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ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system.
Structures affected in MS include the corpus callosum, connecting the hemispheres. Studies
have shown that in mammalian brains, structural connectivity is organized according to a
conservation principle, an inverse relationship between intra- and interhemispheric
connectivity. The aim of this study was to replicate this conservation principle in subjects with
MS and to explore how the disease interacts with it. A multicentric dataset has been analyzed
including 513 people with MS and 208 healthy controls from seven different centers.
Structural connectivity was quantified through various connectivity measures, and graph
analysis was used to study the behavior of intra- and interhemispheric connectivity. The
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association between the intra- and the interhemispheric connectivity showed a similar strength
for healthy controls (r = 0.38, p < 0.001) and people with MS (r = 0.35, p < 0.001).
Intrahemispheric connectivity was associated with white matter fraction (r = 0.48, p < 0.0001),
lesion volume (r = −0.44, p < 0.0001), and the Symbol Digit Modalities Test (r = 0.25,
p < 0.0001). Results show that this conservation principle seems to hold for people with MS.
These findings support the hypothesis that interhemispheric connectivity decreases at higher
cognitive decline and disability levels, while intrahemispheric connectivity increases to
maintain the balance.

AUTHOR SUMMARY

In our study, we investigated how multiple sclerosis (MS), a disease that affects the central
nervous system, impacts brain connectivity and the conservation principle of connectivity in
the brain across hemispheres. By analyzing data from 513 MS patients and 208 healthy
individuals, we examined if this conservation principle holds and how it changes due to MS.
Our findings revealed that both MS patients and healthy individuals exhibit a similar balance
between connections within each hemisphere and between hemispheres. We also observed
that as cognitive impairment and disability in MS patients increase, interhemispheric
connectivity decreases while intrahemispheric connectivity compensates. This suggests that
the brain attempts to maintain balance despite the disease’s progression, highlighting the
adaptability of neural connectivity during the course of MS.

INTRODUCTION

Multiple sclerosis (MS) is a disabling disease that affects the central nervous system (Thompson
et al., 2018). People with MS (pwMS) exhibit a wide spectrum of disease presentations with
varying symptoms, including visual impairment, motor disability, and cognitive decline.
Atrophy (Sastre-Garriga et al., 2020), focal and diffuse white matter damage (Kutzelnigg
et al., 2005), and brain functional connectivity alterations (d’Ambrosio et al., 2020; Rocca
et al., 2018) can be present in the central nervous system of pwMS, captured with both con-
ventional and advanced MRI methods.

Regarding brain connectivity, MS has been associated with disruptions in structural connec-
tivity (SC) (Fleischer et al., 2019). Associations have been found between white matter lesion
load and structural network disconnection (He et al., 2009; Llufriu et al., 2017; Pagani et al.,
2020). When defining the SC as a connected graph, measures like network efficiency were
found to be associated with disability and disease duration (Shu et al., 2011, 2016). More
specifically, atrophy in the corpus callosum (CC) (Ozturk et al., 2010; Sigal et al., 2012) and thal-
amus (Schoonheim, Hulst, et al., 2015), structures that connect both brain hemispheres, have been
linked to a decline in cognition and an increase in disability for pwMS. Interhemispheric connec-
tions are needed to maintain small-worldness and network efficiency (Watts & Strogatz, 1998), so
those disruptions have the potential to alter the normal patterns of brain connectivity.

Given these disruptions on these key structures, it is of interest to explore the brain connec-
tivity in MS and how it could relate to the observed alterations. The mammalian brain has
been shown to present a conservation principle of structural brain connectivity across species

Structural connectivity:
The physical wiring of the brain’s
white matter pathways.

Corpus callosum:
The largest white matter structure
connecting the two cerebral
hemispheres, enabling
communication between the two.
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and different brain structures (Assaf et al., 2020), with intrahemispheric brain connectivity
increasing as interhemispheric brain decreases, and vice versa. This association between intra-
and interhemispheric connectivity has also been observed in humans. Krupnik et al. (2021)
showed that this relationship holds in the human brain by analyzing a cohort of 1,497 subjects
and their SC and suggesting that a lower interhemispheric connectivity was associated with
lower crystallized intelligence. This conservation of SC, however, has not been studied in MS.
Zhou et al. (2013) tested if interhemispheric homotopic connections were affected in MS
studying functional MRI and the CC, finding reduced interhemispheric connections in pwMS.
Petracca et al. (2020) showed reduction in CC streamline density related to white matter dam-
age. Those works, however, did not assess the behavior of the intrahemispheric connectivity.
Given these disruptions caused by MS on SC, we believe that it is relevant to investigate
whether such conservation is affected by the disease and any possible connection to physical
and cognitive disability.

