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A B S T R A C T

The urgency of decarbonizing the built environment requires precise modeling of building stock energy per
formance for effective large-scale planning and retrofitting. Despite advancements in data and modeling tech
niques, uncertainties persist in balancing model complexity and accuracy, especially in representing occupancy 
patterns and their impact on energy demand at district and urban scales. This study examines various approaches 
to building stock energy simulation and occupancy modeling for district-level heating and cooling energy de
mand, using 19 buildings at a Central London campus as a case study. Five scenarios were evaluated: Scenario A 
employs THERMOS, a data-driven approach; Scenario B uses a single dynamic thermal simulation model for the 
entire inventory; Scenario C applies a thermal model with a uniform occupancy schedule across all buildings; 
Scenario D uses a thermal model with five distinct occupancy profiles; and Scenario E assigns unique occupancy 
profiles based on energy use data. Results showed that Scenario E’s annual heating demand estimation closely 
matched metered data (12 % difference), while Scenario A underestimated by 44 %. Complex occupancy models 
improved peak heating load predictions, with Scenario E showing only a 4 % difference from metered data, 
though it may not always be feasible due to data and computational constraints. Scenario D emerged as a 
promising balance between accuracy and efficiency. For cooling demand, significant differences among scenarios 
(56.43 to 6.1 kWh/m2/Y) underscored the importance of accurate occupancy modeling. This research identifies 
the optimal balance between model complexity and prediction accuracy, introduces the Energy Data-Driven 
Occupancy Schedule (EDDOS) method, and highlights the potential of data-driven approaches to enhance en
ergy demand assessments.

1. Introduction

As buildings account for approximately 40 % of global energy con
sumption [1], decarbonisation of buildings at scale is a necessity to 
tackle climate change. Previous studies have demonstrated that the 
building sector’s zero carbon targets are far more within reach at the 
community level due to the synergies and efficiencies gained through 
mixed energy use, the economy of scale, and better integration of re
newables [2]. Specifically, thermal energy supply and load balancing 
are suggested to be more effective on scales larger than individual 
buildings [3]. Chow [4] demonstrated that achieving zero carbon targets 
at the district level needs up to 70 % less capital cost as compared with 

retrofitting individual buildings. O’Brien [5] suggested that to achieve 
zero energy buildings, it is critical to consider design flexibility at the 
building level to allow for better interaction between buildings and 
neighbourhoods’ energy systems and reach the best design configura
tions for a cluster of buildings and neighbourhoods. Walker et al. [6]
also underlined the importance of planning for built environment energy 
systems at the neighbourhood scale as this enhances the incorporation of 
distributed energy systems to achieve energy neutrality.

Utilization of District Energy Systems (DESs) is an efficient way of 
decarbonizing the heating and cooling provided to buildings [7], which 
also secures the energy supply by diversifying energy sources and the 
demand for heating and cooling. DESs offer a unique opportunity to use 
large scale renewable energies and recovered heat sources that cannot 
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be used otherwise, and their effectiveness and carbon-saving potential 
grow as they expand and connect to each other.

However, arguably, the full realisation of DES potential depends on 
reliable modelling and assessment of their thermal efficiency, CO2 
emissions, capital and running costs, along with their resilience in 
providing thermal comfort for building occupants under changing cli
matic conditions. Specifically, accurate assessment of building stock 
base and peak thermal loads is critical for optimum sizing of district 
energy networks. Oversizing increases initial and running costs and re
duces efficiency, and under-sizing could affect occupants’ comfort 
significantly.

Modelling DESs presents several challenges. First, the complexity of 
these systems, with multiple heat sources, a complex distribution 
network, and many end users, demands powerful computing resources 
and laborious efforts for reliable modelling and optimisation. Second, 
the fluctuating and complex nature of renewables on the supply side 
adds further challenges to modelling and simulation. Thirdly, capturing 
the fluctuating nature of space heating and cooling demands in build
ings, which vary based on indoor and outdoor environmental conditions 
along with occupants’ energy-related behaviour, poses another chal
lenge [8]. This latter point means that the accuracy and quality of heat 
demand models of individual buildings are crucial for the overall ac
curacy of DES models [9].

In this context, occupant behavior is one of the most critical variables 
in zero carbon design especially due to the improvement of buildings’ 
physical characteristics and energy systems. [10–14]. Many studies have 
demonstrated that occupants play a significant role in shaping energy 
demand in buildings [15–17], and are identified as the main source of 
the discrepancy between estimated and actual energy consumption and 
the resulting uncertainty in evaluating building energy consumption 
(see, for example, [18–20].

However, whereas building stock modelling has matured relatively 
in terms of using dynamic thermal simulation tools and relying on 
detailed and accurate geometric definitions of buildings, representation 
of occupants and their interactions with building environmental control 
systems remains a challenge. This aligns with the challenge underlined 
by previous studies that using single archetypes to represent all build
ings in a segment of the building stock can result in a loss of detail and 
accuracy in the model [21]. In particular, the paucity of high-resolution 
data on occupants’ energy-related behaviour at the urban scale leads to 
major difficulties in accurate and granular estimation of buildings’ en
ergy consumption [22], leading to a more challenging performance gap 
at the urban scale [23].

The main concern with occupant behaviour on the urban scale is the 
diversity among buildings of the same occupancy activity type, which 
should be accounted for to obtain realistic energy demand patterns [23]. 
Many studies in this area have primarily relied on standard peak values 
and schedules for occupancy and use of lights, equipment, and systems 
consistently across their sample size [24]. This approach tends to 
overlook the large diversity in the operation of buildings by occupants 
[25], which can result in an overestimation of occupancy loads with a 
direct impact on the estimation of energy demands for district energy 
networks. For example, in their study, Happle et al. [23] demonstrated 
that the use of uniform schedules and fixed set points lead to an over
estimation of peak cooling loads.

Other efforts to model occupants in building stock modelling have 
integrated computationally advanced stochastic models of occupant 
presence and behaviour. These models are meant to, and could poten
tially, enhance the representation of occupants in building performance 
models. But, as suggested by other studies [26,27], the reliability of 
these models and their cost-benefit especially for the purpose of stock 
modelling are rather debatable. Particularly, integration of these 
computationally expensive models into building stock energy models 
(which by their nature are computationally demanding themselves) is 
incredibly challenging. This has led many researchers to rely on single 
runs of stochastic models (albeit across sub-hourly timesteps of annual 
simulations), which could largely undermine the benefits of stochastic 
models to yield probable ranges of building performance indicators 
(rather than single values of these indicators).

