marmion, and Heike Trautmann. 2016.
MO-ParamILS: A Multi-objective Automatic Algorithm Configuration Framework. In LION 10 (LNCS, Vol. 10079).
Springer, 32–47.

[44] Aymeric Blot and Justyna Petke. 2020. Comparing Genetic Programming Approaches for Non-Functional Genetic
Improvement – Case Study: Improvement of MiniSAT’s Running Time. In EuroGP 2020 (LNCS, Vol. 12101). Springer,
68–83.

[45] Aymeric Blot and Justyna Petke. 2021. Empirical Comparison of Search Heuristics for Genetic Improvement of
Software. IEEE Trans. Evol. Comput. 25, 5 (2021), 1001–1011.

[46] Mahmoud A. Bokhari, Bradley Alexander, and Markus Wagner. 2018. In-vivo and offline optimisation of energy use
in the presence of small energy signals – A case study on a popular Android library. In MobiQuitous 2018. ACM,
207–215.

[47] Mahmoud A. Bokhari, Bobby R. Bruce, Brad Alexander, and Markus Wagner. 2017. Deep Parameter Optimisation
on Android Smartphones for Energy Minimisation – A Tale of Woe and a Proof-of-Concept. In GI@GECCO 2017 in
GECCO 2017 companion. ACM, 1501–1508.

[48] Murat Bolat and Xiaoming Li. 2009. Context-aware code optimization. In IPCCC 2009. IEEE, 256–263.
[49] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral

parallelizer and locality optimizer. In PLDI 2008. ACM, 101–113.
[50] Talal Bonny and Jörg Henkel. 2008. FBT: Filled buffer technique to reduce code size for VLIW processors. In ICCAD

2008. IEEE, 549–554.
[51] Martí Bosch, Pierre Genevès, and Nabil Layaïda. 2014. Automated refactoring for size reduction of CSS style sheets.

In DocEng 2014. ACM, 13–16.
[52] David Branco and Pedro Rangel Henriques. 2015. Impact of GCC optimization levels in energy consumption during

C/C++ program execution. In ISCI 2015. IEEE, 52–56.
[53] Jon Brandvein and Yanhong A. Liu. 2016. Removing runtime overhead for optimized object queries. In PEPM 2016.

ACM, 73–84.
[54] Déaglán Connolly Bree and Mel Ó Cinnéide. 2020. Inheritance versus Delegation: which is more energy efficient?. In

IWoR@ICSE 2020 in ICSE 2020 Workshops. ACM, 323–329.
[55] Christopher Brown and Simon J. Thompson. 2010. Clone detection and elimination for Haskell. In PEPM 2010. ACM,

111–120.
[56] Michael D. Brown and Santosh Pande. 2019. CARVE: Practical Security-Focused Software Debloating Using Simple

Feature Set Mappings. In FEAST@CCS 2019. ACM, 1–7.
[57] Michael D. Brown and Santosh Pande. 2019. Is Less Really More? Towards Better Metrics for Measuring Security

Improvements Realized Through Software Debloating. In CSET 2019. USENIX.
[58] Alexander E. I. Brownlee, Nathan Burles, and Jerry Swan. 2017. Search-Based Energy Optimization of Some Ubiquitous

Algorithms. IEEE Trans. Emerg. Top. Comput. Intell. 1, 3 (2017), 188–201.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



22 Aymeric Blot and Justyna Petke

[59] Alexander E. I. Brownlee, Michael G. Epitropakis, Jeroen Mulder, Marc Paelinck, and Edmund K. Burke. 2022. A
systematic approach to parameter optimization and its application to flight schedule simulation software. J. Heuristics
28, 4 (2022), 509–538.

[60] Alexander E. I. Brownlee, Justyna Petke, and Anna F. Rasburn. 2020. Injecting Shortcuts for Faster Running Java
Code. In CEC 2020. IEEE, 1–8.

[61] Bobby R. Bruce, Justyna Petke, and Mark Harman. 2015. Reducing Energy Consumption Using Genetic Improvement.
In GECCO 2015. ACM, 1327–1334.

[62] Bobby R. Bruce, Justyna Petke, Mark Harman, and Earl T. Barr. 2019. Approximate Oracles and Synergy in Software
Energy Search Spaces. IEEE Trans. Softw. Eng. 45, 11 (2019), 1150–1169.

[63] Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim. 2020. JShrink: In-depth
investigation into debloating modern Java applications. In ESEC/FSE 2020. ACM, 135–146.

[64] Iulian Brumar, Marc Casas, Miquel Moretó, Mateo Valero, and Gurindar S. Sohi. 2017. ATM: Approximate Task
Memoization in the Runtime System. In IPDPS 2017. IEEE, 1140–1150.

[65] Hugo Brunie, Costin Iancu, Khaled Z. Ibrahim, Philip Brisk, and Brandon Cook. 2020. Tuning floating-point precision
using dynamic program information and temporal locality. In SC 2020. IEEE, 50.

[66] Nathan Burles, Edward Bowles, Alexander E. I. Brownlee, Zoltan A. Kocsis, Jerry Swan, and Nadarajen Veerapen.
2015. Object-Oriented Genetic Improvement for Improved Energy Consumption in Google Guava. In SSBSE 2015
(LNCS, Vol. 9275). Springer, 255–261.

[67] Felipe Canales, Geoffrey Hecht, and Alexandre Bergel. 2021. Optimization of Java Virtual Machine Flags using Feature
Model and Genetic Algorithm. In ICPE 2021. ACM, 183–186.

[68] Anthony Canino, Yu David Liu, and Hidehiko Masuhara. 2018. Stochastic energy optimization for mobile GPS
applications. In ESEC/FSE 2018. ACM, 703–713.

[69] Heling Cao, YangXia Meng, Jianshu Shi, Lei Li, Tiaoli Liao, and Chenyang Zhao. 2020. A Survey on Automatic Bug
Fixing. In ISSR 2020. IEEE, 122–131.

[70] Rong Cao, Liang Bao, Kaibi Zhao, and Panpan Zhangsun. 2024. ETune: Efficient configuration tuning for big-data
software systems via configuration space reduction. J. Syst. Softw. 209 (2024), 111936.

[71] Antonin Carette, Mehdi Adel Ait Younes, Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. 2017. Investigating the
energy impact of Android smells. In SANER 2017. IEEE, 115–126.

[72] Steve Carr and Ken Kennedy. 1994. Improving the Ratio of Memory Operations to Floating-Point Operations in
Loops. ACM Trans. Program. Lang. Syst. 16, 6 (1994), 1768–1810.

[73] Tiago Carvalho and João M. P. Cardoso. 2018. An approach based on a DSL + API for programming runtime adaptivity
and autotuning concerns. In SAC 2018. ACM, 1211–1220.

[74] John Cavazos, Grigori Fursin, Felix V. Agakov, Edwin V. Bonilla, Michael F. P. O’Boyle, and Olivier Temam. 2007.
Rapidly Selecting Good Compiler Optimizations using Performance Counters. In CGO 2007. IEEE, 185–197.

[75] Milind Chabbi, Jin Lin, and Raj Barik. 2021. An Experience with Code-Size Optimization for Production iOS Mobile
Applications. In CGO 2021. 363–377.

[76] Yin Chan, Ashok Sudarsanam, and Andrew Wolfe. 1994. The effect of compiler-flag tuning on SPEC benchmark
performance. ACM SIGARCH Comput. Archit. News 22, 4 (1994), 60–70.

[77] Daniel G. Chavarría-Miranda and John M. Mellor-Crummey. 2002. An Evaluation of Data-Parallel Compiler Support
for Line-Sweep Applications. In PACT 2002. IEEE, 7–17.

[78] Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. 2011. Dymaxion: Optimizing memory access patterns for
heterogeneous systems. In SC 2011. IEEE, 13:1–13:11.

[79] Yonggang Che, Zhenghua Wang, and Xiaomei Li. 2005. Reduction transformations for optimization parameter
selection. In HPC Asia 2005. IEEE, 281–288.

[80] N. A. B. Sankar Chebolu and Rajeev Wankar. 2016. Comparative study of the impact of processor architecture on
compiler tuning. In ICACCI 2016. IEEE, 585–592.

[81] Sunbal Cheema and Gul N. Khan. 2023. GPU Auto-tuning Framework for Optimal Performance and Power Consump-
tion. In GPGPU 2023. ACM, 1–6.

[82] Boyuan Chen, Zhen Ming Jiang, Paul Matos, and Michael Lacaria. 2019. An Industrial Experience Report on
Performance-Aware Refactoring on a Database-Centric Web Application. In ASE 2019. IEEE, 653–664.

[83] Chao Chen, Jinhan Xin, and Zhibin Yu. 2024. TIE: Fast Experiment-Driven ML-Based Configuration Tuning for
In-Memory Data Analytics. IEEE Trans. Computers 73, 5 (2024), 1233–1247.

[84] Jie Chen and Guru Venkataramani. 2016. enDebug: A hardware-software framework for automated energy debugging.
J. Parallel Distributed Comput. 96 (2016), 121–133.

[85] Junjie Chen, Ningxin Xu, Peiqi Chen, and Hongyu Zhang. 2021. Efficient Compiler Autotuning via Bayesian
Optimization. In ICSE 2021. IEEE, 1198–1209.

[86] Tao Chen and Miqing Li. 2021. Multi-objectivizing software configuration tuning. In ESEC/FSE 2021. ACM, 453–465.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 23

[87] Tao Chen and Miqing Li. 2024. Adapting Multi-objectivized Software Configuration Tuning. Proc. ACM Softw. Eng. 1,
FSE (2024), 539–561.

[88] John J. Cherian, Andrew G. Taube, Robert T. McGibbon, Panagiotis Angelikopoulos, Guy Blanc, Michael Snarski,
Daniel D. Richman, John L. Klepeis, and David E. Shaw. 2020. Efficient hyperparameter optimization by way of
PAC-Bayes bound minimization. CoRR abs/2008.06431 (2020).

[89] Ioannis Chionis, Maria Chroni, and Stavros D. Nikolopoulos. 2013. Evaluating the WaterRpg software watermarking
model on Java application programs. In PCI 2013. ACM, 144–151.

[90] Youngchul Cho and Kiyoung Choi. 2009. Code decomposition and recomposition for enhancing embedded software
performance. In ASP-DAC 2009. IEEE, 624–629.

[91] Eui-Young Chung, Luca Benini, and Giovanni De Micheli. 2001. Source code transformation based on software cost
analysis. In ISSS 2001. ACM/IEEE, 153–158.

[92] Eui-Young Chung, Luca Benini, Giovanni De Micheli, Gabriele Luculli, and Marco Carilli. 2002. Value-sensitive
automatic code specialization for embedded software. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21, 9 (2002),
1051–1067.