In this work, we analyzed the brain connectivity of 514 pwMS and 216 healthy controls
(HC) from seven different centers, using SC to study the association between intrahemispheric
and interhemispheric connectivity in MS. The primary aim of this study was to analyze if the
conservation of brain SC holds for pwMS, and how it relates to the physical and cognitive
disability caused by MS. Our initial hypothesis was, given the available evidence (Assaf et al.,
2020; Krupnik et al., 2021), that the conservation will hold, but a lower interhemispheric con-
nectivity caused by MS (Ozturk et al., 2010; Schoonheim, Hulst, et al., 2015; Sigal et al., 2012)
will be observed, which will be compensated by an increase of intrahemispheric connectivity.
We extracted different intra- and interhemispheric connectivity markers for each subject,
studied their interactions, and showed their associations with cognition and disability for pwMS.

MATERIALS AND METHODS

Data

Data for this project were provided by members of the European Magnetic Resonance Imaging
in MS (MAGNIMS) consortium. Seven centers have participated in the study, in no specific
order: Hospital Clínic, Institut Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain;
University Medical Centre of the Johannes Gutenberg, Mainz, Germany; Istituto di Ricovero
e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy; Università degli Studi di
Napoli “Federico II,” Naples, Italy; Oslo University Hospital, Oslo, Norway; Amsterdam
UMC, Amsterdam, Netherlands; and University College London, London, United Kingdom.

Participants were recruited at each center and data were transferred within a MAGNIMS
general framework agreement. The study participants underwent MRI scans using 3T scanners,
which provided both conventional (T1 and Fluid attenuated inversion recovery) and advanced
Diffusion-weighted imaging (DWI) imaging. Physical (Expanded Disability Status Scale, EDSS)
and cognitive (Symbol Digit Modality Test, SDMT) outcomes were also provided. EDSS cap-
tures the overall disability in pwMS, while SDMT is a cognitive function measure that captures
information processing speed, attention, and visual model coordination. PwMS were divided
between low/high EDSS (cutoff value of 3, as in Leray et al., 2013) and low/high SDMT (cutoff
value of 40, as described in Van Schependom et al., 2014, for differentiating cognitive impair-
ment) for later analysis. Information about the specific imaging protocols provided by each
center is available in Supporting Information Data S1.

After data processing and quality control (see the Data Processing section), the final cohort
contained a total of 697 subjects. Table 1 shows the age and sex (and for pwMS, disease dura-
tion, EDSS, and SDMT) of the subjects, divided by center. Further information and distribution

Intra/interhemispheric connectivity:
Connections within regions in one
hemisphere and connections
between the two hemispheres,
respectively.

Homotopic connection:
Connections between the
corresponding regions in the left
and right hemispheres.

Streamline:
A representation of the path of a
white matter fiber tract in
tractography.
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Table 1. Cohort information

Amsterdam Barcelona London Mainz Milan Naples Oslo

N - HC 48 8 19 26 30 53 24

N - pwMS 173 58 43 50 56 51 58

N - total 221 66 62 76 86 104 82

Age - HC 48.41 ± 9.3 29.94 ± 10.6 33.19 ± 7.0 27.85 ± 6.4 37.26 ± 9.3 41.30 ± 11.6 35.12 ± 8.7

Age - pwMS 48.80 ± 11.3 48.81 ± 9.6 34.43 ± 7.9 35.78 ± 11.6 42.18 ± 9.7 42.48 ± 12.9 40.59 ± 7.2

Sex - HC 58.33% 87.50% 63.16% 50.00% 40.00% 62.26% 62.50%

Sex - pwMS 71.68% 72.41% 62.79% 64.00% 55.36% 66.67% 70.69%

EDSS 3.5 (2.5, 5.5) 2.5 (1.5, 3.875) 1.5 (1.0, 2.0) 1.5 (1.0, 2.0) 3.75 (1.5, 6.125) 4.5 (2.5, 6.0) 2.0
(1.5, 2.875)

