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Despite recent increase in research on improvement of non-functional properties of software, such as energy
usage or program size, there is a lack of standard benchmarks for such work. This absence hinders progress in
the field, and raises questions about the representativeness of current benchmarks of real-world software.

To address these issues and facilitate further research on improvement of non-functional properties of
software, we conducted a comprehensive survey on the benchmarks used in the field thus far. We searched
five major online repositories of research work, collecting 5499 publications (4066 unique), and systematically
identified relevant papers to construct a rich and diverse corpus of 425 relevant studies.

We find that execution time is the most frequently improved property in research work (63%), while multi-
objective improvement is rarely considered (7%). Static approaches for improvement of non-functional software
properties are prevalent (51%), with exploratory approaches (18% evolutionary and 15% non-evolutionary)
increasingly popular in the last 10 years. Only 39% of the 425 papers describe work that uses benchmark suites,
rather than single software, of those SPEC is most popular (63 papers). We also provide recommendations for
future work, noting, for instance, lack of benchmarks for non-functional improvement that covers Python,
JavaScript, or mobile devices. All the details regarding the 425 identified papers are available on our dedicated
webpage: https://bloa.github.io/nfunc_survey.
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1 Introduction
The primary focus of software developers is to write bug-free software. Even then, many issues
often arise throughout the development and production cycles, causing significant human resource
investment into code maintenance. Poor software quality is costly. For example, Krasner [225]
estimated that in 2022 the cost of poor-quality software on the US economy was 2.41 trillion dollars.
In order to deliver better software, many techniques and tools exist to diagnose software’s

potential flaws, refactor source code, optimise compiled machine code, and even use evolution to
automatically derive better software variants. To this purpose, many surveys have been conducted
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on techniques for functional improvement of software, particularly regarding automated bug
fixing [69, 139, 245, 292, 293]. We observed that studies in the field of automated program repair
often use well-crafted benchmarks1 (see, e.g., https://program-repair.org/benchmarks.html). It is
worth noting that since release of a now famous Defects4J benchmark [202], the publication rate in
the field has increased (https://program-repair.org/statistics.html), allowing for faster comparisons.

On the other hand, non-functional properties of software are often relegated to second place, often
leading to unneccessary bloat [3]. One type of non-functional properties are performance concerns,
such as execution time, memory or energy consumption. Their importance is ever increasing with
increased usage of battery-powered mobile smart devices. In fact, studies have shown that 1/3
of instances of Android users abandoning mobile applications and 59% of bad reviews were due
to poor performance [186, 258]. However, whilst more and more research is now conducted on
improvement of software’s non-functional properties (e.g., by automating this process using genetic
improvement [313]), the field still lacks standardised benchmarks. These would help drive the field
forward by providing a common baseline for newly proposed approaches.

Therefore, we conducted an in-depth literature review, both to better frame what has been done
and is currently conducted, as well as to identify the type of software that is most often targeted.
First, we conducted a preliminary search, hand-picking 100 research articles to identify the most
relevant keywords linked to improvement of software’s non-functional properties. We then queried
five major online repositories for related work from the past 45 years—ACM Digital Library, IEEE
Xplore, Scopus, Google Scholar, and ArXiV—grouping useful keywords into five subsets. Finally,
we repeated this search focusing on past four years to complement the main systematic search and
ensure relevance to current practices. Out of 5499 results returned we found 4066 unique papers
which we systematically checked for empirical work that improves non-functional properties of
software, providing potential benchmarks for future work. Ultimately, these three searches resulted
in a corpus of 425 unique relevant studies, that we then categorised with regards to the property
they target, the type of approach they use, and central to our survey, the benchmark they consider.

With our survey, we aim to answer the following research questions.
RQ1 (State of the Art) How prevalent is empirical work on improvement of non-functional prop-

erties of software?
(a) What type of non-functional property is most often improved?
(b) When optimised together, which combinations of non-functional properties are considered?
(c) Which approaches for non-functional improvement are used most often?
(d) How is software most often modified?

RQ2 (Existing Benchmarks) Which software is used to validate work on improvement of non-
functional properties of software?

(a) How often are existing software benchmarks reused?
(b) Which software is targeted most often for improvement?

RQ3 (Software Diversity) How representative are the benchmarks used in work on real-world
improvement of non-functional properties of software?

(a) What type of software is targeted most frequently?
(b) Which programming languages are targeted most frequently?

2 Survey Methodology
We conducted a systematic literature review in order to establish the state of the art in benchmarks
used in empirical studies improving non-functional properties of software. We started with a
preliminary search to construct a set of relevant keywords. These keywords were then used to

1See Section 3.4 for the definition of a “benchmark”.
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Table 1. Keywords used in the systematic repository search. Wildcards (“*”) are used on digital libraries
supporting such queries; otherwise we list the alternative keywords used.

Group Category Keywords

Software code, program, software, application

Improvement optim* (optimize, optimizing, optimization), improv* (improve,
improving, improvement), automat* (automated, automati-
cally), reduc* (reduce, reducing)

Non-Functional Time time, runtime, speed* (speed, speedup), fast* (fast, faster)
Property Memory memory

Energy energy, power
Quality performance, effic* (efficient, efficiency), effective* (effective,

effectiveness), accura* (accuracy), precis* (precision)
Other functional* (functional, functionality), size, slim* (slimming),

bloat, debloating

conduct a systematic search across five online repositories. Finally, an additional search focusing
exclusively on the most recent work ensured relevance to current practices.

2.1 Preliminary Search
Whilst strongly anchored in the software engineering world, work on improving software’s non-
functional properties spans many different independent research fields that do not necessarily use
a consistent terminology, let alone share a unified one. In order to conduct an adequate literature
review, we first needed to make sure relevant keywords were used. To that purpose, we performed
a manual search, gathering a small and diverse set of relevant papers on improvement of software’s
non-functional properties. We used a simple criterion to establish whether a piece of work qualifies
as improving a non-functional property of software, namely if the intended semantics of the
transformed software is preserved. In that sense work on optimisation of runtime, energy, or
memory consumption is deemed relevant, whilst work on bug fixing or software transplantation
is not relevant, as, by definition, the input/output behaviour of the transformed software will
change. The only exception to this rule is software specialisation, where functionality could be
compromised for improvement of a non-functional property. Since the main focus of such work is
improvement of non-functional behaviour, we still consider it relevant.

