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Abstract 

Background Accumulation of critically short telomeres (CST) is implicated in decreased tissular regenerative capac-
ity and increased susceptibility to degenerative diseases such as Alzheimer’s disease (AD). Telomere shortening 
has also been associated with age-related brain changes. However, it remains unclear whether CST accumulation 
is directly associated with AD markers or instead amplifies age-related effects, potentially increasing susceptibility 
of developing AD in cognitively healthy older adults.

Methods This cross-sectional study used baseline data of 129 community-dwelling cognitively healthy older adults 
from the Age-Well trial (NCT02977819), aged 65 years and older enrolled between 2016 and 2018, in France. Using lin-
ear regressions, we analyzed the relationship between an innovative marker of telomere shortening, the percentage 
of CST (%CST), structural, functional and molecular neuroimaging outcomes, and multiple blood-based biomarkers 
related to AD pathophysiology. The effect of apolipoprotein E ε4 genotype (APOE4) was assessed on these relation-
ships using interaction analysis.

Results A higher %CST was associated with lower global kurtosis fractional anisotropy (β = -.230; P = .010), particu-
larly in frontal and temporal regions. A higher %CST was also related to higher plasma levels of Neurofilament light 
chain (β = .195; P = .020) and a lower subiculum volume (β = -.206; P = .020), although these associations did not meet 
the threshold for multiple comparisons. %CST was not associated with AD-related neuroimaging markers, includ-
ing the AD-sensitive gray matter pattern (β = -.060; P = .441), glucose metabolism pattern (β = -.099; P = .372), brain 
perfusion pattern (β = -.106; P = .694) or hippocampus volume (β = -.106; P = .194). In APOE4 carriers, higher %CST 
was associated with lower subiculum (β = -.423; P = 0.003), DG (β = -.410; P = 0.018) and CA1 volumes (β = -.373; 
P = 0.024), even though associations with DG and CA1 volumes did not survive multiple comparison.

Conclusions Although an increase in %CST does not appear to be directly linked to the pathophysiology of AD 
in cognitively healthy older adults, it could heighten the susceptibility of APOE4 carriers to develop AD plausibly 
due to greater vulnerability to age-related effects. However, longitudinal studies would be necessary to determine 
whether %CST influences the development and progression of AD later in life.
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Introduction
Telomeres are the end of chromosomes and are com-
posed of repetitions of a specific sequence (TTA GGG 
) [1]. Their main function is to protect the genomic 
DNA from degradation or chromosomal fusions [2]. 
However, as cellular divisions occur, telomeres progres-
sively shorten due to the end-replication problem [3] 
and damaging processes such as oxidative damage [4] 
and inflammation [5]. In this context, telomere length 
reflects the mechanism of cellular ageing [3] and might 
be considered a marker of biological age [6]. In clinical 
studies, the most commonly used telomere marker is 
peripheral blood mean leukocyte telomere length, which 
is a relative parameter that has been proposed to reflect 
cumulative exposure to stress [7] and inflammation [8]. 
However, when telomeres reach a critical length, they 
lose the ability to maintain their structure and protective 
function, leading to cellular senescence through a persis-
tent DNA damage response [1] and compromised tissue 
regeneration [9]. The accumulation of critically short tel-
omeres has been associated with increased mortality [10] 
and increased susceptibility to degenerative diseases in 
numerous types of tissues (e.g. lung, bone, bone marrow, 
skin, and immune cells) [11]. While senescence can be 
triggered even when the mean telomere length is longer 
than expected, the load of short telomeres has been 
linked to cellular senescence [12], one of the fundamental 
mechanisms of ageing. Consequently, this accumulation, 
measured as the percentage of peripheral blood critically 
short telomeres in humans (%CST), would be more rep-
resentative of impaired chromosome stability and cell 
viability than telomere length [13], although these two 
parameters remain closely related, exhibiting an inverse 
association [13, 14].