In a wider perspective, recent advances in data technologies have 
provided opportunities for a deeper understanding of building occupant 
patterns [28]. For example, the use of passive Wi-Fi sensing methods has 
shown potential for estimating occupant behaviour on an urban scale, 
providing a low-cost and privacy-friendly solution [29]. However, 
despite these developments, there is still a need for more comprehensive 
and high-quality datasets [30] along with the development and exami
nation of fit-for-purpose occupancy modelling approaches to improve 
the accuracy of building energy modelling at urban scale, which is of 
critical importance for demand-side modelling in design and assessment 
of DESs.

Occupancy modelling plays a critical role in forecasting energy 
consumption within buildings. Two difficulties delay the credibility and 
efficacy of occupant behavior models in evaluating energy consumption 
and efficiency at the aggregate level: 

1. Data Inadequacy: Obtaining comprehensive occupancy data is 
limited, which impairs the ability to gather essential occupancy in
formation [24,31,32]

2. Inadequate Assumptions: simplifying assumptions to depict the com
plexities of real-world occupant behavior, potentially resulting in 
mistaken predictions of energy usage and comfort levels [33].

Selecting the right level of representing Occupancy Profiles is a 
delicate matter, as fixed occupancy profiles often do not account for the 
variability and diversity in occupancy within the same buildings’ oc
cupancy profile due to factors such as seasonality and other factors. This 
can result in substantial errors in estimating building energy consump
tion [24]. Modelling this diversity is challenging, as it needs detailed 
information about individual occupants’ activities and thermal comfort 
preferences [31]. Most existing models model aggregate occupant 
behavior schedules, rather than capturing the diversity among different 
social demographics and building types [33].

The complexity of these models can range from simple static as
sumptions to detailed dynamic simulations. The choice of modelling 
approach affects the accuracy of energy demand estimations, which in 
turn influences the effectiveness of decarbonization strategies in district 
energy systems.

To conclude, the main research gap identified in literature was the 
miss-representation of occupancy diversity at stock level and lack of 

Nomenclature

EDDOS Energy Data-Driven Occupancy Schedule
DES District Energy System
NCM National Calculation Method
AHD Annual Heating Demand
ACD Annual Cooling Demand
HDD Heating Degree Days
HVAC Heating, Ventilation, and Air Conditioning
UK United Kingdom
UCL University College London
3D Three-Dimensional
ASHRAE American Society of Heating, Refrigerating and Air- 

Conditioning Engineers
CO2 Carbon Dioxide
GNN Graph Neural Network
LSTM Long Short-Term Memory
Wi-Fi Wireless Fidelity
nZEB nearly Zero Energy Building
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reliable alternatives for stochastic models at stock level. In this context, 
the research aims to answer the following research questions: 1. What is 
the ideal balance between model complexity and prediction accuracy in 
the context of district level energy demand estimations? 2. How does the 
use of different occupancy modeling techniques affect energy demand 
assessments? 3. To which extent energy data-driven occupancy sched
ules could enhance the reliability of energy demand assessments at 
district level as an alternative to stochastic models?

2. Method

2.1. Overview

Five different scenarios of modeling occupant behavior and building 
stock energy were proposed to conduct comparative analysis. The five 
scenarios (A-E) are visualized in Fig. 1. These scenarios range from 
simple and fast (Scenario A) to complex and time-consuming (Scenario 
E).

These models aim to estimate annual and peak heating and cooling 
demands, which are key performance indicators (KPIs) for designing 
District Energy Systems (DES) and built environment decarbonization. 
Although the study focuses on a sample of 19 buildings, the employed 
building models represent typical characteristics of building stock 
models. This allows the findings to be applied to large-scale building 
stock energy simulations, identifying the most cost-effective occupancy 
models for integration into computationally intensive building stock 
energy modeling endeavors.

Scenario A represents a data-driven method with the tool producing 
its own deterministic occupancy schedules. While Scenarios (B-E) use a 
bottom-up method to estimate energy demand in buildings through 
physics-based modelling, specifically using EnergyPlus software to 
generate dynamic thermal models. The scenarios of the bottom-up 
method are independent of historical data but require numerous in
puts and high computing data and effort. The advantages of a bottom-up 
approach include the ability to simulate various retrofitting and future 
weather scenarios. In this research, it was assumed that, due to the na
ture of educational buildings, the occupants are unable to change the 
fixed thermostat settings. Occupancy modeling methods for building 

stock energy demand can be categorized into deterministic, stochastic, 
and data-driven approaches. Deterministic methods use fixed input pa
rameters and predefined schedules, providing a straightforward but less 
flexible approach. Stochastic methods introduce randomness to account 
for variability in occupant behavior and environmental conditions, 
enhancing the realism of simulations. Data-driven approaches leverage 
actual energy consumption data to generate occupancy patterns, offer
ing high accuracy and adaptability. In this research two occupancy 
modelling approaches were implemented within scenarios (B-E) build
ing models: deterministic standard-based schedules and a novel energy 
data-driven occupancy model. Stochastic occupancy behavior modeling 
at the stock level presents significant computational challenges due to 
the inherent complexity and variability of occupant behaviors [34–36]. 
So, it has been excluded from this research.

2.2. Case study buildings

Nineteen buildings of UCL’s Bloomsbury campus, were selected 
based on the data availability and stock representation of various types 
of occupancy types and Heating Ventilation and Air Conditioning 
(HVAC) systems. HVAC systems were defined by Display Energy Cer
tificate (DEC) as in Table 1.

The five distinct occupancy types used in scenarios (B-E) were based 
on the National Calculation Method (NCM) include: Administration of
fice (A), Teaching classroom (T), Library (Lib), Chemistry/Physics Lab 

Fig. 1. Simulation Scenarios (A-E) Comparative Analysis of building stock energy and Occupancy Modeling Approaches.

Table 1 
HVAC Type.