Starting from known related work, we iteratively built a purposely diverse corpus of 100 relevant
publications by querying specific research fields (e.g., “genetic improvement”, “code refactoring”,
“compiler tuning”), specific types of non-functional properties (e.g., “reliability”, “complexity”),
using synonyms (e.g., “software evolution” and “program evolution”, “energy consumption” and
“energy footprint”), etc. We then extracted, from the title and abstract of every selected publication,
every word that could potentially be used as a keyword during the systematic repository search.
We calculated how frequently each word occurs in the metadata of selected work. In addition, we
investigated the use of wildcards, grouping words sharing similar prefixes, and expressions (e.g.,
“execution time” or “running time”, as opposed to “time” alone). We also tried to singularise words,
removing final “s”-es when the pluralised versions of words were found.
Details of frequency analysis are presented in Figure 1. Note that we excluded prepositions,

articles, and other generic words clearly not useful for our literature survey (e.g., “result”, “paper”,
“is”, “are”). Surprisingly, word combinations did not result in particularly frequent expressions,
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Fig. 1. Preliminary search: frequent words in titles and abstracts. (≥10%)
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appearing significantly less often than their respective individual words. However, prefix wildcards
were very effective in providing usable search keywords. Then, a subset of the most frequent words
was derived and further classified into seven classes of potential keywords, as detailed in Table 1.
These keywords were used as a basis for the second step of our survey protocol.

2.2 Systematic Repository Search
Based on keywords found in our preliminary search, we performed a systematic search for relevant
work, largely inspired by the methodology proposed by Hort et al. [173]. We used three groups
of keywords: two that ensure papers relate to software’s non-functional property improvement
(Software and Improvement in Table 1) and one group of keywords targeting a specific non-functional
property (including Time,Memory, Energy, Quality, and Others). The addition of the supplementary
Improvement group of keywords is motivated by the large number of papers otherwise returned by
each search. In total, five separate queries are therefore constructed, one for each keyword from
the Non-Functional Property category. When applied on the preliminary dataset of 100 papers, they
collectively achieve 97% coverage, with only one paper missing a Software keyword ([295]) and
two missing an Improvement keyword ([128, 320]).

These five queries were used, to ensure good representation, on five major digital libraries: ACM
Digital Library, IEEE Xplore, Scopus, Google Scholar, and ArXiV, for a total of 25 searches. In
particular, Springer Link, Science Direct, or JSTOR were not considered due to their inability to
handle complex Boolean queries or queries with many keywords. Where filters allowed for it, each
search was restricted to the computer science research field (Scopus, ArXiV), as well as restricted to
conference proceedings and journal articles (ACM, IEEE, Scopus). We made no further restrictions.
Because of the high number of papers returned by the 25 queries, we only focused on the first 200
papers returned by the digital libraries, using the provided default relevance-based sort order.

The specifics of our systematic methodology are as follows.
Inclusion Criteria. A paper is deemed relevant when it fulfils the following four criteria:
(1) it must relate to a quantifiable non-functional property;
(2) it must contain an empirical study which applies a software improvement technique to

existing software;
(3) improvement of the targeted non-functional property must be the active focus of the paper

and not merely a side-effect;
(4) the approach used must result in a distinct software execution that can thus be compared

to the original software.

Selection Process. Publications are then processed according to the following three steps:
Title: first, publications whose titles clearly do not fit the spirit of the survey are discarded

without further reading;
Abstract: second, abstracts are inspected and publications are rejected when at least one

inclusion criteria clearly does not apply;
Body: only then remaining potentially relevant publications are read in full and included,

depending on the relevance of their content.
In total, the 25 queries yielded 5000 results. Papers with identical title were merged together

after manual verification, resulting in overall 3749 unique papers (25% redundancy between query
terms and online repositories). Note that in some rare cases individual queries resulted in fewer
than 200 unique papers; this is, for example, due to some papers having multiple DOIs2.
2E.g., a paper published in OOPSLA 2010 (https://doi.org/10.1145/1869459.1869473) also published in ACM SIGPLAN
Notices (https://doi.org/10.1145/1932682.1869473), or a paper published in ICCAD 2006 differently indexed by IEEE
(https://doi.org/10.1109/ICCAD.2006.320144) and ACM (https://doi.org/10.1145/1233501.1233551)
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Of these 3749 unique papers, we determined 2560 to be irrelevant based on their title alone
(e.g., “Memory training and memory improvement in Alzheimer’s disease: Rules and exceptions” is
clearly not relevant), 510 to be irrelevant based on their abstract, and finally 372 to be irrelevant
based on their actual content. Overall, this second step of the survey yielded 307 unique relevant
papers (8.19%). This manual step was conducted over the span of two months (FTE).

We observed that Scopus yielded by far the highest number of relevant papers, almost four times
the number from Google Scholar and ArXiV combined. All types of queries yielded similar numbers
of papers, with the exception of the “Time” keyword group, although Section 3 will show that
execution time is by far the most common non-functional property optimised in the literature.

As means to validate the threshold of 200 papers considered for every query, we investigated the
rate at which relevant work appears throughout the systematic repository search. Figure 2 shows,
for each of the five digital libraries, how many would have been returned had a smaller threshold
been used. Very surprisingly, the rate according to which relevant work is found is almost constant,
meaning that a considerable amount of relevant work can be expected to be found even after our
threshold of 200 papers per query. Similar rates are also observed when controlling for each of the
keywords categories, i.e., there is a lot more related work for all types of non-functional properties.

Finally, to complement the main systematic search—performed in July 2021—and ensure coverage
of more recent work, we repeated the same methodology in July 2024 with two main differences.
We restricted publication date to 2021–2024 to avoid overlaps, and we only considered the first 20
hits to avoid overfits. In total, the 25 queries yielded 499 results, resulting in 332 unique papers.
Out of these, we determined 155 papers to be irrelevant based on their title alone, 64 based on their
abstract, and 69 based on their actual content, resulting in 44 relevant unique papers.

Details of both steps of the systematic repository search are presented in Table 2 with a total of
345 unique papers (which excludes work found via our preliminary manual search). In particular,
for each class of query and each online digital library we present the total number of hits, and the
numbers of papers rejected at each step of the selection process, or ultimately classified as relevant.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.
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Table 2. Systematic repository search. For each of the 50 queries we detail how many papers were found,
how many unique papers were selected, and how many papers were considered after each of the three steps
of our selection process. We indicate for every step how many unique papers are found, both across all five
digital libraries (in the last column) as well as across all five types of queries (last rows).

