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Abstract

Inconsistency is a common problem in knowledge, and so
there is a need to analyse it. Inconsistency measures assess
its severity, but there is a more basic question: “where is the
inconsistency?”. Typically, not all subsets of a knowledge-
base are causing the inconsistency, and minimal inconsistent
sets have been the standard way to localise the germane ones,
even though there are shortcomings in some scenarios. Re-
cently, x-conflicts were proposed as a more suitable definition
to localise inconsistency when considering a method to repair
it. But in general there is no way to tell what is a sensible def-
inition to capture the germane conflicts. This work provides
a set of desirable properties to assess definitions for germane
conflicts. Also, a new conflict definition, based on substitu-
tion, is presented and evaluated via the proposed properties,
and the related computational complexity is analysed.

1 Introduction

Inconsistency is common when formally representing data,
facts about the world, beliefs, etc. Even though paraconsis-
tent logics (Belnap 1977; Priest 2002; Carnielli, Coniglio,
and Marcos 2007) allow for conclusions to be derived from
inconsistent premises, this is typically not the case in clas-
sical inference systems, which calls for ways to analyse the
inconsistency. Given a set of inconsistent pieces of infor-
mation, one might ask where is the inconsistency and how
severe it is. Inconsistency measures have been proposed to
tackle the latter (Knight 2002; Hunter 2002; Hunter and
Konieczny 2005; Doder et al. 2010; Grant and Hunter 2011;
McAreavey, Liu, and Miller 2014; Thimm 2016; Thimm and
Wallner 2016; Grant and Hunter 2017, 2023), but the former
seems underdeveloped, receiving little attention (De Bona
and Hunter 2017; Mu 2024).

In classical logic, typically it is not the case that all in-
consistent subsets of a knowledgebase are causing the in-
consistency, hence the need to determine the germane ones.
Traditionally, inconsistency has been localised via minimal
inconsistent/unsatisfiable (sub)sets — or minimal conflicts —
, which have been called the purest form of inconsistency
and the causes of it (Hunter and Konieczny 2008, 2010).
Conversely, formulas that do not take part in minimal con-
flicts are said to be free of contradiction. The central role of
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these minimal conflicts is justified by the fact that removing
a formula from each such subset restores the consistency of
the whole set, and no free formula needs to be withdrawn.
This is at the core of Reiter’s (1987) diagnosis problem and
the AGM belief revision paradigm (Alchourrén, Girdenfors,
and Makinson 1985), for instance.

For instance, consider the following sentences: “Alice is
a dog”, “Alice is not a dog;” and “It is raining”. The triple
is inconsistent, but it intuitively seems that “It is raining”
has nothing to do with the inconsistency. In fact, the only
minimal conflict is the first pair, and the third sentence is
free. That is, the inconsistency is somehow localised in the
first pair, which would be the only subset germane to the
inconsistency of the knowledgebase.

Despite their ubiquity and usefulness, minimal conflicts
are not suitable for capturing the subsets that are germane
to the inconsistency of the knowledgebase in all contexts
and scenarios. In particular, if the inconsistency can be re-
paired via weakening formulas, minimal conflicts can fail to
capture problematic formulas, as illustrated in the following
example (De Bona and Hunter 2017):

Example 1 The police are investigating a robbery at a jew-
ellery shop, and the employees give the following testi-
monies:

* salesperson: “I did not open the safe, and the criminals
carried no guns!”

e security chief: “Only the manager or the salesperson
could have opened the safe, and the criminals carried
guns.”

* manager: “I did not open the safe.”

The set is inconsistent, as the security chief and the salesper-
son are clearly contradicting each other, forming the only
minimal conflict, while the manager’s testimony is free. As-
suming this is the only germane conflict, the police could
focus on the salesperson and the security chief in the search
for the complicit employees, for at least one appears to be
lying, ignoring the manager. The investigators could meet
the salesperson and the security chief in order to discuss
whether or not the criminals carried guns. The salesperson
could admit the possibility of not having noticed them, up-
dating their testimony to “I did not open the safe”. But the
new set of testimonies is now a minimal conflict, and maybe
both the salesperson and the security chief have always been



telling the truth about the safe opening. That would mean the
salesperson did not open it, but the manager did, implying
the manager was the one lying, and being complicit.

In the example above, we have a type of iceberg inconsis-
tency (De Bona and Hunter 2017), hidden by the presence
of a smaller minimal conflict. Only when the salesperson
weakens their testimony that conflict is revealed, indicating
that the set containing all three original testimonies was also
germane to the inconsistency. This is because minimal con-
flicts capture all problematic formulas when consistency is
to be restored by removing, not by weakening formulas.