SDMT 51.21 ± 13.3 46.05 ± 13.4 58.84 ± 9.9 53.12 ± 11.3 50.95 ± 14.3 41.29 ± 13.8 51.48 ± 9.5

DD 15.26 ± 8.7 19.54 ± 9.4 0.41 ± 0.5 4.99 ± 6.6 10.81 ± 9.8 13.29 ± 9.0 10.09 ± 5.3

Age (years), EDSS is shown in the format median (25%–75% IQR). SDMT is shown in the format mean ± SD. Sex is shown as the percentage of females over the total. Abbreviations; HC =
healthy controls; pwMS = people with MS; EDSS = Expanded Disability Status Scale; SDMT = Symbol Digit Modality Test; DD = disease duration (years).
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of values (brain parenchymal fraction, EDSS, SDMT, and lesion volume fraction [LVF]) across
centers can be found in Supporting Information Figure S2.

Data Processing

All the data were processed using with a single machine (Intel Xeon with 24 cores at 3.50 GHz,
128-GB RAM, NVIDIA Quadro RTX 5000 GPU). Subjects were processed in parallel when
possible. The code for MRI preprocessing pipeline, including structural processing, lesion seg-
mentation, diffusion preprocessing, and fiber tracking, is available at https://github.com
/GerardMJuan/FC-SC-data-pipeline.

Structural preprocessing. The three-dimensional T1 was segmented and parcellated in the
Desikan-Killiany atlas with FastSurfer (Henschel et al., 2020, 2022). The final segmentation
included 60 cortical and 16 subcortical regions. Gray matter fraction (GMF) and white matter
fraction (WMF), compared with intracranial volume were also computed for all subjects for
later analysis.

Lesion segmentation. Hyperintense white matter lesions in pwMS were segmented using the
Lesion Segmentation Toolbox (Pareto et al., 2016; Schmidt et al., 2012), using the default
lesion growth algorithm with the registered T1 and FLAIR. We also computed the LVF for
all pwMS.

Diffusion preprocessing. Diffusion image processing was performed using MRtrix3 (Tournier
et al., 2019). We performed denoising, correction of Gibbs ringing (Kellner et al., 2016),
and distortion correction (S. M. Smith et al., 2004), which included correction for eddy
current-induced distortion, motion correction, and, if possible, when data were available,
fieldmap-based unwarping using PRELUDE (Jenkinson, 2003) or inhomogeneity distortion cor-
rection using TOPUP (Andersson & Sotiropoulos, 2016) and bias correction. This step was
skipped for the centers where no extra volumes with reversed gradient polarity for correction
were available.

Fiber tracking was conducted using a single shell or multishell (depending on the data
characteristics) based on the constrained spherical deconvolution method (iFOD2 algorithm
[Tournier et al., 2010]) to estimate the fiber orientation distributions (Jeurissen et al., 2014;
Tournier et al., 2007), using Dhollander’s algorithm (Dhollander et al., 2019) to estimate the
response function. This was accomplished by utilizing the available segmentation of tissues
(gray matter, white matter, and cerebrospinal fluid) created during the structural preprocess-
ing, registering them to the diffusion scan, as well as white matter lesion segmentation, to estab-
lish an anatomically constrained tractography (ACT) (R. E. Smith et al., 2012). Finally,
6,000,000 streamlines were generated using tckgen from MRtrix3 (Tournier et al., 2019), using
seeding at random inside the brain, with the ACT framework (R. E. Smith et al., 2012), allow-
ing backtracking during tracking if a poor structural termination is encountered, with a cutoff
value of 0.06, cropping streamline endpoints as they cross the GM-WM interface.

To reduce the number of biologically unrealistic streamlines in the generated tractography,
an automatic anatomical exclusion criteria algorithm was employed (Martínez-Heras et al.,
2015). We extend the implementation described in the paper to every pair of regions from
our previous segmentation to remove the implausible streamline between each pair of regions.
Then, the SIFT2 algorithm (R. E. Smith et al., 2015) was used to assign a weight to each stream-
line based on its likelihood of being biologically plausible, allowing to use the streamline
count as a biological marker of connection, as well as allowing quantitative comparison across
subjects (R. E. Smith et al., 2022). The final streamline to node assignment was done using a

Anatomically constrained
tractography:
Method to perform fiber tracking in
diffusion MRI using anatomical
information from image
segmentation to enhance accuracy.
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radial search, with the threshold being the slice thickness of the scan plus 0.5. Finally, the
resulting SC matrix was divided by fiber length. This last step was done to further remove bias
toward longer fibers (Hagmann et al., 2008; Roberts et al., 2016) and to incorporate fiber
length across nodes to our connectivity analysis, given its relevancy to brain connectivity
(Bajada et al., 2019).