AD is the first form of dementia in the world, with age-
ing being the most significant risk factor [15], followed 
by genetic risk factors, such as the presence of the apoli-
poprotein E ε4 genotype (APOE4) [15]. The pathological 
progression of the disease starts decades before clinical 
diagnosis, underscoring the importance of research on 
risk factors and subclinical manifestations of AD in cog-
nitively healthy older adults. Although samples (i.e. blood 
or buccal) from AD patients were found to have shorter 
telomeres than controls [16–18], the role of telomere 
attrition in AD pathogenesis has not been determined 
[1]. Recently, a meta-analysis investigating the relation-
ship between telomere length and brain ageing validated 
that shorter telomere length was associated with lower 
total brain and hippocampal volumes [19]. However, 
the relationship between the %CST and brain integrity, 

as well as its contribution to AD susceptibility remains 
unknown. Furthermore, it remains uncertain whether the 
relationship between %CST and increased AD vulner-
ability arises from a direct link with AD pathophysiologi-
cal processes or from a reduction in brain reserve caused 
by an acceleration of age-related brain alterations, height-
ening the susceptibility of developing AD.

The aim of this study was to investigate the relation-
ships between the %CST and markers as well as brain 
regions specific to AD compared to those primarily 
affected by ageing and less sensitive to the disease. This 
approach was intended to disentangle the associations 
linking %CST and the increased vulnerability to develop 
AD in cognitively healthy older adults. We hypothesize 
that the %CST will be associated with both AD-specific 
and non-specific markers. We also assumed that these 
relationships would be stronger in APOE4 carriers, as 
the effects of %CST and APOE4 could accumulate and 
potentiate each other.

Materials and methods
Study population
A total of 129 community-dwelling cognitively healthy 
older adults were included from the baseline visit of the 
Age-Well randomized controlled trial of the Medit-Age-
ing European project (NCT02977819) [20], sponsored 
by the French National Institute of Health and Medical 
Research (INSERM). The details of the inclusion and 
exclusion criteria are described in a previous publica-
tion [20] and are listed in supplementary 1. Briefly, par-
ticipants were aged at least 65  years old, were native 
French speakers, had retired for 1  year or more, had at 
least 7 years of education, and had performed within the 
normal range on standardized cognitive tests. All par-
ticipants underwent structural MRI,  [18F]-Florbetapir 
(AV45) Positron Emission Tomography (PET), and 
 [18F]-FluoroDeoxyGlucose (FDG)-PET scans, blood 
sampling and a clinical exam within a 3-month period. 
Baseline data were collected from November 2016 until 
April 2018. All participants provided written informed 
consent for the study, and the Age-Well  randomized 
clinical trial  was approved by the ethics committee 
(CPP Nord-Ouest III, Caen; Clinicaltrials.gov Identi-
fier: NCT02977819; trial registration number: EudraCT: 
2016–002441-36; IDRCB: 2016-A01767-44; registration 
date: 2016–11-25).

Percentage of critically short telomeres
%CST was measured in Peripheral Blood Mononu-
clear Cells (PBMCs). PBMCs were isolated using the 
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Ficoll method with Histopaque®-1077 Hybri-Max™ 
from Sigma. The samples were subsequently sent to Life 
Length (Parque Científico de Madrid Calle Faraday, 7; 
Campus de Cantoblanco 28,049 Madrid SPAIN), where 
%CST was determined using the Telomere Analysis 
Technology (TAT) with the high-throughput quantita-
tive fluorescence in situ hybridization (HT Q-FISH) tech-
nique as described previously [21]. This technique allows 
for the measurement of individual telomere lengths, ena-
bling the determination of %CST, the frequency of telom-
eres shorter than 3,000 base pairs, previously established 
as the cutoff for “short telomeres” in humans [10, 22].The 
entire procedure is detailed in supplementary 2.

APOE4 genotype and blood‑based markers related 
to neurodegeneration and AD physiopathology
The plasma concentrations of β-amyloid 40 and 42 (Aβ40 
and 42) were measured using an ultrasensitive electro-
chemiluminescence measurement technique (Meso Scale 
Discovery, MSD, Rockville, Marylan, USA). Plasma phos-
phorylated-Tau 181 (p-Tau181), Glial Fibrillary Acidic 
Protein (GFAP) and Neurofilament Light chain (NfL) 
were measured using SIMOA technology with com-
mercial kits from Quanterix (p-Tau181 V2 Advantage 
#103,714, Neurology 2-plexB #103,520) on an HD-X ana-
lyzer (Quanterix, Lexington, MA) (PMID: 20,495,550). 
Details on plasma marker assessments are available in 
supplementary 2. APOE genotype was determined using 
a standardized protocol described in supplementary 2. 
Participants with at least one ε4 allele were considered 
APOE4 positive, and the others negative.

