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Abstract. In this paper, we provide a theoretical analysis of the recently introduced weakly4
adversarial networks (WAN) method, used to approximate partial differential equations in high5
dimensions. We address the existence and stability of the solution, as well as approximation bounds.6
We also propose two new stabilized WAN-based formulas that avoid the need for direct normalization.7
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1. Introduction. Recently there has been a vast interest in approximating par-13

tial differential equations (PDE) using neural networks and machine learning tech-14

niques. In this note, we will consider the weak adversarial networks (WAN) method15

introduced by Zang et al. [22]. The idea is to rewrite the weak form of the PDE as16

a saddle point problem whose solution is obtained by approximating both the trial17

(primal) and the test (adversarial) space through neural networks. In [22], the method18

was tested on various PDEs, tackling different challenging issues such as high dimen-19

sion, nonlinearity, and nonconvexity of the domain. It was subsequently applied for20

the inverse problems in high dimension [1] and for the parabolic problems [16], with21

quite promising results.22

However, as often happens for neural network methods for numerical PDEs, rig-23

orous theoretical results on the capability of WANs to approximate the solution of a24

given PDE still need to be improved. The most critical issues must be addressed are25

the discrete solution’s existence, stability, and approximation properties. Due to the26

inherent nature of neural network function classes, even the issue of the existence of27

a discrete solution is far from a trivial one. Indeed, fixed architecture neural network28

classes are generally neither convex nor closed [18, 14]. Therefore, a global minimum29

for a cost functional in one of such classes might not exist. Unsurprisingly, as we are30

ultimately dealing with a saddle point problem, a suitable choice of the test (adversar-31

ial) network class will play a vital role in the analysis. The lack of linearity of the trial32

(primal) network class will imply the need for a strengthened inf-sup condition (see33

(2.14) in the following), which, however, will not, in general, be enough to guarantee34

the existence and uniqueness of a global minimizer. Indeed, due to the non-closedness35

of neural network classes, it might not be possible to attain the minimum with an36

element belonging to the class.37

What we can prove, under suitable assumptions (see (2.6) and (2.14)), in a general38
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2 S. BERTOLUZZA, E. BURMAN, AND C. HE

abstract framework, is (1) the existence of at least one weakly converging minimizing39

sequence for the WAN cost functional, and, (2) that all weak limits of weakly converg-40

ing minimizing sequences satisfy a quasi-optimality bound similar to Céa’s Lemma.41

More importantly, we further prove that a similar approximation bound will hold for42

the elements of the minimizing sequences sufficiently close to convergence. Combined43

with approximation bounds by the deep neural networks [10], this will guarantee that44

the WAN can, in principle, provide an arbitrarily good approximation to the continu-45

ous PDE solution. Another crucial issue relates to the convergence of the optimization46

scheme used to solve the minimization problem. Also this task is made difficult by47

the inherent topological properties of neural network classes. It is worth mentioning48

(see [18]) that the function class of Deep Neural Networks (DNN) lacks inverse sta-49

bility in the Lp and W s,p norms. In simple terms, the norm of the elements of the50

DNN function class does not control the norm of the associated parameter vector. As51

the optimization schemes indirectly act on the function class through the parameter52

space, this will negatively affect the minimization process. In particular, when, the53

weak limit of the minimizing sequence does not belong to the function class, it can54

be proved that the sequence of the Euclidean norms of the corresponding parameter55

vectors explodes [18].56

In the WAN framework, aforementioned problems are integrated with the prob-57

lems related to the inexact evaluation of the cost functional, which is defined as a58

supremum over the elements of the adversarial network and requires solving an op-59

timization problem that, for the classical WAN method, become ill-posed due to the60

presence of direct normalization, and is therefore subject to a possibly relevant error.61

If this error becomes comparable, or even dominant, compared to the value of the62

cost functional itself, the overall optimization procedure will lose effectiveness and63

likely display oscillations. To mitigate this phenomenon, developing more stable and64

accurate methods for evaluating the operator norm is crucial. In the framework of65

WAN, we propose two alternative ways of evaluating the operator, that avoid direct66

normalization and improve the overall convergence of the minimization procedure.67

We then exploit the results for the second-order elliptic PDEs with essential68

boundary conditions. These are notoriously challenging as the construction of neural69

networks exactly vanishing on the boundary of a domain is extremely difficult, if not70

impossible. On the other hand, standard techniques, such as Nitsche’s method, that71

impose Dirichlet boundary conditions weakly, rely on inverse inequalities that do not72

generally hold in the neural network framework. Adapting a strategy introduced, for73

finite elements, in [7], we propose to approximate the test space H1
0 pΩq with a class of74

functions obtained by multiplying the elements of a given neural network class with a75

level set type weight, thus strongly enforcing the homogeneous boundary conditions on76

the test function class. Non-homogeneous boundary conditions are then imposed by77

penalization with a suitable boundary norm. We can show that the resulting discrete78

schemes fall in our abstract setting, thus obtaining Céa’s Lemma type quasi-optimal79

H1 error bounds.80

As the architecture of neural networks plays a crucial role in their performance,81

we test the newly proposed methods on different function classes of various structures.82

In particular, besides DNN, we focus on residual-related networks, whose usage [11]83

was initially proposed to enhance image processing capabilities. These networks have84

also found application in various domains, including numerical PDEs [13, 23]. In a85

recent work by Oliva et al. [16], the XNODE network is proposed to solve parabolic86

equations. Numerical experiments have demonstrated that, compared to classical87

DNN networks, XNODE, can substantially reduce the number of iterations required88
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WAN DISCRETIZATION OF PDES 3

for optimization. This rapid convergence can be attributed to the structure of the89

XNODE model, which emulates a residual network, and to the direct incorporation90

of the initial condition into the model. Besides testing our framework with XNODE91

architecture on a parabolic problem, we also introduce a new variant of the XNODE92

network, which we refer to as the pseudo-time XNODE method for stationary prob-93

lems. Remarkably fast convergence is observed in the numerical results, even for94

nonlinear and high-dimensional static elliptic PDEs.95

The paper is organized as follows. In section 2, we prove quasi-best approximation96

results and in Section 3 we propose two more stable equivalent formulations. In section97

4, we leverage our approach to allow for Dirichlet boundary conditions. Finally, the98

numerical results are provided in section 6. We devote the remaining part of this99

section to discuss the standard WAN in an abstract setting. Our framework covers100

a large class of problems without symmetry or coercivity assumptions, allowing for101

standard well-posed problems and certain non-standard data assimilation problems.102

We also cover a very general class of discretization spaces: while we have in mind103

neural networks, the only a priori assumptions that we make on our trial and test104

function classes is that they are function sets containing the identically vanishing105

function so that our results potentially applies to a much wider range of methods,106

provided that the inf-sup conditions (2.6) and (2.14) hold.107

Throughout the paper, we assume that all forms, linear and bilinear, are eval-108

uated exactly and that the resulting nonlinear optimization problems can be solved109

with sufficient accuracy. Needless to say, these problems are crucial for the actual per-110

formance of the method. Nevertheless, the quasi-best approximation results proved111

herein are a cornerstone for its reliability.112

1.1. The abstract setting. We consider a PDE set in some open, connected113

set Ω Ă Rd (d ě 1). We assume that the problem can be cast in the following general114

abstract weak form. Let W and V be two reflexive separable Banach spaces. Define115

a bounded bilinear form A :W ˆ V ÞÑ R, satisfying116

(1.1) Apw, vq ď M}w}W }v}V , @w P W, v P V,117

and let F : V ÞÑ R be a bounded linear form. We consider the abstract problem: find118

u P W such that119

(1.2) Apu, vq “ Fpvq, @v P V.120

As in [1], we rewrite (1.2) as the following minimization problem121

(1.3) u “ argmin
wPW

sup
vPV,v‰0

Fpvq ´ Apw, vq

}v}V
“ argmin

wPW
}u´ w}op,122

where we define123

(1.4) }w}op :“ sup
vPV,v‰0

Apw, vq

}v}V
.124

We assume (1.2) admits a unique solution, satisfying the following stability estimate125

(1.5) }u}W ď C}F}V 1 .126

This is for instance the case if the form satisfies the assumptions of the Banach-Necas-127

Babuska theorem, or if it satisfies the more general condition of the Lions theorem,128
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4 S. BERTOLUZZA, E. BURMAN, AND C. HE

complemented by suitable compatibility conditions on F (see [8, Theorem 2.6 and129