Quality control. Quality control was performed by manually checking the segmentation of
the cortical and subcortical regions, the lesion segmentation, and the registration of struc-
tural and diffusion scans. Any subjects that showed poor registrations (bad alignment) across
sequences, inferior quality scans (noisy scans, low contrast across tissues), or incorrect seg-
mentations were removed. This was facilitated by an automated script, included in the
repository.

Hemispheric Connectivity Measures

A total of 76 cortical and subcortical areas, including the CC, were segmented across the
brain, as described in the previous section, and the scans and segmentations were registered
to a common template. The SC matrices were derived from fiber tracking across 76 cortical
and subcortical regions using the same parcellation scheme (76 nodes). For computing the
intra- and interhemispheric connectivity measures, we considered only connections between
cortical areas, as in Assaf et al. (2020) and Krupnik et al. (2021). We were left with 60 cortical
regions, 30 per hemisphere. The weights of the connectivity matrix were created by doing the
inverse of the connections.

Interhemispheric connectivity. Interhemispheric connectivity was evaluated using two different
metrics, as in Assaf et al. (2020): the commissural ratio and the CC ratio:

commissural ratio ¼ N˚ streamlines crossing hemispheres
Total N˚ streamlines

(1)

CC ratio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CCarea

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Brain Vol:3

p (2)

where CCarea is the midsagittal area of the CC, and BrainVol. is the total brain volume. For
the commissural ratio, the number of streamlines crossing hemispheres was computed as the
total number of streamlines where the start and the end were in opposed hemispheres (Assaf
et al., 2020). The commissural ratio is computed from the fiber tracking, while the CC ratio
comes only from volumetric data derived from T1 structural imaging. Both were used and
compared to evaluate how well they were related and how they captured interhemispheric
connectivity.

Intrahemispheric connectivity. As with the interhemispheric connectivity analysis, two different
measures were computed.

• Shortest path length (SPL): The mean SPL of a graph is a measure of the efficiency of
information flow in the graph. It is defined as the mean of the SPL between all pairs of
nodes. Mathematically, it can be defined as follows:

PN
i¼1

PN
j¼iþ1 d i; jð Þ

N N − 1ð Þ (3)

where d(i, j ) is the SPL between nodes i and j, and N is the number of nodes in the graph.
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• Efficiency: The efficiency of a network quantifies the extent of the network integration,
that is, a measure of the overall capacity for information transferring across nodes or
regions in the brain (Bullmore & Sporns, 2012). Efficiency is defined as the mean of
the inverse of the SPL across all nodes in the graph. Mathematically, it can be defined
as follows:

PN
i¼1

PN
j¼iþ1

1
d i;jð Þ

N N − 1ð Þ (4)

where d(i, j ) is the SPL between nodes i and j, and N is the number of nodes in the graph.

The mean SPL and efficiency were calculated separately for each hemisphere and aver-
aged. Those measures were used to (a) replicate the results observed in Assaf et al. (2020)
and Krupnik et al. (2021) and (b) observe any differences between HC and pwMS on intra-
and interhemispheric connectivity.

Both the mean SPL and the efficiency measure information flow in networks, and they
mostly act as the inverse of the other. However, they offer distinct interpretations and sensitiv-
ities. Efficiency is more robust in networks with disconnected nodes or infinite path lengths, as
it accounts for the inverse of path lengths, while SPL is more sensitive to changes in the longest
paths within the network (Rubinov & Sporns, 2010). Because of this, and with both being used
in the two papers we want to replicate (Assaf et al., 2020; Krupnik et al., 2021), we have
decided to include both in our analysis.

ComBat Harmonization

ComBat harmonization was employed to correct for substantial intersite variability across the
seven centers involved in data acquisition. ComBat harmonization (Fortin et al., 2018; Johnson
et al., 2007) is a statistical technique designed to remove site-specific variability in multicenter
neuroimaging studies, thereby enhancing the comparability of data collected across different
scanners and protocols. This method utilizes empirical Bayes frameworks to adjust for
scanner-related effects while preserving biological variability and effects of interest. This
approach is important in reducing the confounding influence of site-specific differences, facil-
itating more accurate comparisons and interpretations of the data.