Main search Complementary search
(first 200 results, –2021) (first 20 results, 2021–2024)

Step

AC
M

IE
EE

Sc
op
us

Sc
ho
lar

Ar
Xi
V

AC
M

IE
EE

Sc
op
us

Sc
ho
lar

Ar
Xi
V Unique

Ti
m
e

Total hits 26K 216K 375K 6.3M 1268 13K 62K 124K 6.3M 158 –
Unique work 200 199 200 200 200 20 20 19 20 20 1091
Selected (Title) 60 84 16 55 31 12 16 13 11 6 299
Selected (Abstract) 39 52 3 18 13 7 14 12 9 1 164
Selected (Body) 16 29 1 7 2 3 7 3 4 0 72

M
em

or
y

Total hits 6326 30K 57K 5.2M 273 2851 8000 18K 667K 19 –
Unique work 200 199 198 200 199 20 20 19 20 19 1030
Selected (Title) 78 89 84 66 56 11 14 16 13 6 396
Selected (Abstract) 42 62 62 33 28 7 7 11 10 2 236
Selected (Body) 18 38 32 14 5 5 1 5 4 0 105

En
er
gy

Total hits 7907 140K 154K 5.1M 727 4416 42K 59K 1.5M 161 –
Unique work 199 200 198 200 200 20 20 20 20 20 1049
Selected (Title) 93 80 111 47 41 7 10 17 6 6 386
Selected (Abstract) 56 46 84 8 18 3 6 14 4 1 215
Selected (Body) 16 27 41 1 2 1 2 5 3 0 82

Q
ua
lit
y

Total hits 44K 351K 591K 5.7M 1439 18K 94K 190K 1.6M 139 –
Unique work 200 200 199 200 200 20 20 20 20 20 1071
Selected (Title) 97 79 94 43 36 13 18 16 6 6 389
Selected (Abstract) 55 50 71 15 14 8 16 10 3 1 229
Selected (Body) 26 34 31 7 2 3 13 3 1 0 111

O
th
er
s

Total hits 8166 63K 116K 6.1M 826 17K 74K 145K 1.2M 240 –
Unique work 199 198 192 200 199 20 20 19 20 20 1025
Selected (Title) 93 75 99 39 35 15 17 13 11 6 360
Selected (Abstract) 67 47 82 14 15 11 15 11 7 1 231
Selected (Body) 36 32 56 6 2 8 11 9 2 0 129

O
ve
ra
ll Unique work 952 806 962 934 603 77 74 78 90 48 4066

Selected (Title) 405 315 391 246 122 41 51 60 42 13 1356
Selected (Abstract) 249 194 286 103 52 26 36 47 29 3 785
Selected (Body) 104 117 139 40 10 15 17 15 13 0 345

2.3 Corpus
In preliminary search we identified 100 relevant papers. The main systematic repository search
then yielded 307 unique relevant papers. Finally, The complementary systematic repository search
yielded 44 unique papers. Combined, they resulted in 425 unique relevant papers on the topic of
improvement of non-functional properties of software, as shown in Table 3.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.
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Table 3. Summary of the 425 unique corpus papers, according to the main types of non-functional property
targeted, the types of multi-objective focuses, the types of search approaches, and the types of modifications
applied to the original software. An interactive and more comprehensive artefact for this data is available
both in the supplementary materials and also live at https://bloa.github.io/nfunc_survey whilst raw data can
be accessed at https://github.com/bloa/nfunc_survey.

Criteria Relevant papers

Property time (268): [1, 5, 8–12, 14, 15, 17–20, 22–24, 26, 27, 29, 32–35, 38, 43–45, 47–49, 52, 53, 59, 60, 64, 65, 67, 70, 72–74, 76–
79, 81–83, 85–87, 90–96, 98–100, 105, 107–109, 111, 112, 114–119, 121–123, 125, 126, 130, 134, 136, 138, 141, 143, 146, 147,
149, 150, 152, 155, 156, 160, 162–165, 167, 169–171, 174, 176–179, 183, 184, 187, 188, 190–192, 194, 197–200, 203, 204, 206–
208, 210, 211, 214–219, 222, 223, 227–231, 234–236, 238–241, 243, 246–248, 250–252, 256, 257, 259–261, 263–268, 270, 275,
276, 276, 277, 279–282, 284, 286–288, 290, 291, 294, 298, 299, 302, 305–309, 314–318, 322, 326, 327, 329, 330, 332–337, 340–
342, 345–353, 355, 356, 359, 361, 363–366, 369, 371, 373, 375, 376, 379, 381–383, 385–387, 390–394, 396–408, 411, 414, 415,
419, 420, 423–432, 435], energy (77): [2, 16, 22, 23, 28, 40, 46, 52, 54, 58, 61, 62, 66, 68, 71, 81, 84, 91, 92, 96, 97, 100, 102–
104, 110, 114, 124, 126, 132, 133, 135, 137, 137, 153, 154, 172, 181, 182, 189, 205, 217, 220, 226, 250, 253–255, 272, 273, 275,
300, 301, 303, 304, 310–312, 317, 326, 327, 338, 339, 341–344, 352, 354, 362, 364, 366, 377, 384, 387, 416, 436], size (71):
[4, 7, 21, 25, 41, 50, 51, 55, 56, 63, 75, 80, 90, 92, 101, 106, 113, 116, 127, 137, 137, 140, 143, 157, 166–168, 170, 194–196, 201,
224, 230, 246, 247, 249, 252, 278, 281–283, 289, 296, 319, 321, 323–325, 328, 331, 352, 357, 358, 367, 368, 370, 374, 380, 388, 390,
402, 409, 410, 412, 413, 418, 421, 422, 433, 434], other (61): [4, 6, 13, 28, 31, 36, 37, 42, 43, 46, 57–59, 64, 88, 89, 103, 120, 124,
128, 129, 131, 142, 144, 151, 158, 161, 168, 175, 193, 213, 219, 221, 224, 232, 237, 242, 244, 262, 264, 265, 267–269, 271, 288, 295–
297, 299, 308, 320, 321, 358, 360, 378, 395, 404, 405, 412, 413], memory (37): [12, 26, 32, 33, 39, 40, 43, 47, 77, 96, 141, 145,
148, 159, 164, 180, 185, 194, 200, 208, 209, 211, 212, 217, 226, 230, 233, 274, 284, 285, 308, 372, 389, 414, 417, 423, 435]