DEC building environment 
categories

HVAC type

Heating and mechanical ventilation 
(Air conditioning)

HVAC 1: Heating, cooling, and mechanical 
ventilation system

Heating and natural ventilation (Air 
conditioning)

HVAC 2: Heating, cooling, and natural 
ventilation system

Heating and mechanical ventilation HVAC 3: Heating and mechanical 
ventilation system

Heating and natural ventilation HVAC 4: Heating system and natural 
ventilation
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(LC), Engineering Lab (LE), and Biology/Medicine Lab (LM). Academic 
Chemistry/Physics Lab (LC) profile is not included, but it has a similar 
profile to LE & LM profiles. See Table 2.

2.3. Building performance indicators and evaluation of occupancy models

These indicators represent the annual total and hourly peak amount 
of heating and cooling energy that must be delivered to the buildings to 
maintain the heating and cooling set-points. 

AnnualHeatingDemand =
∑8760

t=1
Qheating(t)

AnnualCoolingDemand =
∑8760

t=1
QCooling(t)

The estimated heating demand values were then multiplied by an effi
ciency factor and compared with the metered heating energy to assess 
the accuracy of building model estimations under different occupancy 
modelling approaches. In terms of cooling, however, as the UCL building 
stock is not served with a central cooling system, the estimation of 
cooling demand only served to discuss the implications of different oc
cupancy modelling approaches on a theoretical level (and to inform 
future development of the DES serving the building). Previous research 
demonstrated that models calibrated using heating season data could 
provide acceptable cooling load predictions but emphasized the need for 
careful consideration of model parameters that affect both heating and 
cooling performance [37]. Raftery et al. (2011) investigated the 

transferability of calibrated energy models. They found that models 
calibrated for one season (e.g., heating) could provide reasonable pre
dictions for another season (e.g., cooling)[38]. Coakley et al. (2014) 
reviewed calibration techniques for building energy simulation and 
noted that heating-calibrated models can provide insights into cooling 
performance [39]. Other researchers considered a similar approach 
[40].

2.4. Building stock energy and occupancy modelling scenarios

2.4.1. Scenario A- Data driven approach
This Scenario is based on the data driven approach using a tool called 

THERMOS. So, this tool was selected to represent the data-driven 
approach for estimating thermal demand at district level. This web- 
based, free-access tool quickly analyzes different thermal network pos
sibilities [41]. THERMOS uses advanced machine learning modeling 
methods and algorithms, as well as real data from thermal networks, to 
estimate annual heat demand in kWh/yr and peak heat demand in kW. 
The building’s peak heat demand is calculated from its annual heat 
demand using a linear model. The equation was derived from a large 
sample of published UK half-hourly domestic gas consumption data. The 
main value estimated is the annual heat demand, which consists of space 
heat demand and hot water demand, calculated using different models 
and combined [42].

THERMOS has a deterministic occupancy schedule that can be edited 
for the entire building stock collectively. It does not explicitly account 
for occupant behavior at the individual building level, which limits its 
ability to provide advanced insights into the role of occupant behavior 
modeling.

2.4.2. Scenario B − Simplified archetyping
This approach utilizes a streamlined archetyping strategy, where a 

single exemplary building thermal model is applied across the entire 
building inventory. The process involves constructing representative 
building archetypes, which serve as templates to forecast energy usage 
and evaluate the impact of the building sector on energy efficiency. 
These archetypes are simplified representations of actual buildings, 
chosen based on their dominant characteristics and energy consumption 
patterns. The objective is to create a manageable and easily compre
hensible model that provides a broad overview of the energy efficiency 
performance of various building types within the sector. This approach 
allows for a simplified analysis of the building stock, enabling the 
identification of areas where energy savings can be achieved and the 
prioritization of interventions to improve energy efficiency on a large 
scale.

In this research, five archetypes of existing buildings were selected to 
represent the entire building stock: Alexandria House, Andrew Huxley, 
Physics Building, Cruciform Building, and Rayne Institute. These 
selected archetypes were analyzed using the thermal simulation tool 
EnergyPlus to predict the annual and peak heating and cooling demands 
for each building. The results of the five thermal simulations were 
averaged to obtain a single value (mean archetype) for each load, which 
was then extrapolated to the stock of 19 buildings based on the area ratio 
of the mean archetype building to the whole stock. While the five models 
provided dynamic hourly results, only the annual values were used for 
extrapolation. This approach utilized a fixed standard-based occupancy 
schedule, namely NCM-Academic, which is further explained in the next 
section.

2.4.2.1. Fixed standard-based occupancy schedules. In this deterministic 
approach to occupancy representation, the UK National Calculation 
Method (NCM) [43] is used as the reference for occupancy-related as
sumptions. NCM is a modelling guide provided in the UK in support of 
building performance simulation and assessments mandated in 
Approved Document Part L (Conservation of fuel and power). NCM 

Table 2 
List of the 19 buildings were chosen for stock buildings test.

Building Name Area in 
m2

Occupancy Type HVAC

25 Gordon Street 6,497 Administration office 
(A)

UCL −
HVAC 4

Central House 5,068 Administration office 
(A)

UCL −
HVAC 3

IOE − 24–28 Woburn 
Square

781 Administration office 
(A)

UCL −
HVAC 4

22 Gordon Street 7,252 Engineering Lab (LE) UCL −
HVAC 1

Malet Place Engineering 
Building

1,212 Engineering Lab (LE) UCL −
HVAC 1

Physics Building 5,071 Engineering Lab (LE) UCL −
HVAC 3

26 Bedford Way 710 Library (Lib) UCL −
HVAC 2

Bloomsbury Theatre 3,653 Library (Lib) UCL −
HVAC 4

DMS Watson Building 5,686 Library (Lib) UCL −
HVAC 3

Alexandra House 2,025 Biology/Medicine Lab 
(LM)

UCL −
HVAC 3

Andrew Huxley Building 1,963 Biology/Medicine Lab 
(LM)

UCL −
HVAC 1

Cruciform Building 14,509 Biology/Medicine Lab 
(LM)

UCL −
HVAC 1

Rayne Institute 5,391 Biology/Medicine Lab 
(LM)

UCL −
HVAC 3

1–4 Malet Place 8,573 Teaching classroom (T) UCL −
HVAC 4

16–18 Gordon Square 1,160 Teaching classroom (T) UCL −
HVAC 4

33–35 Torrington Place 1,039 Teaching classroom (T) UCL −
HVAC 3

Egyptology 1,090 Teaching classroom (T) UCL −
HVAC 3

Foster Court 2,471 Teaching classroom (T) UCL −
HVAC 3

Gordon House 1,751 Teaching classroom (T) UCL −
HVAC 3

S. Al-Saegh et al.                                                                                                                                                                                                                                Energy & Buildings 329 (2025) 115269 

4 



comprises of the underlying dynamic building simulation methods and 
standard databases for building construction and activities.

