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Summary
Introduction Understanding 1-year mortality following major surgery offers valuable insights into patient
outcomes and the quality of peri-operative care. Few models exist that predict 1-year mortality accurately. This
study aimed to develop a predictive model for 1-year mortality in patients undergoing complex non-cardiac
surgery using a novelmachine-learning technique calledmulti-objective symbolic regression.
Methods A single-institution database of patients undergoing major elective surgery with previous
cardiopulmonary exercise testing was divided into three datasets: pre-operative clinical data; cardiorespiratory
and physiological data; and combined. A multi-objective symbolic regression model was developed and
compared against existing models. Model performance was evaluated using the F1 score. Shapley additive
explanations analysis was used to identify themajor contributors tomodel performance.
Results From 2145 patients in the database, 1190 were included, with 952 in the training dataset and 238 in the
test dataset. Median (IQR [range]) agewas 71 (61–79 [45–89]) years and 825 (69%)weremale. Themulti-objective
symbolic regression model demonstrated robust consistency with an F1 score of 0.712. Shapley additive
explanations analysis indicated that ventilatory equivalents for carbon dioxide, oxygen at peak exercise and BMI
influencedmodel performancemost significantly, surpassing surgery type andnamedcomorbidities.
Discussion This study confirms the feasibility of developing a multi-objective symbolic regression-based
model for predicting 1-year postoperative mortality in a mixed non-cardiac surgical population. The model’s
strong performance underscores the critical role of physiological data, particularly cardiorespiratory fitness, in
surgical risk assessment and emphasises the importance of pre-operative optimisation to identify and manage
high-risk patients. The multi-objective symbolic regression model demonstrated high sensitivity and a good F1
score, highlighting its potential as an effective tool for peri-operative risk prediction.
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Introduction
Peri-operativemedicine encompasses the full range of care,

from initial contemplation of surgery to final recovery [1].

Postoperative mortality is influenced by patient

comorbidities and the quality of peri-operative care.

Globally, the 1-year postoperative mortality rate is

approximately 5–6% [2–9]. Postoperative mortality ranks as

the third leading cause of death worldwide [8, 9]. As the

surgical population becomes older and more vulnerable,

the risk of peri-operative mortality increases [10]. One-year

mortality rates for patients with frailty undergoing major

surgery are approximately 14%, nearly triple that of patients

who are not frail [6].

Accurate evaluation of peri-operative risk is thus crucial

for informed clinical decision-making [11–13]. Most

peri-operative risk predictionmodels focus on in-hospital or

30-day postoperative outcomes; however, these have

limitations. Since these outcomemeasures were developed

primarily to audit surgical practice, they cannot provide

insight into the evolution of outcomes in the months and

years following surgery [14, 15]. To address this limitation,

new longer-term prediction models should be developed.

These would offer a broader appreciation of long-term

health outcomes, potentially including complications and

health-related quality of life that are not captured by current

models. This extended timeframe can support shared

decision-making, enabling clinicians and patients to weigh

the risks and benefits of surgery compared with alternative

treatments, offering a more comprehensive view of

prognosis and guiding choices that align with the patient’s

long-term health goals and expectations [14, 16]. A 1-year

mortalitymodel after surgery could be compared against an

individual’s predicted 1-year survival without surgery,

balancing the surgical risk against the natural progression of

the patient’s comorbidities [15, 17]. Currently, few studies

predict 1- to 5-yearmortality risk in non-cardiac surgery [17].

Large population studies have shown that

cardiorespiratory fitness is the strongest predictor of mid- to

long-term morbidity and mortality in adults [18].

Cardiopulmonary exercise testing (CPET) is well established

as the gold standard for assessing cardiorespiratory fitness

in at-risk patients beforemajor surgery [19, 20]. It provides a

dynamic, individualised assessment of physiology under

standardised stress and is useful for predicting

postoperative morbidity and mortality across various types

of surgery [21–24]. Notably, patients undergoing major

surgery for oncological diseases are more likely to die from

cardiovascular complications than from the primary cancer

itself [25].