[93] Brendan Cody-Kenny, Michael Fenton, Adrian Ronayne, Eoghan Considine, Thomas McGuire, and Michael O’Neill.
2017. A search for improved performance in regular expressions. In GECCO 2017. ACM, 1280–1287.

[94] Brendan Cody-Kenny, Edgar Galvan Lopez, and Stephen Barrett. 2015. locoGP: Improving Performance by Genetic
Programming Java Source Code. In GI@GECCO 2015 in GECCO 2015 companion. ACM, 811–818.

[95] Brendan Cody-Kenny, Michael O’Neill, and Stephen Barrett. 2018. Performance Localisation. In GI@ICSE 2018. ACM,
27–34.

[96] Alessio Colucci, Dávid Juhász, Martin Mosbeck, Alberto Marchisio, Semeen Rehman, Manfred Kreutzer, Günther
Nadbath, Axel Jantsch, and Muhammad Shafique. 2021. MLComp: A Methodology for Machine Learning-based
Performance Estimation and Adaptive Selection of Pareto-Optimal Compiler Optimization Sequences. In DATE 2021.
IEEE, 108–113.

[97] Jason Cong, Bin Liu, and Zhiru Zhang. 2009. Behavior-level observability don’t-cares and application to low-power
behavioral synthesis. In ISLPED 2009. ACM, 139–144.

[98] Keith D. Cooper and Timothy J. Harvey. 1998. Compiler-Controlled Memory. In ASPLOS 1998. ACM, 2–11.
[99] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999. Optimizing for Reduced Code Space using Genetic

Algorithms. In LCTES 1999. ACM, 1–9.
[100] Jared Coplin and Martin Burtscher. 2015. Effects of source-code optimizations on GPU performance and energy

consumption. In GPGPU@PPoPP 2015. ACM, 48–58.
[101] Alexandre Courbot, Mariela Pavlova, Gilles Grimaud, and Jean-Jacques Vandewalle. 2006. A Low-Footprint Java-to-

Native Compilation Scheme Using Formal Methods. In CARDIS 2006 (LNCS, Vol. 3928). Springer, 329–344.
[102] Luis Cruz and Rui Abreu. 2017. Performance-Based Guidelines for Energy Efficient Mobile Applications. InMOBILESoft

2017. IEEE, 46–57.
[103] Luis Cruz, Rui Abreu, John C. Grundy, Li Li, and Xin Xia. 2019. Do Energy-Oriented Changes Hinder Maintainability?.

In ICSME 2019. IEEE, 29–40.
[104] Luis Cruz, Rui Abreu, and Jean-Noel Rouvignac. 2017. Leafactor: Improving Energy Efficiency of Android Apps via

Automatic Refactoring. In MOBILESoft 2017. IEEE, 205–206.
[105] Zoltan Czako, Gheorghe Sebestyen, and Anca Hangan. 2021. AutomaticAI: A hybrid approach for automatic artificial

intelligence algorithm selection and hyperparameter tuning. Expert Syst. Appl. 182 (2021), 115225.
[106] Anderson Faustino da Silva, Bernardo N. B. de Lima, and Fernando Magno Quintão Pereira. 2021. Exploring the space

of optimization sequences for code-size reduction – Insights and tools. In CC 2021. ACM, 47–58.
[107] Anthony Danalis, Lori L. Pollock, and D. Martin Swany. 2007. Automatic MPI application transformation with

ASPhALT. In IPDPS 2007. IEEE, 1–8.
[108] Eva Darulova, Einar Horn, and Saksham Sharma. 2018. Sound mixed-precision optimization with rewriting. In ICCPS

2018. IEEE/ACM, 208–219.
[109] Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula. 2013. Generating efficient data

movement code for heterogeneous architectures with distributed-memory. In PACT 2013. IEEE, 375–386.
[110] Shuhaizar Daud, R. Badlishah Ahmad, and Nukala S. Murthy. 2009. The effects of compiler optimisations on embedded

system power consumption. Int. J. Inf. Commun. Technol. 2, 1/2 (2009), 73–82.
[111] Chirag Dave and Rudolf Eigenmann. 2009. Automatically Tuning Parallel and Parallelized Programs. In LCPC 2009

(LNCS, Vol. 5898). Springer, 126–139.
[112] Fábio de Almeida Farzat, Márcio de Oliveira Barros, and Guilherme H. Travassos. 2018. Challenges on applying

genetic improvement in JavaScript using a high-performance computer. J. Softw. Eng. Res. Dev. 6 (2018), 12.
[113] Fábio de Almeida Farzat, Márcio de Oliveira Barros, and Guilherme H. Travassos. 2021. Evolving JavaScript Code to

Reduce Load Time. IEEE Trans. Softw. Eng. 47, 8 (2021), 1544–1558.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



24 Aymeric Blot and Justyna Petke

[114] Ewerton Daniel de Lima, Tiago Cariolano de Souza Xavier, Anderson Faustino da Silva, and Linnyer Beatrys Ruiz.
2013. Compiling for performance and power efficiency. In PATMOS 2013. IEEE, 142–149.

[115] Frédéric de Mesmay, Arpad Rimmel, Yevgen Voronenko, and Markus Püschel. 2009. Bandit-based optimization on
graphs with application to library performance tuning. In ICML 2009 (ACM ICPS, Vol. 382). ACM, 729–736.

[116] Saumya K. Debray and William S. Evans. 2002. Profile-Guided Code Compression. In PLDI 2002. ACM, 95–105.
[117] Zhaochu Deng, Jianjiang Li, and Jie Lin. 2021. A Synchronization Optimization Technique for OpenMP. In ICCRD

2021. IEEE, 95–103.
[118] Nikita P Desai. 2009. A Novel Technique for Orchestration of Compiler Optimization Functions Using Branch and

Bound Strategy. In IADCC 2009. IEEE, 467–472.
[119] Diego Desani, Veronica Gil-Costa, Cesar Augusto Cavalheiro Marcondes, and Hermes Senger. 2016. Black-Box

Optimization of Hadoop Parameters Using Derivative-Free Optimization. In PDP 2016. IEEE, 43–50.
[120] Breanna Devore-McDonald and Emery D. Berger. 2020. Mossad: Defeating software plagiarism detection. Proc. ACM

Program. Lang. 4, OOPSLA (2020), 138:1–138:28.
[121] Matthew DeVuyst, Dean M. Tullsen, and Seon Wook Kim. 2011. Runtime parallelization of legacy code on a

transactional memory system. In HiPEAC 2011. ACM, 127–136.
[122] Lamia Djoudi and William Jalby. 2008. Automatic Analysis for Managing and Optimizing Performance-Code Quality.

In SAW 2008. ACM, 30–38.
[123] Sébastien Doeraene and Tobias Schlatter. 2016. Parallel incremental whole-program optimizations for Scala.js. In

OOPSLA 2016. ACM, 59–73.
[124] Jonathan Dorn, Jeremy Lacomis, Westley Weimer, and Stephanie Forrest. 2019. Automatically Exploring Tradeoffs

Between Software Output Fidelity and Energy Costs. IEEE Trans. Softw. Eng. 45, 3 (2019), 219–236.
[125] Hui Dou, Yilun Wang, Yiwen Zhang, and Pengfei Chen. 2022. DeepCAT: A Cost-Efficient Online Configuration

Auto-Tuning Approach for Big Data Frameworks. In ICPP 2022. ACM, 67:1–67:11.
[126] Hui Dou, Xing Wei, Kang Wang, Yiwen Zhang, Pengfei Chen, and Yuee Huang. 2023. EFTuner: A Bi-Objective

Configuration Parameter Auto-TuningMethod Towards Energy-Efficient Big Data Processing. In 2023. ACM, 292–301.
[127] Milenko Drinic, Darko Kirovski, and Hoi Vo. 2003. Code Optimization for Code Compression. In CGO 2003. IEEE,

315–324.
[128] Junhan Duan, Yudi Yang, Jie Zhou, and John Criswell. 2020. Refactoring the FreeBSD Kernel with Checked C. In

SecDev 2020. IEEE, 15–22.
[129] Hassan Eldib and Chao Wang. 2013. An SMT based method for optimizing arithmetic computations in embedded

software code. In FMCAD 2013. IEEE, 129–136.
[130] Jianbin Fang, Henk J. Sips, Pekka Jääskeläinen, and Ana Lucia Varbanescu. 2014. Grover: Looking for Performance

Improvement by Disabling Local Memory Usage in OpenCL Kernels. In ICPP 2014. IEEE, 162–171.
[131] Iffat Fatima, Hina Anwar, Dietmar Pfahl, and Usman Qamar. 2020. Detection and Correction of Android-specific Code

Smells and Energy Bugs – An Android Lint Extension. In QuASoQ@APSEC 2020 (CEUR, Vol. 2767). CEUR-WS.org,
71–78.

[132] Yunsi Fei, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha. 2004. Energy-Optimizing Source Code Transformations
for OS-driven Embedded Software. In VLSI Design 2004. IEEE, 261–266.

[133] Yunsi Fei, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha. 2007. Energy-optimizing source code transformations
for operating system-driven embedded software. ACM Trans. Archit. Code Optim. 7, 1 (2007), 2:1–2:26.

[134] Dustin Feld, Thomas Soddemann, Michael Jünger, and Sven Mallach. 2015. Hardware-Aware Automatic Code-
Transformation to Support Compilers in Exploiting the Multi-Level Parallel Potential of Modern CPUs. In COS-
MIC@CGO 2015. ACM, 2:1–2:10.

[135] Benito Fernandes, Gustavo Pinto, and Fernando Castor. 2017. Assisting non-specialist developers to build energy-
efficient software. In ICSE 2017. IEEE, 158–160.

[136] James Fischer, Vincent Natoli, and David Richie. 2006. Optimization of LAMMPS. In HPCMP-UGC 2006. 374–377.
[137] Subash Chandar G., Mahesh Mehendale, and R. Govindarajan. 2006. Area and Power Reduction of Embedded DSP

Systems using Instruction Compression and Re-configurable Encoding. J. VLSI Signal Process. 44, 3 (2006), 245–267.
[138] Unai Garciarena and Roberto Santana. 2016. Evolutionary optimization of compiler flag selection by learning and

exploiting flags interactions. In GI@GECCO 2016 in GECCO 2016 companion. ACM, 1159–1166.
[139] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software Repair: A Survey. IEEE Trans. Softw.

Eng. 45, 1 (2019), 34–67.
[140] K. Geetha and N. Ammasai Gounden. 2008. Compressed Instruction Set Coding (CISC) for Performance Optimization

of Hand Held Devices. In ADCOM 2008. 241–247.
[141] Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. 2012. A modular memory optimization for

synchronous data-flow languages – Application to arrays in a lustre compiler. In LCTES 2012. ACM, 51–60.
[142] Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trimming. In CCS 2019. ACM, 1009–1022.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 25

[143] Fady Ghanim, Uzi Vishkin, and Rajeev Barua. 2018. Easy PRAM-Based High-Performance Parallel Programming
with ICE. IEEE Trans. Parallel Distributed Syst. 29, 2 (2018), 377–390.