Multi-
objective

focus (58): [12, 13, 26, 32, 40, 52, 64, 77, 90–92, 96, 100, 103, 116, 137, 137, 141, 143, 164, 167, 168, 194, 200, 208, 211, 217, 219, 224,
226, 230, 246, 247, 250, 252, 268, 275, 281, 282, 284, 288, 296, 299, 308, 320, 321, 327, 341, 342, 352, 358, 364, 366, 390, 412–414, 423],
report (56): [5, 7, 25, 27, 53, 56, 89, 98, 110, 113, 128, 134, 142, 147, 148, 154, 155, 158, 159, 172, 177, 181, 185, 189, 195, 196, 199,
203, 214, 215, 228, 236, 248, 251, 262, 272–274, 285, 301, 304, 312, 319, 324, 337, 351, 359–361, 372, 373, 376, 384, 389, 395, 432],
search (30): [4, 22, 23, 28, 33, 43, 46, 47, 58, 59, 81, 86, 87, 114, 124, 126, 170, 174, 213, 264, 265, 267, 269, 317, 326, 387, 402,
404, 405, 435]

Search static (217): [1, 5–7, 11–14, 17, 19, 21, 24, 26, 29, 32, 34, 38, 39, 49–51, 53, 56, 57, 63, 64, 71, 75, 77–79, 89, 90, 97, 98, 101,
104, 107, 109, 116, 117, 121, 123, 127, 129–131, 134, 135, 137, 137, 140–147, 151, 152, 155–158, 165–167, 169, 172, 175, 177, 182,
183, 187, 189–193, 196–201, 203, 204, 206–208, 212, 216, 217, 221–224, 226, 228–231, 244, 247–249, 251, 253, 255, 257, 260–
262, 266, 272–276, 276, 278, 281, 282, 286, 287, 290, 291, 294, 296, 298–305, 307, 309, 310, 312, 318–325, 328, 329, 331–334, 336–
340, 343, 348–351, 355, 357–363, 366–370, 372–375, 378–381, 384–386, 388–390, 392, 395–397, 400, 401, 406–410, 414, 415, 417,
418, 420, 423, 426, 429, 430, 432–434, 436], evolutionary (77): [4, 9, 22, 23, 28, 31, 33, 37, 42, 44–47, 58, 61, 62, 66, 67, 80, 81,
84, 86, 87, 93–95, 99, 105, 106, 108, 112, 113, 124, 126, 138, 150, 161, 162, 174, 195, 213, 214, 219, 227, 232, 234–243, 263–265, 267–
270, 280, 283, 297, 314–316, 345, 346, 352, 387, 404, 421, 422, 428, 435], exploratory (52): [15, 20, 41, 43, 45, 48, 59, 60, 65, 68,
70, 74, 85, 88, 92, 96, 111, 113–115, 118–120, 132, 133, 149, 153, 168, 179, 195, 233, 252, 254, 289, 306, 317, 326, 330, 335, 346, 365,
376, 382, 393, 394, 402, 403, 412, 413, 425, 428, 431], sampling (48): [8, 18, 35, 52, 59, 73, 74, 76, 83, 91, 100, 110, 122, 125, 148,
154, 160, 163, 170, 171, 176, 178, 180, 194, 209, 215, 218, 246, 256, 259, 277, 279, 288, 295, 317, 341, 356, 371, 391, 393, 394, 405,
411, 416, 419, 424, 427, 428], manual (46): [2, 10, 16, 25, 27, 36, 40, 54, 55, 72, 82, 102, 103, 128, 136, 156, 159, 164, 181, 183–
185, 188, 189, 205, 210, 211, 220, 250, 271, 284, 285, 308, 311, 327, 342, 344, 347, 353, 354, 364, 377, 383, 398–400]

Change semantic (218): [2, 4–7, 10–13, 16–19, 21, 24–29, 35–37, 39, 41, 48, 50, 51, 53–58, 63, 64, 71, 75, 78, 82, 89, 90, 92, 97, 98, 101,
102, 104, 107, 108, 116, 117, 121, 123, 127–133, 135–137, 137, 140–144, 146, 155–159, 164, 166–168, 170–172, 180, 182–184, 187–
190, 192, 193, 196, 197, 199, 201, 205, 206, 210–213, 220–223, 226, 228–231, 244, 246–253, 255, 260, 262, 266, 271, 272, 275, 276,
276–278, 281, 284–287, 289–291, 296, 297, 299–303, 307–310, 312, 319–321, 323–325, 328, 329, 331, 333, 334, 336, 338, 339, 342,
343, 347, 349, 351, 353–355, 357–359, 361–364, 368–370, 372–375, 377–381, 383, 385, 386, 388–390, 392, 395, 398, 399, 403, 405–
407, 410, 412–415, 418, 426, 429–432], loops (99): [1, 7, 11, 17, 22, 26, 32, 34, 37, 49, 72, 73, 77, 91, 92, 109, 111, 121, 122,
134, 145, 147, 151, 152, 154, 156, 165, 171, 182, 187, 191, 198, 200, 203–205, 207–211, 214–217, 219, 226, 230, 250, 257, 270, 272–
274, 276, 276, 277, 279, 280, 286, 294, 298, 305, 317, 318, 322, 326, 328, 332, 334–337, 340, 348, 350, 353, 356, 358, 360, 364, 366, 384,
391, 401, 403, 407–409, 415, 419, 420, 423–425, 430, 433, 434, 436], destructive (85): [10, 14, 15, 31, 33, 38, 40, 42, 44–47, 58, 60–
62, 65, 66, 84, 93–95, 100, 103, 112, 113, 120, 123, 124, 136, 149, 150, 153, 161, 162, 172, 175, 177, 210, 212, 219, 232–243, 254, 257,
261, 263–265, 267–269, 282, 283, 300, 304, 311, 314–316, 344, 352, 353, 361, 367, 371, 376, 384, 396, 400, 404, 416, 417, 421, 422],
configuration (83): [2, 8, 9, 20, 23, 40, 43, 47, 48, 52, 58, 59, 67, 68, 70, 73, 74, 76, 79–81, 83, 85–88, 96, 99, 105, 106, 110, 111,
114, 115, 118, 119, 125, 126, 136, 138, 148, 160, 163, 169, 172, 174, 176, 178, 179, 181, 185, 194, 195, 212, 218, 224, 227, 233, 256,
259, 272, 288, 295, 306, 317, 324, 327, 330, 341, 345, 346, 365, 382, 387, 393, 394, 397, 402, 406, 411, 427, 428, 435]