Lemma A.40]). It is straightforward to show that, under such an assumption, the130

solution of problem (1.2) coincides with the unique minimizer of (1.3).131

In principle, for any function class Wθ, parametrized by a parameter set Pθ, we132

can approximate the solution u by solving the semi-discrete problem:133

(1.6) ũ˚
θ “ argmin

wθPWθ

}u´ wθ}op.134

Remark that allowing the test space V to be different from the space W , where135

the solution is sought, makes the above formulation extremely flexible, allowing it to136

cover a wide range of situations, such as the ones where a partial differential equation,137

written in the form138

(1.7) apu,wq “ fpwq, @w P W0 Ă W,139

(W0 denoting some closed subspace of W ), is complemented by a constraint:140

(1.8) bpu, χq “ gpχq, @χ P X,141

where X is a third reflexive separable Banach space. Such a situation falls in our142

abstract framework, with V “ W0 ˆX, if we set, for v “ pw0, χq P V ,143

Apw, vq “ apw,w0q ` βbpw,χq, Fpvq “ fpw0q ` βgpχq,144

(β being a parameter weighting the constraint with respect to the equation). In such145

a case, the } ¨ }op norm satisfies146

}w}op “ sup
pv,χqPW0ˆX

Apw, pv, χqq

p}v}2W0
` }χ}2Xq1{2

» sup
vPW0

apw, vq

}v}W0

` β sup
χPX

bpw,χq

}χ}X
.147

Typically, as we shall see below, (1.8) could represent the imposition of essential148

boundary conditions. It could also represent some other form of constraint, such149

as the ones encountered in data assimilation problems subject to the heat or wave150

equation (see [2] or [3] where b is the L2-scalar product over some subset ω Ă Ω151

[4, 15]).152

1.2. The WAN method. Let W denote, throughout this section, the H1pΩq153

space with norm }v}W defined as }v}2W “ p∇v,∇vqΩ`pv, vqΩ, where p¨, ¨qΩ denotes the154

L2pΩq scalar product. We consider an elliptic partial differential equation, endowed155

with a Dirichlet boundary condition, that we write in the form156

(1.9) Apuq “ f, Bpuq “ g,157

where A is a second order partial differential operator and B is the trace operator.158

Bao et al. propose in [1] to rewrite (1.9) as a minimization problem in a suitable dual159

space. To this aim, the so-called operator norm is introduced, defined as160

(1.10) }Apvq}H´1pΩq,op :“ sup
φPH1

0 pΩq

φ‰0

apv, φq

}φ}W
,161

where a : H1pΩqˆH1
0 pΩq ÞÑ R, apw,φq “ pApuq, φqΩ, is the bilinear form correspond-162

ing to the operator A. We immediately see that, provided the form a is continuous163
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WAN DISCRETIZATION OF PDES 5

on H1pΩq ˆH1
0 pΩq, such norm is well defined (indeed, it coincides with the standard164

H´1pΩq norm). The idea of [1] was then to combine the residual in such a norm165

with a boundary penalization term aimed at weakly imposing the boundary condi-166

tions (rather than enforcing them exactly), and consider the following minimization167

problem:168

(1.11) u˚ “ argmin
wPW

`

}Apu´ wq}H´1pΩq,op ` β}g ´ w}L2pBΩq

˘

.169

Setting V “ H1
0 pΩq ˆ L2pBΩq, and170

Apw, rv, χsq “ apw, vq ` βpw,χqBΩ, Fprv, χsq “ pf, vqΩ ` βpg, χqBΩ,171

this problem can be rewritten in the form (1.3). At the continuous level, problem172

(1.11) is, in some sense, equivalent to (1.9). Indeed, we observe that the unique173

solution of (1.9) annihilates both }Apu ´ wq}H´1pΩq,op and }g ´ w}L2pBΩq, implying174

existence. Then, the values of the minimum is zero, and any other H1pΩq function175

minimizing the boundary penalized residual can be easily seen to be the solution176

to (1.9), thus obtaining uniqueness. Trivially, as it coincides with the solution of177

(1.9), the solution of (1.11) satisfies }u˚}W À }f}H´1pΩq ` }g}H1{2pBΩq À }f}H´1pΩq `178

Cpgq}g}L2pBΩq, with Cpgq “ }g}H1{2pBΩq{}g}L2pBΩq, which is a stability bound of the179

form (1.5), though with a constant depending on g (whether such a constant is large or180

not depends on the frequency content of g: if g is not oscillating, such a constant is of181

order one, but it can be large if g presents high frequency oscillations). However, such182

a formulation does not entirely fall in the abstract setting of Section 1.1, since, for183

V “ H1
0 pΩqˆL2pBΩq, the bilinear formA does not satisfy the boundedness assumption184

(1.1). It is therefore natural to consider the following minimization problem, where185

the boundary penalization term is measured in the H1{2pBpΩqq “ pH´1{2pBΩqq1 norm186

(1.12) u˚ “ argmin
wPW

`

}Apu´ wq}H´1pΩq,op ` β}g ´ w}H1{2pBΩq

˘

.187

It is not difficult to see that also this problem can be written in the form (1.3), this188

time with V “ H1
0 pΩq ˆ H´1{2pBΩq. Thanks to the choice of the correct norm for189

the boundary penalization term, problem (1.12) falls within our abstract framework190

of subsection 1.1, it is well posed, and equivalent to (1.9). It will serve as a starting191

point for the boundary condition treatment we will propose in section 4.192

Remark 1.1. In the very first version of the WAN method, see [22], the authors193

actually proposed a different definition of the operator norm, namely they defined the194

dual norm involved in the minimization problem as195

}Apvq}L2pΩq,op :“ sup
φPH1

0 pΩq,φ‰0

apv, φq

}φ}L2pΩq

.196

It should be noted that this norm is not generally well defined at the continuous level,197

and to remedy this, the different normalization in (1.10) was proposed in [1]. We198

remark that the notation used for such a norm in [22] was }Apvq}op, while we use the199

notation } ¨ }op with a different meaning, see (1.4).200

Remark 1.2. We remark that replacing the natural norms H1pΩq and H1{2pBΩq201

in, respectively, (1.10) and (1.11) with the corresponding L2-norm results in two202

“variational crimes” with fairly different features. In both cases, the natural norm203

is replaced by a weaker norm but in the first case the replacement happens in the204
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6 S. BERTOLUZZA, E. BURMAN, AND C. HE

denominator. The resulting term }Apwq}L2pΩq,op, w P W , is not necessarily well205

defined (as this would require w P H2pΩq). This is essentially the same residual206

quantity as that minimized in so-called PINN methods [5, 19]. In the second case,207

the “variational crime” is somewhat less severe: all the quantities involved in the208

minimization problem (1.11) are well defined, though, as we already pointed out, the209

boundedness assumption (1.1) does not hold.210

In the WAN method, the discretization for either (1.11) or (1.12) is performed211

by replacing the spaces H1pΩq and H1
0 pΩq by, respectively, their discrete counter-212

parts Wθ Ă H1pΩq and Vη Ă H1
0 pΩq, where Wθ and Vη are two fixed architecture213

neural network function classes, parameterized by parameter sets Pθ and Pη. The214

discretization is carried out via a discrete operator norm, defined, for any w P H1pΩq,215

as216

(1.13) }Apwq}H´1pΩq,op,η :“ sup
vηPVη

}vη}V ‰0

apw, vηq

}vη}V
.217

The discrete method can then be written, for X being either L2pBΩq or H1{2pBΩq,218

(1.14) u˚
θ “ argmin

wθPWθ

`

}Apu´ wθq}H´1pΩq,op,η ` β}wθ ´ g}X
˘

.219

Exactly evaluating the functional on the right-hand side is very difficult since220

functions in Wθ and Vη, may have very different geometric structures. In practice,221

the integrals are approximated using fixed sample points or a Monte Carlo integration222

method [12]. The optimization is then performed using a Stochastic gradient descent223

method, e.g. Adam, over the parameter sets Pθ and Pη. We also note that, due to224

the normalization in (1.13), when w is close to u, the maximization problem in vη225

becomes ill-posed, resulting in increased undesirable oscillations. We will propose a226

possible remedy in Section 3.227

2. Analysis of the WAN method. This section will frame and analyze the228

WAN method in an abstract framework. We aim to provide insight into choosing the229

approximation and adversarial networks to ensure the resulting method’s stability230

and optimality. For simplicity, we will perform the analysis based on (1.14) without231

considering the errors caused by the Monte Carlo and gradient descent methods.232

We define the WAN method in the abstract framework as follows. Letting Vη Ă V233

denote a function class parametrized by a parameter set Pη, we introduce the discrete234

version of the } ¨ }op norm on W , defined as235

(2.1) }w}op,η :“ sup
vηPVη

}vη}V ‰0

Apw, vηq

}vη}V
.236

We observe that, for all w P W we have that237

(2.2) }w}op,η ď }w}op ď M}w}W .238

The fully discrete problem then reads239

(2.3) u˚
θ “ argmin

wθPWθ

}u´ wθ}op,η.240
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WAN DISCRETIZATION OF PDES 7