[144] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis. 2020. Temporal System Call
Specialization for Attack Surface Reduction. In USENIX Security 2020. USENIX, 1749–1766.

[145] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. 1999. Cache miss equations: a compiler framework for
analyzing and tuning memory behavior. ACM Trans. Program. Lang. Syst. 21, 4 (1999), 703–746.

[146] J. Paul Gibson, Thomas F. Dowling, and Brian A. Malloy. 2000. The Application of Correctness Preserving Transfor-
mations to Software Maintenance. In ICSM 2000. IEEE, 108.

[147] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and Olivier Temam. 2006.
Semi-Automatic Composition of Loop Transformations for Deep Parallelism and Memory Hierarchies. Int. J. Parallel
Program. 34, 3 (2006), 261–317.

[148] Dirk Grunwald, Benjamin G. Zorn, and Robert Henderson. 1993. Improving the Cache Locality of Memory Allocation.
In PLDI 1993. ACM, 177–186.

[149] Ruidong Gu and Michela Becchi. 2020. GPU-FPtuner: Mixed-precision Auto-tuning for Floating-point Applications
on GPU. In HiPC 2020. IEEE, 294–304.

[150] Giovani Guizzo, Justyna Petke, Federica Sarro, and Mark Harman. 2021. Enhancing Genetic Improvement of Software
with Regression Test Selection. In ICSE 2021. IEEE, 1323–1333.

[151] Jingzhe Guo and Mingsheng Ying. 2020. Software Pipelining for Quantum Loop Programs. CoRR abs/2012.12700
(2020).

[152] Sumit Gupta, Rajesh K. Gupta, Miguel Miranda, and Francky Catthoor. 2000. Analysis of High-Level Address Code
Transformations for Programmable Processors. In DATE 2000. IEEE/ACM, 9–13.

[153] Irene Lizeth Manotas Gutiérrez, Lori L. Pollock, and James Clause. 2014. SEEDS: A software engineer’s energy-
optimization decision support framework. In ICSE 2014. ACM, 503–514.

[154] Vladimír Guzma, Teemu Pitkänen, and Jarmo Takala. 2011. Effects of loop unrolling and use of instruction buffer on
processor energy consumption. In SoC 2011. IEEE, 82–85.

[155] Gadi Haber, Moshe Klausner, Vadim Eisenberg, Bilha Mendelson, and Maxim Gurevich. 2003. Optimization Opportu-
nities Created by Global Data Reordering. In CGO 2003. IEEE, 228–240.

[156] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2018. High performance
stencil code generation with lift. In CGO 2018. ACM, 100–112.

[157] Ashok Halambi, Aviral Shrivastava, Partha Biswas, Nikil D. Dutt, and Alexandru Nicolau. 2002. An Efficient Compiler
Technique for Code Size Reduction Using Reduced Bit-Width ISAs. In DATE 2002. IEEE, 402–408.

[158] Oumayma Hamdi, Ali Ouni, Eman Abdullah AlOmar, Mel Ó Cinnéide, and Mohamed Wiem Mkaouer. 2021. An
Empirical Study on the Impact of Refactoring on Quality Metrics in Android Applications. In MOBILESoft 2021. IEEE,
28–39.

[159] Hamza Hamza and Steve Counsell. 2013. Exploiting slicing and patterns for RTSJ immortal memory optimization. In
PPPPJ 2013. ACM, 159–164.

[160] Masayo Haneda, Peter M. W. Knijnenburg, and Harry A. G. Wijshoff. 2006. On the impact of data input sets on
statistical compiler tuning. In IPDPS 2006. IEEE.

[161] Saemundur O. Haraldsson, Ragnheidur D. Brynjolfsdottir, John R. Woodward, Kristin Siggeirsdottir, and Vilmundur
Gudnason. 2017. The use of predictive models in dynamic treatment planning. In ISCC 2017. IEEE, 242–247.

[162] Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V. Smith, and Vilmundur Gudnason.
2017. Genetic Improvement of Runtime and its fitness landscape in a Bioinformatics Application. In GI@GECCO 2017
in GECCO 2017 companion. ACM, 1521–1528.

[163] Haochen He, Zhouyang Jia, Shanshan Li, Yue Yu, Chenglong Zhou, Qing Liao, Ji Wang, and Xiangke Liao. 2022.
Multi-Intention-Aware Configuration Selection for Performance Tuning. In ICSE 2022. ACM, 1431–1442.

[164] Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. 2016. An empirical study of the performance impacts of Android
code smells. In MOBILESoft 2016. ACM, 59–69.

[165] Kris Heid, Jakob Wenzel, and Christian Hochberger. 2018. Improved Parallelization of Legacy Embedded Software on
Soft-Core MPSoCs through Automatic Loop Transformations. In FSP@FPL 2018. 1–8.

[166] Jari Heikkinen, Tommi Rantanen, Andrea G.M. Cilio, Jarmo Takala, andHenk Corporaal. 2003. Immediate optimization
for compressed transport triggered architecture instructions. In ISSOC 2003. IEEE, 65–68.

[167] John L. Hennessy and Thomas R. Gross. 1983. Postpass Code Optimization of Pipeline Constraints. ACM Trans.
Program. Lang. Syst. 5, 3 (1983), 422–448.

[168] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective Program Debloating via Reinforce-
ment Learning. In CSS 2018. ACM, 380–394.

[169] Oscar R. Hernandez, Barbara M. Chapman, and Haoqiang Jin. 2008. A performance tuning methodology with compiler
support. Sci. Program. 16, 2-3 (2008), 135–153.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



26 Aymeric Blot and Justyna Petke

[170] Karine Heydemann, François Bodin, and Henri-Pierre Charles. 2005. A Software-Only Compression System for
Trading-Offs between Performance and Code Size. In SCOPES 2005 (ACM ICPS, Vol. 136). ACM, 27–36.

[171] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. 2012. High-performance code generation for stencil
computations on GPU architectures. In ICS 2012. ACM, 311–320.

[172] Timo Hönig, Heiko Janker, Christopher Eibel, Oliver Mihelic, and Rüdiger Kapitza. 2014. Proactive Energy-Aware
Programming with PEEK. In TRIOS 2014. USENIX, 6.

[173] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. 2022. A Survey of Performance Optimization for
Mobile Applications. IEEE Trans. Softw. Eng. (2022).

[174] Kenneth Hoste, Andy Georges, and Lieven Eeckhout. 2010. Automated just-in-time compiler tuning. In CGO 2010.
ACM, 62–72.

[175] Zhen Huang. 2024. Debloating Feature-Rich Closed-Source Windows Software. In SANER 2024. IEEE, 400–405.
[176] Shih-Hao Hung, Chia-Heng Tu, Huang-Sen Lin, and Chi-Meng Chen. 2009. An Automatic Compiler Optimizations

Selection Framework for Embedded Applications. In ICESS 2009. IEEE, 381–387.
[177] Nguyen Hung-Cuong, Huynh Quyet Thang, and Tru Ba-Vuong. 2013. Rule-Based Techniques Using Abstract Syntax

Tree for Code Optimization and Secure Programming in Java. In ICCASA 2013 (LNICST, Vol. 128). Springer, 168–177.
[178] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-Based Optimization for General

Algorithm Configuration. In LION 5 (LNCS, Vol. 6683). Springer, 507–523.
[179] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009. ParamILS: An Automatic Algorithm

Configuration Framework. J. Artif. Intell. Res. 36 (2009), 267–306.
[180] Wen-mei W. Hwu and Pohua P. Chang. 1989. Achieving High Instruction Cache Performance with an Optimizing

Compiler. In ISCA 1989. ACM, 242–251.
[181] Mostafa E. A. Ibrahim, Markus Rupp, and S. E.-D. Habib. 2009. Compiler-based optimizations impact on embedded

software power consumption. In NEWCAS 2009. IEEE, 1–4.
[182] ibrahim Şanlıalp, Muhammed Maruf Öztürk, and Tuncay Yiğit. 2022. Energy Efficiency Analysis of Code Refactoring

Techniques for Green and Sustainable Software in Portable Devices. Electronics 11, 3 (2022).
[183] Cos S. Ierotheou, Haoqiang Jin, Gregory Matthews, Steve P. Johnson, Robert Hood, and P. F. Leggett. 2007. Using an

interactive software environment for the parallelization of real-world scientific applications. Int. J. Comput. Math. 84,
2 (2007), 167–175.

[184] Cos S. Ierotheou, Steve P. Johnson, P. F. Leggett, Mark Cross, E. W. Evans, Haoqiang Jin, Michael A. Frumkin,
and Jerry C. Yan. 2001. The semi-automatic parallelisation of scientific application codes using a computer aided
parallelisation toolkit. Sci. Program. 9, 2-3 (2001), 163–173.

[185] Amil A. Ilham and Kazuaki J. Murakami. 2011. Evaluation and optimization of Java object ordering schemes. In ICEEI
2011. IEEE, 1–6.

[186] Venkata N. Inukollu, Divya D. Keshamoni, Taeghyun Kang, and Manikanta Inukollu. 2014. Factors Influencing Quality
of Mobile Apps – Role of Mobile App Development Life Cycle. Int. J. Softw. Eng. & Appl. 5, 5 (2014), 15–34.

[187] Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. 2015. Compiling and Optimizing Java 8 Programs
for GPU Execution. In PACT 2015. IEEE, 419–431.

[188] Adrian Jackson, Fiona Reid, Joachim Hein, Alejandro Soba, and Xavier Saez. 2011. High Performance I/O. In PDP
2011. IEEE, 349–356.

[189] Thomas Jakobs and Gudula Rünger. 2018. Examining Energy Efficiency of Vectorization Techniques Using a Gaussian
Elimination. In HPCS 2018. IEEE, 268–275.

[190] Choonki Jang, Jaejin Lee, Bernhard Egger, and Soojung Ryu. 2012. Automatic code overlay generation and partially
redundant code fetch elimination. ACM Trans. Archit. Code Optim. 9, 2 (2012), 10:1–10:32.

[191] Abhinav Jangda and Uday Bondhugula. 2018. An effective fusion and tile size model for optimizing image processing
pipelines. In PPoPP 2018. ACM, 261–275.

[192] Vladimir Janjic, Christopher Brown, Adam D. Barwell, and Kevin Hammond. 2021. Refactoring for introducing and
tuning parallelism for heterogeneous multicore machines in Erlang. Concurr. Comput. Pract. Exp. 33, 14 (2021).

