Low-carbohydrate vs Low-fat Diets for the secondary prevention of cardiovascular diseases. A meta-analysis

Nikitara Katerina¹, **Kontogianni Meropi²**, Haidich Anna-Bettina³, Bountziouka Vasiliki¹

1 Department of Food Science and Nutrition, School of the Environment, University of the Aegean
2 Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University
3 Department of Hygiene, Social-Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki

Corresponding author: Katerina Nikitara, fnsd23001@fns.aegean.gr

INTRODUCTION

- ✓ Scientific evidence on the efficacy of low-carbohydrate diets (LCDs) compared to low-fat diets (LFDs) in the secondary prevention of cardiometabolic diseases (CVDs) is diverse (1).
- ✓ Only a limited number of reviews have employed precise meta-analytical methods with the most recent scientific evidence to derive quantitative estimates of the relative effect of these two diets (2).
- ✓ This study aims to compare the efficacy of LCDs (CHO <30% energy intake, EI) and LFDs (FAT <35% EI) against cardiovascular diseases (CVDs), based on the most recent scientific evidence.

METHODS (PROSPERO ID: CRD42023427216)

Population: Adults at increased risk of CVDs **Intervention:** Any dietary pattern intervention **Comparator:** No intervention or regular diet

Outcomes: Cardiometabolic outcomes

Study design: RCTs, prospective, case-control

Timeframe: 2013-2023

Language: English

This abstract provides a **preliminary analysis** from a subset of 5 eligible RCTs, focused on **triacylglycerols** (**TGs**) and **Body Mass Index** (**BMI**).

RESULTS

Overall, participants in LCDs had on average 0.30 mmol/L lower TG levels at the end of the intervention (95% Cl: -0.43; -0.17), while participants in LFDs had a smaller magnitude of the effect (i.e., -0.22 (-0.36; -0.08) mmol/L). However, we found no evidence of a significant impact of the LCD on TG levels against the LFD (change in mean diff. (95% Cl): -0.10 (-0.25; 0.05) mmol/L) (Figure 2). For participants in LCDs, BMI decreased by 2.04 kg/m2 on average (95% Cl: -2.77; -1.31), whilst BMI for those in LFDs decreased by 1.20 kg/m2 on average (95% Cl: -1.95; -0.44), with the reduction in BMI being greater for participants in the LCD compared to the LFD (-0.47 (-0.91; -0.04) kg/m2) (Figure 3).

CONCLUSION

In this meta-analysis, we observed that, at the end of the intervention, participants following LCDs had about 0.5kg/m2 lower BMI, equivalent to approximately 1.5kg, compared to LFDs, aligning with other meta-analyses (3). While the exact mechanism remains unclear, one potential explanation is the carbohydrate-insulin model, suggesting that LCDs are effective primarily because they lower insulin levels, a key hormone associated with an anabolic, fat-storing state (4). For TGS, no significant results were found, with findings being diverse in the literature (4,5), indicating the need for a more in-depth analysis.

Figure 1. PRISMA Flowchart

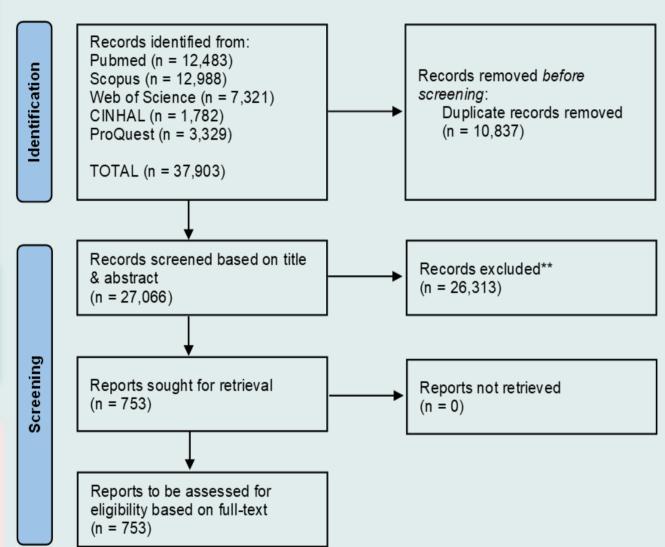


Figure 2. Forest plot for TGs

Study	Low carbohydrate			Standard fat					Mean diff.	Weigh
	Ν	Mean	SD	Ν	Mean	SD			with 95% CI	(%)
Bladbjerg et al., 2014	15	1	.39	18	3	.42	_		0.20 [-0.08, 0.48]	16.79
Gardner et al., 2018	218	32	.62	214	11	.61	-		-0.21 [-0.33, -0.09]	32.66
Bazzano et al., 2014	75	23	.48	73	07	.47	-		-0.16 [-0.31, -0.01]	28.60
Veum et al., 2017	20	53	.35	18	41	.41			-0.12 [-0.36, 0.12]	19.65
Guo et al., 2022	27	28	1.92	24	64	1.5		•	0.36 [-0.59, 1.31]	2.31
Overall							•		-0.10 [-0.25, 0.05]	
Heterogeneity: $\tau^2 = 0.0$	1, I ² = 5	56.59%,	$H^2 = 2$	2.30						
Test of $\theta_i = \theta_j$: Q(4) = 8	3.20, p =	= 0.08								
Test of $\theta = 0$: $z = -1.26$, p = 0.	21					S2100	0 00		
							5 (5	1 15	

Figure 3. Forest plot for BMI

Mean diff.		Weigh
CI	((%
2.65]] 3	3.3
-0.01]	69	69.3
-0.67]] 4	4.4
0.20]	22	22.4
5.70]] (0.4
-0.04]	1	

References

- 1. Pavlidou E, Papadopoulou SK, Fasoulas A et al. (2023) Metabolites Feb 6;13(2):240
- 2. Ma Y, Zheng Z, Zhuang L et al. (2024) Nutrients 16(1):152.
- 3. Yang Q, Lang X, Li W, Liang Y. The effects of low-fat, high-carbohydrate diets vs. low-carbohydrate, high-fat diets on weight, blood pressure, serum liquids and blood glucose: a systematic review and meta-analysis. European journal of clinical nutrition. 2022 Jan;76(1):16-27.
- 4. Ludwig DS, Ebbeling CB. The Carbohydrate-Insulin Model of Obesity: Beyond "Calories In, Calories Out". JAMA Intern Med. 2018 Aug 01;178(8):1098-1103.
- 5. Chawla S, Tessarolo Silva F, Amaral Medeiros S, Mekary RA, Radenkovic D. The effect of low-fat and low-carbohydrate diets on weight loss and lipid levels: a systematic review and meta-analysis. Nutrients. 2020 Dec