Another type of iceberg inconsistency, not involving free
formulas, is illustrated in the following example:

Example 2 A dad is planning a birthday party for his triplet
children, called Albert, Bob and Charlie. To pick a theme
for the party, he wants to hear his kids’ suggestions and
asks them to think about it. Albert wants a party about cars,
and Bob, superheroes; and both could be pleased with a su-
perhero car theme. Charlie, however, is tired of past parties
about cars and superheroes, and just wants something dif-
ferent (not cars nor superheroes).

The three requirements are inconsistent, with Charlie’s
contradicting each of the other two, which are consistent be-
tween themselves. In other words, the constraints form two
minimal conflicts: Albert’s and Charlie’s; and Bob’s and
Charlie’s. To solve both minimal conflicts, Charlie accepts
a party that does not involve both cars and superheroes at
the same time, being possibly either about cars or about su-
perheroes. Even though both minimal conflicts are resolved,
the triple is still inconsistent.

Charlie’s requirement in the example above is being
weakened from a conjunction (not cars and no superheroes)
to a disjunction (not cars or no superheroes). Again, minimal
conflicts by themselves could not capture the germaneness
of the initial requirements to the inconsistency.

Iceberg inconsistencies can also be formed when the
meaning of a proposition is instantiated, specified or re-
placed, as in the situation below:

Example 3 Three companies (A, B and C) are being merged
to form a new one. They have different rules about who
should be on the board of directors:

e Company A: “The CEO must not be on the board.”

e Company B: “The CFO must be on the board.”

e Company C: “If the CFO is on the board, then the CEO
must also be.”

The directors of the new company have been appointed and
a board has to be formed. To save costs, the company will
initially have the same person (Jane) as CFO and CEO.
Thus, the guidelines about the board are instantiated as:

* Company A: “Jane must not be on the board.”

e Company B: “Jane must be on the board.”

e Company C: “If Jane is on the board, then Jane must also
be.”

They realise the board cannot meet all restrictions from
the three companies, for the first two contradict each other,
forming the only minimal conflict — and the third one is a

tautology. They let Jane on the board, thinking the problem
would resolve itself when eventually a different CEO is ap-
pointed, which would not be on the board. Nonetheless, the
conflict would remain, as a new minimal conflict would in-
volve all three rules.

Company C’s guideline in Example 3 is germane to the
whole conflict, but this is hidden by the fact that the CFO
and the CEO are the same person, when it becomes trivially
satisfied. We would like a germane conflict definition that
captures cases like this, when a substitution concentrates the
inconsistency of a minimal conflict in a subset of it, creating
a smaller minimal conflict and some free formulas.

More generally, we would like definitions of germane
conflict that capture problematic sets of formulas, where
all formulas are contributing to the inconsistency, like the
triples in Examples 1, 2 and 3, and that leave out sets where
clearly there are innocent formulas, like the triple in Alice’s
example. Nonetheless, a myriad of definitions for when a
conflict is germane to the inconsistency of a knowledgebase
can be devised in order to behave as expected in particu-
lar examples. Yet, we would like to employ definitions that
generalise well to other cases. That is, we expect a germane
conflict definition to exhibit some desirable properties.

In order to guide the choice of a conflict definition or the
formulation of entirely new methods to localise inconsis-
tency, this work puts forward a set of desirable properties
for germane conflicts. Also, a new approach to localise in-
consistency, based on a desirable property, is proposed to
handle cases like Example 3. The new definition is then as-
sessed with respect to the desirable properties for germane
conflicts and with respect to its computational complexity.

The remainder of the paper is organised as follows: Sec-
tion 2 covers the technical preliminaries; Section 3 reviews
*-conflicts; Section 4 presents a range of properties for ger-
mane conflicts; Section 5 formulates substitution conflicts;
and Section 6 reviews related work.

2 Preliminaries

We focus on classical propositional logic, whose language
L is inductively built from a countable set of atoms X =
{x1,xa,...} (usually denoted by a,b, c,...) with the stan-
dard connectives (—, A, V and —), possibly with parenthe-
ses. A clause is a disjunction of literals, which are possibly
negated atoms. A knowledgebase (KB) is a finite set I' C L,
and K denotes the set of all KBs.

A (letter-to-letter) substitution is a function s : X — L
(s : X — X), which can be extended to s : L — L in-
ductively: s(—¢) = —s(¢) and s(¢p <1 ) = s(¢) > s(¢)
for e {A,V, —}. For any substitution s and KB I, s(T")
denotes the KB {s(¢) | ¢ € T'}. When we define a specific
substitution, we assume s(x;) = x; for all x; € X unless
stated otherwise.