In our analysis, a key role will be played by the function class of differences of241

elements of the approximation network Wθ:242

(2.4) Sθ :“ tw1,θ ´ w2,θ, w1,θ, w2,θ P Wθu.243

We will first consider the case of coercive problems and then tackle problems only244

known to satisfy the stability (1.5).245

2.1. Coercive problems. Let us at first consider the case V “ W , and assume246

that the bilinear form A is coercive, i.e., there exist α ą 0 such that247

(2.5) α}ϕ}2W ď Apϕ, ϕq.248

We make the following assumption on the networks Wθ and Vη:249

(2.6) Wθ Y Sθ Ď Vη.250

Observe that if 0 P Wθ, we have that Wθ Y Sθ “ Sθ. We start by remarking that, as251

the functional w Ñ }u ´ w}op,η, with u P W given, is bounded from below by 0, we252

have that253

σ˚ :“ inf
wθPWθ

}u´ wθ}op,η ě 0.254

By the definition of infimum, there exist a sequence twn
θu with wn

θ P Wθ such that255

(2.7) lim
nÑ8

}u´ wn
θ }op,η “ inf

wθPWθ

}u´ wθ}op,η.256

We call a sequence satisfying (2.7) a minimizing sequence for (2.3). We have the257

following lemma, where clseqw pWθq Ď W denotes the weak sequential closure of Wθ in258

W (see [17]).259

Lemma 1. Let twn
θu be a minimizing sequence for (2.3). Then, under assumption260

(2.6), there exists a subsequence weakly converging to an element u˚
θ P clseqw pWθq261

satisfying262

}u´ u˚
θ}op,η ď inf

wθPWθ

}u´ wθ}op,η.263

Proof. Thanks to (2.5) and (2.6) it is not difficult to see that the sequence twn
θu264

is bounded in W , and it therefore admits a weakly convergent subsequence t rwn
θu.265

We let u˚
θ P W denote the weak limit of t rwn

θu. Let now AT : W Ñ W 1 be defined266

as xAT v, wy “ Apw, vq, with x¨, ¨y denoting the duality pairing. We have, by the267

definition of weak limit,268

(2.8) }u´ u˚
θ}op,η “ sup

vηPVη
vη‰0

xAT vη, u´ u˚
θy

}vη}V
“ sup

vηPVη
vη‰0

lim
nÑ8

xAT vη, u´ rwn
θ , y

}vη}V
.269

Now, for any vη P Vη, vη ‰ 0, we have270

lim
nÑ8

xAT vη, u´ rwn
θ y

}vη}V
ď lim

nÑ8
sup

v1
ηPVη

v1
η‰0

Apu´ rwn
θ , v

1
ηq

}v1
η}V

“ lim
nÑ8

}u´ rwn
θ }op,η “ σ˚,

271

whence }u´ u˚
θ}op,η ď σ˚.272

We now prove Cea’s lemma of best approximation for WAN on coercive problems.273
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8 S. BERTOLUZZA, E. BURMAN, AND C. HE

Lemma 2. Let assumption (2.6) hold, and let u be the solutions to (1.2) and274

u˚
θ P clseqw pWθq be the weak limit of a weakly convergent minimizing sequence t rwn

θu for275

(2.3). Then we have the following error bound:276

}u´ u˚
θ}W ď

ˆ

1 `
2M

α

˙

inf
wθPWθ

}u´ wθ}W .(2.9)277

Proof. We start by observing that (2.6) implies that, for any two elements w1,θ278

and w2,θ of Wθ it holds that279

(2.10) α}w1,θ ´ w2,θ}W ď sup
vηPVη
vη‰0

Apw1,θ ´ w2,θ, vηq

}vη}W
“ }w1,θ ´ w2,θ}op,η.280

Let now e˚ “ u´u˚
θ , and let wθ be an arbitrary element inWθ. Letting p¨, ¨qW denote281

the scalar product in W and R :W Ñ W 1 denote the Riesz isomorphism, we have282

}u˚
θ ´ wθ}W “

pu˚
θ ´ wθ, u

˚
θ ´ wθqW

}u˚
θ ´ wθ}W

“
xRpu˚

θ ´ wθq, u˚
θ ´ wθy

}u˚
θ ´ wθ}W

“ lim
nÑ8

xRpu˚
θ ´ wθq, rwn

θ ´ wθy

}u˚
θ ´ wθ}W

ď lim
nÑ8

} rwn
θ ´ wθ}W ď α´1 lim

nÑ8
} rwn

θ ´ wθ}op,η.
283

Note that we used (2.10) for the last bound. Adding and subtracting u in the right284

hand side and using (2.3) and (1.1), we have285
286

(2.11) }u˚
θ ´ wθ}W ď α´1 lim

nÑ8
}u´ rwn

θ }op,η ` α´1}u´ wθ}op,η287

ď α´1 inf
w1

θPWθ

}u´ w1
θ}op,η ` α´1}u´ wθ}op,η ď

2

α
}u´ wθ}op,η.288

289

Since wθ P Wθ is arbitrary, using (2.2) and a triangle inequality we get (2.9).290

Generally, the weak solutions to (1.14), defined as the weak limits of minimizing291

sequences for the right hand side in Wθ, are not necessarily unique. Moreover, the292

solution of the minimization problem (2.3) itself might not lie in Wθ, but only in its293

weak sequential closure. In such a case, it can be proven (see [18]) that the sequence294

of parameters in Pθ resulting from the minimization procedure is unbounded, which295

results in numerical instability. A possible remedy (see [1]) is to restrict both max-296

imization in Vη and minimization in Wθ to subsets of Vη and Wθ corresponding to297

parameters in Pη and Pθ with euclidean norm bounded by a suitable constant B.298

In such a case, one can apply standard calculus results to prove the existence of a299

minimizer wθ P Wθ. However, finding an appropriate choice of B remains a challeng-300

ing problem. A too-small value of B will result in poor approximation regardless of301

the network’s approximation capability, and if B is very large, it ultimately serves no302

purpose. Lemma 2 does, instead, guarantee that even when multiple weak solutions303

exist, they all provide a quasi-best approximation of u in W . Moreover, we can ob-304

tain a quasi-best approximation to u within the approximation class Wθ by taking305

entries of any minimizing sequence sufficiently close to convergence. Indeed, for any306

minimizing sequence t rwn
θu, given ε ą 0 we can choose k such that307

}u´ rwk
θ}op,η ď inf

wθPWθ

}u´ wθ}op,η ` ε.308

Then, by (2.9) and (2.11) we have309

}u´ rwk
θ}W ď }u´ u˚

θ}W ` }u˚
θ ´ rwk

θ}W À inf
wθPWθ

}u´ wθ}W ` ε,310
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meaning that any minimizing sequence does approximate the solution u in the norm311

}¨}W within the accuracy allowed by the chosen neural network class architecture in a312

finite number of steps. It is important to observe that, under proper assumptions, the313

cost functional is equivalent to the W 1 norm of the residual, thus providing a reliable314

a posteriori error bound. Moreover, by (2.11), the cost functional evaluated on wθ315

provides an upper bound for the discrepancy, in W , between wθ and the weak limit316

w˚
θ , and can then be leveraged to devise a stopping criterion.317

Remark 2.1. Since Wθ is a function class and not a function space, (2.6) implies318

that Vη should be a richer function class thanWθ. When A is coercive and symmetric,319

the Deep Ritz method can be interpreted as choosing, in our abstract formulation,320

Vη “ u ´ Wθ. It is not difficult to check that with such a definition of Vη, if A is321

coercive, both Lemma 1 and Lemma 2 still hold. However, in practice, numerical322

evidence suggests that using a separate and more comprehensive space for Vη than323

u´Wθ enhances both numerical efficiency (faster convergence) and accuracy.324

Remark 2.2. To fully exploit (2.9), we combine it with approximation results on325

neural network classes. We refer to [10] for a survey of the different results available326

in the literature and to the references therein. In particular, we recall that whenW “327

H1pΩq and Wθ is a function class of DNN network with ReLU activation function, it328

was shown in [9] that for any function φ P HmpΩq,m ą 1 and Ω is Lipschitz,329

(2.12) min
φθPVθ

}φ´ φθ}H1pΩq ď Cpm, dqN
´pm´1q{d
θ }φ}HmpΩq,330

where Cpm, dq ě 0 is a function depends on pm, dq and Nθ is the number of neurons331

in the DNN network. Combining such a bound with the quasi-best approximation332

estimates allows us to deduce a priori error estimates of the WAN schemes.333

Remark 2.3. While we focused our analysis on linear problems, the WAN method334

can be, and is, applied also in the non linear framework. Indeed, under suitable as-335

sumptions on the operator A (for instance, if A is monotone and Lipschitz continuous)336

the existence of weakly converging minimizing sequences whose weak limit satisfies the337

estimate of Lemma 2 carries over to the nonlinear case. A proof in the case of mono-338

tone operators is given in the online supplementary material. Beyond that, also in339

cases where monotonicity does not hold, numerical results will show the effectiveness340

of our approach (see subsection 6.1 and subsection 6.2)341

2.2. PDE without coercivity. We now drop the assumption that V “ W , and342

we assume instead that there exists an operator R : V Ñ W 1 such that343

(2.13) inf
wPW

sup
vPV
v‰0

xRv, wy

}w}W }v}V
ě α˚ ą 0, }Rv}W 1 ď M˚}v}V .344

Remark that, as we assume that problem (1.2) is well posed, a possible choice for345