As described in the Data section, data from seven different centers, exhibiting large differ-
ences in scanner models, acquisitions parameters, and protocols, were included (Supporting
Information Data S1 contains the full details of the differences in acquisition parameters across
centers). ComBat harmonization was applied using the Python implementation provided by
the authors of the paper (https://github.com/Jfortin1/neuroCombat). Age, sex, and diagnosis
were set as covariates. Diagnosis was selected as a proxy for EDSS/SDMT, as we did not have
those values available for controls. The correction was applied to all neuroimaging-derived
values from MRI, diffusion, and hemispheric connectivity measures. The corrected values
were then used for all subsequent experiments that were not separated by center.

Statistical Analysis

All statistical analysis experiments were implemented in Python using the statsmodels pack-
age. The analysis of brain networks was implemented in Python using the networkX package.

The relationship between intra- and interhemispheric connectivity was assessed by com-
puting the correlation between pairs of inter-/intrahemispheric connectivity values, divided

Intersite variability:
Differences in data across multiple
research locations due to different
acquisition machines, protocols, etc.
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between HC and pwMS, regressing out age and sex. The same analysis was done for each
center separately, to check if the relationship also holds. Regarding interhemispheric connec-
tivity, the correlation between the two measures (commissural ratio and CC ratio) was assessed
to analyze how the two variables were related.

Correlations were run between inter- and intrahemispheric connectivity values and GMF,
WMF, LVF, and disability and cognitive scores (regressing out age, sex, and center). Prior to
analysis, we checked if SDMT was correlated with the years of education in pwMS. After cor-
recting for age and sex, we did not observe significant associations between education and
SDMT, so it was not included in the model (Supporting Information Table S3). Differences
in intra- and interhemispheric values across HC and pwMS divided in high and low EDSS
and SDMT groups were computed using analysis of variance (ANOVA) with three groups,
and differences across groups were evaluated with post hoc pairwise Tukey honestly signifi-
cant difference (HSD) tests.

To further analyze how the relationship between intra- and interhemispheric SC varies in
MS, we also evaluated how the ratio (inter/intra) of the values (four ratios in total) relates to
EDSS and SDMT. We repeated the same experiments as before with the calculated ratios. All

Figure 1. Comparison of the data before and after applying the ComBat harmonization procedure. Colored by center. Top: Comparison
between the two top principal components after a PCA. Bottom: Distribution separated by center (left) and group (right) before and after
ComBat harmonization. PCA = principal components analysis; GM = gray matter; RRMS = relapsing-remitting MS; SPMS = secondary pro-
gressive MS; HC = healthy control; PPMS = primary progressive MS; CIS = clinically isolated syndrome.
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tests described in this section were corrected for multiple comparisons using Bonferroni
correction.

RESULTS

Thirty-tree subjects were removed from the cohort after quality control, leaving the total num-
ber of subjects at 697, described in the Data section. Results of combat harmonization are
shown in Figure 1, comparing the distribution of two specific imaging markers (GM and

Figure 2. Correlation between pairs of intra/interhemispheric SC measures. Each plot shows the Pearson correlation between the two var-
iables, with the x-axis representing the interhemispheric value and the y-axis representing the intrahemispheric value. pwMS are colored by
EDSS. HC is marked with a cross. Values are corrected by age and sex. Data are harmonized across centers using ComBat. Tests results are
corrected for multiple comparisons. EDSS = Expanded Disability Status Scale; HC = healthy controls; pwMS = people with MS; SPL = shortest
path length; CC = corpus callosum.

Figure 3. Correlation between commissural ratio and SPL/efficiency SC measures, separated by center. Each plot shows the Pearson corre-
lation between the two variables, with the x-axis representing the interhemispheric value and the y-axis representing the intrahemispheric
value. pwMS is colored blue, and HC is colored orange. Values are corrected by age and sex. Results are corrected for multiple comparisons.
MS = multiple sclerosis; HC = healthy controls; pwMS = people with MS; SPL = shortest path length.
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commissural ratio), as well as the principal components analysis (PCA) of all the imaging
markers, to visualize the changes after harmonization. Supporting Information Figure S4 shows
more differences across other imaging markers before and after Figure 2 shows the correlation,
colored by EDSS and separated between controls and pwMS, between pairs of intra- and inter-
hemispheric SC measures. The strongest correlation was found when comparing the commis-
sural ratio against the efficiency (r = −0.43 for pwMS, r = −0.41 for HC, p < 0.00001). Figure 3
shows the same comparison separated by center, also showing the same tendency for each
separated center. All tests have been corrected by multiple comparisons.