An interpretation is a function ¢ : X — {0, 1} (0 denotes
FALSE; 1, TRUE), which can be extended to ¢ : £ — {0, 1}
as usual. A formula ¢ € L is consistent/satisfiable (a tautol-
ogy) if i(¢) = 1 for some (all) interpretations(s) ¢. For any
¢ € L, when i(¢) = 1, we say i is a model of (or satisfies)
@; Models(¢) denotes the set of all models of ¢. A KB T is



consistent if there is an interpretation 4 such that i(¢) = 1
for all ¢ € I' — when we say ¢ satisfies I

3 x-conflicts

The concept of x-conflict (De Bona and Hunter 2017) is
based on consolidation methods and was proposed to gen-
eralise minimal conflicts in order to tackle scenarios where
the latter fall short. In this section, we review the main re-
sults of the definition.

Each definition for x-conflicts is based on a specific con-
solidation procedure, formalised by a consequence opera-
tion Cn* : K — K, which is a parameter of the framework.
It is generally assumed that Cn* is Tarskian' and subclas-
sical, meaning that any ¢ € Cn*(I') must be a classical
consequence of I' (I' U {—¢} is inconsistent). For simplic-
ity, we will here focus on the case where C'n* is modular:

Cn* () = U{Cn*(9) | ¢ € T}

Definition 1 Given a modular consequence operation Cn*,
a KB I' € K is a %-conflict if there is a minimal con-
flict A and a surjective function f : A — I such that
¢ € Cn*({f(¢)}) forall ¢ € A. A formula ¢ € T is x-
free in the KB ¥ € K if there is no x-conflict ¥/ C W such
that ¢ € ',

By definition, for all Tarskian Cn*, any minimal conflict
is also a x-conflict, thus x-free formulas are always free. Fur-
thermore, if Cn* is the identity function Cn/? : K — K,
*x-conflicts are exactly the minimal conflicts.

Example 4 Recall the situation of Example 1 (De Bona and
Hunter 2017) and consider the following atomic proposi-
tions:

* s stands for “the salesperson opened the safe”;
* m stands for “the manager opened the safe”;
* g stands for “the criminals carried guns”.

Now we can formalise the testimonies:

e salesperson: ¢ = —s A g;
o security chief: 1) = (s V' m) A g;
e manager: = —m.

Note that A = {—s A =g, (s V- m) A g} is the only minimal
conflict in the set of testimonies T' = A U {—m}, thus 6 =
—m is free in I'. However, if Cn* “breaks” conjunctions
(—s € Cn*({—s A ng}), we have that the minimal conflict
IV = {=s, (sVm) A g, ~m} (the updated set of testimonies)
is formed by taking a x-consequence of each formula in T,
and the latter is a x-conflict. Consequently, the manager’s
testimony is not *-free.

The example above presents a x-conflict for a conse-
quence operation that can break conjunctions. This can be
captured by a modular consequence operation Cn” : K —
K such that Cn”({¢}) contains the conjuncts of ¢. For-
mally, v € Cn”({¢}) if there are o, 3 € L such that
p=aANp,orpg =0 ANBord=aANPANBor¢d =1

Now, for any knowledgebase I' € K, modularity implies

'For all KBs T,A € K: T' C Cn*(T'); Cn*(Cn*(T)) C
Cn*(I");and I’ C A implies Cn*(I") C Cn*(A).

Cn™T) =U{Cn"(¢) | ¢ € T'}. Note that Cn” is subclas-
sical and Tarskian, as any formula is a conjunct of itself.

Returning to Example 2, let the atoms c (cars) and h
(superheroes) encode Albert’s and Bob’s requirements. The
original requirement by Charlie then is —¢ A —h. The
kwoledgebase ' = {c,h,—c A —h} is inconsistent, with
two miminal conflicts: {¢, =¢ A =h} and {h,—~c A =h}. If
—cV —h € Cn*({—c A =h}), T' is a x-conflict. However,
note that this is not the case for Cn* = Cn”.

To capture conflicts like the one in Example 2, we can
employ, for instance, a Cn* based on dilation (Bloch et al.
2023). We start by defining the (Manhattan) distance be-
tween two interpretations 4,4’ as d(i,7') = Y., |i(z;) —
i'(x;)|. Fora k € N and a formula ¢ € L, the k-dilation
of the set of models of ¢ can then be defined as the set of
interpretations whose distance to Models(¢) is at most k;
formally, Mk(¢) = {Z | infi/ehlodels(¢)d(7;7i/) < ]f} 2. Now
the modular consequence operation Cnn%" can be defined as
Cn?l({¢}) = {¢ | Models(y)) = M*(¢) for some k €
N} for all ¢ € £ and, for all T' € K, modularity implies
Cnl(T) = J{Cn™ () | ¢ € T}.

