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This paper develops an analytical model for the ballistic impact response of UMHWPE laminated
plate, which is capable of capturing transient transverse bulging deformation and flexural wave
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1. Introduction13

Ultra-high molecular weight polyethylene (UHMWPE) laminated plates have been increasingly14

employed in armour systems, due to superior mechanical performance such as high specific strength15

Nomenclature

a Half length of the laminated plate
Ai j Extensional stiffness
Ap Cross-sectional area of the projectile
Ct Transverse wave speed
D1,D2 Damage parameters
Di j Bending stiffness
E1, E2, E3 Young’s modulus
G12,G23 Shear modulus
h Intact thickness
h0 Total thickness
h1 Perforated thickness in phase I
h2 Remaining thickness at the beginning of phase II
hL Thickness of each layer
K Shear correction factor
L Lagrangian
mp Projectile mass
M Bending moment
N Membrane force
Q Shear force
Qi j Plane stress-reduced stiffness components
R Projectile radius
t Time
t1 Time duration in phase I
t f Time instant when the motion of projectile ceases or full penetration occurs
t′ = t − t1 Passage of time in phase II
v = ẇ0(t) Projectile’s velocity
vi Initial velocity of the projectile
vr Residual velocity of the projectile
vbl Ballistic limit velocity
w0 Transverse central bulging deflection
γxz0, γyz0 Shear displacements
ϵ f Failure strain
ϵi j, γi j Strain components
ϵ0i j, ϵ

1
i j Membrane and bending strains

ϵx Tensile strain
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ζ Position of the travelling hinge
λ Membrane effect coefficient
µ Areal density the laminated plate
ν12 Poisson’s ratio
Π Total strain energy
ρ Density the laminated plate
σ f Failure stress
σi j Stress components
σmax Maximum equivalent stress

16

and specific modulus with exceptionally high wave speeds, allowing for rapid energy absorption17

and dispersion [1]. The cross-ply UMHWPE is a typical laminated plate, constructed from a high-18

volume fraction of UHMWPE fibre composites (>80%) with a [0◦/90◦] cross-ply architecture,19

and a low-volume fraction of thermoplastic polymer matrix (<20%), endowing excellent ballistic20

resistance to high-speed localised impact [2]. In order to assess the consequence of the ballistic21

impact or to achieve an optimised structural design, significant effort has been devoted to fostering22

an understanding of the deformation and failure mechanisms of cross-ply UHMWPE laminated23

plates under ballistic perforation. Transverse bulging deflection (TBD) at the non-impact-receiving24

face (when the integrity of the laminated plates is not compromised) and the ballistic limit velocity25

vbl (above which the target is fully penetrated) are two important resultant effects, which attribute,26

respectively, to the blunt trauma injury [3, 4] on the possible substrate occupant and overall ballistic27

resistance performance [5, 6]. Although numerical models [7–10] exist that can provide high-28

fidelity solutions of the ballistic response of the cross-ply UMHWPE laminated plate, they are,29

in general, computationally expensive and are not feasible for large-scale iterative simulation in30

optimisation. This highlights the importance of developing an analytical model that permits quick31

and accurate estimation of the TBD and the vbl while capturing the various failure modes of the32

cross-ply UMHWPE laminated plate at a wide range of impact velocities.33

A considerable body of experimental work on the ballistic response of UMHWPE laminated plate34

already exists [11–16]. One example is the experiment by Nguyen et al. [17] where it was shown35

that the deformation and failure of UMHWPE laminated plate under ballistic impact can be de-36

lineated into three sequential stages: stage I - shear plugging in the vicinity of the impact zone37

with negligible TBD; stage II - delamination, matrix cracks, progressive through-thickness tearing38

of the fibre with large TBD; stage III - further deformation of the intact laminated plate until full39

penetration occurs. The progressive failure mechanisms during the aforesaid response stages are40

quite complex and are found to be influenced by various factors such as impact velocity [18], plate41

thickness [19], projectile shape [20] etc.42

The response of composite laminates to localised transverse impact leads to bulging deformation43

dictated by the propagation of longitudinal, shear and flexural waves travelling in the compos-44