Neuroimaging examinations
Participants underwent structural T1, Fluid-Attenuated 
Inversion Recovery (FLAIR) and Diffusion Kurtosis Imag-
ing (DKI) MRI, as well as FDG and AV45-PET scans (early 
and late acquisitions), to measure Grey Matter (GM) 
volume, White Matter (WM) integrity (i.e. Mean Kurto-
sis [MK] and kurtosis Fractional Anisotropy [kFA]), glu-
cose metabolism, brain perfusion, and amyloid burden, 
respectively. FDG-PET was available only for 88 partici-
pants. Two ultra-high-resolution T2-weighted structural 
images were also acquired perpendicular to the long axis 
of the hippocampus. All examinations were performed at 
the Cyceron center (Caen, France). Averaged global GM 
volume, glucose metabolism, MK, and kFA values were 
obtained by applying a binary mask of either global GM 
or WM depending on the neuroimaging modality, on the 
corresponding preprocessed images. Individual global 
cortical amyloid load was extracted from a predeter-
mined neocortical mask (including the entire GM, except 
the cerebellum, occipital and sensorimotor cortices, hip-
pocampi, amygdala and basal nuclei) [23]. Averaged GM 

volume was also extracted by applying a binary mask 
characterizing AD alterations (most representative areas: 
temporal lobe, notably the parahippocampal gyrus, hip-
pocampus, amygdala, and fusiform gyrus) from a previous 
study [24]. Brain perfusion and glucose metabolism were 
also extracted by applying a binary mask characterizing 
AD signature (most representative areas: posterior cin-
gulate and temporoparietal cortex) from a previous study 
[25]. Hippocampal subfields (Cornu Ammonis [CA1, 
CA2, CA3], dentate gyrus [DG], subiculum) volumes 
were automatically estimated on ultra-high-resolution 
T2-weighted images using the Automated Segmentation 
for Hippocampal Subfields (ASHS) software along with 
a custom atlas [26–28]. The hippocampus volume was 
extracted using ASHS-T1 [29], on structural T1. Details 
regarding all neuroimaging procedure are described in 
supplementary 2.

Statistical analyses
The study design is described in a flow diagram (Fig. 1). 
Demographic statistics were presented using the mean 
and Standard Deviation (SD), while qualitative variables 
were expressed as counts and percentages. Linear regres-
sions were conducted using RStudio software with each 
neuroimaging or blood-based marker as a dependent var-
iable, %CST as an independent variable and demograph-
ics (i. e. age, sex, education, and Body Mass Index (BMI)) 
as covariates. To further assess the regional specificity of 
the association between %CST and a specific neuroimag-
ing modality, when a significant association was found 
with the global value, the corresponding analysis was 
repeated using a voxelwise approach on SPM12, control-
ling for the same covariates. Results were evaluated for 
significance at  puncorrected < 0.005 combined with a mini-
mum cluster size determined by Monte‐Carlo simula-
tions using the AFNI’s 3dClustSim program to achieve a 
corrected statistical significance of p < 0.05. To assess the 
impact of the APOE4 status, interactions between %CST 
and APOE4 status were performed for each neuroimag-
ing and blood-based markers with the same covariates as 
in previous analyses. When the interaction was signifi-
cant, post-hoc linear regression analyses were conducted 
separately in APOE4 carriers and non-carriers. For %CST 
and GFAP values, an ANCOVA was carried out to evalu-
ate the APOE4 effect controlling for age, sex, education 
and BMI.