The *-conflicts implied by Cn* = Cn! are determined
purely via the models of the formulas involved. For in-
stance, consider the knowledgebase from Example 2,I" =
{c¢, h,=c A =h}. Since =c¢ V —~h € Cnd({=c A =h}), T is
a *-conflict. Rewritting —¢ A =h as =¢ A =h A (-c V —h)
(or anything equivalent to —¢ A —h) does not prevent I' from
being a x-conflict, as Cn*(¢) = Cn?(¢) depends only on
the interpretations satisfying ¢.

The strongest modular, subclassical, Tarskian conse-
quence operation corresponds to the classical consequence
relation . We call this consequence operation Cn™?% :
K — K, as it is the modular version of the classical Cn.
It can be formally defined, for any formula ¢ € L, as
Cn™°d({p}) = Cn({¢}), and its definition for knowl-
edgebases follows from its modularity. The corresponding
*-conflict definition is the most inclusive, capturing irrele-
vant inconsistent knowledgebases. For instance, formalising
Alice’s example, let a denote “Alice is a dog” and b denote
“it is raining”. The sentences in that example translate to
the knowledgebase I' = {a, —a, b}. Even though b seems
not involved in the inconsistency, Cn* = Cn™°? makes the
whole I' a x-conflict, for ia V =b, —a, b} is a minimal con-
flict and @ V =b € Cn°*({a}). This is in fact a particular
case of a stronger result:

Proposition 1 (De Bona and Hunter 2017)) Assuming
Cn* = Cn™°%, a knowledgebase I € K is a x-conflict iff it
is inconsistent and contains no tautologies.

Given that even the most inclusive instance of x-conflict
(with Cn* = Cn™°?) never contains a tautology, it is ex-
pected that no x-conflict does, which is indeed the case:

Proposition 2 ((De Bona and Hunter 2017)) For any
modular, subclassical, Tarskian consequence operation
C'n*, x-conflicts do not contain tautologies.

2We use infimum for the distance to the empty set to be well
defined (as 00).



If we formalise with propositional logic the restrictions
in Example 3 about Jane being on the board, company C’s
rule (“If Jane is on the board, then Jane is on the board.”)
yields a tautology. Hence, Proposition 2 implies that no *-
conflict can contain that formula, no matter the underlying
consequence operation C'n*. Thus, an entirely new approach
is needed to detect that conflict, as we will see in Section 5.

There is a myriad of x-conflict definitions, correspond-
ing to the infinitely many possible choices for the underly-
ing C'n*. If one is to repair the inconsistency of a knowl-
edgebase by weakening formulas with a consequence op-
eration C'n*, that is the obvious choice, as x-free formulas
could then be ignored during the consolidation (De Bona and
Hunter 2017). Nevertheless, without an underlying consol-
idation procedure, it is not clear which %-conflict definition
should be employed, and other, perhaps new conflict defi-
nitions could be used. In this broader setting, although, we
would lack a way to evaluate whether the conflict definition
in hands is reasonable. To address these questions, a set of
desirable properties for conflict definition can ground our as-
sessment of particular instances of x-conflicts and any other
conflict definitions to be proposed.

4 Desirable Properties

We are looking for properties of definitions of conflicts that
can capture when a subset of a knowledgebase is somewhat
problematic, or relevant in some sense to its inconsistency.
We will call these subsets germane conflicts. Given an ar-
bitrary definition for germane conflicts, we want to assess
it via the set of desirable properties it satisfies. Depending
on the context and on the application, some properties of
germane conflicts might have higher priority than others, so
these desiderata can guide the choice of the conflict defi-
nition to be employed. Similarly, some intended behaviour
for germane conflicts in a given scenario, characterised via
the properties they should hold, can drive the formulation of
new definitions to tackle that specific situation.

We are interested in analysing when a given set of for-
mulas A € K forms a germane conflict, regardless of any
larger context I' € K where A might appear. This is because
classical logic is monotonic, and the extra formulas in I"\ A
should not impact the conflict A.

Any well-posed conflict definition yields a set of knowl-
edgebases regarded as germane conflicts. The properties to
be proposed for the definition will constrain this set of all
germane conflicts, denoted by C. For presentation purposes,
the properties are clustered into five categories:

* Core Properties are the most basic ones, expected to
hold for any reasonable conflict definition;

¢ Set-theoretical Properties are based on set operations;

* Semantic-based Properties capture behaviours related
to the semantics of the formulas, such as logical equiva-
lence or implication;

¢ Properties based on Inconsistency Measures states re-
lations between those measures and conflict definitions;

* Atoms-related Properties are related to the atoms in a
formula and to substitutions applied to atoms.

Core Properties

The most basic thing to expect from a germane conflict is
that it is indeed inconsistent.

Property 1 (Inconsistency) If I' € C, then T is inconsis-
tent.