ite [21]. The region of non-zero transverse bulging deformation was governed by the ‘travelling45

hinge’ (or known as the dynamic cone), which emanates from the target’s centre towards the pe-46
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riphery [22]. Several experimental works [16, 23] studied the evolution of the lateral deformation47

contour using high-speed camera and 3D-DIC techniques, and highlighted the importance of the48

deformation pattern and the travelling hinge speed on the bulging deformation of the composite49

laminates. Karthikeyan et al. [19] employed the dynamic shadow moiré method to acquire back50

deformation data of UHMWPE laminated plates subjected to steel ball impact. They found that the51

lateral deformation is in a diamond shape, which expands at an approximately constant speed from52

the impact location until reaching the fixed boundaries. Zhu et al. [24] utilized 3D-DIC technology53

to observe the impact response of UHMWPE orthogonal laminated plates subjected to large-sized54

lead-core pistol projectile impacts. They noted that the convex deformation contour transformed55

from the initial diamond shape to a circular or square shape when the hinge speed along the ±45°56

and ±135° directions gradually exceeded that along the fibre direction. Similar phenomena were57

also observed by Vargas-Gonzalez et al. [4] who studied the ballistic performance of large-sized58

Spectra Shield laminated plates. Zhang et al. [25] employed 3D-DIC technology to capture the59

evolution of the bulging deformation area of Dyneema® HB80 laminated plates subjected to pro-60

jectile impacts and discovered that as the tensile wave propagated through the fibres to the edges61

and reflected, the speed of lateral deformation decreased when reducing the initial impact velocity.62

Different analytical models – based on either momentum [22, 26, 27] or energy conservation [28–63

30] – were developed to predict the temporal evolution of the TBD and the ballistic limit velocity64

of the UMHWPE laminated plate under ballistic impact. Based on an energy conservation ap-65

proach, Li et al. [29] developed an analytical model to predict the time histories of the accelera-66

tion according to the energy absorbed by each through-thickness failure mode (including matrix67

crush, laminate shear, laminate compressive, fiber stretch, fiber break and delamination), as well68

as the ballistic limit velocity. The equation of motion is one-dimensional (in the out-of-plane di-69

rection) and did not consider the evolution of the lateral deformation (i.e. the travelling hinge70

phenomenon). Langston [30] proposed an analytical model to estimate the reduction of a projec-71

tile’s kinetic energy by balancing it with the various energy absorption mechanisms activated in72

the composite (fiber tensile strain, delamination, matrix cracking, acceleration of the composite73

mass, and shear failure of the composite). As opposed to the approach in [29], the effect of the74

radius of wave propagation on the energy absorbed by tensile strain was considered. It was found75

that majority of the energy was dissipated by tensile strain and the acceleration of composite mass.76

Zhang et al. [27] developed an analytical model based on the conservation of momentum to pre-77

dict the two-phase impact response (a local failure phase followed by a bulging deformation phase78

with progressive penetration of projectile) of UMHWPE laminated plate and its ballistic impact79

velocity. The lateral deformation was considered based on the assumption that the angle of the80

bulging cone is proportional to the cubic root of the initial velocity at the outset of the bulging81

deformation phase. Focusing on the low-speed impact case where only large deformation of the82

UMHWPE laminated plate is of interest, Yang et al. [22] also used conservation of momentum to83

derive the equation of motion for the UMHWPE laminated plate. The hinge speed was assumed84

to be a constant and was obtained via numerical simulation. As mentioned above, the fidelity85

of the analytical model relies upon the accurate prediction of the hinge speed which governs the86

lateral deformation region where various failure modes take place. In the above analytical mod-87

els, however, the hinge speed was either approximated using or was obtained as a fixed constant88
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via numerical simulation, which cannot reflect the deformation mechanism due to the outward89

travelling stress wave as observed in the past experiments.90

The objective of this work is to develop an analytical model capable of providing, in a compu-91

tational efficient way, accurate prediction of deformation (both lateral and transverse) and failure92

associated with the dynamic elastic response of a UMHWPE laminated plate subjected to ballistic93