Table 3 gives the occupancy-related assumptions considered in this 
study. Scenario B&C will use a single schedule: “Academic.” Where 
scenario D will use five schedules of this table 3. Fig. 2 illustrates UK 
NCM weekday schedules of occupancy, use of lights and equipment used 
in this study.

2.4.3. Scenario C – Thermal Dynamic Models with single occupancy 
schedules

In Scenario (C) a Bottom-up physical approach was considered, 
creating a building-by-building thermal dynamic model for the whole 
stock. The same determinist single occupancy schedule of scenario (B): 
NCM-Academic, was used again and assigned for each building. A Dy
namic Building Stock Model (DBSM) was developed to generate building 
by building thermal dynamic models for UCL University Campus, see 
Fig. 3.

DBSM is flexible in collecting data; it relies on available data with 
minimal requirements. Even so, it provides the opportunity for further 
data, in case of availability, to fine-tune the models. DBSM synergizes 
the combination of established stock modelling approaches with the 
pioneered automation of the SimStock modelling tool [44]. This is by 
building a DBSM 3DStock (database source) to feed Sim stock and 
generate building-by-building thermal models. DBSM development 
consists of two parts:

2.4.3.1. DBSM 3DStock (database). The initial step involves integrating 
multiple datasets to establish sets of inputs that are commonly utilized 
by individual building energy models. These data came from a public 
source, and it links modelling information to gather: Building name, 
Energy Performance Certificate (EPC), Display Energy Certificate (DEC), 
Building usage, footprint, external geometrical definition, Unique 
Property Reference Number (UPRN) (1). Databases can be classified 
into: (1) General building information. Building names and addresses 
can be found from various sources such as: UCL website, Ordnance 
Survey (OS), Display Energy Certificate, Google Maps, campus moni
toring platform (Fabric) and Valuation Office Authority (VOA). The 
buildings name list provided by UCL estates (UCL Website) was 
considered in this study, as some building names could slightly vary.

(2) Geometrical building data. Geometrical data is what makes this 
approach unique when compared to archetyping approaches which do 
not take into consideration the shape of each building. GIS-based data
sets can be taken from Ordnance Survey (OS) which provides geomet
rical data for the building stock of Great Britain. OS provides 2D 
polygons for buildings in OS Master Map, topography datasets also 
include the average height of each entity [45].

Lidar data is a reliable source of GIS-based polygons of buildings 
areas. It can be used to check against OS data and fill in the missed data. 
Building areas can also be found from VOA, Fabric, UCL estate and, for 
checking purposes, Google Maps. For Window to Wall Ratio (WWR) 

values were proposed in guidance with a survey for London schools [46]
as in Table 4. Unfortunately, specific data of WWR for university 
buildings has not been found in the literature.

(3) Non-geometric building data. Building construction thermal 
properties need to be considered carefully, as they are especially 
important in the modelling process for their significant impact on the 
results. rdSAP method [47] was used as it provides U-value assumptions 
for various building age groups. As in the following Table 5 buildings 
were categorized based on their age, and for each category there is an 
assumption of U-Value for each building component (Wall, Roof, Floor 
and Glassing).

Building activities were provided by both DEC and UCL Estate, UCL 
Estate information was more correct in respect of building activity 
taking place as in Table 6.

2.4.3.2. SimStock (Thermal models generator). SimStock, a Python- 
based tool, automates the creation of thermal building models. It ach
ieves this by supplying data synthesized from the DBSM 3DStock to the 
EnergyPlus engine, as described in part 1. SimStock was developed at 
UCL, it uses EnergyPlus and directly extracts information on building 
geometry, materials, and activities from 3DStock [48]. The resulting 
thermal models are in idf format, which aligns with the requirements of 
the EnergyPlus simulation program. Unlike archetyping, this method 
does not oversimplify or disregard the unique shapes of buildings, 
allowing for modelling unique specific parameters of each building.

2.4.3.3. DBSM validation. In the process of validating our models, we 
have adopted the guidelines provided in CIBSE TM63 Operational Per
formance: Building Performance Modelling [49]. These guidelines 
pertain to single-building measurement and verification practices. While 
the guide was initially designed for individual buildings, we have 
determined that its methodology can be adapted to suit the re
quirements of our stock model [50], as illustrated in Fig. 4.

2.4.4. Scenario D- Thermal dynamic models with five occupancy schedules
This is a bottom-up physical approach as well, was built on scenario 

(C) to consider building by building thermal dynamic model for the 
whole stock. Five NCM occupancy schedules (A, T, LE, LM and LIB) as in 
Table 3 were spread on the buildings of the stock. The aim of this sce
nario is to evaluate the diversification effect on the energy consumption 
of the whole stock.

2.4.5. Scenario E- Thermal dynamic models with EDDOS occupancy 
schedules

This scenario uses the same approach as scenarios (C&D), which 
involves building thermal models for individual buildings. The occu
pancy schedules in this scenario are derived from each building’s energy 
use data, resulting in a unique occupancy schedule for each building. 
This captures the unique occupancy patterns of each building more 
realistically compared to standard profiles used in previous studies.

Table 3 
NCM Occupancy-related assumptions under the standard-based Approach.