The significance level was set at p < 0.05 for all statis-
tical analyses except voxel-wise analyses. Bonferroni 
correction was then applied to control for multiple 
comparisons so that results surviving a P-value ≤ (0.05/
number of comparisons) were indicated. But we also 
considered uncorrected results to prevent overlooking 
biologically relevant associations that may not survive 
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Bonferroni correction. %CST was z-scored to address 
multicollinearity, particularly with APOE4. However, 
since this transformation did not affect the distribution 
or the p-values, the graphics were presented using raw 
values to provide a biologically interpretable represen-
tation. All analyses were replicated, additionally adjust-
ing for the APOE4 status. As plasma NfL and p-Tau181 
were previously described as being impacted by kidney 
function [30, 31], analyses involving these markers were 
also replicated, adding glomerular filtration rate as a 
covariate. Telomere length can be influenced by blood 
cells composition, so all analyses were replicated with 
lymphocyte concentration, the predominant cell type 
in PBMC, added as covariate. NfL, GFAP and p-Tau181 
values were log transformed. Results remained 
unchanged with raw values. All analyses were per-
formed without one %CST outlier, identified as more 

than three SD from the mean. However, as the results 
remained unchanged, the outlier was not removed.

Results
The baseline demographic characteristics of the popula-
tion are presented in Table 1. The participants ranged in 
age from 65 to 83 years, with a mean age of 68.84 years. 
The proportion of females was higher than the propor-
tion of males. A total of 27.13% of the population were 
APOE4 carriers.

Multiple regressions between %CST and neuroimaging 
values
The %CST was negatively associated with the global WM 
kFA (β = -0.230; 95%CI[-0.234;-0.226]; P = 0.010), and this 
result survived Bonferroni correction (Table 2).

Fig. 1 Flow diagram of the study. Abbreviations: DKI, Diffusion Kurtosis Imaging; GFAP, Glial Fibrillary Acidic Protein; p-Tau181, 
phosphorylated-Tau181, Aβ; β-Amyloid
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The %CST was negatively associated with WM kFA 
in frontal regions, including part of the superior fron-
tal white matter, the cingulum and the corpus callosum, 
bilaterally. We also found a negative association in the 
left middle temporal white matter, notably in a part of 
the uncinate, the inferior longitudinal fasciculus, and the 

fornix (Fig. 2). The %CST was negatively associated with 
neocortical amyloid load at a trend-level statistical signif-
icance (β = -0.173; 95%CI[-0.200;-0.145]; P = 0.060). The 
%CST was not significantly associated with other global 
neuroimaging values (Table 2).

We did not find any associations between %CST and 
the AD-sensitive pattern of GM volume, glucose metabo-
lism, brain perfusion, or hippocampal volume (Table 1 in 
supplementary 3).

The %CST was associated with subiculum volume 
(β = -0.206; 95%CI [-0.213;-0.200]; P = 0.020), but not 
with the volume of the other hippocampal subfields 
(Fig.  3A, Table  2 in supplementary 3). This associa-
tion did not survive Bonferroni correction. The results 
remained unchanged when APOE4 status or lymphocyte 
concentration was added as a covariate (data not shown).

Multiple regressions between %CST and blood‑based 
markers related to neurodegeneration and AD 
physiopathology
A positive relationship was found between the %CST and 
plasma NfL levels (log transformed) (β = 0.195; 95%CI 
[0.170; 0.220]; P = 0.020). Plasma Aβ42 levels were posi-
tively associated with %CST (β = 0.191; 95%CI [-0.595; 
0.978]; P = 0.041). The %CST was positively associated 
with Aβ42/40 ratio at a trend-level statistical significance 
(β = 0.183; 95%CI[0.178;0.188]; P = 0.053). %CST was 
not significantly associated with other blood markers 
(Fig. 4A, Table 3 in supplementary 3). These relationships 
did not survive Bonferroni correction. All the results 
remained consistent after further adjustment for APOE4 
status, glomerular filtration rate or lymphocyte concen-
tration (data not shown).