impact. Modal analysis and Lagrangian equation – which were frequently used to deal with the94

nonlinear response of metallic [31] and laminated [32, 33] plates involving complex behaviours95

such as large deformation, flexural wave propagation, and fracture – will be used to derive the96

governing equations to obtain the transient TBD and hinge velocity of the UMHWPE laminated97

plate. Damage criteria, based on critical stress and strain, are incorporated to capture the pro-98

gressive fracture. Predictions by the analytical model are validated against existing experimental99

data. Insights into the dynamic deformation and failure response of the UMHWPE laminated plate100

were revealed through the analytical predictions. A parametric study is carried out to investigate101

the influence of impact velocity on the ballistic response of the laminated plate.102

2. Modal formulation103

This section presents the development of an analytical model which permits quick estimation of104

transient bulging deflection and failure of a fully clamped UHMWPE laminated plate subjected105

to ballistic impact. The key features of the proposed analytical model are as follows: (1) a bal-106

listic model was used to simulate the local penetration phase of the UHMWPE laminated plate;107

(2) the first-order shear deformation plate theory is used to model the deformation phase of the108

laminated plate; (3) the region of non-zero deformation was dictated by the travelling hinge due to109

flexural wave propagation; (4) governing equations of deformation and hinge speed were derived110

based on modal analysis; (5) damage criteria were introduced to predict the progressive failure111

of sub-laminates in the out-of-plane direction. The prediction will be validated against existing112

experimental data in Section 3.113

2.1. Problem statement and modeling approach114

Consider a fully clamped square UHMWPE laminated plate subjected to the normal impact of a115

rigid blunt projectile with an initial velocity of vi as depicted in Fig. 1. The composite square plate116

has a length of 2a and an initial thickness of h0. The projectile has mass mp and a diameter of 2R.117

The UMHWPE laminated plate was made of a stack of [0◦/90◦] orthogonal plies. To eliminate the118

influence of ply orientation on the stiffness matrix computation, the laminated plate was discretised119

into a stack of homogenous layers. Each layer consisted of four plies in a [0◦/90◦/0◦/90◦] lay-up120

with a sub-laminate thickness of hL. This homogenisation approach follows the same used in [27]121

to allow failure to occur progressively in each sub-laminate.122

The penetration of the projectile into the target consists of two consecutive phases: phase I - local123

penetration with no deformation and phase II - global deformation with progressive damage, as124

shown in Fig. 2. For simplicity, it shall be assumed that response phases I and II are uncoupled.125

In phase I, the projectile’s velocity was estimated based on the contact stress (resulted from stress126

wave propagation and reflection) exerted on the target. Phase I ends when the compression wave127
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Figure 1: Schematic of UMHWPE laminated plate subjected to impact by a rigid blunt projectile.

in the penetration zone encounters the tension wave reflected from the back layer of the laminated128

plate [34]. The penetration depth in phase I is denoted as h1. The remaining intact laminated129

plate with a thickness of h2 = h0 − h1 subsequently undergoes dynamic bulging deformation.130

The deformation of the laminated plate in phase II was governed by the propagation of flexural131

waves. The intact sub-laminate that resists the projectile gradually diminishes due to progressive132

penetration across the thickness. We employed a similar approach to that of Yuan et al. [32, 33] to133

derive the equation of motion in the form of ODEs. A critical equivalent stress and strain criteria134

were used to capture the progressive failure. Various assumptions concerning laminated plate135

deformation and failure criteria will be detailed in the following subsections.136

Figure 2: Schematic of two-phase penetration model for UMHWPE laminated plate.

2.2. Phase I response (local penetration): 0 < t ≤ t1137

Upon projectile impact as shown in Fig. 3, a compressive stress wave is generated in the laminated138

plate, propagating through its thickness at a transverse velocity Ct, given as139

Ct =

√
E3

ρ
(1)

where E3 and ρ are the transverse elastic modulus and density of the composite. The compres-140

sive stress wave can be treated as one-dimensional (1D). The contact stress was related to the141
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projectile’s velocity during phase I:142

σ =
Mp

Ap

dv
dt
= −ρCtv (2)

where v is the projectile velocity at time t, and Ap is the cross-sectional area of the projectile. The143

projectile velocity v was solved from Eq. 2 which is written in the following form:144

v = vie−ρCtApt/mp . (3)

Figure 3: Schematic of the local penetration phase. The perforation depth is dictated by the
propagation and reflection of compression waves.