Substantial research has focused on using machine

learning to predict peri-operative mortality [17].

However, forecasting postoperative mortality accurately

with machine learning is challenging, as highlighted by

recent studies reporting low F1 scores with high area-

under-the-curve values. This reflects limitations in

predictive accuracy due to unbalanced datasets where

certain outcomes or classes are underrepresented,

leading to biased predictions and insufficient feature

representation [17, 26].

To overcome these limitations, multi-objective

symbolic regression may be used. This is a technique based

on genetic programming that formulates a series of

comprehensible mathematical equations to formulate

predictive models [27–29]. It has shown effectiveness in

managing unbalanced datasets and creating models

sensitive to specific data characteristics [27, 28]. By

employing multi-objective symbolic regression, we address

the challenges of classical machine learning, focusing

particularly on dataset imbalance.

In this study, we aimed to develop a 1-year mortality

model for patients undergoing high-complexity, non-

cardiac surgery using multi-objective symbolic regression

trained on pre-operative clinical, cardiorespiratory and

physiological data. Additionally, we explored the relative

importance of fitness features using Shapley additive

explanation (SHAP) analysis to enhance our understanding

of how various factors correlate with mortality and to

provide insights into peri-operative care.

Methods
The study was conducted in accordance with TRIPOD+AI

guidelines [30]. University College London Hospitals NHS

Foundation Trust maintains a prospective research

database of patients undergoing CPET before major

complex surgery. All participants provided written consent

for their CPET outcomes to be included in the database for

future research, in compliance with the Declaration of

Helsinki. Ethical approval was initially granted in 2012 and

reaffirmed in 2019, with no specified time constraints. The

database contains data for assessing and studying short-

and long-term postoperative morbidity and mortality,

encompassing a broad range of patients who underwent

CPET before complex major surgery. The database was

queried for patients enrolled between 2012 and 2022.

Patients aged ≥ 18 y referred for pre-operative assessment

and scheduled for elective surgery were included. Those

aged < 18 y or incapable of providing informed consent

were not included.
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The dataset is organised into two principal feature

categories, along with recorded outcomes. These are

detailed comprehensively in online Supporting Information

Appendix S1. The clinical dataset includes 39 parameters,

including patient characteristics; medical history; laboratory

test results; and specifics of the surgical procedure. The

cardiorespiratory fitness dataset had 46 parameters

including oxygen consumption (V̇O2); carbon dioxide

production (V̇CO2); end-tidal gas composition (PETO2 and

PETCO2) during a protocolised exercise test on a cycle

ergometer; ventilatory equivalents for oxygen (VE.V̇O2
-1)

and carbon dioxide (VE.V̇CO2
-1); oxygen pulse (V̇O2.HR

-1);

peak oxygen consumption rate (V̇O2 peak); and the

ventilatory anaerobic threshold established through the

V-slope method [19]. Peak V̇O2 and anaerobic threshold

values were indexed to body weight (ml.min-1.kg-1).

Electrocardiographic and expired gas data were collected

at 1-s intervals, with median filtering. Initial analysis was

carried out by two clinical exercise physiologists and further

validated by a consultant anaesthetist. Outcomes and

clinical scores were collected, including ASA physical status

[31]; Duke Activity Status Index (DASI) score [32];

Portsmouth-Physiology and Operative Severity Score for

the Enumeration of Mortality and Morbidity (P-POSSUM)

[33]; postoperative care destination; duration of hospital

stay; and mortality at 30 days and one year. One-year

mortality was prospectively assessed by using hospital

electronic health records (from 2019 onwards; EPIC,

Verona, WI, USA), with additional data sourced from

general practitioners through telephone and email

communication. Deaths resulting from acute, traumatic

events (e.g. car accidents or violence) were not included.