Figure 4 shows the relationship between the different measures of interhemispheric connec-
tivity, corrected by age and sex and separated between pwMS and HC. Significant correlations

Figure 4. Correlation between interhemispheric measures. Pearson correlation between commissural ratio, a diffusion MRI-derived inter-
hemispheric measure, and three T1 structural-derived interhemispheric measures (CC sagittal area (mm2), CC area ratio, and CC volume
(mm3)). pwMS is colored by EDSS. HC is marked with a cross. Values are corrected by age and sex. Data are harmonized across centers using
ComBat. Tests results are corrected for multiple comparisons. CC = corpus callosum; HC = healthy controls; pwMS = people with MS; EDSS =
Expanded Disability Status Scale.

Table 2. Partial correlations with structural measures, EDSS and SDMT

GMF WMF LVF EDSS SDMT

Commissural ratio r = 0.23,
p < 0.0001

r = 0.51,
p < 0.0001

r = −0.41,
p < 0.0001

r = −0.16,
p = 0.0082

r = 0.27,
p < 0.0001

CC ratio r = −0.05,
p = 1.0

r = 0.33,
p < 0.0001

r = −0.22,
p < 0.0001

r = −0.20,
p < 0.0001

r = 0.33,
p < 0.0001

Mean SPL r = −0.00,
p = 1.0

r = 0.39,
p < 0.0001

r = −0.14,
p = 0.0057

r = −0.15,
p = 0.03

r = 0.22,
p < 0.0001

Mean eff. r = −0.06,
p = 1.0

r = −0.46,
p < 0.0001

r = 0.15,
p = 0.0023

r = 0.18,
p = 0.0015

r = −0.24,
p < 0.0001

Commissural ratio/SC SPL r = 0.26,
p < 0.0001

r = 0.40,
p < 0.0001

r = −0.40,
p < 0.0001

r = −0.12,
p = 0.26

r = 0.22,
p < 0.0001

Commissural ratio/SC eff. r = 0.20,
p < 0.0001

r = 0.54,
p < 0.0001

r = −0.38,
p < 0.0001

r = −0.18,
p = 0.0012

r = 0.29,
p < 0.0001

CC ratio/SC SPL r = −0.05,
p = 1.0

r = 0.03,
p = 1.0

r = −0.10,
p = 0.18

r = −0.09,
p = 1.0

r = 0.15,
p = 0.0076

CC ratio/SC eff. r = −0.01,
p = 1.0

r = 0.47,
p < 0.0001

r = −0.23,
p < 0.0001

r = −0.22,
p < 0.0001

r = 0.36,
p < 0.0001

Partial correlations between intra- and interhemispheric measures in groups of patients against structural measures, EDSS and SDMT. Results are corrected by age
and sex. Data are harmonized across centers using ComBat. Test results are corrected for multiple comparisons. GMF = gray matter fraction; WMF = white matter
fraction; LVF = lesion volume fraction; EDSS = Expanded Disability Status Scale; SDMT = Symbol Digits Modalities Test; CC = corpus callosum; SPL = shortest
path length; Eff = efficiency; SC = structural connectivity; Corrected by multiple comparisons. Partial correlations with p < 0.0001 are highlighted in bold.

Principal components analysis (PCA):
A dimensionality reduction
technique by transforming variables
into orthogonal components,
facilitating visualization in lower
dimensions of high dimensionality
data.
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were observed, with no major differences between HC and pwMS (r = 0.49 and 0.43 between
commissural ratio and CC ratio for HC and pwMS, respectively, and r = 0.63 and 0.75 between
commissural ratio and CC volume for HC and pwMS, respectively; p < 0.0001 in both cases).