We also expect that any inconsistent knowledgebase in-
cludes a germane conflict as a subset. That is, germane con-
flicts can be seen as “causes” of inconsistency, for their re-
moval restores consistency.

Property 2 (Inclusion) If A € K is inconsistent, then there
isal € C such thatT' C A.

This simple pair of properties already implies the central
role of minimal conflicts, as the following proposition points
out.

Proposition 3 If (Inconsistency) and (Inclusion) hold, then
every minimal conflict in K is also in C.?

Another basic property that germane conflicts should ex-
hibit deals with their indifference regarding the atoms em-
ployed. For instance, if we replace all x; with z;; in a ger-
mane conflict, it should remain a germane conflict.

Property 3 (Atom-indifference) IfT' € Cands: X — X
is a bijective letter-to-letter substitution, then s(I") € C.

Note that the substitution in the property above is bijec-
tive, so different letters should continue to be different after
the substitution. The property of (Atom-indifference) also
implies that a knowledgebase that is not a germane conflict
will not become one if atoms are renamed:

Proposition 4 Assuming (Atom-indifference), given any bi-
Jective letter-to-letter substitution s : X — X, ifI' € K\ C,
then s(T') € K\ C.

In order to satisfy (Inconsistency), (Inclusion) and (Atom-
indifference), one could spuriously assume that every incon-
sistent knowlegebase is a germane conflict. This possibility
is ruled out by the following property.

Property 4 (Non-Triviality) There exists some inconsis-
tentT' e K\ C.

This basic set of properties is satisfied by x-conflicts and,
as a particular case, by minimal conflicts.

Proposition 5 For any Tarskian, modular, sublassical con-
sequence operation Cn* : K — K, the set of x-conflicts
satisfy (Inconsistency), (Inclusion), (Atom-indifference) and
(Non-Triviality).

Set-theoretical Properties

Since conflicts are sets of formulas, we can apply set theory
tools to state some (un)desirable behaviour for them. For in-
stance, one might argue that germane conflicts should not be
properly included in other germane conflicts:

Property 5 (Minimality) [f " € C, then there isno A € C
such that A C T.

3Proofs can be found at https://tinyurl.com/22jtjah2.



This property actually characterises germane conflicts as
minimal conflicts, given the basic properties:

Proposition 6 [f (Inconsistency), (Inclusion) and (Minimal-
ity) hold, then T’ € C iff T is a minimal conflict.

Consequently, any x-conflict definition that captures a set
that is not a minimal conflict violates (Minimality). That is,
(Minimality) is only satisfied by the set of x-conflicts with
Cn* = Cn'd,

Intuitively, when a conflict is germane, all of its formulas
are somehow involved in the inconsistency of the knowl-
edgebase. Thus, the union of the germane conflicts of a
knowledgebase is the set of all formulas involved in the in-
consistency, which could be seen as a germane conflict. This
is captured by the following property:

Property 6 (U-closure) IfI", A € C, thenT U A € C.

Minimal conflicts and most *-conflicts violate (U-
closure), though, as they are meant to characterise sets where
all formulas are contributing to inconsistency.

Proposition 7 The set of x-conflicts violates (U-closure) for
any Cn* € {Cn!? Cnd' Cn} and satisfies it for Cn* =
Cnmod,

Semantic-based Properties

As minimal conflicts cannot capture hidden iceberg con-
flicts, as illustrated in Example 1, (Minimality) is too strong
a property. Nonetheless, they exhibit a semantic behaviour
that might be desirable in most scenarios. Specifically, min-
imal conflicts are defined entirely via the consistency/incon-
sistency of subsets, which entails a series of semantic-based
properties. For instance, minimal conflicts are not dependent
on the actual syntax of the formulas, and that is captured by
the property below.

Property 7 (Syntax-Robustness) Given a knowledgebase
T e, if ¢ € Tis replaced by a logically equivalent ¢' € L,
the resulting knowledgebase is also in C.

The set of minimal conflicts clearly satisfies (Syntax-
Robustness). For x-conflicts in general, the formula’s syntax
matters if it does for the corresponding C'n*. For instance, a
Cn* that “breaks” conjunctions is syntactical, but a conse-
quence operation that dilates the models of the formulas is
purely semantic.

Proposition 8 The set of x-conflicts satisfies (Syntax-
Robustness) for any Cn* € {Cnld Cnd! Cn™°1} and vi-
olates it for Cn* = Cn".

A related semantic property forbids equivalent formulas
in a germane conflict.

Property 8 (No-Equivalences) If I' is a germane conflict,
then there are no formulas ¢, € I such that 1) is logically
equivalent to ¢.

As logical equivalence is a special case of logical impli-
cation, a stronger property can be formulated:

Property 9 (Non-Redundancy) IfT" € C, then there are no
Sformulas ¢, € T" such that ¢ implies ¢.