Interaction between %CST and APOE4
There was no group difference in %CST between 
APOE4-carriers and non-carriers (Fig 1 in sup-
plementary 3). We found significant interactions 
between %CST and APOE4 status on hippocampal 

Table 1 Demographics of the study participants

Abbreviations: SD Standard deviation, BMI Body mass index, APOE4 
Apolipoprotein E ε4, GM Gray Matter, SUVr Standardized uptake value, WM White 
Matter, CA Cornu Ammonis, NfL Neurofilament light chain, GFAP Glial fibrillary 
acidic protein, Aβ β-amyloid

Demographics (n = 129) Mean (SD)

 Age, years 68.84 (3.69)

 Female Sex, No. (%) 78 (60.47)

 Education, years 13.15 (3.14)

 Body Mass Index, kg/m2 26.20 (4.31)

 APOE4 carriers, No. (%) 35 (27.13)

 Short telomeres (< 3 kb), % 9.86 (3.07)

Global neuroimaging outcomes (n = 127)
 Global GM volume,  mm3 546,614.414 (25,805.89)

 Global glucose metabolism, SUVr (n = 88) 1.11 (0.06)

 Neocortical Amyloid load, SUVr 1.24 (0.15)

 WM kurtosis fractional anisotropy 0.35 (0.02)

 WM mean kurtosis 0.96 (0.04)

Hippocampal subfields normalized volumes (n = 125)
 CA1 0.95 (0.11)

 CA2 0.02 (0.003)

 CA3 0.05 (0.01)

 Dentate gyrus 0.41 (0.06)

 Subiculum 0.32 (0.04)

Blood‑based markers (n = 122)
 NfL (pg/mL) 20.18 (7.66)

 GFAP (pg/mL) 155.54 (60.96)

 p-Tau181 (pg/mL) 1.95 (0.79)

 Ratio Aβ42/40 0.07 (0.03)

 Aβ42 (pg/mL) 10.36 (4.29)

 Aβ40 (pg/mL) 156.40 (39.71)

Table 2 Association of %CST with global neuroimaging outcomes

* P < 0.05. **P < 0.01. ***P < 0.001. The results are presented from linear regression after adjusting for age, sex, education and BMI. Bonferroni correction for multiple 
testing (p = 0.05/5 for the five global neuroimaging outcomes) is indicated in bold. Abbreviations: %CST Percentage of critically short telomeres, GM Gray matter, WM 
White matter, BMI Body mass index, CI Confidence interval

%CST (z‑scored)

N Standardized β coefficient 95% CI P‑value

Global GM  volumea 127 -.014 [-3856.3; 3856.3] .858

Global Glucose  metabolisma 88 -.088 [-.103;-.074] .427

Neocortical Amyloid  loadb 127 -.173 [-.200;-.145] .060

WM kurtosis fractional  anisotropyc 127 -.230 [-.234;-.226] .010**
WM mean  kurtosisc 127 -.080 [-.088; -.073] .371
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volume (β = -0.202; 95%CI[-158.390; 157.986]; 
P = 0.019) (Table 5 and Fig. 2 in supplementary 3) and 
on the volumes of CA1 (β = -0.263; 95%CI[-0.313; 
-0.213]; P = 0.005), CA2 (β = -0.207; 95%CI[-0.208; 
-0.205]; P = 0.029), dentate gyrus (β = -0.297; 95%CI[-
0.323; -0.272]; P = 0.002), and subiculum (β = -0.238; 
95%CI[-0.255; -0.221]; P = 0.010) (Fig.  3B, Table  6 in 
supplementary 3). All the %CST x APOE4 status inter-
actions survived Bonferroni correction except for hip-
pocampus and CA2 volumes. %CST also interacted 
with APOE4 status on plasma GFAP levels (β = 0.225; 
95%CI[0.149; 0.301]; P = 0.012) (Fig. 4B, Table 7 in sup-
plementary 3). This interaction did not survive Bon-
ferroni correction. Post-hoc analyses revealed that, in 
APOE4 carriers only, %CST was negatively associated 
with CA1 (β = -0.373; 95%CI[-0.428; -0.319]; P = 0.024), 
dentate gyrus (β = -0.410; 95%CI[-0.440;-0.379]; 
P = 0.018), subiculum volume (β = -0.423; 95%CI[-
0.436;-0.409]; P = 0.003) and tented to be associated 
to plasma GFAP level β = -0.245; 95%CI[0.173;0.316]; 
P = 0.071). The results of the post-hoc analyses are 
indicated in the figures and detailed statistics are pre-
sented in Table 8 and 9 in supplementary 3. There was 
no group difference in GFAP levels (log transformed) 
between APOE4-carriers and non-carriers (Fig.  3 in 
supplementary 3). No interaction effect was found 

between the %CST and APOE4 status on other neuro-
imaging values or blood-based markers (Table 4 and 5 
in supplementary 3). Results remained unchanged after 
controlling for lymphocyte concentration.