Table 2 displays correlations—corrected by center, age, and sex—between structural mea-
sures, EDSS/SDMT, and the inter-/intraconnectivity measures. WMF was strongly associated
with all connectivity values, especially with commissural ratio (r = 0.51, p < 0.0001) and effi-
ciency (p = −0.46, p < 0.0001). LVF was also strongly associated with commissural ratio (r =
−0.41, p < 0.0001). Higher cognitive scores were associated with increased connectivity, as
shown by the correlation between the CC ratio and SDMT (r = 0.33, p < 0.0001). Intrahemi-
spheric connectivity also displayed associations with EDSS (r = 0.18 with efficiency, p < 0.001)
and SDMT (r = 0.24 with efficiency, p < 0.0001).

Figure 5. Comparison of connectivity values between HC and pwMS, divided in low/high EDSS and SDMT groups. Tests were conducted
using two-way ANOVA analysis with three groups (HC and low/high EDSS and SDMT), and differences across groups were evaluated with
post hoc pairwise Tukey HSD tests. Values are corrected by age and sex. Data are harmonized across centers using ComBat. Tests results are
corrected for multiple comparisons. N = 697; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. EDSS = Expanded Disability Status Scale;
SDMT = Symbol Digit Modality Test; HC = healthy controls; pwMS = people with MS; SPL = shortest path length; CC = corpus callosum.
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Figure 5 shows differences across high/low EDSS/SDMT for each of the connectivity values.
Results showed that subjects with lower cognitive scores have a significantly lower intrahemi-
spheric connectivity compared with both subjects with higher scores and HC. Furthermore,
the differences between HC and pwMS in both groups were significant (p < 0.001) for SPL
and efficiency.

Regarding the ratios between intra- and interhemispheric values, Table 2 displays
correlations—corrected by center, age, and sex—between structural measures, EDSS and
SDMT, and the calculated ratios. Using the commissural ratio, all the structural measures were
strongly correlated to the inter/intra ratio, especially WMF (r = 0.54, p < 0.0001) and LVF (r =
−0.38, p < 0.0001). SDMT was directly associated with the inter/intra ratio, especially when
computed using the CC ratio and the efficiency (r = 0.33, p < 0.0001).

Figure 6 shows differences across high/low values of EDSS/SDMT for each of the inter/intra
ratios. When comparing between high/low values of EDSS/SDMT, differences between high

Figure 6. Comparison of inter/intra ratios between HC and pwMS, divided in low/high EDSS and SDMT groups. Tests were conducted using
two-way ANOVA analysis with three groups (HC and low/high EDSS and SDMT), and differences across groups were evaluated with post hoc
pairwise Tukey HSD tests. Values are corrected by age and sex. Data are harmonized across centers using ComBat. Tests results are corrected for
multiple comparisons. N = 697; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. EDSS = Expanded Disability Status Scale; SDMT = Symbol
Digit Modality Test; HC = healthy controls; pwMS = people with MS; SPL = shortest path length; CC = corpus callosum; Eff. = efficiency.
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and low SDMT (p < 0.0001) and HC versus the rest of the groups (p < 0.0001) are present in
all cases, even after correcting for multiple comparisons.

DISCUSSION

In this study, the conservation of brain connectivity across hemispheres in pwMS has been
evaluated, and the relationship between such connectivity measures, brain structural mea-
sures, clinical disability, and cognition has been explored. Results suggest that the intra- and
interhemispheric connectivity ratio is preserved in pwMS, as seen in HC or other mammals
(Assaf et al., 2020; Krupnik et al., 2021). The ratio was preserved across all four combina-
tions of intra- and interhemispheric measures, with the strongest correlation found when
comparing the commissural ratio against the mean SPL. This supports the first part of our
initial hypothesis, which was that the conservation principle would hold. The correlation
was weaker when using the CC ratio as an alternative to interhemispheric measure. These
results, combined with the stronger inter/intra ratio described above, seem to indicate that
the commissural ratio, derived from fiber tracking, expresses different things: The CC ratio
considers the interhemispheric connectivity sustained by the CC and only captures volumet-
ric changes, while the commissural ratio includes all interhemispheric commissural systems.

Looking at specific relationships between disability and cognitive impairment and the intra-
and interhemispheric connectivity, results showed that structural interhemispheric connectiv-
ity was significantly altered in MS, similar to Zhou et al. (2013). Moreover, strong correlations
between WMF and LVF with interhemispheric connectivity were found, showing that lower
WMF and higher LVF were associated with a diminished interhemispheric connectivity.
These findings support our hypothesis that MS disrupts interhemispheric connectivity, with
a lower CC ratio corresponding to higher EDSS and lower SDMT scores, as described by
Ozturk et al. (2010). Supporting Information Figure S5 shows a visual representation of
the discussed correlations. These findings support the idea that interhemispheric disconnec-
tion may play a more crucial role in the development of cognitive and disability deficits in MS
(He et al., 2009).