Intuitively, if ¢ logically implies 1, the latter would seem
superfluous in a germane conflict where the former is; the
information of ¢ would be redundant.

Proposition 9 The set of *-conflicts satisfies (Non-
Redundancy) for Cn* = Cnl?, satisfies (No-Equivalences)
for Cn* = Cn% violates (Non-Redundancy) for
Cn* = Cn* and violates (No-Equivalences) for any
Cn* € {Cn",Cn™med}.

Considering still only the semantics of a formula, we
would expect that tautologies do not take part in germane
conflicts.

Property 10 (Tautology-Freeness) If ' € C, then there is
no tautology ¢ € T'.

Tautologies are always free formulas, not appearing in
minimal conflicts. Desirably, this property is inherited by all
*-conflicts via Proposition 2.

Even though not containing tautologies is usually a desir-
able property of a germane conflict, a definition that includes
all inconsistent knowledgebases with no tautologies would
be rather dull. We call this undesirable behaviour guasi-
trivialily, leading to the following property:

Property 11 (Non-Quasi-Triviality) There exists some in-
consistent ' € K\ C that has no tautologies.

The property of (Non-Triviality) is entailed by (Non-
Quasi-Triviality), as the latter is strictly stronger. Although,
for any C'n*, the set of all x-conflicts is non-trivial, it quasi-
trivialises for a Cn* = C'n™°%, the modular version of the
classical consequence operation, due to Proposition 1.

Proposition 10 The set of x-conflicts satisfies (Non-Quasi-
Triviality) for any Cn* € {Cn'?,Cn,Cn®} and violates
it for Cn* = Cn™°,

Properties based on Inconsistency Measures

Localising and measuring inconsistency can be very closely
related. Some inconsistency measures proposed in the lit-
erature are based on an underlying notion of conflict. Con-
versely, we could constrain germane conflicts using an in-
consistency measure. For instance, if removing a formula
from a knowledgebase decreases its inconsistency measure-
ment, that formula seems to be involved somehow in a kind
of conflict. This is formalised in the property below:

Property 12 (Z-Respect) Given an inconsistency measure
T : K — R and a knowledgebase I € K, if Z(I' \ {¢}) <
Z(T) for some ¢ € T, thenthereisa A € C suchthat A C T
and ¢ € A.

For instance, consider the drastic measure Z;, which as-
signs 1 to inconsistent knowledgebases and 0 to consistent
ones. The corresponding property (Z;-Respect) entails that
formulas in minimal conflicts are also in germane conflicts —
which, given (Inconsistency), implies that minimal conflicts
are germane conflicts.

This property can be seen as restricting inconsistency
measures, given a conflict definition. For example, if ger-
mane conflicts are simply minimal conflicts, then (Z-
Respect) implies that removing free formulas does not de-
crease the inconsistency measurement, which is a version of



the property called Free-Formula Independence (Hunter and
Konieczny 2010).

Atoms-related Properties

A property similar to (Tautology-Freeness) precludes ger-
mane conflicts from having formulas that are intuitively “in-
nocent”. Given a knowledgebase I' € K, with [T'| > 2, a
set of formulas A C T is said to be safe in I if it is non-
empty, consistent and shares no atoms with I" \ A. For in-
stance {x2, 3} is safe in {z1, ~x1, x9, x3}.

Property 13 (Safe-Set-Freeness) I[fI' € C, then there is no
safe set A C T.

Proposition 11 The set of x-conflicts satisfies (Safe-set-
Freeness) for any Cn* € {Cntd,Cn",Cn®'} and violates
(Safe-Set-Freeness) for Cn* = Cn™°%,

Another property related to the atoms in a knowledgebase
deals with replacing atoms. A general substitution does not
need to be bijective, as required in (Atom-indifference), and
could replace for instance two different letters with the same.
Yet, as the general structure is kept, one might expect that
applying a substitution to a germane conflict yields another
germane conflict. To see the possible effects of a substitution
in a conflict, consider the following example:

Example 5 Recall the situation in Example 3. Let e and f
be atomic propositions denoting “The CEO must be on the
board” and “The CFO must be on the board”, respectively.
The general guidelines about board members from compa-
nies A, B and C can then be formalised in the knowledgebase
T = {-e, f, f — e}, which is a minimal conflict. Let j en-
code the proposition “Jane must be on the board”. Being
Jane both the CEO and the CFO, we can replace both e and
f by jinT. Formally, consider a subsitition s : X — L such
that s(e) = s(f) = j, so that s(T') = {—j,j,5 — j}. Note
that the first pair is a minimal conflict, and the third formula
is a tautology.

