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ABSTRACT

A specific modification of Newtonian dynamics known as MOND has been shown to reproduce the dynamics of most
astrophysical systems at different scales without invoking non-baryonic dark matter (DM). There is, however, a long-standing
unsolved problem when MOND is applied to rich clusters of galaxies in the form of a deficit (by a factor around two) of predicted
dynamical mass derived from the virial theorem with respect to observations. In this article, we approach the virial theorem using
the velocity dispersion of cluster members along the line of sight rather than using the cluster temperature from X-ray data and
hydrostatic equilibrium. Analytical calculations of the virial theorem in clusters for Newtonian gravity + DM and MOND are
developed, applying pressure (surface) corrections for non-closed systems. Recent calibrations of DM profiles, baryonic ratio,
and baryonic (8 model or others) profiles are used, while allowing free parameters to range within the observational constraints.
It is shown that solutions exist for MOND in clusters that give similar results to Newton 4+ DM — particularly in the case of an
isothermal 8 model for 8 = 0.55-0.70 and core radii . between 0.1 and 0.3 times rsoo (in agreement with the known data). The
disagreements found in previous studies seem to be due to the lack of pressure corrections (based on inappropriate hydrostatic

equilibrium assumptions) and/or inappropriate parameters for the baryonic matter profiles.
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1 INTRODUCTION

In present-day astrophysics, many lines of investigation support
the existence of large amounts of non-baryonic dark matter (DM
hereafter) in galaxies and in the Universe at large, the most obvious
example being the asymptotically flat rotation curve of galaxies,
which indicates the existence of massive DM haloes. Considerable
fine tuning is required, however, to justify their observed properties,
the most striking example possibly being the baryonic Tully—Fisher
relation (see e.g. McGaugh (2012) and reference therein). Because
of this, over the years more than one proposal has been made to find
alternative explanations not involving DM. In particular, it has been
shown that a specific modification of Newtonian dynamics, known as
MOND (Milgrom 1983a, b, ¢), is able to describe many kinds of be-
haviour of galaxies and other cosmic structures generally ascribed to
the presence of DM. The basic idea of MOND is that an acceleration
(ap) exists, below which Newtonian dynamics is no longer valid.
The MOND hypothesis has profound and far-reaching implica-
tions. Since the seminal papers by Milgrom (1983a, b, ¢), MOND
has been applied to several astrophysical objects including (in
increasing order of size) wide binary stars (Herndndez, Jiménez &
Allen 2012; Herndndez, Cookson & Cortes 2022), globular clusters
(Scarpa, Marconi & Gilmozzi 2003; Scarpa & Falomo 2010; Scarpa
et al. 2011; Herndndez & Lara-D I 2020), dwarf galaxies (Milgrom
1995; McGaugh & Milgrom 2013; Sanders 2021), gas dominated
galaxies (McGaugh 2012; Sanders 2019), spiral galaxies (Sanders
1996; Milgrom & Sanders 2007; Gentile, Famaey & de Blok 2011)
including our Milky Way (Chrobdkova et al. 2020), elliptical galaxies
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(Milgrom & Sanders 2003; Tian & Ko 2016; Duraro et al. 2018),
satellites around galaxies (Angus et al. 2008; Klypin & Prada
2009), pairs of galaxies (Milgrom 1983c; Scarpa, Falomo & Treves
2022), groups of galaxies (Milgrom 2019; McGaugh et al. 2021),
gravitational lenses (Sanders 2014), and cluster of galaxies (Sanders
1999, 2003). In all cases except one, MOND may describe the
observations without the need for DM. The problematic case being
rich clusters of galaxies, which are a long-standing problem, thus far
unsolved by MOND, and on which we try to shed some light here.

We know the virial theorem works in clusters of galaxies for
standard Newtonian gravity within the usual assumption of the
existence of non-baryonic DM as predicted by ACDM models (e.g.
Evrard et al. 2008; Zhang et al. 2011; Munari et al. 2013), but it
has not worked for MOND so far. Using a hydrostactic isothermal
model with temperatures derived from X-ray data, the MOND mass
prediction falls short by a factor ~2 (Sanders 1999; Pointecouteau &
Silk 2005). A more recent analysis by Ettori et al. (2019) finds that
MOND scenarios underestimate hydrostatic masses of cluster by
40 percent at o (7, being the radius of the sphere for which the
average density inside it is x times the critical density p.), but with a
decreasing tension as the radius increases, and reaches ~15 per cent
at ry00. However, this hydrostatic model has certain drawbacks which,
according to some authors, may lead to important systematic errors
of up to a factor 2 for the mass ((Bartelmann & Steinmetz 1996;
Balland & Blanchard 1997, section 4.2 Sadat 1997).