Phase I ends at the time instant t = t1 when the compression wave reaches the bottom of the145

UHMWPE composite and reflects with a travelling distance of 2h0 − h1. The duration for phase I146

was therefore:147

t1 = (2h0 − h1) /Ct. (4)

The penetration depth h1 can be obtained by integrating Eq. 3 with time:148

h1 =

∫ t1

0
vie−ρCtApt/mpdt. (5)

Duration t1 and penetration depth h1 can be solved from Eqs. 4 and 5 for a given initial velocity149

vi. The projectile velocity at the end of phase I is written as:150

v1 = v(t = t1) = vie−ρCtApt1/mp (6)

which serves as the initial condition for phase II.151

2.3. Phase II response (transverse bulging deformation with progressive penetration): t1 < t ≤ t f152

2.3.1. Equation of motion153

In Phase II, the laminated plate with an intact thickness of h2 = h0 − h1 was subjected to impact by154

the projectile with a velocity of v1, which developed transverse bulging deformation (TBD). As the155
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flexural wave propagates outward from the impact point, the laminated plate undergoes transient156

deformation within a certain region according to the travelling hinge location, as illustrated in Fig.157

4. The travelling hinge position, denoted as ζ(t), advances toward the fixed boundaries (x = a and158

y = a) over time. Once the travelling hinges coalesce with the boundary, it becomes a stationary159

one, i.e., ζ(t) = a. For square laminated plates, the travelling hinges’ motion in both the x− and y−160

directions are identical [31, 35]. It is assumed that the transverse normal remains perpendicular to161

the mid-surface after deformation.162

Figure 4: Schematic of the transverse bulging deformation mechanism in phase II.

In the modal analysis, it assumes that the ballistic response of the laminated plate results in defor-163

mation that continually evolves towards a modal solution, i.e. the velocity field ẇ can be written164

as the product of separate functions of space and time ẇ(x, y, t). The modal solution is a velocity165

field with separated functions for spatial and temporal variables. The admissible transverse veloc-166

ity field and shear deformation profiles used in [32] (originally for impact response of laminated167

glass) were adopted here:168

ẇ(x, y, t) = ẇ0(t)
[
1 −

2x2

ζ(t)2 +
x3

ζ(t)3

][
1 −

2y2

ζ(t)2 +
y3

ζ(t)3

]
(7)

and169

γ0
xz(x, y, t) = γxz0(t) sin

[ πx
2ζ(t)

]
cos
[ πy
2ζ(t)

]
(8a)

170

γ0
yz(x, y, t) = γyz0(t) cos

[ πx
2ζ(t)

]
sin
[ πy
2ζ(t)

]
(8b)

where ẇ0(t) is the velocity at the plate’s centre; the product of second and third terms in Eq. 7 is171

the mode function or mode shape that is governed by the travelling hinge position ζ(t) in x− and172

y− directions; γxz0(t) and γyz0(t) are shear displacements. In regions where x > |ζ(t)| and y > |ζ(t)|,173

the laminated plate is assumed to remain undeformed, i.e., ẇ0(t) = 0. After the hinge reaches the174

boundary, ζ(t) = a is substituted into Eqs. 7. Notice that the corresponding modal displacement175

(w0) and acceleration (ẅ0) fields can also be written in the same partial functions.176
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The total kinetic energy of a quarter of the model (target and projectile) at any given moment t can177

be expressed as:178

T =
1
2
µ

∫ ζ(t)

0

∫ ζ(t)