The general board guidelines in the example above (I')
form a minimal conflict and, given (Inconsistency) and (In-
clusion), they are also a germane conflict. Replacing both
“CFO” and “CEO” by “Jane” should intuitively keep the
germaneness of the conflict. That is, germane conflicts
should be robust to substitution, which is captured by the
following property:

Property 14 (Substitution-Robustness) Given a substitu-
tions: X — L, if T is a germane conflict, then so is s(T").

When applying a substitution to a minimal conflict, new,
smaller minimal conflicts might appear, as illustrated in Ex-
ample 5, and the whole knowledgebase stops being a mini-
mal conflict. More generally, this sensitivity to substitution
holds for all x-conflicts definitions.

Proposition 12 For any modular, subclassical, Tarskian
consequence operation Cn*, the set of all x-conflicts vio-
lates (Substitution-Robustness).

The proposition above is a corollary of a stronger result:

Theorem 1 There is no set C C K satisfying (Inconsis-
tency), (Inclusion), (Tautology-Freeness) and (Substitution-
Robustness).

As (Substitution-Robustness) is not satisfied by any type
of x-conflict, nor by minimal conflicts, its intuitive appeal
calls for an entirely new approach to localise inconsistency,
investigated in the next section.

5 Substitution Conflicts

The motivation behind x-conflicts is to detect conflicts that
are not minimal but somehow problematic. That is, a -
conflict aims to reveal sets of formulas that are in conflict in
some way but that are obfuscated or ignored due to a smaller
minimal conflict within it. A different approach to detecting
conflicts hidden by minimal conflicts employs substitutions
from atoms to formulas. Intuitively, if we depart from a min-
imal conflict, a substitution yields some sort of conflict, as
the general structure of the formula is kept fixed. Neverthe-
less, a substitution applied to a minimal conflict might cause
some proper subset to become inconsistent; and the new
knowledgebase ceases to be a minimal conflict, as shown
in Example 5. Thus, applying a substitution to a minimal
conflict might indeed hide the original conflict.

We can formally define the conflicts resulting from apply-
ing a substitution to a minimal conflict.

Definition 2 A KB I' € K is a substitution conflict if there
is a minimal conflict A € K and a substitution s : X — L
such that s(A) =T.

The rules about Jane being on the board, formalised in
Example 5, form a substitution conflict. This is due to the
fact that T' = {—j,4,j — j} is the result of applying a
substitution to the minimal conflict A = {—e, f, f — e}.

Substitution conflicts can capture some x-conflicts as
well. For instance, recall Example 4, where we have I' =
{=s A =g,(s V. m) A g,—m}. Taking the minimal confl-
cit U = {-sAa,(sVm)Ag,—~m} and the substitution
s(a) = —g, we have that s(¥) = T is a substitution conflict.

Besides being robust to substitutions, substitution con-
flicts have several desirable properties:

Proposition 13 The set of all substitution conflicts satis-
fies (Inconsistency), (Inclusion), (Atom-indifference), (Non-
Triviality), (Non-Quasi-Trivialiaty), (Safe-Set-Freeness) and
(Substitution-Robustness).

To satisfy (Subsitution-Robustness) together with (In-
consistency) and (Inclusion), the property of (Tautology-
Freeness) must be given up. Other desirable properties, par-
ticularly the semantic ones, are violated, as a substitution is
syntactical.

Proposition 14 The set of all substitution conflicts vio-
lates (Minimality), (U-closure), (Syntax-Robustness), (No-
Equivalences), (Non-Redundacy) and (Tautology-Freeness).

The properties of (Inconsistency) and (Inclusion) being
satisfied by the set of substitution conflicts imply that every
minimal conflict is also a substitution conflict. This can be
seen also by considering the trivial substitution that replaces
each x; with the same x;. This implies that substitution con-
flicts respect syntactic inconsistency measures, which are a
function of the inconsistency graph of the knowledgebase
(De Bona et al. 2019), which encodes the structure of its
minimal conflicts.



Proposition 15 For any syntactic inconsistency measure Z,
the set of all substitution conflicts satisfy (Z-Respect).

Since substitution conflicts are defined via substitutions
applied to minimal conflicts, if all minimal conflicts are ger-
mane, then (Substitution-Robustness) entails that all substi-
tution conflicts are germane as well.

Proposition 16 If  (Inconsistency),  (Inclusion) and
(Substitution-Robustness) hold, then every substitution
conflict is a germane conflict.

The properties of (Inconsistency), (Inclusion) and
(Substitution-Robustness) can be satisfied by definitions that
also include knowledgebases that are not substitution con-
flicts. To characterise the set of substitution conflicts, we
have the following result:

Proposition 17 The smallest set C C K satisfying (Incon-
sistency), (Inclusion) and (Substitution-Robustness) is the
set of all substitution conflicts.