Other applications of the virial theorem within the famework of
MOND are discussed in several works (Milgrom 1994, 2010, 2014;
Fabris & Velten 2009). One different method is the application of
the virial theorem using the velocity dispersion of cluster members
along the line of sight. A study of this kind has been carried out
by Fabris & Velten (2009) for the Coma cluster revealing within

© 2022 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

Gz0z Arenuer g0 uo Jasn dieys suuayied Aq 90208.9/vS/S/b// L S/810NIB/SEIUW/WOoD dNo"olWapeoe.//:sdny WoJl papeojumoq


http://orcid.org/0000-0001-6128-6274
http://orcid.org/0000-0001-9118-8739
mailto:martin@lopez-corredoira.com

Newtonian gravity a mass-to-light ratio M/L~200 in solar units (in
agreement with estimates based on different methods (Carlberg,
Yee & Ellingson 1997)), whereas for MOND it is three times
lower (still problematic for MOND). Instead of using optical surface
brightness to trace the baryonic mass (and non-baryonic mass for
Newtonian gravity), a derivation of baryonic mass calibrated with
X-ray data would be more accurate.

Here, by allowing free parameters to range within the observational
constraints, we revisit the application of the virial theorem in clusters
of galaxies using the velocity dispersion of cluster members along
the line of sight. Recent calibrations of DM profiles, baryonic ratio,
and baryonic (the 8 model or others) profiles are used. We also apply
pressure corrections for non-closed systems (usually overlooked in
the literature). Both Newtonian gravity and MOND are considered,
although we pay special interest to the latter case.

2 APPLICATION OF THE VIRIAL THEOREM

2.1 Virial theorem

We assume spherical symmetry in a rich cluster with mass density
distribution p (r) and mass interior to each radius r

M(r) = 4n /rdxxzp(x). (1)
0

The potential energy with MOND or Newtonian gravity within a
radius ry,yx is (Fabris & Velten 2009)

Fmax 2
V(rmax) = —47rG/ dr rq/ 1 + < d ) p(r)M(r), 2)
0 rem(r)

with rey(r) —> oo for Newtonian gravity. The distance rov(r) is
related to the usual parameter ay by means of

GM(r)
reM(r) = —— (3)
o
and ap = 1.2 x 107 ms~2 for MOND or gy = 0 for Newton.
The kinetic energy is

K (rmay) = 37 / ™ 4R RG2R)(R). @
0
+\/ rl%aX7R2
E(R)zz/ dzp (\/R2+zz), )
0

where o ,(R) is the line-of-sight velocity dispersion (in the rest-frame
of the cluster) as a function of the projected distance R, and X (R) is
the surface mass density. This can also be expressed as:

3
K(rleX) - M(rde)UU F<Fmax (6)

In a virialized cluster in the limit of ry,x — oo, the following
condition should be followed:

2K (rmax) + V(rma) = 0. @)

Hence,
-V max

Ovr<rmax — y (8)
3M (rmax)

2.2 Corrections to the virial theorem that include the pressure
term

None of the above considerations can be exact unless we make r,,x =
oo, which would make the cluster a closed system. For a finite virial
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radius rp,, there is a pressure term due to exchange of galaxies
and other types of matter between the sphere within radius .« and
the space beyond it. The relevance of the surface (pressure) term in
standard gravity is known (e.g. The & White 1986; Carlberg et al.
1996; Carlberg et al. 1997; Girardi et al. 1998).

When the pressure term is included, the expression of the disper-
sion of velocities would be (see Appendix A):

2

UV, <Fmax

- OVv,r<rmax,P:0

T S e ©)
(3 — 2, MLV T e

where 8, is the velocity anisotropy parameter: 8, = 1 — J—“ The
second term is associated with the pressure. Assuming ,Ba = 1/4
(Klypin & Prada 2009) and neglecting the variation of o, with the
radius, we get for the virial radius 7,,x = 7200 (Which by definition
follows 200, = M(’Z"“) , with p. the critical density)

O, r<ryy ~ Ov,r<ryy, P=0 X FP» (10)

Fp = {1 _ gp("zoo)] -

5 200 pc
Note that both p and p. should refer to the same matter, including
either non-baryonic DM (in Newton 4+ DM) or only baryonic (in
MOND). This corrective factor by pressure, Fp, depends on the
profile.