Model input parameter Administration 
(A)

Teaching (T) Library (Lib) Academic (Chemistry/Physics (LC), Engineering (LE), biology/ 
medicine (LM))

People maximum density 
[persons/m2]

0.103 0.2034 0.0986 0.10625

Occupancy schedule C2_Uni_Office Uni_ClassRm_Occ LibMusGall_CellOff_Occ Uni_Lab_Occ
Metabolic rate [W/persons] 123 140 123 160
Latent heat fraction 40 % 50 % 40 % 39 %
Lighting maximum density 

(Lux)
300 300 300 500

Lighting schedule Uni_CellOff_Light Uni_ClassRm_Light LibMusGall_CellOff_Light Dwell_DomToilet_Light
Equipment maximum density 

[W/m2]
11.99 4.74 13.91 8.73

Equipment schedule Uni_CellOff_Equip Uni_ClassRm_Equip LibMusGall_CellOff_Equip Uni_Lab_Equip
Hot Water Supply (l/day/m2) 0.2369 0.4678 0.1965 0.244375
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The new procedure was pioneered to generate Energy data driven 
occupancy schedules (EDDOS) [35], it aims to model occupancy pat
terns and represent diversity among buildings more realistically, 
without relying on a stochastic modelling process, First, the extent to 
which energy use data correlated with the hours of the day. While mete 
red gas data did not suggest a correlation with the hours of the day, 
electricity use showed a good correlation (with an R-squared of 0.84) in 
the studied building Fig. 5. On this basis and following the periodic 
pattern of weekly electricity use in the building see Fig. 6, an algorithm 
was set up to translate the fluctuating electricity use into occupancy 
schedules. To this end, the minimum and maximum values of hourly 
electricity consumption were identified in each week, and these were 
assigned to the lowest and highest occupancy levels respectively Fig. 6. 
Between these two ends, the occupancy variations were assumed to 
follow the changes in electricity use linearly. To account for weather- 
dependant and seasonal changes in electricity use, each week data 
was processed separately. Thus, the procedure returned non-repeating 
daily profiles of occupancy corresponding to the variations of elec
tricity use. The Procedure of generating EDDOS schedule is explained in 
Fig. 7. For this study, year 2019 electricity use data was used to identify 
the occupancy profiles, as this represented a building usage pattern 
before Covid-19 pandemic. 2019 was the only year before COVID-19 
that had all the necessary data for our research, including hourly gas 
and electricity meter readings from nineteen buildings.

Furthermore, the building models were simulated for the year 2019, 
as it represents an occupancy pattern before the Covid-19 pandemic. 
This also allows the study to assess the performance of the energy data- 
driven model based on the year used for its training (2019).

3. Results

3.1. Annual heating demand

Fig. 8 presents a comparison of annual heating loads for 19 buildings 
at University College London’s Bloomsbury campus, using different 
modelling scenarios (A-E) against metered data from the Fabric system 
and CIBSE good Practice. This represents the actual metered data and 
serves as the baseline for comparison. (A) Thermos: A data-driven sce
nario using machine learning, showed a 16 % underestimation 
compared to the metered data, which is similar to CIBSE good practice. 
(B) Archetyped: A simplified scenario using a single archetype for all 
buildings, resulting in a significant 44 % underestimation. (C) Single 
Occupancy: A more detailed scenario using individual building thermal 
models but with a single occupancy schedule, showing a 31 % under
estimation. (D) 5 Patterns/Stock: This scenario incorporates five distinct 
occupancy profiles, resulting in a 17 % underestimation. (E) Single 
pattern/Building: The most complex scenario, assigning a unique oc
cupancy profile to each building, showing the closest estimation with 
only a 12 % underestimation.

These results demonstrate several key findings: 1. Increasing 
complexity in occupancy modelling generally improves the accuracy of 
annual heating load predictions. This is evident in the progression from 
the highly simplified Archetyped scenario (B) to the more complex 
Single pattern/Building scenario (E). 2. The data-driven Thermos sce
nario (A) performs well, with only a 16 % underestimation. This suggests 
that machine learning techniques can provide relatively accurate esti
mates with less computational complexity. 3. The significant improve
ment in accuracy between the Archetyped scenario (B) and the Single 
Occupancy scenario (C) highlights the importance of using individual 
building thermal models rather than a single archetype for the entire 
stock. 4. The further improvements seen in scenarios D and E underscore 
the value of incorporating more detailed occupancy profiles. This aligns 

Fig. 2. Weekday schedules of NCM occupancy schedules.
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with the study’s emphasis on the importance of occupancy modelling in 
building energy simulations. 5. The most complex scenario (E) provides 
the closest estimate to the metered data. However, the marginal 
improvement over scenario D (5 Patterns/Stock) raises questions about 
the trade-off between increased computational complexity and 

improved accuracy.

3.2. Peak heating demand

Fig. 9 illustrates the comparison of peak heating demand estimates 
across different modelling scenarios for the set of 19 buildings. The 
“Fabric (metered)” value of 5,450 kW represents the actual measured 
peak heating demand, serving as the reference point for assessing the 
accuracy of different modelling approaches. scenario A (Thermos): This 
data-driven approach underestimates the peak demand by 43 %, sug
gesting limitations in capturing peak loads using machine learning 
techniques. Scenario B (Archetyped): This simplified archetype method 
significantly overestimates the peak demand by 53 %, highlighting the 
risks of oversimplification in building stock modelling. Scenarios C-E: 

Fig. 3. DBSM development.

Table 4 
Window to wall ratio Assumptions.

Campus stock model age bands Window to Wall Ratio (WWR)

Pre 1914 33 %
1918–1939 35 %
1945–1980 38 %
Post 1980 30 %

Table 5 
U-Values assumptions.

DEC building age categories rdSAP age bands Campus stock model age 
bands

Wall 
U-Values (W/ 
m2K)

Roof 
U-Values (W/ 
m2K)

Floor 
U-Values (W/ 
m2K)

Glazing 
U-Values (W/ 
m2K)

Pre-world war I (Pre 1914) A. Before 1900, B. 
1900–1929

Pre 1914 1.7 2.3 1.5 4.8

Inter war (1918–1939) B. 1900–1929, 
C. 1930–1949

1918–1939 1.7 2.3 1.5 4.8

Post-war regeneration and expansion 
(1945–1980)

C, D, E, F: 1930–1982 1945–1980 1.35 1.5 1.4 4.8

Modern (post-1980) G, H. I, J, K, L: 
1983–2012

Post-1980 0.4 0.4 0.94 3.1

S. Al-Saegh et al.                                                                                                                                                                                                                                Energy & Buildings 329 (2025) 115269 

7 



These represent increasingly complex dynamic simulation methods with 
varying occupancy modelling strategies. The transition from a single 
occupancy type (C) to multiple occupancy patterns (D) improves the 
peak demand estimate, reducing overestimation from 17 % to 5 % for 
diversified (Div) calculations. Scenario (E) is the most detailed scenario, 
using building-specific occupancy profiles, shows mixed results with 
slight improvements in some cases but not consistently better than 
scenario D.