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.

https://bloa.github.io/nfunc_survey
https://github.com/bloa/nfunc_survey


A Comprehensive Survey of Benchmarks for Improvement of Software’s Non-Functional Properties 9

Figure 3 presents the source distribution of the 425 corpus papers. The set of papers originating
from ArXiV (10 papers) is very small and almost disconnected from the other sets of work. In
fact, the vast majority of publications (84%) is only found once, and with the exception of Scopus
covering a non-negligible number of publications from ACM (23) and IEEE (29). Despite this, the
corpus contains three papers simultaneously returned from four different sources [330, 358, 413].
We note that despite a theoretical 97% coverage, only 20 of the 100 papers from the preliminary
search were actually rediscovered during the two systematic repository searches. This can be
explained by the large number of hits returned by every query (see Table 2) and the consistent
rate at which relevant work is found (see Figure 2). Recall that in the systematic search we only
considered relevant work located in the first 200 results of the 25 queries of the repository search.
On the one hand, this means that only 20% of our hand-picked papers appear within that threshold,
once again corroborating the idea that many more relevant pieces of work exist in the literature.
However, on the other hand, it also means that most of the relevant work identified in the systematic
search is new, reducing potential unconscious bias from the preliminary search.
By combining all three searches we thus construct a very rich and diverse corpus of relevant

publications, that is, by construction, both relevant in terms of coverage of the different aspects of
non-functional improvement, as well as in terms of statistical representativity, as much as this is
possible using digital library searches.

3 Empirical Work on Non-Functional Properties of Software
Section 2 described the literature review process that resulted in a corpus of 425 papers related to
improvement of non-functional improvement of software. In this section, we examine these 425
papers in more detail, focusing on extracting information according to the following four criteria:
Research landscape. For each paper we note the publication or release date, and the name and

the type of venue in which it appeared.
Non-functional property. [RQ1a&b] We note the non-functional properties targeted, and in

the cases where multiple properties are reported, whether they have been actually used to
produce improved software variants or simply measured at the end of the experiments. We
note how each of the non-functional properties was measured.

Search Approaches. [RQ1c&d] We note both the type of approach used to generate software
variants and the type of modifications applied to the original software.

Benchmark. [RQ2&3] We note the number and names of software used in the empirical evalua-
tion. We note if it was selected from an existing benchmark, as well as its size, programming
language it was written in, its origin, and the platform on which it was run.

Unless explicitly stated otherwise—i.e., Figure 10 and Figure 11, that focus on the 345 papers
yielded by the systematic search—all analyses in this section use the full corpus of 425 corpus
papers (i.e., including preliminary manual search results).

3.1 Research Landscape
Figure 4 shows the publication year distribution of all 425 corpus papers; almost all papers appeared
after 1995, with a clear upward trend. While it can be an artefact of the relevance sort of the online
repositories, there is no doubt that work on software’s non-functional properties is increasingly
widespread. Finally, most related work is published in conferences, although we note a fair number
of workshop papers and a very high number of journal articles in 2021.
Figure 5 details the origin (i.e., preliminary search or digital library), by publication year, of all

425 corpus papers. With the exception of two papers published in 2019, all relevant work obtained
in the main systematic search through Google Scholar appeared before 2011. Conversely, ArXiV

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: January 2022.



10 Aymeric Blot and Justyna Petke

1980 1990 2000 2010 2020
0

10

20

30

Publication year

U
ni
qu

e
co
rp
us

pa
pe
r

Fig. 4. Publication year distribution of all 425 unique
corpus papers.

1980 1990 2000 2010 2020
0

10

20

30

40

50

Publication year

Cu
m
ul
at
iv
e
co
rp
us

pa
pe
r ArXiV (10)

Google Scholar (40)
Manual search (100)

ACM (104)
IEEE (117)
Scopus (139)

Fig. 5. Publication year distribution of all 425 unique
corpus papers, according to origin (preliminary man-
ual search or digital library). Papers found multiple
times are counted multiple times.

0 10 20
SC

ASPLOS
ASE

ACM TACO
IPDPS
ICPP
CCS

PACT
OOPSLA
IEEE TSE
ESEC/FSE

PLDI
ICS

IEEE TPDS
ArXiV
ICSE
CGO

GECCO

5
5
5
6
6
6
7
7
7

9
9

17
18

20

5

7

10
10

Number of papers by venue

Pu
bl
ic
at
io
n
ve
nu

e

Conference
Journal
ArXiV

Fig. 6. Most frequent publication venues (≥5) across
all 425 unique corpus papers.

1980 1990 2000 2010 2020
0

10

20

30

40

Publication year

Cu
m
ul
at
iv
e
co
rp
us

pa
pe
r Memory (37)

Other (61)
Size (71)

Energy (77)
Time (268)

Fig. 7. Publication year distribution of all 425 unique
corpus papers, according to the types of non-
functional software property targeted. Papers tar-
geting multiple property types are counted multiple
times.

only yielded papers from 2019 onwards and ACM Digital Library from 2008 onwards. However,
both IEEE and Scopus yielded papers for every year since 1998.

Figure 6 presents the venues inwhich the papers appearmost frequently in (i.e., at least five papers
published in a given venue). With the notable exception of GECCO, an evolutionary computation
conference with the highest figure of 20 related papers, venues are thematically split between
applied computing (with CGO, IEEE TPDS, ICS, PLDI, OOPSLA, PACT, CCS, ICPP, IPDPS, ACM
TACO, ASPLOS, and SC), for a total of 93 papers, and general software engineering (with ICSE,
ESEC/FSE, IEEE TSE, and ASE), for a total of 36 papers.
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3.2 Non-functional Properties
Figure 7 shows the distribution of all 425 corpus papers over the years, according to the types
of non-functional software property they target. In order to increase readability, properties have
been grouped thematically: e.g., “Time” includes mostly execution time (63% of all papers), but also
test or compilation time (≈1%), “Memory” encompasses both optimisation of the total amount of
resource used, but also its actual usage during execution (e.g., minimising cache misses), and “Size”
groups binary size on disk as well as source code size (e.g., in terms of lines of code).
By far the most frequent non-functional property targeted for improvement is time efficiency.