2.3 Newtonian gravity

For standard Newtonian gravity, a good description of the hydrostatic
mass profile of clusters as derived from X-ray data is obtained with
Navarro-Frenk—White (NFW) profiles (Navarro, Frenk & White
1997) with scale ryq (Ettori et al. 2019).

Using p(r), M (r) of NFW profiles (formulae of appendix Sec-
tion B, with concentration index C) and ayp = 0, we get potential
energy

41 G py

C[In(1+0) - &

5 /?2“83 W [In(1 + Cx) —
0 (1+ Cx)?

V(rmax) = — } r2200 Mo

1+C,\]. (11)

Taking the values of 7500 and po from equation (B1):

C? M 5/3
V(rmax) = _(8707 X 1055 J) ( 14200 >
[In(1 + C) — 15]* \ 10" Mg
x /%‘gg LGt} (12)
0 (1 + Cx)?
The kinetic energy is
K(rmw) = (2.985 x 10° 1) [0, (kms- ) (120
sfmax 10]4 M@
Crmax \ _ _ Crmax
|:ll’l (1 + 200 ) r200+Crmax:| . (13)

[In(1+C) — 1]

For the virial radius ry.x = r200, and applying the virial theorem
equation (7), with the pressure correction referred at equation (10)
(Fp is independent of the mass), we get
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1/3
O0v,r200,Newton+DM = (382 km S 1) M4 0
’ ’ 101 M@

S
[In(1 4+ C) — .%c]

U (4 Cx) — <511
X |:/ dx[n( e HCX]] x Fp(C),
0

(1+ Cx)?
o -12
Fp = |1—0.400
? (1+C)2 In(1 +C) — 1]
(14)

This dependence with the mass to the power of 1/3 is also well known
from simulations (Evrard et al. 2008; Munari et al. 2013).

Throughout this paper, we shall calculate the dispersion of
velocities as a function of Msy = M (rs0p). This amount might
also be related to other parameters or measurements; for instance,
the Sunyaev—Zel’dovich effect amplitude (Ysz) (Arnaud et al.
2010; Lépez-Corredoira, Gutiérrez & Génova-Santos 2017; Aguado-
Barahona et al. 2022). In terms of M5 [with M,yo/M5o derived from
equation (B1)], and including all the dependence of C in a single
factor,

Mo )‘” s

Oy,r200,Newton+DM = ANewton,NFW(C)
104 M,

where ANnewton, NFw (C) is plotted in Fig. 1. The dependence on C is
quite small for C between 2 and 8. Several values are given in the
literature: from C=2.9 £ 0.2 (Lin, Mohr & Stanford 2004; Maccio &
van den Bosch 2008), derived from analyses of observational X-ray
data, or C = 4.6J_r::zf from purely theoretical dynamical models in
Prada et al. (2012) (the error bars represent here the r.m.s., not the
error of the average; assuming that the 10, 90 per cent percentiles of
fig. 13in Pradaetal. (2012) are 1.28 times the r.m.s., as it corresponds
to a Gaussian distribution). The concentration index C has a modest
dependence on mass (Lin et al. 2004; Maccio, Dutton & van den
Bosch 2008; Prada et al. 2012; Ettori et al. 2019). The above range
2.7 < C < 6.4 gives a variation of only ~2 per cent of Anewton, Nvw (),
which is negligible compared to other sources of errors. We take in
the following as default C = 3, for which Anewton, Nrw (C) = 522 km
s7! (Fp = 1.244).

2.4 MOND with only baryonic matter

We set ap = 1.2 x 107! m s72. For MOND, there is only
baryonic mass. To calculate the amount of baryonic mass, we use the
relationship obtained by Gonzélez et al. (2013):

Mg s00(Mso) = (0.117 £ 0.004) x 10™

M500 1.161+0.04
o0 Mo. 16
* (1014M®> © (16)

For a baryonic density distribution of the type ppa (1) = poJ (:7)
with J, a generic function and cluster core radius r, proportional to
rsoo [we define the parameter independent of the mass x5p0 = -

(Pacaud et al. 2016)], the potential and kinetic energies are 500

1 Myarsoo "
xs000%(rs00) \ 104 Mg

X/ “ dx x J(x) I(xre) R(x), a7
0

V(rmax) = _(6.366 X 1055 J)
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Figure 1. Value of ANewton, NFW (C) in equation (15) as a function of C.