For Aggregated vs. Diversified Peaks: scenarios C-E, both aggregated 
(Agg) and diversified (Div) peak calculations are presented. Diversified 
peaks generally provide closer estimates to the measured value, high
lighting the importance of considering load diversity in district energy 
system planning. Fig. 10, explain how peaks are calculated on hourly 
basis.

There is a general trend of improved accuracy from scenarios A to E, 
except for the archetype scenario (B). This suggests that increasing the 
complexity of occupancy modelling and using dynamic simulations can 
lead to more accurate peak demand estimations.

Scenarios E and D show the closest matches, within 4 % and 5 %, 
respectively. This indicates that using multiple occupancy patterns may 
offer a good balance between model complexity and accuracy for peak 
load estimation.

3.3. Annual and peak cooling demands

Fig. 11 illustrates the results of a comparative study on different 

scenarios to modeling cooling energy demand for the 19 buildings. Due 
to the absence of a dedicated cooling meter, the study uses the model (E) 
as the baseline for comparison as it shown best accuracy for heating 
loads. Comparisons are for reference purposes only and do not represent 
calibrated results for cooling loads.

Fig. 11 presents five different scenarios to modeling cooling demand: 
(A) THERMOS: A data-driven approach using machine learning, esti
mating 56.4 kWh/m2/year, 825 % higher than the baseline. The data for 
space cooling demand is limited in Europe [51], this makes the Machine 
learning tools like THERMOS not suitable to predict cooling, so 
THERMOS is showing unrealistic results. (B) Archetyped: A simplified 
scenario using a single archetype for all buildings, estimating 21.3 kWh/ 
m2/year, 249 % higher than the baseline. (C) Single Occ: Using indi
vidual building thermal models but with a single occupancy schedule, 
estimating 15.35 kWh/ m2/year, 152 % lower than the baseline. (D) 5 
Patterns/Stock: Incorporating five distinct occupancy profiles, esti
mating 7.17 kWh/year, 17 % higher than the baseline. (E) Single 
pattern/Building: The most complex scenario, assigning a unique oc
cupancy profile to each building, estimating 6.1 kWh/m2/year, which is 
set as the baseline (0 % difference). CIBSE benchmark is 14 kWh/m2/ 
Year. These results reveal several important insights: There is a sub
stantial variation in cooling demand estimates across different modeling 
scenarios, ranging from 6.1 kWh/m2/year to 56.43 kWh/m2/year. This 
highlights the critical impact of modeling methodology on cooling de
mand predictions. The THERMOS scenario significantly overestimates 
cooling demand compared to other methods. This could be due to 

Table 6 
Occupancy (activity) schedules.

UCL DEC Tracker Building Use NCM Profiles Associated

A Admin Uni_CellOff_Occ Uni_CellOff_Light Uni_CellOff_Equip Uni_CellOff_Heat Uni_CellOff_Cool
T Teaching Uni_ClassRm_Occ Uni_ClassRm_Light Uni_ClassRm_Equip Uni_ClassRm_Heat Uni_ClassRm_Cool
LIB Libraries LibMusGall_CellOff_Occ LibMusGall_CellOff_Light LibMusGall_CellOff_Equip LibMusGall_CellOff_Heat LibMusGall_CellOff_Cool
LC Lab-Chemistry Uni_Lab_Occ Uni_Lab_Light Uni_Lab_Equip Uni_Lab_Heat Uni_Lab_Cool
LE Lab-Engineering Uni_Lab_Occ Uni_Lab_Light Uni_Lab_Equip Uni_Lab_Heat Uni_Lab_Cool
LM Lab-Medicine Uni_Lab_Occ Uni_Lab_Light Uni_Lab_Equip Uni_Lab_Heat Uni_Lab_Cool
R Residential Uni_Bed_Occ Uni_Bed_Light Uni_Bed_Equip Uni_Bed_Heat Uni_Bed_Cool

Fig. 4. DBSM Validation process.
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limitations in the machine learning model’s training data or assump
tions, particularly for cooling in the specific context of the UCL campus. 
The progression from the Archetyped scenario to more complex occu
pancy models (Single Occ, 5 Patterns/Stock, Single pattern/Building) 
shows a general trend of decreasing cooling demand estimates. This 
suggests that more detailed occupancy modeling tends to result in lower 

cooling demand predictions. The estimates from the two most complex 
scenarios (D and E) are close, indicating a potential convergence of re
sults as model complexity increases. This suggests that the additional 
computational effort required for the most complex scenario (E) may not 
provide significantly different results from the slightly simpler scenario 
(D).

Fig. 5. Electrical consumption versus hours of the day for the year 2019.

Fig. 6. An example weekly profile of electricity consumption and assignment of minimum and maximum occupancy based on minimum and maximum elec
tricity use.
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Fig. 7. EDDOS Development Procedure.
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Fig. 12 compares peak cooling load estimates for the set of buildings. 
The results reveal significant variability in peak cooling load estimates 
across different modelling scenarios. The THERMOS scenario (A), a 
data-driven method, shows the highest estimate at 15,069 kW, which is 
530 % higher than the baseline (Scenario E Div.). This substantial 
overestimation suggests potential limitations in its application to cool
ing load estimation for this specific building stock. The Archetyped 
scenario estimates 7,053 kW, 195 % above the baseline, while the Single 
Occ scenario yields 6,073 kW (diversified) and 6,141 kW (aggregated), 
154 % and 157 % above the baseline respectively.

The 5 Patterns/Stock scenario estimates 2,302 kW (diversified) and 
2,383 kW (aggregated), only − 4% and − 0.3 % above the baseline. The 
most complex Single pattern/Building scenario predicts 2,390 kW for 
diversified (with zero difference and serving as the baseline) and 2,514 
kW for aggregated, which is 5 % above the baseline. This pattern in
dicates that more detailed occupancy modeling tends to result in lower 
peak cooling load predictions.