Time is optimised in 268 of the 425 corpus papers, followed by energy usage (77 papers), software
size (71 papers) and memory usage (37 papers). 61 papers also targeted other types of properties,
including mostly the quality of the output, the software’s attack surface, or the overall writing
quality of source code. The remaining papers targeted other properties, such as copyright or security
issues, code complexity, or source code obfuscation.

Answer to RQ1 (a): Empirical work on optimisation of non-functional properties of software
most frequently focuses on improvement of execution time. We found 268 out of 425 papers that
describe such work. Code size follows with 71 papers (20 more as a secondary objective), while
energy usage is targeted in 77 papers (and only 5 more as a secondary objective). Memory usage
is considered in 37 papers, and in further 16 as a secondary objective. Work on improvement of
other non-functional properties of software is more rare, with the next most frequently targeted
property, “output quality”, being improved in 28 papers, while “attack surface” improved in 12.

Furthermore, as shown in Figure 8, the authors of 142 papers considered more than one non-
functional property. We can distinguish 28 papers that proposed work that actively optimised
multiple non-functional properties of software simultaneously, 58 papers that had a secondary focus
on at least another property, and finally 56 other papers where authors simply reported on more
than one property. Figure 9 shows the pairs of property types considered in work simultaneously
optimising at least two non-functional properties during search. As expected, execution time
is also the most popular non-functional property considered. We also note a few papers where
both software’s energy consumption and output solution quality was targeted. Overall, whilst the
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number of such “multi-objective papers” is undeniably growing, work toward proper multi-objective
improvement of non-functional properties is still quite rare.

Answer to RQ1 (b): There is little work on multi-objective improvement of non-functional
properties of software (only 28 relevant papers found). In addition to being the most frequent
objective (found 25 times), in most cases execution time is one of the targeted properties, often
used as a trade-off to energy usage (eight times) or solution quality (seven times).

Figure 10 shows the correlation between the non-functional property keyword categories used
in the systematic repository search and the actual primary property types targeted in the relevant
papers. Surprisingly, only “energy” and “other” keywords —the latter including bloat- and size-
related terms— are effective in yielding thematically relevant papers. Furthermore, “quality” and
“memory” keywords are far more effective in yielding papers optimising software speed than their
expected properties, even more than “time” keywords.

Conversely, Figure 11 shows the correlation between the repositories and the primary targeted
non-functional property. First, as already pointed out, search through ArXiV and Google Scholar
really wasn’t effective. Then, whilst yielding many more relevant results, both the ACM and the
IEEE digital libraries show a bias towards work targeting running time improvements, the most
frequent non-functional property overall. Finally, surprisingly, Scopus library does not seem to
exhibit that strong of a bias, yielding high numbers of papers targeting size and energy concerns.

3.3 Search Approaches
Five main types of search approaches are distinguished. (1) static approaches in which decisions
about softwaremodifications are takenwithout remeasuring the non-functional property; typically a
single software variant is generated and compared to the original software. (2) sampling approaches,
in which a given number of variants are generated and evaluated, the best variant being only
determined at the end of the procedure. We include in that category both random and systematic
sampling, as well as exhaustive enumeration. (3) exploratory (non-evolutionary) approaches, in
which multiple software variants are iteratively generated and evaluated in order to produce a
final software variant. Exploratory approaches differ from sampling approaches in that they are
trajectory-based, intermediary variants being used to guide the search. This category includes,
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for example, local search algorithms and greedy approaches, specifically excluding evolutionary
approaches. (4) evolutionary approaches, that expand on exploratory approaches by using biology-
inspired procedures such as, for example, genetic algorithms or genetic programming. Finally,
(5) manual approaches in which the software is modified by hand.

Figure 12 shows the distribution of types of search approaches by year of publication. Static
approaches are the most frequent (217 papers), and constitute with manual (46 papers) and sampling
(39 papers) approaches almost all publications until around 2005. Both exploratory (62 papers) and
evolutionary (78 papers) approaches start to appear around 2000, being more prevalent after 2005.
Finally, most evolutionary approaches appear after 2014.

Answer to RQ1 (c):Most of the work on improvement of non-functional properties of software
use static approaches (51%). However, for the past ten years evolutionary (18%) and exploratory
(15%) approaches have been increasingly popular.

Similarly, we distinguished between four types of softwaremodifications. (1) Loop transformations,
encompassing, for example, loop merging, splitting, unrolling, polyhedral transformations of nested
loops, but also many other modifications specifically targeting loops in source code. (2) Semantic-
based modifications, with, for example, template-based code generation or refactorings, which
are meant to guarantee semantics preservation. (3) Potentially destructive modifications that do
not guarantee semantics preservation; they can preserve semantics, but do not come with such
guarantees, typically leaving change acceptance to a code review process. (4) Configuration-based
modifications, in which parameter values at known decisions points are changed.

Figure 13 shows the distribution of types of software modifications by year of publication. The
vast majority of work applies semantic modifications to the software at hand (238 papers). Loop
transformations (99 papers) are especially prevalent in compiler work. Configuration (85 papers)
has been regularly tackled from around 2005, while destructive modifications (85 papers) have been
very popular in the last ten years. Unsurprisingly, the use of software destructive modifications can
be linked to the increased use of evolutionary search in software engineering and the introduction
of genetic improvement [313].
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Answer to RQ1 (d):Most of the work on non-functional properties of software use semantic
modifications (56%). However, similarly to RQ1 (c), destructive source code changes (20%)
have been increasingly popular in the past ten years. Other types of modifications are loop
transformations (23%) and configuration tuning (20%), steadily appearing in the literature for
the past twenty years.

3.4 Benchmarks3

Empirical studies on improvement of non-functional program properties are evaluated on particular
sets of instances to measure performance improvement. Although almost all contain the name of
the software that was improved, many lack details regarding the dataset they were evaluated on.
In what follows, we denote by benchmark any pair of both a given software code to execute

and the necessary input data required to make execution reproducible, so that performance across
different environments can be fairly and reliably compared. A benchmark suite is a collection of
benchmarks; whilst theoretically designed to be executed as a whole, many studies only consider
subsets of one or more benchmark suites to solely focus on specifically chosen benchmarks.
In 167 of the 425 papers on empirical work on improvement of non-functional properties of

software authors reused existing benchmark suites (39%). Figure 14 shows the most commonly used
benchmark suites. For SPEC, we distinguished Java benchmark suites (SPECjbb, SPECjvm) from the
C/C++/Fortran benchmark suites (mostly SPEC CPU when specified). One issue we encountered
was that many times authors simply mention “SPEC” without specifying which version of that
benchmark suite was used, which specific software was used, or even which programming language
was targeted. Similarly, we grouped together the original and revised versions of both MediaBench
(MediaBench II) and SPLASH (SPLASH-2).