R is R “ AT , but choices with better stability constants α˚ might exist. Moreover346

assume that Vη Ă V can be chosen so that we have the discrete inf-sup condition:347

(2.14) κ}wθ}W ď sup
vηPVη
vη‰0

Apwθ, vηq

}vη}V
@wθ P Wθ Y Sθ,348

with Sθ defined in (2.4). It is easy to see that Lemma 1 holds with proof unchanged349

also in this case, which gives us the existence of a (possibly not unique) element350

u˚
θ P clseqw pWθq, weak limit of a minimizing sequence t rwn

θu of elements ofWθ, satisfying351

}u´ u˚
θ}op,η ď }u´ wθ}op,η @wθ P Wθ.352
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Lemma 3. Let Vη be chosen in such a way that assumption (2.14) is satisfied for353

some constant κ ą 0, possibly depending on Vη. Let u be the solutions to (1.2) and354

let u˚
θ P clseqw pWθq be the weak limit of a weakly convergent minimizing sequence t rwn

θu355

for (2.3). Then we have the following error bound:356

(2.15) }u´ u˚
θ}W ď

ˆ

1 ` 2
M˚

α˚

M

κ

˙

inf
wθPWθ

}u´ wθ}W .357

Proof. Let wθ be an arbitrary element of Wθ. Thanks to (2.13) and (2.14) we358

can write359

α˚}u˚
θ ´ wθ}W ď sup

vPV
v‰0

xRv, u˚
θ ´ wθy

}v}V
“ lim

nÑ8
sup
vPV
v‰0

xRv, rwn
θ ´ wθy

}v}V

ď M˚ lim
nÑ8

} rwn
θ ´ wθ}W ď

M˚

κ
lim
nÑ8

} rwn
θ ´ wθ}op,η.

(2.16)360

By the same argument used for the proof of Lemma 2, we then obtain that361

(2.17) }u˚
θ ´ wθ}W ď 2

M˚

α˚

1

κ
}u´ wθ}op,η,362

and, consequently, by the triangle inequality,363

(2.18) }u´ u˚
θ}W ď

ˆ

1 ` 2
M˚

α˚

M

κ

˙

}u´ wθ}W ,364

which, thanks to the arbitrariness of wθ, gives (2.15).365

Like the coercive case, we can have an almost best approximation in a finite366

number of steps of any weakly converging minimizing sequence t rwn
θu. More precisely,367

by the same argument as for the coercive case, for all ε ą 0 there exists a k such that368

}u´ rwk
θ}W À inf

wθPWθ

}u´ wθ}W ` ε.369

We conclude this section by the following observation: let J p¨q denote any func-370

tional on W equivalent to the } ¨ }op,η norm:371

(2.19) c˚}w}op,η ď J pwq ď C˚}w}op,η, @w P W,372

and consider the problem373

(2.20) u˚
θ “ argmin

wθPWθ

J pu´ wθq.374

Then there exists a possibly not unique w5
θ P clseqw pWθq such that375

J pu´ u5
θq ď inf

wθPWθ

J pu´ wθq.376

Moreover for all u5
θ such that u5

θ is the weak limit of a minimizing sequence t rwn
θu for377

(2.20), it holds that378

}u´ u5
θ}W ď

ˆ

1 ` 2
C˚

c˚

M˚

α˚

M

κ

˙

inf
wθPWθ

}u´ wθ}W .379
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Indeed, by (2.19), all minimizing sequences are bounded with respect to the } ¨ }op,η380

norm, and, hence, with respect to the } ¨ }W norm. Any minimizing sequence does381

then weakly converge to an element u5
θ. Moreover, initially proceeding as in (2.16),382

thanks to (2.19), we have, for wθ arbitrary,383

α˚}u˚
θ ´ wθ}W ď

M˚

κ
lim
nÑ8

} rwn
θ ´ wθ}op,η ď

M˚

κ

´

lim
nÑ8

} rwn
θ ´ u}op,η ` }u´ wθ}op,η

¯

ď
M˚

κc˚

´

lim
nÑ8

J p rwn
θ ´ uq ` J pu´ wθq

¯

ď
2MM˚C˚

κc˚

}u´ wθ}W .
384

3. Two novel stabilized loss functions. To mitigate undesirable oscillations385

during the optimization procedure, resulting from the inexact solution of the max-386

imization problem involved in the definition of the operator norm, we propose two387

alternative definitions of the cost functional that yields the same minimum, while388

avoiding direct normalization. More precisely, we introduce two new functionals on389

the product space W ˆ V , such that the supremum over v P V , for w P W fixed,390

also gives, up to a possible rescaling and translation, the operator norm of w, while391

yielding a more favorable optimization problem under discretization.392

3.1. Stabilized WAN method. Define393

~w~2
op “ sup

vPV

´

Apw, vq ´
γd
2

}v}2V

¯

, ~w~2
op,η “ sup

vηPVη

´

Apw, vηq ´
γd
2

}vη}2V

¯

,(3.1)394

where γd ą 0 is a constant, and consider the following problem:395

(3.2) u7

θ “ argmin
wθPWθ

~u´ wθ~op,η.396

The following lemma shows that the norms defined in (3.1) coincide with the397

operator norms defined in (1.4) and (2.1), up to a constant dependent on γd.398

Lemma 4. Assume that vη P Vη implies λvη P Vη for all λ P R`. Then, for any399

w P W , there holds400

1

2γd
}w}2op “ ~w~2

op,
1

2γd
}w}2op,η “ ~w~2

op,η.(3.3)401

Remark 3.1. From this lemma, it seems reasonable to choose, e.g., γd “ 1. How-402

ever, experiments have shown that adjusting the value of γ can effectively control the403

oscillations in experiments.404

Proof. We prove the second of the two equalities. The first can be proven by the405

same argument. For any fixed w P Wθ with w ‰ 0, and for all ε ą 0, there exists a406

φε
w P Vη (depending on ε) with }φε

w}V “ 1, such that407

Apw,φε
wq ě p1 ´ εq}w}op,η,408

which, setting φw “ γ´1
d }w}op,ηφ

ε
w, yields409

sup
φηPVη

´

Apw,φηq ´
γd
2

}φη}2V

¯

ě Apw,φwq ´
γd
2

}φw}2V

“γ´1
d }w}op,ηApw,φε

wq ´
1

2γd
}w}2op,η ě

ˆ

1

2
´ ε

˙

1

γd
}w}2op,η.

(3.4)410
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12 S. BERTOLUZZA, E. BURMAN, AND C. HE

By the arbitrariness of ε we then obtain that ~w~2
op,η ě }w}2op,η{p2γdq. To prove the411

converse inequality, using Young’s equality gives412

sup
φηPVη

´

Apw,φηq ´
γd
2

}φη}2V

¯

ď sup
φηPVη

´

}w}op,η}φη}V ´
γd
2

}φη}2V

¯

ď
1

2γd
}w}2op,η.413

The first part of (3.3) can be proved in a similar way.414

The analysis of the minimization problem (2.3) carries then over to the minimiza-415

tion problem (3.2). Then, there exists at least a minimizing sequence in Wθ weakly416

converging to a limit u7

θ P clseqw pWθq, and all weak limits of minimizing sequences417

satisfy either bound (2.9) or bound (2.15), depending on whether A is coercive or418

not.419

Remark 3.2. When w approaches the true solution, we have that420

v˚pwq “ argmax
vPV

`

Apu´ w, vq ´
γd
2

}v}2V

˘

Ñ 0.421

As a consequence, depending on how large the space Wθ is, the problem422

u˚
θ “ argmin

wθPWθ

`

Apu´ wθ, v
˚pwθqq ´

γd
2

}v˚pwθq}2V

˘

423

might be close to the problem u˚
θ “ argmin

wθPWθ

Apu ´ wθ, v
˚pwθqq, which, in turn, if424

}u ´ wθ}W is small, might be ill-posed and too sensitive to the errors in evaluating425

v˚pwθq. The following subsection introduces a further stabilized loss function that426

mitigates this issue.427

3.2. A further stabilized WAN method. We now define the following alter-428

native operator norm ~ ¨ ~` as follows:429

`

~w~`
op

˘2
:“ sup

vPV

´

Apw, vq ´
γd
2

}v}2V ` }v}V

¯

,

`

~w~`
op,η

˘2
:“ sup

vηPVη

´

Apw, vηq ´
γd
2

}vη}2V ` }vη}V

¯

,
(3.5)430

where γd ą 0 is a constant, and we define the following minimization problem:431

(3.6) u;