[193] Cheol Jeon and Yookun Cho. 2012. A robust steganography-based software watermarking. In QSIC 2012. IEEE,
333–337.

[194] Changjiang Jia and W. K. Chan. 2013. A Study on the Efficiency Aspect of Data Race Detection – A Compiler
Optimization Level Perspective. In QSIC 2013. IEEE, 35–44.

[195] He Jiang, Guojun Gao, Zhilei Ren, Xin Chen, and Zhide Zhou. 2022. SMARTEST: A Surrogate-Assisted Memetic
Algorithm for Code Size Reduction. IEEE Trans. Reliab. 71, 1 (2022), 190–203.

[196] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization and Bloatware Mitigation Based on
Static Analysis. In COMPSAC 2016. IEEE, 12–21.

[197] Haoqiang Jin, Michael A. Frumkin, and Jerry C. Yan. 2000. Automatic Generation of OpenMP Directives and Its
Application to Computational Fluid Dynamics Codes. In ISHPC 2000 (LNCS, Vol. 1940). Springer, 440–456.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 27

[198] Kengo Jingu, Kohta Shigenobu, Kanemitsu Ootsu, Takeshi Ohkawa, and Takashi Yokota. 2018. An Implementation of
LLVM Pass for Loop Parallelization Based on IR-Level Directives. In CANDAR 2018. IEEE, 501–505.

[199] Pramod G. Joisha, Robert S. Schreiber, Prithviraj Banerjee, Hans-Juergen Boehm, and Dhruva R. Chakrabarti. 2011. A
technique for the effective and automatic reuse of classical compiler optimizations on multithreaded code. In POPL
2011. ACM, 623–636.

[200] Prashant V. Joshi and K. S. Gurumurthy. 2014. Analysing and improving the performance of software code for Real
Time Embedded systems. In ICDCS 2014. IEEE, 1–5.

[201] Maurício Breternitz Jr. and Roger Smith. 1997. Enhanced Compression Techniques to Simplify ProgramDecompression
and Execution. In ICCD 1997. IEEE, 170–176.

[202] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In ISSTA 2014. ACM, 437–440.

[203] Ismail Kadayif and Mahmut T. Kandemir. 2004. Quasidynamic Layout Optimizations for Improving Data Locality.
IEEE Trans. Parallel Distributed Syst. 15, 11 (2004), 996–1011.

[204] Lester Kalms, Tim Hebbeler, and Diana Göhringer. 2018. Automatic OpenCL Code Generation from LLVM-IR using
Polyhedral Optimization. In PARMA-DITAM@HiPEAC 2018. ACM, 45–50.

[205] Melanie Kambadur and Martha A. Kim. 2016. NRG-loops: Adjusting power from within applications. In CGO 2016.
ACM, 206–215.

[206] Yasusi Kanada, Keiji Kojima, and Masahiro Sugaya. 1988. Vectorization techniques for Prolog. In ICS 1988. ACM,
539–549.

[207] Mahmut T. Kandemir, Alok N. Choudhary, J. Ramanujam, and Meenakshi A. Kandaswamy. 2000. A Unified Framework
for Optimizing Locality, Parallelism, and Communication in Out-of-Core Computations. IEEE Trans. Parallel Distributed
Syst. 11, 7 (2000), 648–668.

[208] Mahmut T. Kandemir and Ismail Kadayif. 2001. Compiler-directed selection of dynamic memory layouts. In CODES
2001. ACM, 219–224.

[209] Mahmut T. Kandemir, J. Ramanujam, Mary Jane Irwin, Narayanan Vijaykrishnan, Ismail Kadayif, and Amisha Parikh.
2004. A compiler-based approach for dynamically managing scratch-pad memories in embedded systems. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 23, 2 (2004), 243–260.

[210] Ian Karlin, Jim McGraw, Esthela Gallardo, Jeff Keasler, Edgar A. León, and Bert Still. 2012. Abstract: Memory and
Parallelism Exploration Using the LULESH Proxy Application. In SC 2012. IEEE, 1427–1428.

[211] Ian Karlin, Jim McGraw, Esthela Gallardo, Jeff Keasler, Edgar A. León, and Bert Still. 2012. Poster: Memory and
Parallelism Exploration Using the LULESH Proxy Application. In SC 2012. IEEE, 1429.

[212] Manolis Katsaragakis, Lazaros Papadopoulos, Mario Konijnenburg, Francky Catthoor, and Dimitrios Soudris. 2020.
Memory Footprint Optimization Techniques for Machine Learning Applications in Embedded Systems. In ISCAS 2020.
IEEE, 1–4.

[213] Satnam Kaur, Lalit K. Awasthi, and A. L. Sangal. 2021. A brief review on multi-objective software refactoring and a
new method for its recommendation. Arch. Computat. Methods Eng. 28 (2021), 3087–3111.

[214] Engin Kayraklioglu, Erwan Favry, and Tarek A. El-Ghazawi. 2019. A Machine Learning Approach for Productive
Data Locality Exploitation in Parallel Computing Systems. In CCGrid 2019. IEEE, 361–370.

[215] Engin Kayraklioglu, Erwan Favry, and Tarek A. El-Ghazawi. 2021. A Machine-Learning-Based Framework for
Productive Locality Exploitation. IEEE Trans. Parallel Distributed Syst. 32, 6 (2021), 1409–1424.

[216] Vasilios Kelefouras and Karim Djemame. 2018. A methodology for efficient code optimizations and memory manage-
ment. In CF 2018. 105–112.

[217] Vasilios Kelefouras and Karim Djemame. 2019. A methodology correlating code optimizations with data memory
accesses, execution time and energy consumption. J. Supercomput. 75, 10 (2019), 6710–6745.

[218] Md. Muhib Khan and Weikuan Yu. 2021. ROBOTune: High-Dimensional Configuration Tuning for Cluster-Based
Data Analytics. In ICPP 2021. ACM, 60:1–60:10.

[219] Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Syed Ahmed. 2019. Safe automated refactoring for
intelligent parallelization of Java 8 streams. In ICSE 2019. IEEE/ACM, 619–630.

[220] Doohwan Kim, Jang-Eui Hong, Ilchul Yoon, and Sang-Ho Lee. 2018. Code refactoring techniques for reducing energy
consumption in embedded computing environment. Clust. Comput. 21, 1 (2018), 1079–1095.

[221] William Klieber, Ruben Martins, Ryan Steele, Matt Churilla, Mike McCall, and David Svoboda. 2021. Automated Code
Repair to Ensure Spatial Memory Safety. In APR@ICSE 2021. IEEE, 23–30.

[222] Hakduran Koc, Mounika Garlapati, and Pranitha P. Madupu. 2020. Data Compression and Re-computation Based
Performance Improvement in Multi-Core Architectures. In CCWC 2020. IEEE, 390–395.

[223] Zoltan A. Kocsis, John H. Drak, Douglas Carson, and Jerry Swan. 2016. Automatic Improvement of Apache Spark
Queries using Semantics-preserving Program Reduction. In GI@GECCO 2016 in GECCO 2016 companion. ACM,
1141–1146.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



28 Aymeric Blot and Justyna Petke

[224] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019. Configuration-Driven Software De-
bloating. In European Workshop on Systems Security. 9:1–9:6.

[225] Herb Krasner. 2022. The Cost of Poor Quality Software in the US – A 2022 report. Technical Report. Consortium for
Information & Software Quality.

[226] Chidamber Kulkarni, Francky Catthoor, and Hugo De Man. 1998. Code Transformations for Low Power Caching in
Embedded Multimedia Processors. In IPPS/SPDP 1998. IEEE, 292–297.

[227] Prasad A. Kulkarni, Wankang Zhao, Stephen Hines, David B. Whalley, Xin Yuan, Robert van Engelen, Kyle A. Gallivan,
Jason Hiser, Jack W. Davidson, Baosheng Cai, Mark W. Bailey, Hwashin Moon, Kyunghwan Cho, and Yunheung Paek.
2006. VISTA: VPO interactive system for tuning applications. ACM Trans. Embed. Comput. Syst. 5, 4 (2006), 819–863.

[228] Rakesh Kumar, Alejandro Martínez, and Antonio Gonzalez. 2021. A Variable Vector Length SIMD Architecture for
HW/SW Co-designed Processors. CoRR abs/2102.13410 (2021).

[229] T. S. Rajesh Kumar, R. Govindarajan, and C. P. Ravikumar. 2003. Optimal Code and Data Layout in Embedded Systems.
In VLSI Design 2003. IEEE, 573–578.

[230] Farley Lai, Daniel Schmidt, and Octav Chipara. 2015. Static memory management for efficient mobile sensing
applications. In EMSOFT 2015. IEEE, 187–196.

[231] Riyane Sid Lakhdar, Henri-Pierre Charles, and Maha Kooli. 2020. Data-layout optimization based on memory-access-
pattern analysis for source-code performance improvement. In SCOPES 2020. ACM, 1–6.

[232] William B. Langdon. 2019. Genetic Improvement of Data gives double precision invsqrt. In GI@GECCO 2019 in
GECCO 2019 companion. ACM, 1709–1714.

[233] William B. Langdon and David Clark. 2024. Genetic Improvement of Last Level Cache. In EuroGP 2024 (LNCS,
Vol. 14631). Springer, 209–226.

[234] William B. Langdon and Mark Harman. 2010. Evolving a CUDA kernel from an nVidia template. In CEC 2010. IEEE,
1–8.

[235] William B. Langdon and Mark Harman. 2015. Grow and Graft a better CUDA pknotsRG for RNA pseudoknot free
energy calculation. In GI@GECCO 2015 in GECCO 2015 companion. ACM, 805–810.

[236] William B. Langdon and Mark Harman. 2015. Optimizing Existing Software With Genetic Programming. IEEE Trans.
Evol. Comput. 19, 1 (2015), 118–135.

[237] William B. Langdon and Oliver Krauss. 2020. Evolving sqrt into 1/x via software data maintenance. In GI@GECCO
2020 in GECCO 2020 companion. ACM, 1928–1936.

[238] William B. Langdon, Brian Yee Hong Lam, Marc Modat, Justyna Petke, and Mark Harman. 2017. Genetic improvement
of GPU software. Genet. Program. Evolvable. Mach. 18, 1 (2017), 5–44.

[239] William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman. 2015. Improving CUDA DNA Analysis
Software with Genetic Programming. In GECCO 2015. ACM, 1063–1070.

[240] William B. Langdon and Ronny Lorenz. 2017. Improving SSE Parallel Code with Grow and Graft Genetic Programming.
In GI@GECCO 2017 in GECCO 2017 companion. ACM, 1537–1538.

[241] William B. Langdon, Marc Modat, Justyna Petke, and Mark Harman. 2014. Improving 3D medical image registration
CUDA software with genetic programming. In GECCO 2014. ACM, 951–958.