Z13
Mar.500 ) x2

R(x) =4/1+415.57 I(rsoo)xgoo (1014M I(xre)
10} C

r/re

I(r) = dx x2J (x),
0

Miar. I (rmax
K(rmx>:<2.980x10501>[av,rm(kms*1>]2< b 500) o

104 Mg / I(rso0)”
(18)

Note that the radiii rso9 or ry are here quite similar to the
one obtained from Newton + DM + NFW. For instance, with
equations (16), (C1), we get

Miarsoo \ "
rsoo = 1.345 Mpe x <W)
0]

MSOO 0.386 (19)
10 M, ’

= 0.658 Mpc x (

which is similar although slightly lower than the rsoy from equa-
tion (B1) of Newton + DM. In Fig. 2, we offer a plot with a numerical
example for Mspy = 5 x 10" M. This approximate coincidence is
expected because the ratio of baryonic/total matter in the cluster is
similar to the ratio of baryonic/total matter in the Universe (2,/Q2,
and 1, respectively, for Newton + DM and MOND). The fact that
this ratio is the same one in clusters and in the Universe implies that
the central cluster density in MOND is similar to the cluster central
density in standard gravity times 2,/2,,, thus leading to similar r509’s
in the two models. The fact that the similarity is tighter for sy than
for ry is a coincidence.

For rmax = 7200, and only baryonic density (we take critical
baryonic density p., = 1.33 x 1072’ kgm™3; see Appendix C). the
correction of the virial theorem due the pressure is a factor

o 1/2
s 50 ()
Fr=|1- 3 , (20)
(3 —28.) 6x5001(r500)

and we assume, as previously, 8, = 1/4; except in the extreme case of
very low-concentrated (almost flat) profiles with very high densities

5J 200
— Poar.(r200) _ (—*500’500 :
at ragp [wWhere Ry = 2555 pon = 6xiylrso0) is larger than 0.75], for

which we assume a g, between 0 and 0.25, in a linear dependence
with Ry (B, = 1 — R;y), in order to avoid a negative root square.
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Figure 2. Numerical example of profiles with NFW model with C = 3 for
baryonic + DM and B model with B = 2/3 for baryonic matter for a mass
Msoo = 5 x 10" Mg, equivalent to Mpar.s500 = 0.773 x 10'* M. In dotted
lines, the respective positions of rso0, 200, £(7500), (r200); Where ry is the
radius of the sphere for which the average density inside it is x times a
critical density p. = 8.5 x 1027 kg m~3 for the case with DM or Pcb =
1.33 x 10727 kg m~3 with only baryonic density. Note the similarity of 7500
for both distributions.

2.4.1 B isothermal model

‘We now assume a 8 model for the baryonic matter profile, which is
usually adopted to fit the intracluster gas distribution (Arnaud 2009):

1
(1 + x2)145ﬂ ’

where x = r/r..

Following the formulae of Appendix C, for ryax = 100, applying
the virial theorem equation (7), with the pressure correction referred
at equation (10) [we obtain Fp given by equation (20), independent
of the mass], we get a dependence that is fitted in the range M5y =
(1-10) x 10'* Mg, with high accuracy by

J(x) = 1)

Msoo B(B.,x500)
O,r200,MOND ~ A(B, X500) <m> , (22)

where A(B, xs00) and B (B, xsoo) are plotted at Fig. 3. The exponent B

06 1000
- 000
800
0.4 -
g £
< 00
03
600
02
500
0.1
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is almost constant, between 0.29 and 0.30 for most of the cases. The
amplitude A is however quite dependent on the parameters of the B
model.

For the usual values of 8 = 2/3, xs500 = 0.15 (Pacaud et al. 2016),
A =493kms~', B=0.295. The pressure factor correction is Fp =
1.357. For comparison, the prediction of the velocity dispersion
with only baryonic matter following S-model profile and Newtonian
gravitation [equivalent to substituting 15.57 for 0 within the root
square inside the integral of equation (17)], for the same parameters
B = 2/3, xs500 = 0.15, and the same range of masses is A = 206 km
s~!, B = 0.387. Clearly, the effect of MOND is quite significant.
It is almost enough to compensate for the absence of non-baryonic
DM: it is 5-15 per cent (depending on the mass) lower than o, for
Newton + DM for C = 3.0.