θ “ argmin
wθPWθ

~u´ wθ~`
op,η.432

The following lemma states the relation between the norms defined in (3.5) and433

the operator norms.434

Lemma 5. Assume that vη P Vη implies λvη P Vη for all λ P R`. For any w P W ,435

there holds436

(3.7)
1

?
2γd

p}w}op ` 1q “ ~w~`
op,

1
?
2γd

p}w}op,η ` 1q “ ~w~`
op,η.437

Proof. We prove the second of the two equalities, the first can be proven by the438

same argument. For any fixed w P W with w ‰ 0, and for all ε ą 0, there exists439

φε
w P Vη with }φε

w}V “ 1 that satisfies440

(3.8) Apw,φε
wq ě p1 ´ εq}w}op,η,441
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which, setting φw “ γ´1
d s}w}op,ηφ

ε
w, for some s ą 0 to be chosen, yields442

sup
φηPVη

´

Apw,φηq ´
γd
2

}φη}2V ` }φη}V

¯

ě Apw,φwq ´
γd
2

}φw}2V ` }φw}V

“γ´1
d s}w}op,ηApw,φε

wq ´
s2

2γd
}w}2op,η ` γ´1

d s}w}op,η

ěp1 ´ εq
s

γd
}w}2op,η ´

s2

2γd
}w}2op,η `

s

γd
}w}op,η.

443

We can choose s that maximizes the term on the right hand side. By direct compu-444

tations, we have445

max
sPR`

ˆ

p1 ´ εq
s

γd
}w}2op,η ´

s2

2γd
}w}2op,η `

s

γd
}w}op,η

˙

“
1

2γd
pp1 ´ εq}w}op,η ` 1q2.446

Above we have used the fact that maxsPR` p´as2 ` bsq “ b2{4a. By the arbitrariness447

of ε we then obtain p~w~`
op,ηq2 ě p}w}op,η ` 1q2{p2γdq. The converse inequality can448

be proved by once again using Young’s inequality.449

Again, the analysis of the minimization problem (2.3), including the existence of a450

weakly converging minimization sequence and a best approximation bound for all451

weak limits of minimizing sequences, carries over to the minimization problem (3.2).452

4. Imposition of Dirichlet boundary conditions. Herein we will adapt to453

the case of WANs the technique introduced in [7] for dealing with Dirichlet boundary454

conditions. The idea is to weigh the elements of the test adversarial network by455

multiplying a cutoff function ϕ (see [21] and references therein), so that the resulting456

test functions are forced to be zero on the boundary. The Dirichlet boundary condition457

can then be imposed on the primal network using a penalty without violating the458

consistency of the equation. For simplicity, we assume that the problem is a symmetric459

second-order static elliptic PDE. We also assume that the boundary BΩ is smooth (C3460

to be precise).461

We first present the ideas in the simple framework of the Deep Ritz method for the462

case of homogeneous boundary conditions. We assume the operator A of (1.2) to be463

symmetric under homogeneous Dirichlet boundary conditions. Then the continuous464

Ritz method may be written as465

u “ argmin
vPH1

0 pΩq

p0.5Apv, vq ´ pf, vqΩq .466

Under the smoothness assumptions on BΩ we know that, provided f is sufficiently467

smooth, u P HmpΩq for some m ě 3 and }u}H3pΩq À }f}H1pΩq. Assuming that468

wθ P H1
0 pΩq for all wθ P Wθ, the Deep Ritz method takes the form469

u˚
θ “ argmin

wθPWθ

p0.5Apwθ, wθq ´ fpwθqq .470

As we already mentioned, the problem with this formulation is that it appears to be471

very difficult to design networks that satisfy boundary conditions by construction.472

Instead, typically, a penalty term of the form λ}Twθ}BΩ is added to the functional on473

the right hand side [6]. The convergence to the solution u P H1
0 pΩq of the continuous474

problem is obtained by letting λ Ñ 8 and enriching the network space. In the classical475

numerical methods, e.g., the Finite Element Method, λ is proportional to h´s, with476
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h being the mesh size and s ą 0 a carefully chosen exponent. With neural network477

methods, it is, however, not obvious how to match the dimension of the space to the478

rate by which λ grows. In general, either the accuracy or the conditioning of the479

nonlinear system suffers.480

Our idea is to build the boundary conditions into the formulation by weighting481

the network functions with the level set function ϕ, where ϕ|BΩ “ 0, ϕ|Ω ą 0, and ϕ482

behaves as a distance function in the vicinity of BΩ. The solution we look for then483

takes the form ϕwθ with wθ P Wθ. The Cut Deep Ritz method reads484

ν˚
θ “ argmin

wθPWθ

p0.5Apϕwθ, ϕwθq ´ fpϕwθqq .485

It is straightforward to show that this is equivalent to486

ν˚
θ “argmin

wθPWθ

pApu´ ϕwθ, u´ ϕwθqq“argmin
wθPWθ

˜

sup
vθPWθ

Apu´ ϕwθ, u´ ϕvθq
a

Apu´ ϕvθ, u´ ϕvθq

¸

.(4.1)487

Following Remark 2.1, and assuming, for the sake of simplicity, that the mini-488

mization problem (4.1) has a unique solution ν˚
θ P Wθ we then have that489

}u´ ϕν˚
θ }H1pΩq ď C inf

wθPWθ

}u´ ϕwθ}H1pΩq.490

It remains to show that ϕwθ is capable of approximating u in H1
0 pΩq. To this end491

let O be some domain such that Ω Ă O, where O is a box in Rd and let ũ denote a492

stable extension of u to O [20]. We assume the following on the boundary BΩ and ϕ.493

Assumption 4.1. Let Ω be a bounded domain in Rd. The boundary BΩ can be494

covered by open sets Oi, i “ 1, ¨ ¨ ¨ , I, and one can introduce on every Oi local coordi-495

nates ξ1, ¨ ¨ ¨ , ξd with ξd “ ϕ such that all the partial derivatives Bξαi {Bαx and Bxα{Bαξ496

up to order k ` 1 are bounded by some C0 ą 0. Moreover, ϕ is of class Ck`1 on O,497

where k`1 ě 3 is the smoothness of the domain, and |ϕ| ě M0 on Oz YOi with some498

m ą 0, and in YOi, ϕ is a signed distance function to BΩ.499

We further need the following Hardy-type inequality (see [7, Lemma 3.1]).500

Lemma 6. We assume that the domain Ω is defined by the zero level set of the501

smooth function ϕ and that Assumption 4.1 is satisfied. Then for any v P Hk`1pOq502

such that v|BΩ “ 0, there holds503

}v{ϕ}HkpΩq ď C}v}Hk`1pOq.504

Then, as by assumption }ϕ}W 1,8pΩq ă C, combining the quasi best approximation505

bound given by Lemma 2.9 with (2.12) we obtain the following estimate for the Cut506

Deep Ritz method, with ReLU activation function:507

}u´ ϕν˚
θ }H1pΩq À N

´pm´2q{d
θ |u|Hm .508

In particular, when m “ 3, using elliptic regularity, we can bound the H1pΩq norm509

of the error with N
´1{d
θ }f}H1pΩq. This shows that the method typically requires one510

order more regularity of the data than typically expected.511

We now introduce the Cut weak adversarial network (CutWAN) method for prob-512

lems not necessarily coercive and with non-homogeneous Dirichlet boundary condi-513

tions. We let514

(4.2) ~w~op,ϕ,η :“ sup
φηPVη

´

Apw, ϕφηq ´
γd
2

}ϕφη}2H1pΩq

¯

515
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and set516

(4.3) u˛
θ “ argmin

wθPWθ

`

~u´ wθ~op,ϕ,η ` }wθ ´ g}H1{2pBΩq

˘

.517

Note that the cut-off function ϕ only multiplies the test functions in the CutWAN518

network method. The boundary condition is weakly imposed by adding a penalty519

term on the primal network wθ|BΩ. It is not difficult to check that this problem falls520

in the abstract formulation considered at the end of subsection 2.2. Here, the role of521

adversarial test network is played by the product space ϕVθ ˆ H´1{2pBΩq, and the522

inf-sup condition (2.14) becomes523

(4.4) }w}W À ~w~op,ϕ,η ` }w}H1{2pBΩq, @w P Sθ.524

In particular, under such an assumption, we have the following best approximation525

results for the CutWAN method.526

Lemma 7. Assume that the inf-sup condition (4.4) holds. Let u˛
θ be the weak limit527

of a minimizing sequence for problem (4.3). Then there holds528

(4.5) }u´ u˛
θ}W À inf

wθPWθ

}u´ wθ}W .529

Note that the CutWAN method achieves optimal convergence rates even though the530

test function class is multiplied by ϕ. So the difficulty handled by the Hardy inequality531

in the Cut Deep Ritz method does not appear. Indeed the difficulty of controlling the532

levelset weighted test function is hidden in the inf-sup assumption (4.4). A study of533

this condition will be the topic of future work.534

Similarly, we can also define the following algorithm. Define535

(4.6) ~w~
`
op,ϕ,η :“ sup

φηPVη

´

Apw, ϕφηq ´
γd
2

}ϕφη}2V ` }ϕφη}V

¯

,536

and let537

(4.7) uðθ “ argmin
wθPWθ

´

~u´ wθ~
`
op,ϕ,η ` }wθ ´ g}H1{2pBΩq

¯

.538

We refer to the above method as the shifted CutWAN method. One can also prove the539

best approximation results for the shifted CutWAN method similarly as in Lemma 7.540