The graph also presents both diversified (Div) and aggregated (Agg) 
peak calculations for the more complex scenario. Consistently lower 
diversified peak estimates compared to aggregated ones (e.g., 2,302 kW 

Fig. 8. Annual Heating Load ((kWh/m2/Year)) for nineteen buildings.

Fig. 9. Staggered vs aggregated Peak Heating Loads For stock of 19 Buildings (in kW).
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vs 2,383 kW for 5 Patterns/Stock) emphasize the importance of 
considering load diversity in district cooling system design. The 
convergence of results between the 5 Patterns/Stock and Single pattern/ 
Building scenarios (2,302 kW vs 2,390 kW for diversified peaks) sug
gests a potential optimal point of complexity in modeling.

3.4. The role of occupancy profiles

From the previous results, it was observed that the fluctuation in the 
outcomes is higher among scenarios A, B, and C, where completely 
different approaches for modeling building energy stocks were consid
ered in each scenario. On the other hand, there are much fewer differ
ences between scenarios D and E, as the same building-by-building 
modeling approach was used in both. The main difference was in oc
cupancy modeling approach, where a unique building-by-building oc
cupancy model was used in scenario E, while scenario D considered the 5 
NCM deterministic schedule. So, this led to focus on the differences 
between NCM schedules and EDDOS. As this has a significant impor
tance in understanding diversification effect at stock level.

Figs. 13-18 illustrate the daily averaged occupancy profiles over one 
year resulted from generating different Energy Data Driven Occupancy 
Schedules (EDDOS) compared with UK-NCM occupancy schedules 
investigated in this study.

As it can be seen in the figures that EDDOS averaged profiles are 
lower that NCMs in all occupancy profiles. Fig. 13, Fig. 15, Fig. 16, are 
showing two different EDDOS occupancy profiles of each building for 
the same occupancy profiles (T, LE, LIB). This confirms the purpose of 
this study of having a unique profile of each building to assess the effect 
of diversification of occupants. The other profiles: T, LM and LC has only 
one suitable building electricity data to generate the required EDDOS 
file, so one profile was generated for each profile.

Fig. 19 explains the principle of occupancy Fraction-Hours (F-H) per 
year of each schedule. Real EDDOS generated values of (F-H) for 
buildings are shown as in Fig. 20. This research aims to examine EDDOS 
approach at the stock level by checking the effect on building energy 
performance and how close to real metered data. Fig. 20 also shows that 
the general trend of EDDOS Fraction-Hours per year is lower than NCM. 
EDDOS Average is 1823, while NCM average is 2187. This trend can be 

Fig. 10. Peak of aggregated (diversified) vs aggregated peak (non-diversified).

Fig. 11. Annual Cooling load for 19 Buildings (in kWh/m2/Year).
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Fig. 12. Cooling Peak Loads in kW.

Fig. 13. Averaged EDDOS Teaching (T) Occupancy profile vs NCM.

Fig. 14. Averaged EDDOS Administration (A) Occupancy profile vs NCM.
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seen for each occupancy profile except in administration profile (A) 
where NCM is equal or lower than EDDOS. It also shows many EDDOS 
schedules when data is available for same occupancy type: EDDOS1, 
EDDOS2, ….… etc.

4. Discussion

This research provides several deeper insights. One significant 
insight is the importance of accurately representing occupant behavior 
in energy models. The novel Energy Data-Driven Occupancy Schedule 
(EDDOS) method introduced in this study demonstrated the potential to 
capture building-specific occupancy patterns more realistically 

compared to standard profiles. This method leverages actual energy use 
data to generate occupancy schedules, which can significantly enhance 
the accuracy of energy demand predictions. The findings align with 
previous work by Tahmasebi and Mahdavi (2017), who emphasized the 
sensitivity of building performance simulation results to the choice of 
occupants’ presence models [12,52]. Additionally, the study highlights 
the value of using multiple occupancy patterns to balance accuracy and 
computational efficiency, a concept supported by Gaetani et al. (2016), 
who advocated for fit-for-purpose modeling strategies [13,52].

The research also uncovered some challenging findings regarding the 
resolution of occupant behavior models. One of the primary challenges 
is the data inadequacy for high-resolution occupancy modeling at the 

Fig. 15. Averaged EDDOS LE Occupancy profile vs NCM.

Fig. 16. Averaged EDDOS Library (LIB) Occupancy profile vs NCM.
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Fig. 17. Average EDDOS Lab Medicine (LM) occupancy profile vs NCM.

Fig. 18. Average EDDOS Lab Chemistry vs NCM.

Fig. 19. Fraction-Hours for occupancy over one year.
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urban scale. The lack of comprehensive and high-quality datasets im
pairs the ability to gather essential occupancy information, leading to 
substantial errors in estimating building energy consumption. This issue 
is compounded by the simplifying assumptions often made to depict the 
complexities of real-world occupant behavior, which can result in 
mistaken predictions of energy usage and comfort levels. The study’s 
comparison of different modeling scenarios revealed that more complex 
occupancy approaches generally improved the accuracy of energy de
mand estimations. However, the marginal improvement in accuracy 
between the most complex scenario (E) and the diversified scenario (D) 
raises questions about the trade-off between increased computational 
complexity and improved accuracy.

The findings also underscore the importance of considering load 
diversity in district energy system planning. The research demonstrated 
that diversified peak calculations generally provided closer estimates to 
measured values, highlighting the need to account for the variability and 
diversity in occupancy within the same building type. This aligns with 
the work of Happle et al. (2018), who showed that the use of uniform 
schedules and fixed set points could lead to an overestimation of peak 
cooling loads [52].

5. Conclusion

This study examines various approaches to building stock energy 
simulation and occupancy modelling for district-level heating and 
cooling energy demand assessment, using nineteen buildings at Uni
versity College London’s Bloomsbury campus. Five scenarios of 
increasing complexity were evaluated, from a machine learning tool 
(THERMOS) to building-specific occupancy profiles.

The results show that occupancy modelling significantly influences 
energy demand estimations, especially for peak loads. For annual 
heating demand, the most complex scenario with building-specific oc
cupancy profiles provided the closest estimation to metered data (12 % 
difference), compared to a 44 % underestimation by the simplest sce
nario. More complex occupancy approaches improved peak heating load 

predictions, with the diversified scenario showing only a 4 % difference 
from metered data.