[242] William B. Langdon and Justyna Petke. 2019. Genetic improvement of data gives binary logarithm from sqrt. In
GECCO 2019 companion. ACM, 413–414.

[243] William B. Langdon, David R. White, Mark Harman, Yue Jia, and Justyna Petke. 2016. API-Constrained Genetic
Improvement. In SSBSE 2016 (LNCS, Vol. 9962). Springer, 224–230.

[244] James R. Larus and Paul N. Hilfinger. 1988. Restructuring Lisp Programs for Concurrent Execution. In PPEALS 1988.
ACM, 100–110.

[245] Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current challenges in automatic software repair.
Softw. Qual. J. 21, 3 (2013), 421–443.

[246] Sheayun Lee, Jaejin Lee, Chang Yun Park, and Sang Lyul Min. 2004. A Flexible Tradeoff Between Code Size and
WCET Using a Dual Instruction Set Processor. In SCOPES 2004 (LNCS, Vol. 3199). ACM, 244–258.

[247] Seong-Won Lee, Soo-Mook Moon, Won-Ki Jung, Jin-Seok Oh, and Hyeong-Seok Oh. 2010. Code Size and Performance
Optimization for Mobile JavaScript Just-in-Time Compiler. In Interaction between Compilers and Computer Architecture.
ACM, 1–7.

[248] Sanghoon Lee and James Tuck. 2011. Automatic parallelization of fine-grainedmeta-functions on a chipmultiprocessor.
In CGO 2011. IEEE, 130–140.

[249] Charles Lefurgy, Peter L. Bird, I-Cheng K. Chen, and Trevor N. Mudge. 1997. Improving Code Density Using
Compression Techniques. In MICRO 1997. ACM/IEEE, 194–203.

[250] Edgar A. León, Ian Karlin, Ryan E. Grant, and Matthew G. F. Dosanjh. 2016. Program optimizations: The interplay
between power, performance, and energy. Parallel Comput. 58 (2016), 56–75.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 29

[251] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hanspeter Mössenböck. 2018.
Dominance-based duplication simulation (DBDS) – Code duplication to enable compiler optimizations. In CGO 2018.
ACM, 126–137.

[252] Rainer Leupers and Peter Marwedel. 1999. Function inlining under code size constraints for embedded processors. In
ICCAD 1999. IEEE, 253–256.

[253] Ding Li and William G. J. Halfond. 2015. Optimizing energy of HTTP requests in Android applications. In DeMo-
bile@SIGSOFT FSE 2015. 25–28.

[254] Ding Li, Angelica Huyen Tran, and William G. J. Halfond. 2014. Making web applications more energy efficient for
OLED smartphones. In ICSE 2014. ACM, 527–538.

[255] Xueliang Li and John P. Gallagher. 2016. A Source-Level Energy Optimization Framework for Mobile Applications. In
SCAM 2016. IEEE, 31–40.

[256] Yuhao Li and Benjamin C. Lee. 2022. Phronesis: Efficient Performance Modeling for High-dimensional Configuration
Tuning. ACM Trans. Archit. Code Optim. 19, 4 (2022), 56:1–56:26.

[257] Yuancheng Li and Jiaqi Shi. 2019. CRbS: A Code Reordering Based Speeding-up Method of Irregular Loops on CMP.
In ASAP 2019. IEEE, 34.

[258] Soo Ling Lim, Peter J. Bentley, Natalie Kanakam, Fuyuki Ishikawa, and Shinichi Honiden. 2015. Investigating Country
Differences in Mobile App User Behavior and Challenges for Software Engineering. IEEE Trans. Softw. Eng. 41, 1
(2015), 40–64.

[259] Chen Lin, Junqing Zhuang, Jiadong Feng, Hui Li, Xuanhe Zhou, and Guoliang Li. 2022. Adaptive Code Learning for
Spark Configuration Tuning. In ICDE 2022. IEEE, 1995–2007.

[260] Zhen Lin, Mohammad A. Alshboul, Yan Solihin, and Huiyang Zhou. 2019. Exploring Memory Persistency Models for
GPUs. CoRR abs/1904.12661 (2019).

[261] Michael D. Linderman, Matthew Ho, David L. Dill, Teresa H. Meng, and Garry P. Nolan. 2010. Towards program
optimization through automated analysis of numerical precision. In CGO 2010. ACM, 230–237.

[262] Cullen Linn and Saumya K. Debray. 2003. Obfuscation of executable code to improve resistance to static disassembly.
In CCS 2003. ACM, 290–299.

[263] Jhe-Yu Liou, Muaaz Awan, Steven Hofmeyr, Stephanie Forrest, and Carole-Jean Wu. 2022. Understanding the Power
of Evolutionary Computation for GPU Code Optimization. In IISWC 2022. IEEE, 185–198.

[264] Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu. 2019. Genetic Improvement of GPU Code. In GI@ICSE 2019.
ACM, 20–27.

[265] Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu. 2020. GEVO: GPU Code Optimization Using
Evolutionary Computation. ACM Trans. Archit. Code Optim. 17, 4 (2020), 33:1–33:28.

[266] Lixia Liu and Zhiyuan Li. 2010. A compiler-automated array compression scheme for optimizing memory intensive
programs. In ICS 2010. ACM, 285–294.

[267] Víctor R. López-López, Leonardo Trujillo, and Pierrick Legrand. 2018. Novelty Search for Software Improvement of a
SLAM system. In GI@GECCO 2018 in GECCO 2018 companion. ACM, 1598–1605.

[268] Víctor R. López-López, Leonardo Trujillo, and Pierrick Legrand. 2019. Applying genetic improvement to a genetic
programming library in C++. Soft Comput. 23, 22 (2019), 11593–11609.

[269] Víctor R. López-López, Leonardo Trujillo, Pierrick Legrand, and Gustavo Olague. 2016. Genetic Programming: From
design to improved implementation. In GI@GECCO 2016 in GECCO 2016 companion. ACM, 1147–1154.

[270] Pingjing Lu, Yonggang Che, and Zhenghua Wang. 2009. A Framework for Effective Memory Optimization of High
Performance Computing Applications. In HPCC 2009. IEEE, 95–102.

[271] Walter Lucas, Rodrigo Bonif’acio, Edna Dias Canedo, Diego Marcilio, and Fernanda Lima. 2019. Does the Introduction
of Lambda Expressions Improve the Comprehension of Java Programs?. In SBES 2019. ACM, 187–196.

[272] Gang Luo, Bing Guo, Yan Shen, HaiYan Liao, and Lei Ren. 2009. Analysis and Optimization of Embedded Software
Energy Consumption on the Source Code and Algorithm Level. In EMC 2009. IEEE, 1–5.

[273] Victor De La Luz, Ismail Kadayif, Mahmut T. Kandemir, and Ugur Sezer. 2004. Access Pattern Restructuring for
Memory Energy. IEEE Trans. Parallel Distributed Syst. 15, 4 (2004), 289–303.

[274] Victor De La Luz and Mahmut T. Kandemir. 2004. Array Regrouping and Its Use in Compiling Data-Intensive
Embedded Applications. IEEE Trans. Computers 53, 1 (2004), 1–19.

[275] Yingjun Lyu, Ding Li, and William G. J. Halfond. 2018. Remove RATs from your code – Automated optimization of
resource inefficient database writes for mobile applications. In ISSTA 2018. ACM, 310–321.

[276] Wenjing Ma and Gagan Agrawal. 2010. An integer programming framework for optimizing shared memory use on
GPUs. In HiPC 2010. IEEE, 1–10.

[277] Wenjing Ma, Kan Gao, and Guoping Long. 2016. Highly Optimized Code Generation for Stencil Codes with Computa-
tion Reuse for GPUs. J. Comput. Sci. Technol. 31, 6 (2016), 1262–1274.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



30 Aymeric Blot and Justyna Petke

[278] Konner Macias, Mihir Mathur, Bobby R. Bruce, Tianyi Zhang, and Miryung Kim. 2020. WebJShrink: A web service
for debloating Java bytecode. In ESEC/FSE 2020. ACM, 1665–1669.

[279] Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. 2014. Exploiting GPU Hardware Saturation for Fast
Compiler Optimization. In GPGPU@ASPLOS 2014. ACM, 99–106.

[280] Amin Majd, Mohammad Loni, Golnaz Sahebi, Masoud Daneshtalab, and Elena Troubitsyna. 2019. A Cloud Based
Super-Optimization Method to Parallelize the Sequential Code’s Nested Loops. In MCSoC 2019. IEEE, 281–287.

[281] Gregory Malecha, Ashish Gehani, and Natarajan Shankar. 2015. Automated software winnowing. In SAC 2015. ACM,
1504–1511.

[282] Josip Maras, Jan Carlson, and Ivica Crnkovic. 2012. Extracting client-side web application code. In WWW 2012. ACM,
819–828.

[283] Francesco Marino, Giovanni Squillero, and Alberto Paolo Tonda. 2016. A General-Purpose Framework for Genetic
Improvement. In PPSN XIV (LNCS, Vol. 9921). Springer, 345–352.

[284] Margaret Martonosi, Anoop Gupta, and Thomas E. Anderson. 1992. MemSpy: Analyzing Memory System Bottlenecks
in Programs. In SIGMETRICS 1992. ACM, 1–12.

[285] Raghunandan Mathur, Hiroshi Matsuoka, Osamu Watanabe, Akihiro Musa, Ryusuke Egawa, and Hiroaki Kobayashi.
2015. A Case Study of Memory Optimization for Migration of a Plasmonics Simulation Application to SX-ACE. In
CANDAR 2015. IEEE, 521–527.

[286] Kazuaki Matsumura, Hamid Reza Zohouri, Mohamed Wahib, Toshio Endo, and Satoshi Matsuoka. 2020. AN5D:
Automated stencil framework for high-degree temporal blocking on GPUs. In CGO 2020. ACM, 199–211.

[287] Kathryn S. McKinley. 1998. A Compiler Optimization Algorithm for Shared-Memory Multiprocessors. IEEE Trans.
Parallel Distributed Syst. 9, 8 (1998), 769–787.

[288] Nicholas Freitag McPhee, Thomas Helmuth, and Lee Spector. 2017. Using algorithm configuration tools to optimize
genetic programming parameters – A case study. In GECCO 2017 companion. ACM, 243–244.

[289] Michael Med and Andreas Krall. 2007. Instruction Set Encoding Optimization for Code Size Reduction. In IC-SAMOS
2007. IEEE, 9–17.

[290] Igor Z. Milosavljevic and Marwan A. Jabri. 1999. Automatic Array Alignment in Parallel Matlab Scripts. In IPPS/SPDP
1999. IEEE, 285–289.

[291] Nikolai Moesus, Matthias Scholze, Sebastian Schlesinger, and Paula Herber. 2018. Automated Selection of Software
Refactorings that Improve Performance. In ICSOFT 2018. SciTePress, 67–78.