Remark 4.2. For computational convenience, the H1{2pBΩq norm in (4.3) and541

(4.7) can be replaced by a suitable combination of the L2 norm of the function and542

of its tangential derivative. Indeed, using the Gagliardo-Nirenberg inequality we have543

that544

(4.8) }wθ ´ g}H1{2pBΩq ď }wθ ´ g}
1{2
L2pBΩq

}wθ ´ g}
1{2
H1pBΩq

.545

It is not difficult to ascertain that if we replace the H1{2 norm in (4.3) and (4.7)546

with the right hand side of (4.8), the analysis of Section 2 holds with minor changes,547

resulting in an error bound of the form548

}u´ u˛
θ} À inf

wθPWθ

´

}u´ wθ}W ` }u´ wθ}
1{2
L2pBΩq

}u´ wθ}
1{2
H1pBΩq

¯

.549

We observe that an analogous result would hold for the plain L2pBΩq penalization as550

originally proposed by [22, 1], if an inverse estimate were to hold for Wθ, allowing551
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to bound the H1pBΩq norm of the boundary residual with its L2pBΩq norm times a552

constant depending on Wθ. Unfortunately this is generally not true, and Lemma 2553

does not hold when using such a stabilization, which is, however, computationally554

convenient, and which we will test extensively in the forthcoming sections. We point555

out that, thanks to the combination of (4.8) with a Cauchy-Schwartz inequality, sim-556

ply adding }g ´ wθ}H1pBΩq to the L2pBΩq penalized functional yields an a posteriori557

error estimator. This can be evaluated upon convergence of the optimization pro-558

cedure, to check if the solution obtained with the cheaper L2 penalized functional,559

is satisfactory. If not, it can serve, in a two stage strategy, as starting point for an560

additional optimization procedure relying on the more expensive functionals for which561

our theoretical error analysis applies.562

5. Neural Network Structures.563

5.1. Deep Neural Network (DNN) Structure. A DNN structure is the564

composition of multiple linear functions and nonlinear activation functions. We will565

use the DNN structure for Vη. Specifically, the first component of DNN is a linear566

transformation T l : Rnl Ñ Rnl`1 , l “ 1, ¨ ¨ ¨ , L, defined as follows,567

T l
pxlq “ W lxl ` bl, for xl P Rnl ,568

where W l
“ pwl

i,jq P Rnl`1ˆnl and bl P Rnl`1 are parameters in the DNN. The second569

component is an activation function ψ : R Ñ R to be chosen, and typical examples of570

the activation functions are tanh, Sigmoid, and ReLU. Application of ψ to a vector571

x P Rn is defined component-wisely, i.e., ψpxq “ pψpxiqq, i “ 1, 2, ¨ ¨ ¨ , n. The l-th572

layer of the DNN is defined as the composition of the linear transform T l and the573

nonlinear activation function ψ, i.e.,574

N lpxlq :“ ψpT l
pxlqq, l “ 1, ¨ ¨ ¨ , L´ 1.575

For an input x P Rn1 , a general L-layer DNN is defined as follows,576

(5.1) NN px;θq :“ TL
˝ NL´1 ˝ ¨ ¨ ¨ ˝ N 2 ˝ N 1pxq,577

where θ P RN stands for all the parameters in the DNN, i.e., θ “ tW l, bluLl“1.578

For a fully connected DNN, the number of parameters corresponding to θ is Nθ :“579
řL

l“1 nl`1pnl ` 1q. We will refer N 1 as the input layer, N i, 1 ă i ă L as the hidden580

layers, and TL as the output layer. We assume that every DNN neural network has581

an input, an output, and at least one hidden layer. Note that for the outer layer,582

there is no followed activation function. Figure 1 shows an example of a DNN model583

with 5 hidden layers with rn1, n2, ¨ ¨ ¨ , n7s “ r6, 20, 10, 10, 10, 20, 1s.584

5.1.1. The recursive DNN model. In the case of a DNN model with consec-585

utive hidden layers having an equal number of neurons, the weights and biases for586

those hidden layers can be easily shared due to the same data structure. We define the587

recursive DNN model as DNN models that share the parameters for all consecutive588

hidden layers with the same number of neurons. Therefore, A recursive DNN model589

could have significantly fewer total parameters than the corresponding non-recursive590

DNN model. For instance, the non-recursive DNN model described in Figure 1 has591

931 parameters, while its corresponding recursive model has only 711 parameters.592

The contrast will become more pronounced when the number of hidden layers and593

hidden neurons increases. Our numerical results show that a recursive DNN model594

can benefit PDE solving.595
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Fig. 1: A DNN network structure with 5 hidden layers

5.1.2. Comments about DNN. Although DNNs have been widely used as596

the primary neural network for solving PDE problems, their performance often falls597

short of expectations. When using DNNs within the Physically Informed Neural598

Networks (PINN) and Deep Ritz methods, achieving the desired accuracy typically599

requires thousands of iterations due to oscillations and stagnation. The method of600

WAN helps the algorithm escape local minima. However, despite this improvement,601

the number of iterations remains in the range of several thousand, as reported in [22]602

and demonstrated in our numerical results in Section 6. To enhance convergence,603

we explore different neural structures that approximate the trial functions with more604

efficacy.605

5.2. XNODE model for parabolic PDE.. It has been demonstrated in [16]606

that for time-dependent parabolic problems, the XNODE model achieves much faster607

convergence than traditional deep neural networks. We believe this rapid convergence608

is attributed to the structure of the XNODE model, which emulates the residual609

network, and the direct embedding of the initial condition in the model.610

Consider the following parabolic PDE defined on an arbitrary bounded domain611

D Ă r0, T s ˆ Rd, possibly representing a time dependent spatial domain,612

$

’

&

’

%

Btu´ ∇ ¨Apt,xq∇u` bpt,xq∇u` cpu,xqu´ fpxq “ 0 for pt,xq P D,
upt,xq “ gpt,xq on BD,
up0,xq ´ hpxq “ 0 on Ωp0q.

(5.2)613

614

where A “ taiju, b “ tb1, b2, ¨ ¨ ¨ , bnu, f : D Ñ R, c : RˆD Ñ R and h : Ωp0q Ñ R are615

given, with Ωptq :“ tx|pt,xq P Du denote the spatial domain of D when restricting616

time to be t. Note that c can be a non-linear function with respect to the first617

argument.618
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We now briefly introduce the XNODE model in [16]. For simplicity, we consider a619

time-independent domain in this paper, i.e., D “ r0, T sˆΩ, where Ω Ă Rd is bounded.620

The XNODE model maps an arbitrary input x P Rd to the output oxptqtPr0,T s P621

Cpr0, T s by solving the following ODE problem:622

(5.3)

#

dhptq
dt “ N vec

θ2
phptq, t,xq, hp0q “ N init

θ1
phpxqq P Rh.

oxptq “ Lθ3
phptqq.