The study adhered to the Peri-operative Exercise Testing

and Training Society’s guidelines for conducting CPET [19].

Clinical laboratory results obtained in the pre-operative

period were obtained from the hospital electronic health

record (EPIC) for data from2019 onwards, while data before

2019 were recorded by hand by research nurses in the

patient research log. Data were stored in read-only

Microsoft Excel (Microsoft Corporation, Redmond, WA,

USA) databases located on secure university servers.

Dataset integrity and quality were checked by three

physicians independently.

Analyses were performed using Python (version 3.10.12)

[34] and Pandas (version 1.4.2) [35]. Patients with incomplete

data were excluded from analyses. For categorical variables,

binary encoding was implemented with a value of 1

indicating the presence of an event and 0 indicating

absence. Attributes such as sex, type of surgery and surgical

specialty were converted using one-hot encoding to address

their non-ordinal characteristics [36]. Continuous variables

were scaled to a range from 0 to 1. Categorical data were

analysed through frequency distributions. Differences

between groups were analysed using either Student’s t-test

or the Mann–Whitney U test, depending on the data

distribution. A standard Cox proportional hazards analysis

was conducted to examine associations between model

features and 1-year mortality and a sensitivity analysis, using

a Kruskal-Wallis test, was performed to compare outcomes

across different time periods [37].

Power analysis revealed that a sample size of at least

1000 patients would be adequate to develop and

validate a 1-year mortality prediction model with a

mortality rate of 5.5% at a 5% significance level and 80%

power. Creating a peri-operative 30-day mortality model

for comparison was unfeasible as the 30-day mortality

rate of 1.9% meant the available sample size lacked

sufficient statistical power.

The relative rarity of mortality at 1 year resulted in an

unbalanced dataset where deceased patients were

underrepresented, hampering machine learning

algorithms. To address this, we chose multi-objective

symbolic regression, a highly adaptable and effective

machine learning algorithm suited for handling unbalanced

datasets [27–29, 38]. Utilising genetic programming to

derive mathematical formulae for learning tasks, multi-

objective symbolic regression combines a range of

mathematical operations, from simple to complex, into a

learnable model without a predefined structure [28]. Multi-

objective symbolic regression’s automated feature

selection during training is particularly beneficial for

unbalanced datasets, prompting inclusion of all available

variables into the analyses. We developed and refined 300

unique models over 500 generations, optimising binary

cross-entropy and F1 score to balance false negatives and

false positives.

To compare the capabilities of multi-objective symbolic

regression on the same task, we trained models using the

PyCaret Python library [39]. The final multi-objective

symbolic regression models are provided in online

Supporting Information Appendix S1.

Models were assessed using classification metrics such

as accuracy; sensitivity; specificity; F1 score; positive

predictive value; negative predictive value; and area under

the curve values [38]. Calibration plots are reported in

online Supporting Information Figure S1. To compare the

models, we focused on the F1 score, the harmonic mean of

precision and recall [40]. The F1 score is more relevant than

accuracy in this study as it emphasises false positives and

false negatives. While accuracy is suited for balanced

© 2025 The Author(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 3
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classes and when true positives and true negatives are

key, the F1 score is better for imbalanced classes, as in this

study [41].

The decision to divide the experiments into a clinical

data set, cardiorespiratory and physiology dataset and a

combined full dataset was made to assess the individual

contributions of each segment to themodels, as well as their

collective impact.

The dataset was divided into training and testing

subsets using an 80/20 split, ensuring consistent outcome

prevalence representation [42]. Hyperparameter tuning was

achieved via a grid search 10-fold cross-validation on the

training dataset, adhering to a 90/10 division. To evaluate

the predictive performance and consistency of each model,

10 separate test runs were conducted on a 90% portion

of the test dataset selected randomly, averaging the

performance results obtained. Finally, an in-depth error

analysis was conducted on data points predicted incorrectly

by the machine learning models to understand between-

class clinical distinctions.