[292] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM Comput. Surveys 51, 1 (2018), 17:1–17:24.
[293] Martin Monperrus. 2018. The Living Review on Automated Program Repair. Technical Report hal-01956501. HAL.
[294] Ana Moreton-Fernandez, Arturo González-Escribano, and Diego R. Llanos. 2014. Exploiting distributed and shared

memory hierarchies with Hitmap. In HPCS 2014. IEEE, 278–286.
[295] Mohsen Mosayebi and Manbir Sodhi. 2020. Tuning genetic algorithm parameters using design of experiments. In

GI@GECCO 2020 in GECCO 2020 companion. ACM, 1937–1944.
[296] Girish Mururu, Chris Porter, Prithayan Barua, and Santosh Pande. 2019. Binary Debloating for Security via Demand

Driven Loading. CoRR abs/1902.06570 (2019).
[297] Raana Saheb Nasagh, Mahnoosh Shahidi, and Mehrdad Ashtiani. 2021. A fuzzy genetic automatic refactoring approach

to improve software maintainability and flexibility. Soft Comput. 25, 6 (2021), 4295–4325.
[298] Brandon Neth, Thomas R. W. Scogland, Bronis R. de Supinski, and Michelle Mills Strout. 2021. Inter-loop optimization

in RAJA using loop chains. In ICS 2021. ACM, 1–12.
[299] Y. Nezzari and C. P. Bridges. 2017. Compiler extensions towards reliable multicore processors. In AERO 2017. IEEE,

1–6.
[300] Duc-Man Nguyen, Thang Q. Huynh, and Thanh-Hung Nguyen. 2016. Improve the Performance of Mobile Applications

Based on Code Optimization Techniques Using PMD and Android Lint. In IUKM 2016 (LNCS, Vol. 9978). Springer,
343–356.

[301] Nima Nikzad, Marjan Radi, Octav Chipara, and William G. Griswold. 2015. Managing the Energy-Delay Tradeoff in
Mobile Applications with Tempus. In Middleware 2015. ACM, 259–270.

[302] François Noël, Luke Hornof, Charles Consel, and Julia L. Lawall. 1998. Automatic, Template-Based Run-Time
Specialization – Implementation and Experimental Study. In ICCL 1998. IEEE, 132–142.

[303] Wellington Oliveira, Renato Oliveira, Fernando Castor, Benito Fernandes, and Gustavo Pinto. 2019. Recommending
energy-efficient Java collections. In MSR 2019. IEEE/ACM, 160–170.

[304] Wellington Oliveira, Renato Oliveira, Fernando Castor, Gustavo Pinto, and João Paulo Fernandes. 2021. Improving
energy-efficiency by recommending Java collections. Empir. Softw. Eng. 26, 3 (2021), 55.

[305] Vijay S. Pai and Sarita V. Adve. 1999. Code Transformations to Improve Memory Parallelism. In MICRO 1999.
ACM/IEEE, 147–155.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 31

[306] Zhelong Pan and Rudolf Eigenmann. 2006. Fast and Effective Orchestration of Compiler Optimizations for Automatic
Performance Tuning. In CGO 2006. IEEE, 319–332.

[307] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT: A Practical Binary Optimizer for
Data Centers and Beyond. In CGO 2019. ACM, 2–14.

[308] Lazaros Papadopoulos, Charalampos Marantos, Georgios Digkas, Apostolos Ampatzoglou, Alexander Chatzigeorgiou,
and Dimitrios Soudris. 2018. Interrelations between Software Quality Metrics, Performance and Energy Consumption
in Embedded Applications. In SCOPES 2018. ACM, 62–65.

[309] Jung Gyu Park and Myong-Soon Park. 2002. Using indexed data structures for program specialization. In ASIA-PEPM
2002. ACM, 61–69.

[310] Jae Jin Park, Jang-Eui Hong, and Sang-Ho Lee. 2014. Investigation for Software Power Consumption of Code
Refactoring Techniques. In SEKE 2014. Knowledge Systems Institute Graduate School, 717–722.

[311] Rui Pereira, Marco Couto, João Saraiva, Jácome Cunha, and João Paulo Fernandes. 2016. The influence of the Java
collection framework on overall energy consumption. In GREENS@ICSE 2016. ACM, 15–21.

[312] Rui Pereira, Pedro Simão, Jácome Cunha, and João Saraiva. 2018. jStanley: Placing a green thumb on Java collections.
In ASE 2018. ACM, 856–859.

[313] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David R. White, and John R. Woodward.
2018. Genetic Improvement of Software: A Comprehensive Survey. IEEE Trans. Evol. Comput. 22, 3 (2018), 415–432.

[314] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2014. Using Genetic Improvement and Code
Transplants to Specialise a C++ Program to a Problem Class. In EuroGP 2014 (LNCS, Vol. 8599). Springer, 137–149.

[315] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2018. Specialising Software for Different
Downstream Applications Using Genetic Improvement and Code Transplantation. IEEE Trans. Softw. Eng. 44, 6 (2018),
574–594.

[316] Justyna Petke, William B. Langdon, and Mark Harman. 2013. Applying Genetic Improvement to MiniSAT. In SSBSE
2013 (LNCS, Vol. 8084). Springer, 257–262.

[317] Pedro Pinto, João Bispo, João M. P. Cardoso, Jorge G. Barbosa, Davide Gadioli, Gianluca Palermo, Jan Martinovic,
Martin Golasowski, Katerina Slaninová, Radim Cmar, and Cristina Silvano. 2022. Pegasus: Performance Engineering
for Software Applications Targeting HPC Systems. IEEE Trans. Softw. Eng. 48, 3 (2022), 732–754.

[318] Teerit Ploensin, Krerk Piromsopa, and Norraphat Srimanobhas. 2021. Code Transformation Impact on Compiler-based
Optimization – A Case Study in the CMSSW. In ICAPM 2021 (JoP:CS, Vol. 1936). IOP Publishing, 012023.

[319] Gary Plumbridge and Neil C. Audsley. 2012. Translating Java for resource constrained embedded systems. In ReCoSoC
2012. IEEE, 1–8.

[320] Boldizsár Poór, Melinda Tóth, and István Bozó. 2020. Transformations towards clean functional code. In ERLANG
2020. ACM, 24–30.

[321] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. 2020. BlankIt library debloating: Getting what you
want instead of cutting what you don’t. In PLDI 2020. ACM, 164–180.

[322] Kleanthis Psarris and Konstantinos Kyriakopoulos. 2004. An Experimental Evaluation of Data Dependence Analysis
Techniques. IEEE Trans. Parallel Distributed Syst. 15, 3 (2004), 196–213.

[323] Chenxiong Qian, Hong Hu, Mansour Alharthi, Simon Pak Ho Chung, Taesoo Kim, and Wenke Lee. 2019. RAZOR: A
Framework for Post-deployment Software Debloating. In USENIX Security 2019. USENIX, 1733–1750.

[324] Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee. 2020. Slimium: Debloating the
Chromium Browser with Feature Subsetting. In CCS 2020. ACM, 461–476.

[325] Anh Quach and Aravind Prakash. 2019. Bloat Factors and Binary Specialization. In FEAST@CCS 2019. ACM, 31–38.
[326] Faizur Rahman, Jichi Guo, and Qing Yi. 2011. Automated empirical tuning of scientific codes for performance and

power consumption. In HiPEAC 2011. ACM, 107–116.
[327] ShahMohammad Faizur Rahman, Jichi Guo, Akshatha Bhat, Carlos D. Garcia, Majedul Haque Sujon, Qing Yi, Chunhua

Liao, and Daniel J. Quinlan. 2012. Studying the impact of application-level optimizations on the power consumption
of multi-core architectures. In CF 2012. 123–132.

[328] Sreeranga P. Rajan, Masahiro Fujita, Ashok Sudarsanam, and Sharad Malik. 1999. Development of an optimizing
compiler for a Fujitsu fixed-point digital signal processor. In CODES 1999. ACM, 2–6.

[329] Alex Ramírez, Luiz André Barroso, Kourosh Gharachorloo, Robert S. Cohn, Josep Lluís Larriba-Pey, P. Geoffrey
Lowney, and Mateo Valero. 2001. Code layout optimizations for transaction processing workloads. In ISCA 2001.
ACM, 155–164.

[330] Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. 2021. Efficient Auto-Tuning of Parallel Programs
with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF). ACM Trans. Archit. Code Optim. 18, 1
(2021), 1:1–1:26.

[331] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick D. McDaniel. 2017. Cimplifier: Automat-
ically Debloating Containers. In ESEC/FSE 2017. ACM, 476–486.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



32 Aymeric Blot and Justyna Petke

[332] Mahesh Ravishankar, Roshan Dathathri, Venmugil Elango, Louis-Noël Pouchet, J. Ramanujam, Atanas Rountev, and
P. Sadayappan. 2015. Distributed memory code generation for mixed Irregular/Regular computations. In PPoPP 2015.
ACM, 65–75.

[333] Tushar Rawat and Aviral Shrivastava. 2015. Enabling multi-threaded applications on hybrid shared memory manycore
architectures. In DATE 2015. ACM, 742–747.

[334] Siddharth Rele, Vipin Jain, Santosh Pande, and J. Ramanujam. 2001. Compact and efficient code generation through
program restructuringon limited memory embedded DSPs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20, 4
(2001), 477–494.

[335] Manman Ren, Ji Young Park, Mike Houston, Alex Aiken, and William J. Dally. 2008. A tuning framework for
software-managed memory hierarchies. In PACT 2008. ACM, 280–291.

[336] Xiaoguang Ren, Yuhua Tang, Guibin Wang, Tao Tang, and Xudong Fang. 2010. Optimization and Implementation of
LBM Benchmark on Multithreaded GPU. In DSDE 2010. IEEE, 116–122.

[337] Gabriel Rivera and Chau-Wen Tseng. 2000. Tiling Optimizations for 3D Scientific Computations. In SC 2000. IEEE, 32.
[338] Soumyaroop Roy, Srinivas Katkoori, and Nagarajan Ranganathan. 2007. A Compiler Based Leakage Reduction

Technique by Power-Gating Functional Units in Embedded Microprocessors. In VLSI Design 2007. IEEE, 215–220.
[339] Soumyaroop Roy, Nagarajan Ranganathan, and Srinivas Katkoori. 2009. Exploring Compiler Optimizations for

Enhancing Power Gating. In ISCAS 2009. IEEE, 1004–1007.
[340] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David Blair Kirk, and Wen-mei W. Hwu.

2008. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In PPoPP
2008. ACM, 73–82.

[341] Akash Sachan and Bibhas Ghoshal. 2021. Learning based compilation of embedded applications targeting minimal
energy consumption. J. Syst. Archit. 116 (2021), 102116.