SPEC is the most frequently used benchmark suite in work on non-functional property im-
provement of software. This is partly due to the longevity of its various benchmark suites that
are regularly updated (e.g., SPEC CPU has been revised five times since its inception). Figure 15
shows that despite a great number of benchmark suites being reused, and an increasing number of
reuse taking place over the years, no particular suite appears to be prevalent. One reason might be
the increasing difficulty of compiling older software on newer systems, making benchmark suites
quickly outdated, issue that SPEC may avoid by updating their benchmarks suites more frequently.
3Details on all benchmarks, including URLs and references, are available at https://bloa.github.io/nfunc_survey/benchmarks
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Fig. 16. Software most often targeted (≥ 10 papers) accross all 425 unique corpus papers.

Answer to RQ2 (a): Whilst many software benchmark suites have been proposed, they are
used in less than half (39%) of the papers surveyed. SPEC, with its multiple types of benchmarks,
is by far the most commonly reused benchmark suite. However, it was originally proposed for
raw performance evaluation of hardware systems and may not be suitable for all non-functional
property improvement purposes.

Figure 16 presents software most frequently targeted in the 425 papers, as well as when relevant,
the benchmark suite it was explicitly taken from (we use “–” to indicate that no benchmark suite
was specified in the paper). Unsurprisingly, the most frequently targeted software come from
the SPEC benchmark suites (23 of the 35 software targeted ten times or more). With the notable
exception of Spark (found eleven times), frequently targeted in the context of big-data software
parameter configuration, software not being part of benchmark suites are not frequently reused,
meaning that most studies consider new benchmark and do not directly compare to previous work.

Answer to RQ2 (b): Unsurprisingly the most often targeted software are those originating from
the SPEC benchmarks, including, for example, bzip2, mcf, gcc, or gzip.

Figure 17 shows the distribution of the programming language of the targeted software relative
to the publication year. Targeted software are most frequently written in C or C++, with 51% of all
papers. An additional 8% of papers target GPU software (e.g., CUDA) essentially also written in
C/C++. Java follows with 16% of papers, then Fortran (5%, appearing in only two papers since 2010),
Scala (3%), and Javascript (2%). Other languages (including Python, Erlang, Haskell...) only appear
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in 1% or fewer papers. Surprisingly, in 14% of papers the programming language of the targeted
software is not explicitly stated.

As for the type of the targeted software, 59% of the papers include real-world software, usually
freely available online, while 50% considered toy examples specifically written for research purposes;
in 10% of the papers the origin of software was unclear. Regarding papers with real-world software,
which seem to be increasingly favoured, we find that 56% is academic in origin, 49% come from the
open-source community, 7% come from industry; 16% is unknown.
For each paper we noted the approximate size of the software targeted within, with categories

such as “block” (a few lines of code; 11% of papers), “function” (a small number of functions; 15% of
papers), “file” (typically one or two files; 17% of papers), and “project” (26%) and finally “application”
(44%) for larger software with more files and a much larger code base. In 35% of papers the size of
the targeted software was neither specified nor obvious. Figure 18 details proportions by publication
year. Whilst results appear relatively constant, it can still be noted that the proportion of both
small software (i.e., “block”, “function”, and “file”) and software of unknown size seem to be slowly
decreasing, in favour of large software.

Finally, we looked at the environment in which software was executed. Unfortunately, in 51% of
the papers this was not specified and could not be inferred. In 38% of papers software was run on a
Unix or Linux machine, 3% on Windows, and 2% on Mac specifically. Additionally, 7% of the papers
considered software running on a mobile device (Android: 6%, iPhone: 1%).

Answer to RQ3 (a): The most frequently considered software for improvement of its non-
functional behaviour is, statistically, a large real-world Linux application written in C or C++;
this might be a direct consequence of the prevalence of work based on SPEC.

There are obvious discrepancies between real-world software engineering and the papers identi-
fied in our survey. In many aspects, our survey fails to reflect that richness of software development.
First, despite 59% of the papers targeting real-world software, C/C++ software is vastly over-

represented (58%), as is Unix/Linux software (40%). According to the TIOBE index4—an indicator
of online popularity—Python has recently become the most popular programming language. In
4https://www.tiobe.com/tiobe-index
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contrast, only six papers in our survey (1%) consider Python software, with five also coincidentally
considering C, C++, or Java software. Whilst real-world software systems often integrate multiple
languages, such as Python software often relying on C/C++ libraries for performance-critical opera-
tions, our survey found no example of work specifically targeting such systems. Moreover, we posit
that automating the improvement of polyglot software presents a significant challenge, requiring
holistic strategies that go beyond the isolated optimisation of individual software components.

The 2024 Stack Overflow’s annual developer survey5 provides more practical insight regarding
developers demographics. In particular, JavaScript (69% of professional respondents), SQL (51%),
Python (41%, “most wanted language” for the fifth year), NodeJS/TypeScript (36% both), C# (30%),
or Bash/Shell (28%) are all technologies very popular in industry that are apparently completely
missing from academic research, as is Rust (“most loved language” for the sixth year). Likewise,
most professional developers use Windows (41%, whilst 30% use MacOS and 25% use a Linux-based
distribution), which again is not reflected in our own survey.

Finally, only 7% of the identified relevant work target software in mobile devices. In the meantime,
in 2024 the number of active Android devices is reported to be as high as 3.9 billions (2.2 billions
for iOS devices). For these mobile devices, non-functional properties such as memory usage and
energy consumption are absolutely critical [186, 258].
Answer to RQ3 (b): Benchmarks revealed in our survey are not representative of real-world
software as a whole, with, for example, Java (69 papers, 16%), Javascript (nine papers, 2%), or
Python (six papers, 1%) software being extremely underrepresented in view of their actual
popularity.