Finally, SHAP analysis was applied to the best-

performing multi-objective symbolic regression model to

assess feature importance on outcomes [43]. This model

was chosen based on superior sensitivity, specificity and

area under the curve values. Shapley additive explanation is

a model-agnostic tool, evaluating feature importance

exclusively and offering insights into clinical data

correlations.

Results
From a total of 2145 patients in the database, 1190 with

complete data were included (Fig. 1). Patient characteristics

are reported in Table 1 and online Supporting Information

Table S1. The ethnic distribution was congruous with that of

theUKpopulation reported in the 2021 census [44].

In the context of predicting 1-year mortality, when the

full dataset was used, multi-objective symbolic regression

achieved the highest F1 score (0.712) and sensitivity (0.911)

compared with other models. In the fitness dataset alone,

multi-objective symbolic regression showed a sensitivity of

0.447 and an F1 score of 0.343, both of which were higher

than those of the other models, except for the support

vector machine classifier, which showed an accuracy of

0.457 and an F1 score of 0.317. The analysis of test vs.

training set performance showed that the multi-objective

symbolic regression model exhibited consistency, with the

F1 score in the test set (0.712) closely matching that in

the training set (0.725), indicating minimal performance

degradation. In contrast, all other models showed

significant performance drops in the test set compared with

the training set. For example, the Ada-Boost classifier had

an F1 score of 0.847 in the training set and 0.386 in the test

set, suggesting overfitting. Multi-objective symbolic

regression showed robust generalisation capabilities,

performing consistently across different datasets and

achieving a balanced performance across precision,

sensitivity and specificity, supporting its ability to manage

both false positives and false negatives effectively.

The SHAP values for the multi-objective symbolic

regression model applied to peri-operative mortality

prediction are shown in Fig. 2. The SHAP analysis

highlighted the clinical significance of different features in

predicting mortality risk. Higher peak VE.V̇CO2
-1 was

associated with an increased risk of mortality. Conversely,

BMI values > 28 kg.m-2 were linked to a lower risk of 1-year

mortality. VE.V̇O2
-1 values > 38 ml.min-1 at both peak and

rest (indicative of better aerobic capacity) were associated

with lower SHAP values, indicating a lower risk of 1-year

mortality.

Across all models, the distributions of peak VE.V̇CO2
-1,

age and BMI for false positives and false negatives were

notably similar, indicating that errors are more likely due to

inherent difficulties in predicting certain patient profiles

from clinical data rather than specific deficiencies in

the machine learning algorithms (online Supporting

Information Figure S2).

Cox proportional hazards analysis (online Supporting

Information Table S2) indicated that the presence of

previous myocardial ischaemia and VE.V̇CO2
-1 at anaerobic

threshold and peak were associated with an increased

1-year mortality risk (hazard ratio (95%CI) 1.15 (1.12–1.83)

Figure 1 Patient flowdiagram.
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Table 1 Patient and procedure characteristics, cardiopulmonary exercise testing values, and outcomes. Values are median
(IQR [range]) or number (proportion).

Full dataset Training set Test set p value
n = 1190 n = 952 n = 238

Age; y 71 (61–79 [45–89]) 71 (61–79 [45–89]) 73 (59–79 [49–88]) 0.88

Sex;male 825 (69%) 653 (69%) 166 (70%) 0.81

BMI; kg.m-2 26.5 (23.3–30.0 [14.0–39.0]) 26.4 (23.1–30.0 [16.0–39.0]) 26.0 (23.4–29.4 [14.0–38.0]) 0.30

ASAphysical status 2 (2–3 [0–4]) 2 (2–3 [0–4]) 2 (2–3 [1–4]) 0.23

DukeActivity Status Index 46.2 (32.2–58.2 [31.4–58.2]) 45.4 (31.4–58.2 [31.4–58.2]) 42.7 (32.2–58.2 [31.4–58.2]) 0.50