For other values of the parameters S, xsop can also approximately
reproduce the dynamics of Newton + DM. Values of A similar to
the amplitude of Newton + DM (= 522 km s~!) are obtained in the
yellow—violet colour area of the left plot of Fig. 3: 8 between 0.55
and 0.80. For reasonable values of 0.1 < x50 < 0.3 [which lead
through equation (19) to 0.12 < r. < 0.36 Mpc for an average mass
of Mspo = 5 x 10'*Mg; of the order of . = 0.25 Mpc given by
Jones & Forman (1984)], the values of § are constrained between
0.55 and 0.70 in order to match the Newtonian amplitude. In Fig. 5,
we plot the dispersion of velocities for the parameters 8 = 0.65,
X500 = 0.3, which are very close to the Newton + DM results, giving
A =553kms™!, B=0.294, Fp = 1.448 (note that the pressure factor
here is 16 per cent higher than with Newton). The values of § in the
literature (e.g. Bahcall & Lubin 1994; Henning et al. 2009) are of the
same order, between 0.50 and 0.65 for rich clusters.

2.4.2 The Patej & Loeb (2015) model

The isothermal 8-model is known to be insufficient for characterizing
the range of cluster gas distributions (Vikhlinin et al. 2006; Patej &
Loeb 2015). Other profiles could be used that give a better fit to the
gas distribution. Here, we use the one given by Patej & Loeb (2015):

o= (5)" oo [s ()] (3)

where f, is the fraction of gas with respect the total (in New-

ton + DM), ie. f, = M&tioo; ppwm (7) is the profile of the total mass

including DM, in our case given by the NFW profile (see Section B)

061 0.32
05|
i 031
0.4
g @
031
0.30
0.2
0.1 0.20

Figure 3. Values of A, B in equation (22) as a function of 8 and x50 such that the cluster core radius r. = x50 1509 in a B-model of the baryonic matter + MOND.
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Figure 4. Values of E in equation (25) as a function of I, x500, and f; in the Patej & Loeb (2015) model of the baryonic matter + MOND.

with scale ry (= ’%, with concentration index C), and I, s are two
extra free parameters. For I' = 1, we would have that the baryonic
mass traces the DM [ppa. (1) = f; ppm (1)]. Like the B model, the
above expression is also motivated on a theoretical basis within
standard Newtonian gravity. Here, with MOND, we use it because it
simply fits the observational profile of gas in clusters of galaxies as a
function that describes baryonic matter, and the theoretical derivation
would have no sense.
This gives a

x2F—3
RERNErEL
=2 =, 24)

Ts

and applying the virial theorem from equations (7) with V and K of
equations (17) and (18), we get a dependence that is fitted in the
range Msoy = (1-10) x 10" Mg, with high accuracy by

D(T\x500. fs
Mo > (I",x500, fs)

W 25
1014 Mg, 25)

O.ra00.MOND ~ E(T, X500, f5) (

Fortherange 1 < T <2,0 < x500 < 1,0 < f; < 0.4, the exponent
D (I", xs00, f;) falls always in the range between 0.29 and 0.34 in
approximate agreement with Newton + DM. The amplitude E (",
X500, f3) 1s plotted at Fig. 4 for I' = 1.1, 1.3, 1.5, which are within the
constraints obtained by Patej & Loeb (2015) of 1 < I" < 1.5. There

MNRAS 517, 5734-5743 (2022)

is a wide range of possible values compatible with Newton + DM.
For instance, if we assume an average value of ' = 1.5, x50 =
0.5 (hence, s = 0.5r509), E = 646km s ! implies f; ~ 0.6 (hence,
ry ~ 0.8 rs00, equivalent to a concentration index C ~ 2).

2.5 Comparison with observations

Estimates of masses and velocity dispersions carried out by other
teams for some clusters are shown in Fig. 5.

Atlow (z < 0.10) and intermediate (0.10 < z < 0.30) redshifts, we
use velocity dispersion data within r,o from clusters of Sohn et al.
(2020, table 2), including the mass M5, within this table estimated
from X-ray observations by Piffaretti et al. (2011). We use only the
clusters with Mso, > 10'* My These comprise 74 clusters with z <
0.10 and 96 clusters with 0.10 < z < 0.30. The M5 errors are not
provided; here, we assume they have a 20 per cent of error, which
is typical of other estimates of X-ray masses (Vikhlinin et al. 2006;
Walker et al. 2012; Martino et al. 2014; Haines et al. 2018; Whelan
et al. 2022).