Discussion
The objective of the present study was to provide an 
overview of the association between %CST and age- or 
AD-related blood and brain imaging markers in cog-
nitively healthy older adults, as well as in individuals at 
genetic risk for AD (APOE4 carriers) to disentangle the 
mechanisms linking %CST to an increased vulnerability 
to develop AD.

Altogether, our results highlight that the %CST is asso-
ciated with age-related blood and brain imaging mark-
ers rather than directly with AD pathological processes. 
However, the %CST appears to be implicated in a higher 
vulnerability to AD in APOE4 carriers and is particularly 
related to the integrity of WM microstructures (kFA).
These microstructures are strongly affected by age, par-
ticularly in frontal and temporal regions which undergo 
the most significant changes with age [32, 33]. The 
regions showing significant associations with the %CST 
in our study largely coincide with those reported in other 
studies. Indeed, shorter telomere length was associated 
with lower FA in the fornix [34], corpus callosum [35], 
and inferior and superior longitudinal fasciculus [35].
This result is further supported by the association found 
between %CST and blood level of NfL, a well-established 
marker of neurodegeneration and axonal injury that 
increases with age [36, 37], although this association did 
not remain significant after correction for multiple com-
parisons. It has previously been highlighted that telomere 
length was negatively associated with cerebrospinal 
fluid NfL levels [38], and cerebrospinal fluid NfL levels 
were negatively correlated with cerebral mean FA [39]. 
Furthermore, shorter telomere length and lower WM 
integrity has been associated with higher blood level of 
several inflammatory mediators [8, 40–42]. Additionally, 
it is already known that one or a few short telomeres can 
impose senescence, leading to the secretion of proinflam-
matory cytokines, known as the senescence-associated 
secretory phenotype [1, 43], suggesting that systemic 
inflammation could be one of the possible mechanisms 
triggering the detrimental impact of the %CST on WM 
integrity. Furthermore, immunosenescence, while being 
a multifactorial phenomenon, is closely related to tel-
omere attrition, particularly due to the high proliferative 
potential of immune cells [44, 45]. Peripheral age-related 
immunosenescence, together with a chronic, low-grade 
inflammation known as “inflammageing”, has been sug-
gested to alter immune responses within the brain and 
exacerbate microglial senescence [46–48]. These changes 

Fig. 2 Voxelwise associations between the %CST and kFA. Negative 
voxel-wise multiple regression between %CST and kFA are presented, 
controlling for age, sex, education and BMI, in 127 healthy older 
adults. Results are presented at a  puncorrected < 0.005 threshold 
combined with a cluster-level multiple comparisons correction. (1) 
Superior frontal gyrus white matter, Cingulum, Corpus Callosum; 
(2) Left inferior longitudinal fasciculus, uncinate fasciculus, fornix. 
Abbreviations: %CST, Percentage of Critically Short Telomeres; kFA, 
kurtosis Fractional Anisotropy; BMI, Body mass index
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Fig. 3 Associations of the %CST with hippocampal subfield volumes, in cognitively healthy older adults and according to APOE4 status. A 
Scatterplots of linear regression between %CST and hippocampal subfield volumes, in 125 healthy older adults. B Scatterplots of linear regression 
between %CST and hippocampal subfields volumes, according to APOE4 status. Interaction and Post-hoc analyses are indicated. Analysis are 
corrected by age, sex, education and BMI. Detailed statistics of the analyses are summarized in Table 6 and Table 8 in supplementary 3. 3D 
representations of hippocampus subfields were obtained using 3D slicer software based on an ASHS segmentation. All hippocampal subfield 
volumes are TIV normalized. *P < 0.05. **P < 0.01. ***P < 0.001. Abbreviations: %CST, Percentage of critically short telomeres; APOE4, Apolipoprotein E 
ε4; CA, Cornu Ammonis
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may contribute to the neuroinflammation that enhances 
brain ageing and neurodegeneration [47, 48]. Similarly, 
activated glial cells in the brain during neurodegeneration 
could also influence both brain and peripheral immune 
cells by secreting pro-inflammatory mediators, promot-
ing immune cells infiltration [49, 50]. Several additional 
studies examine these mechanisms from a bidirectional 
perspective, highlighting the complex interplay between 
the brain and immune system, revealing potential path-
ways through which systemic and brain ageing processes 
may be interconnected [49]. Evidence suggests that, 
although variable, telomere lengths are correlated across 
tissues, with blood telomere length serving as a proxy 
for telomere length in various brain regions, such as the 
hippocampus and cortex [51]. According to post mor-
tem studies, telomere length in brain cells is reportedly 
associated with age only in WM, and not in GM [52], 
and telomere length is shorter in WM glial cells than in 
GM glial cells in adults [53]. Interestingly, unlike GM, 
the WM is predominantly composed of mitotic cells that 
undergo telomere attrition [53]. The difference in mitotic 
activity between GM and WM cells might explain why 
the %CST is preferentially associated with WM rather 
than GM integrity and could play a role in the age-related 
loss of WM integrity. Some studies also revealed a pref-
erential link between telomere length and WM volume 
and integrity, rather than GM [54, 55]. However, there 
are also studies demonstrating a consistent association 
between telomere length and GM volume [56], notably 
the hippocampal volume [19]. In our study, the %CST 
did not appear to be related to GM integrity, except for 
the subiculum, which is the hippocampal subfield most 
affected by ageing [57]. However, this association did not 
reach the multiple comparison threshold.