The novel Energy Data-Driven Occupancy Schedule (EDDOS) 
method showed promise in capturing building-specific occupancy pat
terns, resulting in lower occupancy fraction-hours per year compared to 
standard profiles.

Cooling demand estimations varied substantially between scenarios, 
highlighting the importance of appropriate occupancy modelling. Peak 
cooling load estimates ranged from 15,069 kW (THERMOS) to 2,514 kW 
(most complex scenario). The multiple occupancy patterns scenario 
emerged as a promising compromise, offering improved accuracy over 
simpler methods without full complexity.

These findings have important implications for district energy sys
tem planning and design. The results suggest that using dynamic 
building stock energy simulation with multiple occupancy patterns 
could provide a good balance between accuracy and computational ef
ficiency for large-scale assessments.

Study limitations include the lack of measured cooling data for 
validation and the need for testing across a larger, more diverse building 
stock. The impact of climate change on future cooling demands un
derscores the need for robust modelling approaches.

In conclusion, this study emphasizes the importance of carefully 
considering occupancy modelling complexity in building stock energy 
simulations for district energy system planning. While the most complex 
modelling approaches can provide the highest accuracy, the additional 
computational demands may not always be justified. A balanced 
approach, such as using multiple occupancy patterns, could offer an 
optimal solution for many applications in district energy system plan
ning and building stock energy modelling. The authors’ analysis focuses 
solely on a university campus at University College London (UCL) in the 
UK, which experiences a climate dominated by heating needs. These 
occupancy patterns may not be typical of configurations found in other 
areas or under different weather conditions.

Fig. 20. Annual occupancy Fraction-Hours for various NCM and EDDOS profiles.

S. Al-Saegh et al.                                                                                                                                                                                                                                Energy & Buildings 329 (2025) 115269 

16 



Funding

This research was funded by the UK Engineering and Physical Sci
ences Research Council grant number EP/N509577/1 and EP/T517793/ 
1.

CRediT authorship contribution statement

Salam Al-Saegh: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Software, Resources, Methodology, 
Investigation, Formal analysis, Data curation, Conceptualization. Vasi
liki Kourgiozou: Software. Ivan Korolija: Writing – review & editing, 
Software. Rui Tang: Writing – review & editing. Farhang Tahmasebi: 
Writing – review & editing, Supervision, Software, Funding acquisition. 
Dejan Mumovic: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

The authors do not have permission to share data.

References

[1] P. Nejat, et al., A global review of energy consumption, CO2 emissions and policy 
in the residential sector (with an overview of the top ten CO2 emitting countries), 
Renew. Sustain. Energy Rev. 43 (2015) 843–862.

[2] S. Charani Shandiz, B. Rismanchi, G. Foliente, Energy master planning for net-zero 
emission communities: state of the art and research challenges, Renew. Sustain. 
Energy Rev. 137 (2021) 110600.

[3] A. Koch, S. Girard, K. McKoen, Towards a neighbourhood scale for low- or zero- 
carbon building projects, Build. Res. Inf. 40 (4) (2012) 527–537.

[4] Y. Chow, Utilizing district energy system as a cost-effective measure in meeting UK 
domestic ‘zero carbon’ targets, International Journal of Low-Carbon Technologies 
4 (3) (2009) 169–174.

[5] A. Athienitis, W. O’Brien, Conclusion, research needs, and future directions, in 
Modeling, Design, and Optimization of Net-Zero Energy Buildings. 2015. p. 351- 
354.

[6] S. Walker, et al., An assessment methodology of sustainable energy transition 
scenarios for realizing energy neutral neighborhoods, Appl. Energy 228 (2018) 
2346–2360.

[7] N. Nord, D. Schmidt, A.M.D. Kallert, Necessary measures to include more 
distributed renewable energy sources into district heating system, Energy Procedia 
116 (2017) 48–57.

[8] A. Menapace, et al., Stochastic generation of district heat load, Energies (Basel) 14 
(17) (2021) 5344.

[9] N. Aoun, et al., Load shifting of space-heating demand in district heating systems 
based on a reduced-order building model identifiable at substation level, in 4th 
Smart Energy Systems and 4th Generation District Heating Conference, Aalborg, 
Denmark, 2018.

[10] A.S. Fathi, W. O’Brien, Considering diverse occupant profiles in building design 
decisions, Build. Environ. (2024) 111857.

[11] D. Yan, et al., Occupant behavior modeling for building performance simulation: 
current state and future challenges. Energy and Buildings , 107 pp. 264-278. 
(2015), 2015.

[12] F. Tahmasebi, A. Mahdavi, The sensitivity of building performance simulation 
results to the choice of occupants’ presence models: a case study, J. Build. Perform. 
Simul. 10 (5–6) (2017) 625–635.

[13] I. Gaetani, P.-J. Hoes, J.L.M. Hensen, Occupant behavior in building energy 
simulation: towards a fit-for-purpose modeling strategy, Energ. Buildings 121 
(2016) 188–204.

[14] M. Schweiker, Understanding occupants’ behaviour for energy efficiency in 
buildings, Current Sustainable/renewable Energy Reports. 4 (1) (2017) 8–14.

[15] E. Azar, C.C. Menassa, A comprehensive analysis of the impact of occupancy 
parameters in energy simulation of office buildings, Energ. Buildings 55 (2012) 
841–853.

[16] Z. He, T. Hong, S.K. Chou, A framework for estimating the energy-saving potential 
of occupant behaviour improvement, Appl. Energy (2021).

[17] T. Hong, et al., Advances in research and applications of energy-related occupant 
behavior in buildings, Energ. Buildings 116 (C) (2016) 694–702.

[18] C. Carpino, et al., Energy performance gap of a nearly Zero Energy Building (nZEB) 
in Denmark: the influence of occupancy modelling, Build. Res. Inf. 48 (8) (2020) 
899–921.

[19] V.M. Barthelmes, C. Becchio, S.P. Corgnati, Occupant behavior lifestyles in a 
residential nearly zero energy building: effect on energy use and thermal comfort, 
Sci. Technol. Built Environ. 22 (7) (2016) 960–975.

[20] H.T. Ebuy, et al., Occupant behavior impact on building sustainability 
performance: a literature review, Sustainability (Basel, Switzerland) 15 (3) (2023) 
2440.
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