X-ray data for Msyy, o, error (o, are obtained for eight high-
redshift clusters (0.50 < z < 0.65) from the NIKA2 cluster survey
(Mayet et al. 2020): see Table 1. Rest-frame velocity dispersions
were calculated using public Sloan Digital Sky Survey (SDSS) data
of galaxies’ velocities and applying a biweight technique (Beers,
Flynn & Gebhardt 1990). X-ray masses were derived from REFLEX
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Figure 5. Upper panel: Rest-frame dispersion of velocites along the line of sight as a function of the Msoy mass in 178 clusters of galaxies. Msq represents
the total mass within the radius rsop for Newtonian gravity + DM, whereas in MOND, it is related to the total (baryonic) mass within rs5yy through

1.16

Myars00 = 0.117 x 101 x I 0%5(;\91 ) Mpg. The lines represent the power-law fit (the shaded area covers the range within a 1-o error of the fit), or the
o}

predictions with the standard Newtonian gravity + non-baryonic DM following a NFW profile. Bottom panel: predictions with the standard Newtonian

gravity + non-baryonic DM following a NFW profile or MOND for different baryonic matter profiles, or Newtonian gravity with only baryonic matter.
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Table 1. Clusters at high redshift, z > 0.5, used for our analysis, ordered by increasing redshift. The third column indicates
the number of galaxies used for the measurent of the rest-frame velocity dispersion (column 5). Column 4 gives the

estimated masses using either X-rays.

Name Redshift Nr. of galaxies Msgo (104 Mp) oy

PSZ2 G211.21+38.66 0.503 25 7.0+ 1.6 760 £ 150
PSZ2 G212.44+63.19 0.532 15 42+1.6 840 + 270
PSZ2 G201.50-27.31 0.534 47 93+ 14 1430 £ 240
PSZ2 G094.56+51.03 0.541 55 6.6 1.6 1180 £ 180
PSZ2 G228.16+75.20 0.542 26 11.0+ 1.9 1130 £ 250
PSZ2 G111.61-45.71 0.547 30 9.6+ 14 700 £ 140
PSZ2 G183.90+42.99 0.559 21 6.6 1.6 1000 £ 260
PSZ2 G099.86+58.45 0.618 13 7.1+1.6 1000 =+ 300

(Bohringer et al. 2004) and REXCESS (Bohringer et al. 2007) cluster
surveys applying the method by Arnaud et al. (2010), whose error
bars are estimated with the relative error bar of the X-ray luminosities
(when available, or the average value of similar clusters of this sample
otherwise).

Note that the values of M5y from X-ray data correspond always
to the estimations using the standard model Newton + DM. As it
was remarked throughout the paper, in a MOND model, it would be
approximately related to the total (baryonic) mass within rso through

1.16
Moarso0 = 0117 x 10 x () ™ Mo,

In cases with small numbers of galaxies, there may be some
important biases in the galaxy cluster velocity dispersion (Ferragamo
et al. 2020). Here, we do not introduce any correction to take them
into account, since the number of galaxies per cluster is high enough
and the corrections of the statistics for small numbers are negligible.
For the comparison with the theoretical predictions, we also assume
that the r.m.s. of o', is much smaller than its average value within r,q0,
as is usually the case (Ferragamo et al. 2020). The observed velocities
may be slightly different from the average because the average line-
of-sight velocities were measured within a radius smaller than ryg,
and our approximation of almost constant dispersion of velocities
with radius might introduce some higher values of dispersion in the
observations than in the theory. We assume that these differences are
lower than the error bars.

Other effects could produce a few small systematics (Krizek,
Krizek & Somer 2014): relativistic effects of high velocities,
gravitational redshift, and gravitational lensing in a curved space,
which would decrease the Hubble-Lemaitre parameter, intergalactic
baryonic matter, gravitational aberration, etc.

In Fig. 5, we see that the points for 178 clusters are close to
the predictions of virial theorem within a virial radius of rg for
Newtonian gravity, or for MOND with some parameters. The best
power-law weighted fit (taking into account both the errors of masses
and velocities) is:

Mgy 02020027
Oy best fit data = (013 £22) (m) kms™! (26)
The data present a correlation between X = In (] Oﬂﬁmo) and ¥ =
In (k":’;‘,l ), including the same weighting factors:
XY
Cﬂ:AC=<< J —1)i(%)
(XNY) VN{X)(Y)
=(93+£13)x 107, @27

a correlation at 7.2¢ level. This sigma-level does not strictly corre-
spond to a Gaussian distribution, but practically indistinguishable
from a Gaussian one. Perhaps the complement to one of the
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confidence level might be somewhat larger than the seven sigmas
Gaussian one (~107!2), but it may certainly be said that in the present
case, the null hypotheses may be rejected with at a confidence level
larger than 99.99 per cent. The estimator of the correlation coefficient
is a sum of some 178 terms. Each of these terms is the product of two
Gaussian variables, assuming that the errors of both mass and velocity
dispersion conform to Gaussian statistics. Therefore, each of these
terms are random variables following a Rayleigh distribution. The
Rayleigh distribution is somewhat more extended than a Gaussian,
but the central limit theorem assures that the sum of many variable
following that distribution, or any distribution with well defined mean
and variance tends to a Gaussian. In fact, the sum of only four of
them is already quite close to a Gaussian, although not in the farthest
positions of the wings.