Interestingly, our results suggest that %CST could 
potentiate the effect of APOE4 on hippocampal volume, 
especially CA1, DG, and subiculum volumes, potentially 
increasing the risk of developing AD, as both APOE4 
and hippocampus atrophy are risk factors for AD [15]. 
To date, no study has assessed the relationship between 
hippocampal subfield volumes and %CST or leuko-
cyte telomere length in APOE4 carriers. Only one study 
reported that older APOE4 carriers exhibited longer 
telomere length than noncarriers [58], a finding that we 

did not replicate with %CST in our study. However, our 
results appear to support and extend the findings of other 
studies. Indeed, studies have demonstrated that APOE4 
carriers exhibit a lower hippocampal volume compared 
to non-carriers [59], lower cortical thickness in the subic-
ulum, lower DG volumes [57], and APOE4 interacts with 
age on CA1, subiculum, and whole hippocampus vol-
umes [28]. APOE4 has been associated with an elevated 
risk of vascular pathology, a condition known to raise 
the likelihood of developing AD [60]. It is also linked to 
higher blood brain barrier leakage, particularly in the 
medial temporal lobe and hippocampus [61, 62], which 
could potentially heighten the vulnerability of these 
regions to the detrimental effects of peripheral %CST.

In APOE4 carriers, a higher %CST was also associ-
ated with a higher GFAP blood level, which is a marker 
of astrocyte activation [63]. This relationship, which did 
not survive multiple comparison, could be explained by 
increased levels of GFAP in APOE4 carriers, but there is 
no consensus on these results. One study with 709 par-
ticipants showed a difference in GFAP between carriers 
and noncarriers [64], while another study with 88 par-
ticipants, similarly to the current study, showed no differ-
ence [65]. However, the APOE4 genotype is known to be 
associated with increased GFAP expression at the blood 
brain barrier level [66], which could be further amplified 
by systemic inflammation resulting from telomere short-
ening [67]. Simultaneously, the increased BBB permeabil-
ity observed in APOE4 carriers [62] could explain why 
the relationship between %CST and higher GFAP blood 
levels is observed primarily in APOE4 carriers.