Ethnicity

Asian 60 (5%) 48 (5%) 12 (5%) 0.67

Arabic 31 (3%) 24 (3%) 7 (3%) 0.56

Black 78 (7%) 62 (7%) 16 (7%) 0.45

Mixed/other 56 (5%) 44 (5%) 12 (5%) 0.65

White 966 (81%) 776 (82%) 193 (80%) 0.76

Comorbidities

Hypertension 416 (35%) 332 (35%) 84 (35%) 0.88

Diabetes 131 (11%) 109 (11%) 22 (11%) 0.40

Angina 48 (4%) 34 (3%) 14 (5%) 0.30

Coronary stent 60 (5%) 50 (5%) 10 (4%) 0.53

Coronary artery bypass
graft

36 (3%) 24 (2%) 12 (3%) 0.25

Chronic cardiac failure 119 (10%) 93 (10%) 26 (11%) 0.83

Peripheral vascular
disease

24 (2%) 19 (2%) 5 (2%) 0.96

CVAor TIA 47 (4%) 38 (4%) 9 (3%) 0.62

COPD 72 (6%) 62 (6%) 10 (4%) 0.18

Asthma 95 (8%) 73 (7%) 22 (8%) 0.68

Pulmonary embolism 17 (2%) 13 (2%) 4 (2%) 0.88

Pulmonary fibrosis 10 (1%) 6 (1%) 4 (2%) 0.16

Smoking (ex/current) 427 (36%) 335 (36%) 92 (38%) 0.36

Medications

Beta blocker 238 (20%) 191 (20%) 47 (20%) 0.51

Nitrates 36 (3%) 29 (3%) 7 (4%) 0.84

ACE inhibitors 214 (18%) 166 (17%) 48 (19%) 0.64

Statins 357 (30%) 282 (30%) 76 (31%) 0.81

Surgical specialty

Colorectal 244 (20%) 196 (20%) 48 (20%) 0.80

Upper gastrointestinal 196 (17%) 155 (17%) 41 (17%) 0.80

Genito-urinary 404 (34%) 322 (34%) 82 (34%) 0.80

Head andneck 253 (21%) 201 (21%) 52 (21%) 0.80

Thoracic 43 (4%) 33 (4%) 10 (4%) 0.80

Others 50 (4%) 30 (4%) 10 (4%) 0.80

Cardiopulmonary exercise testing values

Metabolic equivalents 4.5 (3.7–5.5 [1.47–10.7]) 4.5 (3.7–5.5 [1.56–10.7]) 4.5 (3.7–5.5 [1.47–9.8]) 0.83

Anaerobic threshold;
V̇O2.kg

-1 ml.kg-1.min-1
10.5 (9.0–12.4 [2.9–25.0]) 10.6 (9.0–12.4 [3.4–25.0]) 10.5 (9.2–12.4 [2.9–18.0]) 0.64

(continued)
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and 1.17 (1.09–1.25), respectively). Sensitivity analysis

revealed no difference in outcomes when comparing

patient results over time. Results of the machine learning

models used to predict 1-year mortality are in online

Supporting Information Table S3.

Discussion

This study showed the feasibility of creating a 1-year

mortality model for patients undergoing complex non-

cardiac surgery using multi-objective symbolic regression,

Table 1 (continued)

Full dataset Training set Test set p value
n = 1190 n = 952 n = 238

Peak V̇O2.kg
-1;

ml.kg-1.min-1
17.0 (14.0–20.5 [8.2–46.0]) 17.0 (13.8–20.5 [9.2–46.0]) 16.8 (14.2–20.6 [8.2–42.0]) 0.61

Peak VE.V̇CO2
-1;

ml.min-1
34.5 (31.4–38.8 [17.5–56.0]) 34.6 (31.4–38.7 [17.5–49.0]) 34.8 (31.2–38.8 [19.4–56.0]) 0.98