For the respective redshift ranges of z (low: <0.10; intermedite:
0.10 < z < 0.30; high: >0.30), we get

Magy 020320045
O, best fit data,z<0.10 = (636 £ 28) (7) kms™',
v, best fit data, 1014 M®
(28)
Magy 022440050

Oy best fit data,0.10<z<0.30 = (550 + 43) (W) km Sil,

(29)
Mago ) %1950
_ ~1

Oy, best fit data,z>0.50 = (690 = 560) (m> kms™.

(30)

There is no significant difference in the trend between low- and
high-redshift clusters.

3 DISCUSSION AND CONCLUSIONS

The relationship between velocity dispersion and masses in clusters
was known to work properly within Newton + DM (e.g. Evrard
et al. 2008; Zhang et al. 2011; Munari et al. 2013), and also in the
case of some modifications of gravity different from MOND without
including DM (e.g. Brownstein & Moffat 2006). However, they did
not work in MOND (Sanders 1999; Pointecouteau & Silk 2005; Ettori
et al. 2019). We explored here the reason for this inconsistency and
make major improvements in the application of the virial theorem.
In particular, our virial theorem analytical relationship of velocity
dispersion in galaxies with given mass profiles includes a pressure
(surface) term, which, although its relevance is recognized in some
literature (e.g. The & White 1986; Carlberg et al. 1996, 1997; Girardi
et al. 1998) is not usually considered in analytical calculations,
although it is implicitly taken into account when carrying out
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numerical simulations. We also applied an updated calibration of
non-baryonic mass in the NFW profile, baryonic ratio, and baryonic
profiles, either with an isothermal  model or a Patej & Loeb (2015)
model.

Our results show that we can reconcile MOND with the virial
theorem in clusters. This agreement is obtained when: 1) the pressure
term is taken into account in the virial theorem, which gives a 10—
15 per cent higher velocity dispersion for MOND than for Newton
+ DM; 2) we explore a range of possible parameters in the baryonic
matter profile rather than adopting a fixed one. In particular for
MOND, we predict velocity dispersions equivalent to Newton + DM
by adopting a f model with 8 = 0.55-0.70, and core radii r,
< 0.307s500, which is in agreement with the known data. Lower
concentration favours a higher MOND effect, so xsp0 = r"‘ =0.3
increases the dispersion of velocities by a factor 10-15 per cent with
respect to xso90 = 0.15 for the same g ~ 2/3; decreasing S with
xs00 = 0.15 also decreases the concentration and produces similar
results. This last effect is easy to understand in MOND since lower
concentrations enhance the MOND effect because the galaxies spend
a longer time during their orbits in the MOND regime of low (<ao)
accelerations. Also, the greater pressure term for MOND is due to
a lower concentration of baryons than DM. Calculations without
pressure and with default parameters (xsoo much lower than 0.3 and
B = 2/3) would give a o, 15-25 per cent lower than Newton + DM.
Given that the dynamical mass is proportional to o2, this means
dynamical masses 40-60 per cent lower, and this would explain the
discrepances found in previous studies.

MOND in the regime of very low accelerations creates a field
[‘phantom mass’; (Milgrom 1986, 2009; Wu & Kroupa 2015; L6pez-
Corredoira & Betancort-Rijo 2021)] which has an effect dynamically
similar to the presence of non-baryonic DM in Newtonian gravity.
Here, we observe that MOND fits the predictions of the virial theorem
in rich clusters of galaxies, which should not be surprising, given that
the MOND phantom mass effect is equivalent to the non-baryonic
DM. If some inconsistency arises, a revision of our knowledge of the
distribution of baryons would be needed because, with appropriate
profiles and calibrations of M there is always a mathematical

Miotal
solution able to mimic non-baryonic DM.
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APPENDIX A: PRESSURE (SURFACE) TERM IN
THE VIRIAL THEOREM

When the virial theorem is applied to a portion of a stable gravitating
system, it takes a different form when it is applied to the whole
system. In the latter case, the pressure term, which is present in
general cancels (asymptotically), and the familiar result of 2K + V =
0 [equation (7)] holds, where K is the kinetic energy and V is the
potential energy. However, the theorem is usually applied to the inner
parts of a more extended system. This is the case, for instance, when
the entities forming the objects (i.e. galaxies in the case of cluster
of galaxies) are increasingly more difficult to discriminate from the
interlopers. The relevance of this pressure (surface) term in standard
gravity is known (e.g. The & White 1986; Carlberg et al. 1996, 1997;
Girardi et al. 1998).