Regarding intrahemispheric values, significant associations with WMF were found, suggest-
ing a link between efficiency and WMF in the brain. Between high and low EDSS/SDMT
groups, although significant differences were observed, particularly in efficiency, these differ-
ences were not as pronounced (no differences across EDSS groups, or between HC and high
EDSS/low SDMT for the mean SPL). The studied metrics appear to be more sensible to cog-
nitive decline captured by SDMT, rather than to physical disability captured by EDSS.

There was a strong link between WMF and LVF with inter/intra ratios, with higher WMF and
lower LVF associated with a higher ratio, similar to the link found by He et al. (2009) between
small-world network efficiency impairment and white matter lesion load. Higher SDMT and
lower EDSS scores were associated with a higher ratio between connectivity values. This effect
was more pronounced for SDMT, reinforcing the idea that that structural derived metrics are
more highly related with cognition rather than with physical disability. This suggests that not
only are individual inter-/intravalues related to structural damage, disability, and cognition, but
the strength of the ratio also changes, either due to a decrease in interhemispheric connectivity
or an increase in intrahemispheric connectivity. Considering the hypothesis that MS can alter
interhemispheric connectivity (He et al., 2009), driven by the CC atrophy, a potential adapta-
tive mechanism might be at play, in which intrahemispheric connectivity increases to maintain
the balance between the two metrics. Indeed, if we divide the inter/intra ratio between sub-
jects with high/low SDMT and EDSS values (Supporting Information Figure S6), we observe
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that the ratio survives for almost all groups and combinations. It is true that when using CC
ratio as the interhemispheric measure, subjects with low EDSS show almost no correlation.
However, as this does not happen with commissural ratio, this could also be the product of
Simpson’s paradox after the division between groups, so further research should focus on rep-
licating these results. To go further, longitudinal studies would be needed to prove a causal
relationship confirming this mechanism. Moreover, it is possible that such interactions are
affected by our specific dataset, analysis, or measures selected, highlighting the need for fur-
ther validation to endorse this adaptative mechanism.

Our study presents several limitations that should be acknowledged. While Assaf et al.
(2020) showed that the conservation principle holds using multiple scans, parameters, and
even species, the multicentric dataset used in this work presents large differences across acqui-
sition parameters (Supporting Information File S1): for example, on number of b-values in the
diffusion, some centers having no bias field correction available, or variety of slice thickness.
While we have applied ComBat harmonization to palliate this issue, a more controlled study
design could eliminate this issue altogether and should be a focus of future works on this topic.

While this study highlights the importance of intra- and interhemispheric SC connectivity in
MS, further investigation is required to determine whether these connectivity patterns are
unique to MS or represent a more general feature of neurological disorders. We believe that
the study of this mechanism could lead to a broader understanding on how MS affects people’s
brains and how the brain tries to preserve its function. There is already a body of research on
brain reorganization in MS (Schoonheim, Meijer, et al., 2015) (although mostly focusing on
functional connectivity). Our findings add more evidence on this hypothesis. Moreover, other
related dysregulations, such as interhemispheric imbalance (Iturria-Medina et al., 2011),
warrant further exploration.

Functional connectivity was initially considered to be included in this work but was finally
left out as we made the decision to focus on the SC. Nonetheless, other studies on functional
connectivity have reported significant findings (Faivre et al., 2016; Jandric et al., 2022) for
interhemispheric connections (Martínez et al., 2018) and homotopic connections in pwMS
(Zhou et al., 2013). Thus, while this study is confined to the exploration of SC, future work
could benefit from a multimodal approach that integrates both structural and functional con-
nectivity metrics.

The results of this study suggest that the conservation of intra- and interhemispheric SC is
preserved in pwMS. Lower ratios of inter/intraconnectivity are associated with atrophy, lesion
load, cognitive impairment, and disability. These findings lend support to the hypothesis that
while the conservation holds, interhemispheric connectivity decreases in more advanced
stages of MS, while intrahemispheric connectivity increases to maintain the balance between
the two. This has implications for neuroplasticity and brain resilience during the course of
the disease. Longitudinal studies are needed to further explore this hypothesis and establish
causal links.
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