Outcomes

1-yearmortality 66 (6%) 52 (5%) 14 (6%) 0.86

30-daymortality 23 (2%) 18 (2%) 5 (2%) 0.56

Readmission 30 days 88 (7%) 70 (7%) 18 (8%) 0.67

Adverse event 178 (15%) 142 (15%) 36 (15%) 0.76

Postoperative location;
ward/PACU/ICU

345/762/83 (29%/64%/7%) 276/610/66 (29%/64%/7%) 69/152/17 (29%/64%/7%) 0.65

Durationof hospital
stay; days

10 (7–16 [2–52]) 10 (7–16 [2–42]) 10 (7–16 [4–52]) 0.65

CVA, cerebrovascular accident; TIA, transient ischaemic attack; COPD, chronic obstructive pulmonary disease; ACE, angiotensin-
converting enzyme; V̇O2.kg

-1, oxygen consumption per kilo; VE.V̇CO2
-1, ventilatory efficiency/carbon dioxide output; PACU,

postanaesthetic care unit.

Figure 2 (a) Shapley additive explanations (SHAP) analysis for amulti-objective symbolic regressionmodel. (b) Graphs
analysing the influence of specific respiratory and physiological variables on a predictivemodel. VE.V̇CO2

-1, ventilatory
efficiency/carbon dioxide output; VE.V̇O2

-1, ventilatory efficiency/oxygen consumption; RER, respiratory equivalent ratio; AT,
anaerobic threshold; PetCO2, partial pressure of end-tidal carbon dioxide; HR, heart rate; V̇O2, oxygen consumption; Hb,
haemoglobin; BP, blood pressure; V̇CO2, carbon dioxide output.

6 © 2025 TheAuthor(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists.
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utilising pre-operative data from both clinical and fitness

domains. The model proved effective in classifying patients

despite an unbalanced dataset, exhibiting high sensitivity, a

high F1 score and no overfitting. We have shown that

longer-term outcomes are influenced by several interacting

factors, including physiological reserve and the progression

of underlying comorbidities.

Accurate prediction of 1-year mortality is useful for

evaluating patients undergoing elective major surgery due

to its significant ethical and clinical implications for decision-

making. One-year mortality is an underused outcome that

can reflect underlying disease or age-related mortality risk

with or without surgery [15]. As cardiorespiratory fitness is

an independent risk factor for 1-year mortality [18],

incorporating CPET data enhances the model’s impact

further by accounting for the influence of physiological age

or reserve. Apart from providing the peri-operative care

team with information to aid selection of the most

appropriate surgical approach, it could also help identify

patients for pre-operative prehabilitation and optimisation

pathways, with the potential to improve outcomes [45].

A 1-year mortality model complements existing peri-

operative models that predict in-hospital mortality or 30-

day postoperative outcomes primarily. Suchmodels include

the pre-operative mortality predictor and the universal

American College of Surgeons National Surgical Quality

Improvement Program Surgical Risk Calculator that now

incorporates machine learning techniques [46, 47]. These

models rely mainly on patient characteristics and type of

surgery but do not integrate any assessment

of cardiorespiratory fitness. The ASA physical status for

example, though used widely, relies heavily on subjective

clinician assessment [46].

Our findings emphasise the significance of both clinical

history and physiological assessment (cardiorespiratory

fitness) in predicting longer-term health outcomes. The

SHAP analysis of the multi-objective symbolic regression

model highlights the importance of physiological metrics

obtained from pre-operative CPET (particularly VE.V̇CO2
-1)

in forecasting peri-operative mortality, aligning with the

existing literature [19, 48–50]. The VE.V̇CO2
-1 ratio is a

correlate of ventilation/perfusion matching [51] and has

been related to cardiac output and mortality risk in patients

with heart failure [52], as well as the development of early

postoperativemorbidity andmortality [52].