Contrary to our hypothesis, %CST does not appear to 
be directly related to AD pathophysiological processes 
but could potentially lead to an acceleration of brain age-
ing processes and therefore be implicated in a greater 
susceptibility to AD, especially individuals at genetic 
risk for AD, the APOE4 carriers. Thus, in our study, the 
%CST was not specifically associated with AD markers, 
i.e. increases in amyloid and tau pathologies, nor with 
a pattern of neurodegeneration specific to AD. Previ-
ous studies reported shorter telomere length in samples 
from AD patients compared to controls [16]. However, 
there is no evidence that telomere shortening is specific 
to AD. Indeed, leukocyte telomere length was not found 

(See figure on next page.)
Fig. 4 Associations of the %CST with neurodegeneration and AD physiopathology-related blood-based markers in cognitively healthy older 
adults and according to APOE4 status. A Scatterplots of linear regression between %CST and blood-based markers, in 122 healthy older adults. 
B Scatterplots of linear regression between %CST and blood-based markers, according to APOE4 status. Interaction and post-hoc analyses 
are indicated. Analysis are corrected by age, sex, education and BMI. Detailed statistics of the analyses are summarized in Table 7 and Table 9 
in supplementary 3. *P < 0.05. **P < 0.01. ***P < 0.001. Abbreviations: %CST, Percentage of Critically Short Telomeres; APOE4, Apolipoprotein E ε4; NfL, 
Neurofilament Light chain, GFAP; Glial Fibrillary Acidic Protein, p-Tau181; phosphorylated-Tau181, Aβ; β-Amyloid
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Fig. 4 (See legend on previous page.)
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to be relevant for discriminating between different types 
of dementia [68]. Additionally, brain regions associated 
with telomere length in healthy adults are not restricted 
to regions typically affected by amyloid or tau patholo-
gies in AD, furthermore affecting, for example, the thala-
mus or the fusiform cortex [19, 56]. Notably, instead of 
revealing a link between higher %CST and higher amy-
loid or tau pathologies, we observed trends toward an 
association between lower %CST and higher blood levels 
of Aβ42, Aβ42/40 ratio and a lower neocortical amyloid 
load. Another study in healthy older adults also dem-
onstrated that shorter telomere length was associated 
with higher cerebrospinal fluid Aβ42/40 ratio [38]. A 
reduction of amyloid load was also observed in an AD 
mouse model with short telomeres [69]. The association 
between telomere shortening and amyloid pathology 
remains unclear, and further studies are needed to vali-
date and elucidate these unexpected results.

Strengths and limitations
This study is the first, to our knowledge, to investigate the 
association of %CST, an innovative and absolute marker 
of telomere shortening, with brain imaging and blood 
markers. In comparison to the most commonly used tel-
omere measure, which allows for relative quantification 
of telomere length through a ratio between telomere sig-
nal to a reference single copy gene signal (i.e. T/S ratio), 
telomere length measured by HT Q-FISH provides an 
absolute quantification of individual telomeres [70]. 
These markers include age- and AD-related markers, 
with a multimodal approach including structural, diffu-
sion, functional, and molecular neuroimaging, as well as 
multiple blood-based markers. Another major strength 
is the use of a tailored method to estimate hippocampal 
subfield volumes, consisting of dedicated ultra-high-
resolution T2-weighted images along with the ASHS 
algorithm and a custom atlas based on ex-vivo MRI and 
histology data. This study has also some limitations, 
including the cross-sectional nature of the design which 
prevents us from inferring causal relationships regarding 
the association of %CST with ageing or AD-related mark-
ers. Additionally, we drew a clear distinction between 
ageing and AD- related markers, though these two phe-
nomena likely exist along a continuum. Moreover, this 
study is a secondary outcome of a clinical trial [71] origi-
nally designed for another objective. In this context, our 
analyses may have been underpowered to observe weak 
associations. This study found no significant association 
between %CST and AD-related markers. However, due 
to the specific characteristics of our analyses and popula-
tion size, we may not have been able to fully capture or 
highlight the real absence of an association. Additionally, 
participants from the Age-Well trial are in above-average 

health for their age [71], which may limit the generaliz-
ability of our findings and contribute to some of the null 
results observed. Longitudinal studies are also needed to 
further disentangle the mechanisms underlying the link 
between %CST, brain ageing, and greater risk of AD.

Conclusion
Our results support the hypothesis that the %CST is 
associated with age-related alterations in WM integrity 
in cognitively healthy older adults. The accumulation of 
CST does not appear to be directly related to AD patho-
physiological processes but may contribute to a higher 
vulnerability of developing AD, particularly in APOE4 
carriers. This increased vulnerability could stem from a 
heightened sensitivity to age-related effects, resulting in 
reduced brain reserve and, consequently, an elevated sus-
ceptibility to AD.
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