For the general form, we must use the general scalar virial theorem,
which takes the form

Zﬁf;’}:ZmiWHZs (A)

where 13, is the force acting on i-th particle and 7; its position
vector. The sum i extends to all particles. The right hand side of
the equation is 2K, while the left hand side is equal to —V plus the
‘pressure term’. This last term appears because the force ﬁ, acting
on the i-th particle is due, not only to the gravitational fields but also
to pressure for particles at the boundary of the system.

The contribution of this term is simply 3P, V;, where P; is the
radial pressure at the boundary of the virial radius 7.y, assumed
to be constant over it; and V; is the volume within it. Assuming a
stationary system with null average velocity, for which

(v7) =307, (A2)
where o, is the rms of the velocities along the line of sight. Hence,

after dividing by the total mass, the virial theorem reads
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4
Pr (rmax)gnrs,ax

M(rmax) ’

2 _ 2
V,F <I'max

- O—v.r<rmaX,P:0
2 V (rmax)

v,r<r =0~ T Xa7. " (A3)
s PO 3 M ()

(o2

For isotropic pressure,
Pr(rmax) = Ui,=,mi|xp(r1nax)- (A4)

For a more general case, when the pressure is not isotropic,

3 2
Pr(rmax) = 3_ 2,8 Odv,r:rmx
a

where f, is the anisotropy parameter:

p(rmax)s (AS)

,Bazl_i

302 = 0 + 207, (A6)

and where we have used the fact that for spherical systems o = o,/

(r, 0, ¢ denote radial, declinational, and azimuthal directions).

APPENDIX B: THE NFW PROFILE

Assuming a critical density of p. = 8.5 x 107> kgm~ (for Hy =
67.4kms™! Mpc~"), a virial radius equal to r and concentration
index C, the Navarro—Frenk—White (NFW, Navarro et al. (1997))
profile follows these relationships for the mass density p(r) and the
mass within the sphere of radius r M (r):

[ (1 5) - ks
[In(1+ C) — 5]

Myy \'°
=0.9834M —_— ,
7200 pe % (1014 M®>

)

M(r) = Moy X

Mspo \'"
=0.7246 M —_— ,
7500 pe % <1014 M@)
L0

—
Cr (1 Cr
200 ( + Vzoo)

o = 8.368 x 10"

p(r) =

3

[In(1 4+ €) — 5]

Mg Mpe 3, (B1)

where M, = M (r,) and r, is the radius of the sphere for which the

average density inside it is x times the critical density p.. That is,
M)

X = .
Pe="1m3

APPENDIX C: PROFILE FOR BARYONIC
MATTER

We assume a critical density of baryonic matter p., = pcg—r‘; with
pe = 8.5 x 1077 kgm™3 (for Hy = 67.4kms™" Mpc™); Q, =
0.315, 2, = 0.0493 (Planck Collaboration 2020). For a mass density
profile pyar (r) = poJ (r’T), the mass within the sphere of radius ris:

Muar.s00
I(rso0)

r/re
I(r) = / dx x2J (x),
0
1(’200)) 3
I(rso0)

M, 13
o

Myr(r) = I(r),

00 = 1.3577’500 (
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Myar 500

—. Cl1
47'rrc3](r500) ( )

Po =

where Myas00 = Myar (1500) and r, is the radius of the sphere for
which the average density inside it is x times the critical baryonic
density p.p. The value of ryg is solved iteratively.

An isothermal B model is usual in the description of gas in
clusters of galaxies (Cavaliere & Fusco-Femiano 1997), where
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J(x) = m. For B = 2/3, which is usual the assumed value

(Arnaud 2009) 1(r) has an analytical solution: I(r)[f = 2/3] =

L -1

— tan . A value of a cluster core radius scale equal to r. ~

0 25 Mpcis expected (Jones & Forman 1984); although a dependence
onthe mass is also expected.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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