[342] Cagri Sahin, Lori L. Pollock, and James Clause. 2014. How do code refactorings affect energy usage?. In ESEM 2014.
ACM, 36:1–36:10.

[343] Nissy Saju, Jaya Garg, Rajni Sehgal, and Renuka Nagpal. 2021. Green Mining for Android Based Applications Using
Refactoring Approach. In ICRITO (TSF) 2021. 1–6.

[344] Ryuichi Sakamoto, Masaaki Kondo, Kohei Fujita, Tsuyoshi Ichimura, and Kengo Nakajima. 2020. The Effectiveness of
Low-Precision Floating Arithmetic on Numerical Codes – A Case Study on Power Consumption. In HPC Asia 2020.
ACM, 199–206.

[345] Thayalan Sandran, M. Nordin Zakaria, and Anindya Jyoti Pal. 2011. An Optimized Tuning of Genetic Algorithm
Parameters in Compiler Flag Selection Based on Compilation and Execution Duration. In SocPros 2011 (LNCS, Vol. 131).
Springer, 599–610.

[346] Thayalan Sandran, M. Nordin Zakaria, and Anindya Jyoti Pal. 2012. Performance profile of some hybrid heuristic
search techniques using compiler flag selection as a seed example. In CEC 2012. IEEE, 1–5.

[347] John Sanguinetti. 1984. Program Optimization for a Pipelined Machine – A Case Study. In SIGMETRICS 1984. ACM,
88–95.

[348] Santonu Sarkar and Sayantan Mitra. 2014. Execution profile driven speedup estimation for porting sequential code to
GPU. In COMPUTE 2014. ACM, 21:1–21:6.

[349] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Hideki Saito, Rakesh Krishnaiyer, Mikhail Smelyanskiy, Milind
Girkar, and Pradeep Dubey. 2012. Can traditional programming bridge the Ninja performance gap for parallel
computing applications?. In ISCA 2012. ACM, 440–451.

[350] Yukinori Sato, Shimpei Sato, and Toshio Endo. 2015. Exana: An execution-driven application analysis tool for assisting
productive performance tuning. In SEPS@SPLASH 2015. ACM, 1–10.

[351] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. 1996. Shasta: A Low Overhead, Software-
Only Approach for Supporting Fine-Grain Shared Memory. In ASPLOS 1996. ACM, 174–185.

[352] Eric M. Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. 2014. Post-compiler
software optimization for reducing energy. In ASPLOS 2014. ACM, 639–652.

[353] Robert Sedgewick. 1978. Implementing Quicksort Programs. Commun. ACM 21, 10 (1978), 847–857.
[354] Rajni Sehgal, Deepti Mehrotra, Renuka Nagpal, and Ramanuj Sharma. 2020. Green software: Refactoring approach. J.

K. S. Univ. Comput. Inf. Sci. (2020).
[355] Marija Selakovic, Thomas Glaser, and Michael Pradel. 2017. An actionable performance profiler for optimizing the

order of evaluations. In ISSTA 2017. ACM, 170–180.
[356] Sangmin Seo, Jun Lee, Gangwon Jo, and Jaejin Lee. 2013. Automatic OpenCL work-group size selection for multicore

CPUs. In PACT 2013. IEEE, 387–397.
[357] Seok-Won Seong and Prabhat Mishra. 2006. A bitmask-based code compression technique for embedded systems. In

ICCAD 2006. IEEE, 251–254.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 33

[358] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018. TRIMMER: Application specialization
for code debloating. In ASE 2018. ACM, 329–339.

[359] Anil Sharma and C. P. Ravikumar. 2000. Efficient Implementation of ADPCM Codec. In VLSI Design 2000. IEEE,
456–461.

[360] Qingchuan Shi, Henry Hoffmann, and Omer Khan. 2015. A Cross-Layer Multicore Architecture to Tradeoff Program
Accuracy and Resilience Overheads. IEEE Comput. Archit. Lett. 14, 2 (2015), 85–89.

[361] Yao Shi, Bernard Blackham, and Gernot Heiser. 2013. Code optimizations using formally verified properties. In
OOPSLA 2013. ACM, 427–442.

[362] Wen-Li Shih, Cheng-Yen Lin, Ming-Yu Hung, and Jenq Kuen Lee. 2016. A Probabilistic Framework for Compiler
Optimization with Multithread Power-Gating Controls. In ICPP Workshops 2016. IEEE, 281–288.

[363] Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R. Gardner, Yiming Yang, Milad Hashemi, Graham
Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. 2024. Learning Performance-Improving
Code Edits. In ICLR 2024. OpenReview.net.

[364] Tajana Simunic, Giovanni De Micheli, Luca Benini, and Mat Hans. 2000. Source Code Optimization and Profiling of
Energy Consumption in Embedded Systems. In ISSS 2000. ACM/IEEE, 193–199.

[365] Gagan Somashekar, Amoghavarsha Suresh, Saurabh Tyagi, Vikas Dhyani, Krishna Chaitanya Donkada, Anurag
Pradhan, and Anshul Gandhi. 2022. Reducing the Tail Latency ofMicroservices Applications via Optimal Configuration
Tuning. In ACSOS 2022. IEEE, 111–120.

[366] Seung Woo Son, Guangyu Chen, Ozcan Ozturk, Mahmut T. Kandemir, and Alok N. Choudhary. 2007. Compiler-
Directed Energy Optimization for Parallel Disk Based Systems. IEEE Trans. Parallel Distributed Syst. 18, 9 (2007),
1241–1257.

[367] Xiaohu Song, YingWang, Xiao Cheng, Guangtai Liang, QianxiangWang, and Zhiliang Zhu. 2024. Efficiently Trimming
the Fat – Streamlining Software Dependencies with Java Reflection and Dependency Analysis. In ICSE 2024. ACM,
103:1–103:12.

[368] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2021. A comprehensive study of bloated
dependencies in the Maven ecosystem. Empir. Softw. Eng. 26, 3 (2021), 45.

[369] Johannes Spazier, Steffen Christgau, and Bettina Schnor. 2016. Automatic generation of parallel C code for stencil
applications written in MATLAB. In ARRAY@PLDI 2016. 47–54.

[370] Ekaterina Stefanov and Anthony M. Sloane. 2004. Simple, Effective Code-Size Reduction for Functional Programs. In
IFL 2004 (LNCS). Springer, 211–225.

[371] Panagiotis Stratis and Ajitha Rajan. 2016. Test case permutation to improve execution time. In ASE 2016. ACM, 45–50.
[372] Manuel Strobel and Martin Radetzki. 2019. A Backend Tool for the Integration of Memory Optimizations into

Embedded Software. In FDL 2019. IEEE, 1–7.
[373] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu. 2019. Redundant loads: A software inefficiency

indicator. In ICSE 2019. IEEE/ACM, 982–993.
[374] Bjorn De Sutter, Bruno De Bus, Koen De Bosschere, and Saumya K. Debray. 2001. Combining Global Code and Data

Compaction. In OM@PLDI 2001. ACM, 29–38.
[375] Indira Syawanodya, Dian Anggraini, Fajar Muhammad Al-Hijri, and Mochamad Iqbal Ardimansyah. 2024. An

Empirical Evaluation on the Effect of Refactoring Code Smells Mobile Applications Android with ASATs on Resource
Usage. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 1 (2024), 214–223.

[376] Giuseppe Tagliavini, Andrea Marongiu, and Luca Benini. 2020. FlexFloat: A Software Library for Transprecision
Computing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39, 1 (2020), 145–156.

[377] Tat Kee Tan, Anand Raghunathan, and Niraj K. Jha. 2003. Software Architectural Transformations: A New Approach
to Low Energy Embedded Software. In DATE 2003. IEEE, 11046–11051.

[378] Binxian Tao and Ju Qian. 2014. Refactoring Java Concurrent Programs Based on Synchronization Requirement
Analysis. In ICSME 2014. IEEE, 361–370.

[379] Huda Tariq, Maliha Arshad, and Wafa Basit. 2020. Effects of Refactoring upon Efficiency of an NP-Hard Task
Assignment Problem – A case study. In ICACS 2020. IEEE, 1–9.

[380] Sendhilraj Thangaraj, Sudhakar Gummadi, and Shanmugasundaram Radhakrishnan. 2006. Enhancement in ARM
Code Optimization for Memory Constrained Embedded Systems. In ADCOM 2006. 483–486.

[381] Eli Tilevich and Yannis Smaragdakis. 2005. Binary refactoring: Improving code behind the scenes. In ICSE 2005. ACM,
264–273.

[382] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I. August. 2003. Compiler Optimization-
Space Exploration. In CGO 2003. IEEE, 204–215.

[383] Dan Tsafrir, Robert W. Wisniewski, David F. Bacon, and Bjarne Stroustrup. 2009. Minimizing dependencies within
generic classes for faster and smaller programs. In OOPSLA 2009. ACM, 425–444.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



34 Aymeric Blot and Justyna Petke

[384] Yash Ukidave and David R. Kaeli. 2013. Analyzing Optimization Techniques for Power Efficiency on Heterogeneous
Platforms. In AsHES@IPDPS 2013 in IPDPS 2013 Workshops. IEEE, 1040–1049.

[385] Dan Umeda, Takahiro Suzuki, Hiroki Mikami, Keiji Kimura, and Hironori Kasahara. 2015. Multigrain Parallelization
for Model-Based Design Applications Using the OSCAR Compiler. In LCPC 2015 (LNCS, Vol. 9519). Springer, 125–139.

[386] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 2010. Soot: A Java
Bytecode Optimization Framework. In CASCON 2010. IBM, 214–224.

[387] Sébastien Varrette, Frédéric Pinel, Emmanuel Kieffer, Grégoire Danoy, and Pascal Bouvry. 2019. Automatic Software
Tuning of Parallel Programs for Energy-Aware Executions. In PPAM 2019 (LNCS, Vol. 12044). Springer, 144–155.

[388] Hernán Ceferino Vázquez, Alexandre Bergel, Santiago A. Vidal, Jorge Andrés Díaz Pace, and Claudia A. Marcos. 2019.
Slimming JavaScript applications: An approach for removing unused functions from JavaScript libraries. Inf. Softw.
Technol. 107 (2019), 18–29.

[389] Hans-Nikolai Vießmann, Artjoms Sinkarovs, and Sven-Bodo Scholz. 2018. Extended Memory Reuse: An Optimisation
for Reducing Memory Allocations. In IFL 2018. ACM, 107–118.

[390] Tobias J. K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and Anshuman Dasgupta. 2014. Exploiting function
similarity for code size reduction. In LCTES 2014. ACM, 85–94.

[391] Michael Voss and Rudolf Eigenmann. 2000. ADAPT: Automated De-Coupled Adaptive Program Transformation. In
ICPP 2000. IEEE, 163–172.