4 Recommendations
Our survey shows that there is yet no standard benchmark specifically tailored to the improvement
of non-functional properties of software. Lack of such a benchmark hinders reproducibility and
reliable comparisons with state of the art, hindering fast progress.
Whilst SPEC is the closest thing, it was proposed with hardware comparison and compiler

optimisation in mind, and is not particularly well suited for potentially destructive evolutionary
approaches. Indeed, SPEC is designed for applications in which semantic changes are not expected.
As such, running the optimised software on few known inputs is sufficient to adequately compare
performance. However, as soon as potential semantic changes are introduced (e.g., through param-
eterisation, or destructive source code changes), it becomes essential to control for correctness and
generalisation. Hence, benchmarks crafted for general improvement of non-functional properties of
software should ideally consider software providing a comprehensive test suite or at least software
for which a large amount of input data is available.

In terms of experimental protocol, one should generally follow the example of machine learning
research, that provides a variety of strong procedures to ensure that the performance improvements
are generalisable and reproducible. Whilst the simplest isolated holdout method —in which training
and parameterisation should be performed on data disjoint from the data used for actual performance
comparison— may seem reasonable, especially for stochastic methods and methods introducing
semantic changes we strongly advocate cross-validation.
Representation in terms of the choice of target software is critical. We highlight five software

characteristics that should be considered when considering how techniques that improve non-
functional properties of software might generalise. Whilst some opportunities for improvement
might be universal, e.g., bloat removal, it is sensible to think that some can only be detected and
specially taken care of when considering a large panel of diverse software.
5https://survey.stackoverflow.co/2024/
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Programming language. Programming languages are driven by different coding paradigms and
development best practices, have access to entirely different libraries, and follow different syntax.
The vast majority of published research target C/C++ or Java software, ignoring the popularity
of languages such as Python, JavaScript, PHP, or SQL. Work is also almost entirely centred on
imperative programming features, neglecting functional functionalities essential, e.g., for languages
such as Haskell or Scala.
Software size. Software size is the second most indisputable critical characteristic. Small pro-

grams can be maintained much more rigorously, expose fewer and harder inefficiencies, and overall
provide much less material for repairs, which may impede some types of approaches [30]. On the
other hand, large software with hundred or more files may be difficult to improve for the complete
opposite reasons, as inefficiencies may be more numerous and potentially simpler to deal with, but
also be much harder to locate.

Architecture/Application. There are as many types of software as there are types of applica-
tions, and each may expose different specific types of inefficiencies. It is important that research
is conducted on all types of software, including for example GUI and terminal-based/command-
line software, single- and multi-purpose software, model-view-controller and monolithic soft-
ware, single-core and message-passing software, desktop/mobile/embedded software, or general
libraries/APIs and specific applications.

Application. Similarly, the application domain the selected software targets may strongly impact
the types of inefficiencies it might expose. We can cite for example system software (e.g., kernels,
compilers, drivers, general utility tools), media-related software (e.g., compression, image/video),
scientific software (e.g., machine learning, genomics), or games.
Number of contributors. Industry practices, as well as large open-source software, involve

many contributors that often don’t share a clear or deep understanding of the system in its entirety.
As with other characteristics, software written by a single developer, a small team, multiple teams,
or many infrequent contributors, may expose different types of inefficiencies.

5 Threats to Validity
Keywords used in the repository search may not cover all relevant literature. Due to its
restrictive nature, there might be whole types of relevant work that a keyword search is not able to
reveal. To mitigate that threat, we conducted first a preliminary search to discover all potential
keywords. We tried to hand-pick a large number of papers (100) using very diverse traits, including
research fields, types of non-functional properties improved, programming language, various
synonyms, etc. We then extracted from their titles and abstracts generic terms and performed a
frequency analysis, subsequently used to select the most potentially effective keywords.

Not all major publishers have been directly queried. Indeed, online libraries such as Springer
Link or Science Direct haven’t been considered due to their lack of complex query ability. Tomitigate
this threat, we considered a healthy combination of primary and secondary sources of work. First,
we choose ACM and IEEE, two of the main publishers in computer science6, both for conferences
and journals. Then, we considered Scopus, as in addition to being the online library of Elsevier it
also indexes many other publishers and in particular Springer, who publishes the Lecture Notes in
Computer Science (LNCS) series covering many conference proceedings in all areas of computer
science. Finally, we considered both Google Scholar and ArXiV to further increase the potential
coverage of the survey.

The repository search wasn’t exhaustive. Another threat is the very high number of papers
returned by the digital libraries (as clearly shown in Table 2), despite the restrictive compound

6https://www.spinellis.gr/blog/20170915/index.html
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queries. We choose to consider the 200 first papers returned by each query, rather than use even
more restrictive queries, to make sure not to miss papers otherwise covered. We also assume that
200 hundred papers, i.e., for example ten pages down on Google Scholar, is a reasonable limit to
what would be investigated manually. The repository search methodology, adapted from [173],
then ensures that such a large number of papers (up to 5000) can be effectively considered.

Relevant work may not have been correctly identified. The identification of relevant work
was a long repetitive manual task, and involuntary errors may impact conclusions drawn from
our survey. The main concern here is the relevance of the paper selection during the survey. To
mitigate this threat, we sampled 100 entries uniformly at random from the 3749 unique papers
yielded by the repository search and cross-checked that the resulting relevant work was the same
when processed independently by both authors of the survey.

Finally, the classification used in Section 3’s survey may not reflect the state of the art. In
order to validate both our results and our conclusions we turned toward prominent authors of the
literature. In total 1080 authors have been identified throughout our main survey step (on average
2.8 authors per paper). More precisely, we found 31 authors of three relevant papers, nine authors
of four papers, and seven authors of five or more papers. All 47 authors thus identified have been
contacted and their feedback has been used to improve this survey.

6 Conclusions
Our comprehensive survey of benchmarks in empirical work on the improvement of non-functional
properties of software provides several key insights:
(1) We observed a substantial body of literature on this topic, dating back approximately 25 years

and gaining significant traction in recent years.
(2) We were only able to find very few prominent software benchmarks, which poses a challenge

to reproducibility and hinders fast comparison with state of the art.
(3) We identified clear discrepancies between the characteristics of software studied in academic

research and those reported by industry and online surveys.
To address these issues, we compiled a detailed list of benchmarks used in the literature and

formulated specific recommendations for future work. Our findings emphasize the need for stan-
dardized benchmarks and a better alignment between academic research and real-world software
practices. We hope our survey and the accompanying artifact will drive further research and
foster improvements in the enhancement of non-functional properties of software. All the details
regarding the 425 identified papers, including the raw data pertaining to the systematic survey, are
available on our dedicated webpage: https://bloa.github.io/nfunc_survey.
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