623

where N vec
θ2

and N vec
θ1

are DNN neural networks fully parameterized by Pθ2
and Pθ1

624

for the vector fields and the initial condition hp0q respectively. Lθ3 is a single linear625

layer parameterized by Pθ3 . By Θ “ pθ1,θ2,θ3q we denote the set of all trainable626

model parameters of the proposed XNODE model. Finally define627

(5.4) uΘpt,xq :“ oxptq « upt,xq @x P Ω.628

5.3. Pseudo-time XNODE model for static PDEs. In this subsection, we629

expand the XNODE model to handle stationary PDE problems. To simplify matters,630

we will focus on the following form of stationary PDE problem.631
#

´∇ ¨Apxq∇upxq ` bpxq ¨ ∇upxq ` cpu,xqu´ fpxq “ 0 x P Ω “ r0, 1sd,

upxq “ gpxq on BΩ.
(5.5)632

633

The idea is to introduce a pseudo-time variable, which we choose from one of the634

spatial variables, xi, to compensate for the absence of t, i.e., we let t “ xi for some635

prefixed i. For simplicity, we choose i “ 1 without loss of generality. The remain-636

ing variables xi, i “ 2, ¨ ¨ ¨ , d will form the spatial variables in the XNODE model.637

More precisely, the spatial input point for the pseudo-time XNODE model should be638

modified as x̃ “ tx2, ¨ ¨ ¨ , xdu. Similar to (5.4), we now define639

(5.6) uΘpxq “ uθpx1, x̃q :“ ox̃px1q « upx1, x̃q,640

where ox̃px1q is the numerical solution of (5.3).641

5.4. Loss functions. We first recall the classical WAN loss function used in642

[16]:643

(5.7) Lwanpθ,ηq :“ log

˜

|pApuθq ´ f, ϕvηq|2

}ϕvη}2L2pDq

¸

` αL2
initpθq ` βL2

bdrypθq,644

where α, γ are hyperparameters as penalty terms and645

Linitpθq “ }uθp0,xq ´ hpxq}L2pΩq, Lbdrypθq “ }uθpt,xq ´ gpt,xq}L2pr0,T sˆBΩq,646

and ϕpxq|BΩ “ 0. Here uθ P Wθ and vη P Vη where Wθ and Vη are neural network647

function classes parameterized by θ and η, respectively. In this paper, we use the648

classical DNN function class for Vη. For Wθ, we will utilize and compare different649

neural network structures, which will be specified in each experiment. When the PDE650

problem is static, α is set to 0.651

We also define the loss functions for the respective Cut-WAN and shifted Cut-652

WAN methods,653

Lcwanpθ,ηq “ |pApuθq ´ f, ϕvηq| ´ γd}ϕvη}2V ` αL2
initpθq ` βL2

bdrypθq,

Lscwanpθ,ηq “ Lcwanpθ,ηq ` }ϕvη}H1
0 pΩq.

(5.8)654

655

During computation, the integrals are estimated using the Monte-Carlo sampling.656
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6. Numerical Results. The authors carried out the numerical results on a657

personal CPU device (Apple M1 Max chip with 32 GB memory and 10 total cores).658

The Adam optimization method is used for all presented numerical experiments.659

6.1. Parabolic equations.660

Example 1. Following the numerical example in [22, 16], we consider the fol-661

lowing non-linear PDE problem in the form of a d-dimensional nonlinear diffusion-662

reaction equation (Eq. (6.1)) defined on a bounded domain D Ă r0, 1s ˆ r´1, 1sd:663

(6.1)

$

’

&

’

%

Btu´ △u´ u2 ´ f “ 0 for pt,xq P D
u´ g “ 0 on BD
up0,xq ´ hpxq “ 0 on Ωp0q,

664

where the exact solution is given by665

(6.2) upt,xq “ 2 sin
´π

2
x1

¯

cos
´π

2
x2

¯

e´t.666

The hyperparameters for the XNODE model for u and DNN model for v used667

in these experiments are listed in Table 1, and their meanings are explained in Ap-668

pendix A. The same hyperparameters were maintained across all experiments in Ex-669

ample 1 for the XNODE model. The recursive (nonrecursive) XNODE model uθ has670

1501 p2161q trainable parameters, while the recursive (non-recursive) model of Vη has671

5902 p23351q trainable parameters.

d Nr Nb nT Ku Kϕ α β

5 4000 4000 20 2 1 107 105

ϵ lθ lη ulayers uhid-dim1 uhid-dim2 vlayers vhid-dim
10´2 .015 .04 8 20 10 9 50

Table 1: Hyper parameter setting for Example 1

672
From Table 1, large penalty constants for α and β are utilized. We hypothesize673

that larger penalty constants can help strongly enforce initial and boundary condi-674

tions, which is beneficial in PDE solving using neural networks.675

When utilizing the XNODE model to compute uθ, the training process ceases676

either when the relative training error drops below 1% or after a maximum of 300677

iterations. Conversely, if the DNNmodel is used to compute uθ, the maximum number678

of iterations is set to 3000.679

For a comparison, we first train the models using the PINN type loss function680

defined as follows:681

(6.3) Lpinnpθq “ }Btuθ ´ △uθ ´ u2θ ´ f}L2pΩq ` αLinitpθq ` βLbdrypθq.682

The Lpinn type loss function was initially introduced in the physics-informed683

neural network by Raissi et al. (2019) [19]. We have conducted experiments on Lpinn684

with the random initialization, and the results are displayed in Figure 2. We utilized685

the XNODE and DNN models for both the recursive and non-recursive versions. We686

note that the PINN loss function requires computing higher-order derivatives, which687

poses potential challenges. Firstly, the loss function becomes invalid when there is no688

strong solution, and secondly, computing these derivatives increases the computational689

time. In each step, the relative error in Figure 2 and subsequent figures is calculated690
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(a) XNODE(R) +Lpinn (b) XNODE +Lpinn

(c) DNN(R)+Lpinn (d) DNN+Lpinn

Fig. 2: Example 1: Relative L2 Error versus Step for models using Lpinn

using a randomly chosen test set, denoted asXtest, that is the same size as the training691

data sets. More precisely, the relative error is computed as692

ÿ

xiPXtest

ř

ipupxiq ´ uθpxiqq2
ř

i upxiq
2

693

It’s worth noting that the test set is separate from the training set but has the same694

size.695

In Figure 2, the training time for the DNN and XNODE models is about 2 and 8696

seconds per step. The “(R)” after the model denotes the recursive model. In terms of697

Lpinn, it is evident that the DNN model exhibits slower convergence than the XNODE698

model, whether in recursive or non-recursive scenarios. When we compare figures in699

the right column from the left column, it is apparent that the recursive DNN model700

produces comparable results.701

When using the XNODE model, from Figure 2a and Figure 2b, in both cases,702

relative errors approached the 7% threshold within the first 50 iterations. However,703

the errors then oscillate with large amplitude, requiring various steps to achieve the704

next level of accuracy.705

In Figure 3, we then train the models using Lwan using the same models as706

in Figure 2. The training time for the DNN and XNODE models is about 2 and707
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(a) XNODE(R) +Lwan (b) XNODE+Lwan

(c) DNN(R) +Lwan (d) DNN +Lwan

Fig. 3: Example 1: Relative L2 Error versus Step for models using Lwan

6 seconds per step. After analyzing both Figure 3c and Figure 3d, it is apparent708

that the utilization of pLwan` DNN) produces less desirable results compared to709

(Lpinn` DNN) based on Figure 2. However, the combination of (Lwan` XNODE)710

produces comparable results with (Lpinn` XNODE). This indicates that XNODE is711

less sensitive to the chosen objective function.712

Based on the observations from Figure 2 and Figure 3, we can deduce that the713

utilization of the XNODE network for uθ outperforms the DNN network in both714

the Lwan and Lpinn scenarios. However, it is noteworthy that when employing the715

XNODE network, the loss function during the training exhibits significant oscillation716

after reaching a certain level of accuracy for both Lwan and Lpinn. Additionally, in717

every scenario presented, the recursive model delivers comparable outcomes to its718

non-recursive counterpart.719

We now evaluate the XNODE network using the loss functions Lcwan and Lscwan720

defined in (5.8), with the same models as shown in Figure 2. In each sub-figure in721

Figure 4, we present the results of five out of six consecutive and randomly initialized722

experiments under the specific setting to show generality. Each training step takes723

about 6 seconds.724

Overall, after comparing Figure 2 and Figure 3 with Figure 4, we have noticed725

that Lcwan and Lscwan show uniformly faster and numerically more stable, i.e., less726
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oscillations, convergence than Lwan. Moreover, we observe consistent/robust perfor-727

mance regardless of random initialization. In almost all experiments, the training728

relative error reaches the 1% relative error all within 200 steps.729

When we compare the data in the right column to that of the left column, we730

notice that the recursive model performs just as well, if not better. Specifically, in731

the experiments depicted in Figure 4a, the stopping criteria were met at an average732

of 144 steps, with individual results of 137, 85, 177, 132, and 190 for experiments 0 to733

4, respectively. On the other hand, the non-recursive counterpart met the stopping734

criteria at an average of 164 steps, with individual results of 168, 125, 210, 153, and735

162 for experiments 0 to 4, respectively, as shown in Figure 4b. We also note that736

for the Lscwan, the comparison results for γd “ 0.5 and γd “ 0.001 are similar in this737

example. However, with γd “ 0.001, we notice slightly more oscillaltions than the738

case of γd “ 0.5.739

In summary, the utilization of the XNODE network and the cutWAN and shifted740

CutWAN loss functions, i.e., Lscwan and Lcscwanin (5.8), has demonstrated a highly741

competitive model for solving high-dimensional parabolic PDE problem. In particu-742

lar, solving the 5 dimensional non-linear parabolic problem in (6.1) takes only about743

15 minutes for the training to reach the 1% relative error on a personal computer.744

Furthermore, the recursive model necessitates fewer parameters in contrast to non-745

recursive models. In comparison to classical numerical techniques such as the finite746

element method, which grows exponentially in the number of unknowns as the dimen-747

sion expands, the potential benefit of our approach becomes more prominent as the748

disk space on a personal computer can rapidly become restricted with the classical749

approach.750

We now consider the effect using the H1{2 norm on the boundary based on (4.8).751