The proposition above states that substitution conflicts are
the most economical way, in the sense of capturing fewer
conflicts, to satisfy (Substitution-Robustness) without vio-
lating (Inconsistency) or (Inclusion).

In order to assess the computation complexity of detect-
ing substitution conflicts, we make use of a useful character-
isation of them. Substitution conflicts could be equivalently
defined using only letter-to-letter substitutions, according to
the following result:

Theorem 2 A KBTI € K is a substitution conflict iff there is
a minimal conflict A € K and a letter-to-letter substitution
s: X — X such that s(A) =T.

This result can now be employed to give a computational
complexity bound to the problem of detecting substitution
conflicts. This is due to the fact that, if I" is substitution con-
flict, there is a A with the same size such that s(A) =T for
some substitution.

Proposition 18 The problem of deciding whether a given
knowledgebase T € K is a substitution conflict is in ¥5.

This is the same computational complexity of detecting
*-conflicts, given some conditions on Cn* (De Bona and
Hunter 2017).

The problem of detecting x-conflicts for some particular
Cn* can be given tighter computational complexity bounds.
Indeed, when Cn* = Cn!¢, x-conflicts are minimal con-
flicts and their detection is in D¥ C zg . Furthermore, to
detect a x-conflict when Cn* = Cn™°4, by Proposition 1,
we can simply check the inconsistency of the whole knowl-
edgebase and the falsifiability of each formula, yielding the
same bound.

6 Related Work

Methods for localising inconsistency often appear as inter-
mediate tools for measuring inconsistency, as in the first two
related works we discuss. The first related work (Jabbour
et al. 2014) defines a conflict based on prime implicates. The
second related work (Grant and Hunter 2023) localises in-
consistency in atoms, not formulas, and the third (Mu 2019)

uses a similar, atom-based method to localise the problem-
atic/innocent formulas in a knowledgebase. The fourth (Mu
2024) uses minimal conflicts and 3-valued logic to analyse
inconsistency in all subsets of a knowledgebase.

Jabbour et al. (2014) have proposed an inconsistency mea-
sure based on counting a type of conflict in knowldgebases.
The conflict definition they put forward is a pair (A, ),
where A is a subset of the knowledgebase to be assessed,
and V¥ is a minimal conflict derived from A. Roughly speak-
ing, A should be formed by weakening each formula in ¥
exactly once via discarding prime implicates, which are the
strong clauses implied. This is quite similar to a particular
instance of the x-conflicts framework (De Bona and Hunter
2017), though in the latter each formula can be weakened
more than once to form a minimal conflict.

While we are interested in localising inconsistency in sub-
sets of the knowledgebase, Grant and Hunter (2023) explore
localising it to sets of problematic atoms in order to mea-
sure inconsistency. They employ a set of 3-valued logics
that extend classical logic while allowing for atoms to be
assigned the non-classical truth value B. Their approach is
based on minimal atomic subsets, which are minimal sets of
atoms that are assigned B in some interpretation satisfying
the knowledgebase in hands.

Mu (2019) has proposed an inconsistency localising
method to rework the independence postulate for incon-
sistency measures, which requires that adding free formu-
las does not alter the measurement. His approach is based
specifically on Priest’s 3-valued logic (Priest 1991), also re-
lying on minimal atomic subsets. In a nutshell, Mu suggests
that a formula is involved in the inconsistency of a knowl-
edgebase if removing it changes the set of minimal atomic
subsets, proposing a corresponding independence postulate.
Note that no conflict is defined, but only the problematic
portion of a knowledgebase.

In another work, Mu (2024) analyses how a characterisa-
tion of inconsistency is spread over the subsets of a knowl-
edgebase. Inconsistency is characterised via either the set of
minimal conflicts or the set of minimal models, which are 3-
valued interpretations with a minimal number of atoms with
non-classical truth values. The interior of inconsistency for a
KB T is then defined as the collection containing, for all in-
consistent IV C T, either the set of minimal conflicts of I/ or
its set of minimal models. Although the former cannot iden-
tify conflicts with free formulas, the latter approach might
reveal some conflicts hidden by minimal conflicts when the
inconsistency involves different sets of atoms.

7 Conclusion and Future Work

Localising the inconsistency of a knowledgebase into its
subsets can be tackled in a myriad of ways, and this work
presents the first set of desirable properties for these conflict
definitions. Additionally, substitution conflicts are proposed
to address the need for a conflict that is robust to substitution.
The proposals in this paper can be used to develop alterna-
tive, and in some cases, better ways of dealing with incon-
sistency, including inconsistency resolution, in applications.
Future work includes investigating the use of 3-valued logics
for defining conflicts.
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