Body mass index was also identified as a critical

predictor. A high BMI often indicates patients who are

overweight or living with obesity, which is associated

commonly with heart disease, metabolic syndrome and

diabetes. Our model, however, suggested a protective

influence of elevated BMI and a detrimental influence of

low BMI, potentially representative of sarcopenia,

cachexia and other chronic health conditions [53, 54]. This

relationship is termed the `obesity paradox´ where, in

certain populations and conditions, individuals who are

overweight or obese have better survival outcomes

compared with those with a normal BMI. This

phenomenon has been particularly noted in patients with

chronic diseases such as chronic kidney disease and

certain types of cancer [55, 56]. This concept is, however,

controversial [57]. Patients with a high BMI may have

higher intrinsic metabolic reserves to cope with critical

and/or chronic illness and potentially protective adipose

tissue cytokines. On the other hand, patients with chronic

diseases may simply reflect a sicker, more frail population,

which are risk factors in themselves. Body mass index also

does not distinguish between muscle and fat mass.

The multi-objective symbolic regression model

exhibited minimal overfitting, maintaining consistent

performance between the training and testing sets. The

other models examined showed significant performance

degradation when applied to the test set, suggesting

potential overfitting. In predictive modelling for clinical

applications where data can be highly unbalanced,

traditional metrics such as accuracy and area under the

curve values can be misleading; the F1 score is a more

critical measure. The multi-objective symbolic regression

model achieved a commendable F1 score, emphasising its

suitability for this complex problem.

Using the full database, the multi-objective symbolic

regression model showed high sensitivity, improving

identification of high-risk patients. This minimises false

negatives, which is crucial in clinical settings where missing

a high-risk patient could have significant consequences.

Such patients can be directed towards peri-operative

prehabilitation or medical optimisation pathways,

potentially enhancing their outcomes, though we

acknowledge there will be a higher rate of false positives

who may not benefit from such interventions. Multi-

objective symbolic regression presents an alternative to

traditional predictive models, which often suffer from

technical constraints and a narrow selection of features

leading to suboptimal performance, especially in the face of

unbalanced datasets that are commonplace in medical

data [17]. Studies should be conducted to elucidate

mechanisms underlying the relationships between

cardiorespiratory fitness and peri-operative outcomes, with

a view to identifying targetable mechanisms for

© 2025 The Author(s).Anaesthesiapublished by JohnWiley & Sons Ltd on behalf of Association of Anaesthetists. 7
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intervention. Furthermore, external databases should be

identified to enable external validation of the model for

broader generalisability.

This study has several limitations. It was conducted at a

single institution, but the 1-year mortality in our database is

congruent with that reported in the literature, thus

improving the likely generalisability of our findings [2].

External validation with independent datasets from other

institutions would be necessary to confirm robustness and

applicability in different populations and settings. The

dataset contained a White majority population, meaning

the results should be interpreted with caution and may not

apply to other ethnicities [2]. Another limitation pertains to

the unavailability of data on patients’ body composition

and investigation of the muscle-to-adipose tissue ratio.

There is also a potential for selection bias since patients

referred for CPET may represent a subset with higher

perceived risk, potentially skewing results. This is

somewhat mitigated in our database since CPET is a

routine component of most of our surgical pathways. The

use of retrospective data can also introduce bias relating to

data completeness and quality. We employed a three-

researcher data quality check to mitigate against this.

Unmeasured confounders include socio-economic status,

nutritional status and other unrecorded comorbidities.

Rapid advancements in machine learning and genetic

programming may lead to newer, more sophisticated

methods that could outpace multi-objective symbolic

regression, necessitating ongoing research and

comparison with emerging techniques. While our model

does appear to perform well, its practical utility in clinical

decision-making needs evaluation. This would include

addressing how well the model integrates into existing

clinical workflows and its impact on management strategies

and patient outcomes.

In conclusion, we generated a 1-year mortality model

for patients undergoing major complex surgery that

emphasises the need to consider both demographic and

fitness factors. The ability of multi-objective symbolic

regression to handle complex data sets the stage for future

validation studies and, potentially, integration of such

models into clinical practice.
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