[392] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-Tabatabai. 2007. Code Generation and
Optimization for Transactional Memory Constructs in an Unmanaged Language. In CGO 2007. IEEE, 34–48.

[393] Qinglong Wang, Runzhe Wang, Yuxi Hu, Xiaohai Shi, Zheng Liu, Tao Ma, Houbing Song, and Heyuan Shi. 2023.
KeenTune: Automated Tuning Tool for Cloud Application Performance Testing and Optimization. In ISSTA 2023.
ACM, 1487–1490.

[394] Runzhe Wang, Qinglong Wang, Yuxi Hu, Heyuan Shi, Yuheng Shen, Yu Zhan, Ying Fu, Zheng Liu, Xiaohai Shi, and
Yu Jiang. 2022. Industry practice of configuration auto-tuning for cloud applications and services. In ESEC/FSE 2022.
ACM, 1555–1565.

[395] Shuai Wang, Dingyi Fang, Zheng Wang, Guixin Ye, Meng Li, Lu Yuan, Zhanyong Tang, Huanting Wang, Wei Wang,
Fuwei Wang, and Jie Ren. 2019. Leveraging WebAssembly for Numerical JavaScript Code Virtualization. IEEE Access
7 (2019), 182711–182724.

[396] Yutong Wang and Cindy Rubio-González. 2024. Predicting Performance and Accuracy of Mixed-Precision Programs
for Precision Tuning. In ICSE 2024. ACM, 15:1–15:13.

[397] Zhenjiang Wang, Chenggang Wu, and Pen-Chung Yew. 2010. On improving heap memory layout by dynamic pool
allocation. In CGO 2010. ACM, 92–100.

[398] Matthias Weidmann. 1997. Design and Performance Improvement of a Real-World, Object-Oriented C++ Solver with
STL. In ISCOPE 1997 (LNCS, Vol. 1343). Springer, 25–32.

[399] Benjamin Welton and Barton P. Miller. 2018. Exposing Hidden Performance Opportunities in High Performance GPU
Applications. In CCGrid 2018. IEEE, 301–310.

[400] Benjamin Welton and Barton P. Miller. 2020. Identifying and (automatically) remedying performance problems in
CPU/GPU applications. In ICS 2020. ACM, 27:1–27:13.

[401] Jian Weng, Animesh Jain, Jie Wang, Leyuan Wang, Yida Wang, and Tony Nowatzki. 2021. UNIT: Unifying Tensorized
Instruction Compilation. In CGO 2021. 77–89.

[402] Michael Werner, Lorenzo Servadei, Robert Wille, and Wolfgang Ecker. 2020. Automatic compiler optimization on
embedded software through k-means clustering. In MLCAD 2020. ACM, 157–162.

[403] R. Clinton Whaley, Antoine Petitet, and Jack J. Dongarra. 2001. Automated empirical optimizations of software and
the ATLAS project. Parallel Comput. 27, 1-2 (2001), 3–35.

[404] David R. White, Andrea Arcuri, and John A. Clark. 2011. Evolutionary Improvement of Programs. IEEE Trans. Evol.
Comput. 15, 4 (2011), 515–538.

[405] Chris Wilcox, Michelle Mills Strout, and James M. Bieman. 2014. An optimization-based approach to lookup table
program transformations. J. Softw. Evol. Process. 26, 6 (2014), 533–551.

[406] David Williams-King and Junfeng Yang. 2019. CodeMason: Binary-Level Profile-Guided Optimization. In FEAST@CCS
2019. ACM, 47–53.

[407] Felix Winterstein, Samuel Bayliss, and George A. Constantinides. 2014. Separation Logic-Assisted Code Transforma-
tions for Efficient High-Level Synthesis. In FCCM 2014. IEEE, 1–8.

[408] Yudong Wu, Mingyao Shen, Yi-Hui Chen, and Yuanyuan Zhou. 2020. Tuning applications for efficient GPU offloading
to in-memory processing. In ICS 2020. ACM, 37:1–37:12.

[409] Bin Xiao, Zili Shao, Chantana Chantrapornchai, Edwin Hsing-Mean Sha, and Qingfeng Zhuge. 2002. Optimal Code
Size Reduction for Software-Pipelined and Unfolded Loops. In ISSS 2002. ACM/IEEE, 144–149.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 35

[410] Qinge Xie, Qingyuan Gong, Xinlei He, Yang Chen, Xin Wang, Haitao Zheng, and Ben Y. Zhao. 2022. Trimming Mobile
Applications for Bandwidth-Challenged Networks in Developing Regions. IEEE Trans. Mob. Comput. (2022).

[411] Jinhan Xin, Kai Hwang, and Zhibin Yu. 2022. LOCAT: Low-Overhead Online Configuration Auto-Tuning of Spark
SQL Applications. In SIGMOD 2022. ACM, 674–684.

[412] Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. 2020. Program debloating via stochastic optimization.
In ICSE (NIER) 2020. ACM, 65–68.

[413] Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. 2020. Subdomain-Based Generality-Aware Debloating.
In ASE 2020. IEEE, 224–236.

[414] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg, and Gary Sevitsky. 2014. Scalable
Runtime Bloat Detection Using Abstract Dynamic Slicing. ACM Trans. Softw. Eng. Methodol. 23, 3 (2014), 23:1–23:50.

[415] Jinchen Xu, Guanghui Song, Bei Zhou, Fei Li, Jiangwei Hao, and Jie Zhao. 2024. A Holistic Approach to Automatic
Mixed-Precision Code Generation and Tuning for Affine Programs. In PPoPP 2024. ACM, 55–67.

[416] Qiang Xu, James C. Davis, Y. Charlie Hu, and Abhilash Jindal. 2022. An Empirical Study on the Impact of Deep
Parameters on Mobile App Energy Usage. In SANER 2022. IEEE, 844–855.

[417] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2016. Automated memory leak fixing on value-flow slices for C
programs. In SAC 2016. ACM, 1386–1393.

[418] Fan Yang, Huanguo Zhang, Fei Yan, and Jian Yang. 2012. Testing Method of Code Redundancy Simplification Based
on Program Dependency Graph. In TrustCom 2012. IEEE, 1895–1900.

[419] Yangzhao Yang, Naijie Gu, Kaixin Ren, and Bingqing Hu. 2014. An Approach to Enhance Loop Performance for
Multicluster VLIW DSP Processor. In ARCS 2014. Springer, 1–8.

[420] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU compiler for memory optimization and
parallelism management. In PLDI 2010. ACM, 86–97.

[421] Kwaku Yeboah-Antwi and Benoit Baudry. 2015. Embedding Adaptivity in Software Systems using the ECSELR
framework. In GI@GECCO 2015 in GECCO 2015 companion. ACM, 839–844.

[422] Kwaku Yeboah-Antwi and Benoit Baudry. 2017. Online Genetic Improvement on the Java virtual machine with
ECSELR. Genet. Program. Evolvable. Mach. 18, 1 (2017), 83–109.

[423] Taylan Yemliha, Guangyu Chen, Ozcan Ozturk, Mahmut T. Kandemir, and Vijay Degalahal. 2007. Compiler-Directed
Code Restructuring for Operating with Compressed Arrays. In VLSI Design 2007. IEEE, 221–226.

[424] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, María Jesús Garzarán, David A. Padua,
Keshav Pingali, Paul Stodghill, and Peng Wu. 2003. A comparison of empirical and model-driven optimization. In
PLDI 2003. ACM, 63–76.

[425] Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay V. Rajopadhye, Charles Anderson, Alexandre E. Eichen-
berger, and Kevin O’Brien. 2010. Automatic creation of tile size selection models. In CGO 2010. ACM, 190–199.

[426] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry. 2004. Compiler Optimization of
Memory-Resident Value Communication Between Speculative Threads. In CGO 2004. IEEE, 39–52.

[427] Yueyang Zhan, Rui Xi, Jianming Liao, Shuhuan Fan, and Mengshu Hou. 2024. KnobTune: A Dynamic Database
Configuration Tuning Strategy Leveraging Historical Workload Similarities. In CMLDS 2024. ACM, 9:1–9:8.

[428] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin Cui. 2022. Facilitating Database Tuning
with Hyper-Parameter Optimization – A Comprehensive Experimental Evaluation. Proc. VLDB Endow. 15, 9 (2022),
1808–1821.

[429] Hucheng Zhou, Wenguang Chen, and Fred C. Chow. 2011. An SSA-based algorithm for optimal speculative code
motion under an execution profile. In PLDI 2011. ACM, 98–108.

[430] Keren Zhou, Xiaozhu Meng, Ryuichi Sai, Dejan Grubisic, and John M. Mellor-Crummey. 2022. An Automated Tool
for Analysis and Tuning of GPU-Accelerated Code in HPC Applications. IEEE Trans. Parallel Distributed Syst. 33, 4
(2022), 854–865.

[431] Mingzhou Zhou, Xipeng Shen, Yaoqing Gao, and Graham Yiu. 2014. Space-efficient multi-versioning for input-adaptive
feedback-driven program optimizations. In OOPSLA 2014. ACM, 763–776.

[432] Jiajing Zhu, Jay P. Hoeflinger, and David A. Padua. 2001. A synthesis of memory mechanisms for distributed
architectures. In ICS 2001. ACM, 13–22.

[433] Qingfeng Zhuge, Zili Shao, and Edwin Hsing-Mean Sha. 2002. Optimal Code Size Reduction for Software-Pipelined
Loops on DSP Applications. In ICPP 2002. IEEE, 613–620.

[434] Qingfeng Zhuge, Bin Xiao, and Edwin Hsing-Mean Sha. 2003. Code size reduction technique and implementation for
software-pipelined DSP applications. ACM Trans. Embed. Comput. Syst. 2, 4 (2003), 590–613.

[435] Zan Zong, LijieWen, Xuming Hu, Rui Han, Chen Qian, and Li Lin. 2022. MespaConfig: Memory-Sparing Configuration
Auto-Tuning for Co-Located In-Memory Cluster Computing Jobs. IEEE Trans. Serv. Comput. 15, 5 (2022), 2883–2896.

[436] Yun Zou and Sanjay V. Rajopadhye. 2018. A Code Generator for Energy-Efficient Wavefront Parallelization of Uniform
Dependence Computations. IEEE Trans. Parallel Distributed Syst. 29, 9 (2018), 1923–1936.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.


	Abstract
	1 Introduction
	2 Survey Methodology
	2.1 Preliminary Search
	2.2 Systematic Repository Search
	2.3 Corpus

	3 Empirical Work on Non-Functional Properties of Software
	3.1 Research Landscape
	3.2 Non-functional Properties
	3.3 Search Approaches
	3.4 Benchmarks

	4 Recommendations
	5 Threats to Validity
	6 Conclusions
	Acknowledgments
	References