Define752

L̃bdrypθq “ }u}
1{2
L2p0,T,BΩq

}∇Γu}
1{2
L2p0,T,BΩq

753

where ∇Γu “ ∇xu´p∇xu ¨nqn is the tangential gradient of u and n is the unit outer754

normal of Ω. We test the results replacing Lbdry in (5.7) by L̃bdry using the loss func-755

tion Lscwan with γd “ 1{2 (see Figure 5). The results in Figure 5a (average iteration756

number “ 151) and Figure 5b (average iteration number “ 173) are comparable to757

Figure 4c (average iteration number “ 132) and Figure 4d (average iteration number758

“ 161) . However, using L̃bdry resulted in an additional duration of approximately 1759

second per iteration. For simplicity, we will use Lbdry for future experiments. It is760

worth noting that one can use Lbdry for the former iterations and switch to the more761

accurate L̃bdry for better accuracy and time efficiency. This can be necessary when g762

is of high frequency.763

Remark 6.1 (How does Vη affect the method’s performance?). In the proof, we764

require Vη to be rich enough to satisfy the stability condition. In this example, we765

tested multiple configurations for the Vη network, experimenting with different hidden766

layers and varying numbers of neurons. The results are all consistent with Figure 4.767

This indicates that the model is robust with Vη for this example.768

6.2. Stationary PDE problems.769

Example 2. We now test the following high-dimensional problem as in [22].770

#

´△upxq “ f x P Ω

upxq “ gpxq x on BΩ,
771
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(a) XNODE(R) + Lcwan (γd “ 10´3) (b) XNODE + Lcwan (γd “ 10´3)

(c) XNODE(R) +Lscwanpγd “ 0.5q (d) XNODE +Lscwanpγd “ 0.5q

(e) XNODE(R) +Lscwanpγd “ 10´3q (f) XNODE +Lscwanpγd “ 10´3q

Fig. 4: Example 1: Relative L2 Error for XNODE models on Lcwan and Lscwan

where the true solution renders upxq “
d
ř

i“1

sin
´π

2
xi

¯

.772

Observe that the boundary condition on the plane x1 “ 0 and x1 “ 1 now serves as773

the initial and terminal conditions in the pseudo-time XNODE model. Subsequently,774
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(a) XNODE(R) +Lscwanpγd “ 0.5q (b) XNODE +Lscwanpγd “ 0.5q

Fig. 5: Example 1: The effect using L̃bdrypθq

we adjust the initial loss and introduce the terminal loss as:775

Linitpθq “ ||uθpx1 “ 0q ´ gpx1 “ 0q||L2pΩp0qq,

Llastpθq :“ ||uθpx1 “ 1q ´ gpx1 “ 1q||L2pΩp1qq,
(6.4)776

where Ωptq :“ tx P Ω, x1 “ tu. We shall utilize the following loss functions for the777

pseudo-time XNODE model.778

(6.5) L̃wan,cwan,scwanpθ, ηq “ Lwan,cwan,scwanpθ, ηq ` γLlastpθq.779

We experimented with testing the pseudo-time XNODE model with d “ 5, using780

the same parameters as in Table 1 except for the penalty parameters. A grid search781

was performed to tune the hyperparameters α, β, and γ, which were restricted to the782

range r10, 109s. A optimal values found were α “ γ “ 105 and β “ 107.783

We established a stopping criteria that ensured the relative training error was784

below 1% or the maximum iteration number less than 300. Each training step takes785

about 8 seconds.786

We have analyzed the loss functions L̃wan, L̃scwan with γd “ 0.5, and L̃cwan with787

γd “ 0.001, as described in (6.5). We conducted tests on both the recursive and788

non-recursive models for each setting, and the outcomes are displayed in Figure 6.789

Each sub-figure in Figure 6 showcases the results of three consecutive experiments790

that were initialized randomly. The recursive and non-recursive models are utilized791

in the left and right columns respectively.792

For L̃wan, the recursive model in Figure 6a reached the stopping criteria at steps793

169, 98, and 91 (with an average of 120). Meanwhile, the non-recursive model in794

Figure 6b reached the stopping criteria at steps 277, 119, and 93 (with an average of795

163), based on three experiments for each.796

For L̃cwan, the recursive model in Figure 6c reached the stopping criteria at steps797

237, 174, and 200 (with an average of 203). Meanwhile, the non-recursive model in798

Figure 6d reached the stopping criteria at steps 293, 149, and 153 (with an average of799

198), based on three experiments for each.800

For L̃scwan, the recursive model in Figure 6e reached the stopping criteria at steps801

172, 144, and 117 (with an average of 144). Meanwhile, the non-recursive model in802
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Figure 6f reached the stopping criteria at steps 151, 132, and 115 (with an average of803

132), based on three experiments for each.804

(a) XNODE(R) + L̃wan (b) XNODE + L̃wan

(c) XNODE(R) + L̃cwanpγd “ 10´3q (d) XNODE+ L̃cwanpγd “ 10´3q

(e) XNODE+ L̃scwanpγd “ 0.5q (f) XNODE(R)+ L̃Scwanpγd “ 0.5q

Fig. 6: Example 2. Relative L2 Error versus Step using pseudo-time XNODE

In all XNODE experiments, the relative error quickly reached the 2% threshold805

within the first 35 iterations. Although the relative error oscillations generated by806

L̃wan are still greater than those of L̃cwan and L̃scwan, it is worth noting that, in this807

particular case, the stopping criteria was achieved with slightly fewer iterations on808
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average. We believe this faster convergence takes place thanks to the Poisson type809

PDE used in this example. For the Poisson problem, it is easy to see that } ¨ }op810

is the most natural norm to minimize. It has also been observed that the recursive811

model’s performance is almost comparable to that of the non-recursive models in this812

example.813

Example 3.

(6.6) ´ ∇ ¨ papxq∇uq `
1

2
|∇u|2 “ fpxq, in Ω “ r0, 1sd, upxq “ gpxqon BΩ.814

where apxq “ 1 ` }x}2. The true solution upxq “ sinp0.5πx21 ` 0.5x22q.815

In this problem, the non-linear term
1

2
|∇u|2 presents a significant challenge. We will816

use the hyper-parameter set from Subsection 6.2 in all numerical tests with the pseudo-817

time XNODE model. Our objective in this example is to evaluate the performance818

of the pseudo-time XNODE model using various loss functions. We established the819

stopping criteria for the maximum number of iterations to be less than 600. The820

duration of each iteration is approximately 8.5 seconds.821

We first test the loss function L̃wan by conducting three consecutive experiments822

with random initialization. The results are presented in Figure 7. The left/ right fig-823

ure in Figure 7 shows the relationship between the number of steps and the L2 relative824

error/ minimal L2 relative error based on test sets. After the stopping criteria have825

been met, the minimal relative training L2 error is 0.024, 0.056, and 0.023, respec-826

tively. We have observed a slower convergence rate compared to previous examples,827

which can be attributed to the more challenging non-linear term.828

d Nr Nb nT Ku Kϕ α β γ

5 4000 4000 20 2 1 6 ˆ 107 12 ˆ 107 12 ˆ 107

ϵ lθ lη ulayers uhid-dim1 uhid-dim2 vlayers vhid-dim
10´2 .015 .03 12 20 10 9 50

Table 2: Hyper parameter setting for Example 3

Fig. 7: Example 3. Pseudo time XNODE + L̃wan

The results for L̃cwan and L̃scwan both with γd “ 0.5 are provided in Figure 8 and829

Figure 9, respectively. For all three experiments, the minimal relative error calculated830

from L̃cwan was 0.013, 0.016, and 0.016. Meanwhile, the minimal relative error calcu-831

lated from L̃scwan for the same experiments were 0.011, 0.012, and 0.016. Therefore, in832
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comparison to Figure 7, using L̃cwan and L̃scwan provides a slight advantage over L̃wan.833

Due to the highly nonlinear nature of this problem, we believe that a more refined834

approach to tuning the hyperparameters is necessary to achieve greater accuracy in835

the results. We will consider this as a future work.836

Fig. 8: Example 3. Pseudo time XNODE + L̃cwan (γd “ 0.5)

Fig. 9: Example 3. Pseudo time XNODE + L̃scwan (γd “ 0.5)
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Appendix A. Model set up XNODE-WAN Algorithm. The hyper-840

parameters for the neural networks are explained in the following table. For Vη, we841

use a classical DNN network. The activation is set to be Tanh for the last hidden layer842

and ReLU for other hidden layers. Note that there is no activation function for the843

output layer. N init
θ1

has one input layer, one hidden layer, and one output layer. The844

activation function after both the input and hidden layer is ReLU. N vec
θ2

has ulayers of845

hidden dimensions and Tanh as the activation function.846
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