0
ẇ2(x, y, t)dxdy +

1
8

mpẇ2
0(t) (9)

where µ = ρh is the areal density of the intact laminated plate.179

We now proceed to derive expressions for the total strain energy of the panel by first establishing180

the constitutive equation that relates the bending moment M, membrane force N and transverse181

shear force Q to the strains. Here, the first-order shear deformation plate theory is employed, which182

incorporates the effect of bending, membrane and transverse shear and uses damage mechanics to183

capture the progressive through-thickness fracture.184

The components of stress σ in the laminated plate give rise to the following force resultants for185

bending moment M, membrane force N and shear force Q given by186


Nxx

Nyy

Nxy

 =
∫ h/2

−h/2


σxx

σyy

σxy

 dz


Mxx

Myy

Mxy

 =
∫ h/2

−h/2


σxx

σyy

σxy

 zdz
{

Qx

Qy

}
=

∫ h/2

−h/2

{
σxz

σyz

}
dz. (10)

where h is the thickness of the intact laminated plate.187

The linear-elastic constitutive relation between the stress and strain components for the laminated188

plate is189 
σxx

σyy

σyz

σxz

σxy


=


Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q44 0
0 0 0 0 Q66




ϵxx

ϵyy

γyz

γxz

γxy


(11)

where Qi j are the plane stress-reduced stiffness components; Q11 = E1/(1− ν12ν21), Q22 = E2/(1−190

ν12ν21), Q12 = Q21 = ν12Q11, Q44 = Q22 = Q11 and Q66 = G12. Here, E1 and E2 are Young’s191

moduli in the 0◦ and 90◦ material directions, respectively, ν12 and ν21 are the Poisson’s ratios, and192

G12 is the in-plane shear modulus. Notice that isotropic material properties were assumed for the193

laminated plate, i.e. E1 = E2.194

The strain components have the form,195 
ϵxx

ϵyy

γyz

γxz

γxy


=


ϵ0xx
ϵ0yy
γ0

yz
γ0

xz
γ0

xy


+ z


ϵ1xx
ϵ1yy
0
0
γ1

xy


(12)

where (ϵ0xx, ϵ
0
yy, γ

0
xy) are the membrane strains expressed as a function of admissible displacement196

field (see Eq. 7),197

ϵ0xx =
1
2

[∂W(x, y, t)
∂x

]2
ϵ0yy =

1
2

[∂W(x, y, t)
∂y

]2
γ0

xy =
∂W(x, y, t)
∂x

∂W(x, y, t)
∂y

(13)
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and (ϵ1xx, ϵ
1
yy, γ

1
xy) are the bending strains, also known as curvatures, written as198

ϵ1xx =
∂θx(x, y, t)
∂x

ϵ1yy =
∂θy(x, y, t)
∂y

γ1
xy =
∂θx(x, y, t)
∂y

∂θy(x, y, t)
∂x

(14)

in which the rotations of a transverse normal about y and x axis are respectively199

θx(x, y, t) = γxz(x, y, t) −
∂W(x, y, t)
∂x

(15a)

200

θy(x, y, t) = γyz(x, y, t) −
∂W(x, y, t)
∂y

. (15b)

Substituting Eqs. 11 and 12 into Eq. 10 and re-arranging give the constitutive equations:201 
Nxx

Nyy

Nxy

 =


A11 A12 0
A12 A11 0
0 0 A66



ϵ0xx
ϵ0yy
γ0

xy

 (16a)

202 
Mxx

Myy

Mxy

 =


D11 D12 0
D12 D11 0
0 0 D66



ϵ1xx
ϵ1yy
γ1

xy

 (16b)

203 {
Qx

Qy

}
= K

1 − ν
2

{
A11 0
0 A11

}{
γ0

xz
γ0

yz

}
(16c)

where K is the shear correction factor; note that in Mindlin’s plate theory, K = 5/6 for rectangular204

cross-sections; Ai j and Di j are extensional and bending stiffnesses, which are defined in terms of205

the lamina stiffness Qi j as206

(Ai j,Di j) =
∫ h/2

−h/2
Qi j(1, z2)dz. (17)

The strain energy for the quarter of a laminated plate can be written as:207

Π = Πb + Πm + Πs =
1
2

∫ b

0

∫ a

0
[Mxxϵ

1
xx + Myyϵ

1
yy + Mxyγ

1
xy]dxdy

+
1
2

∫ b

0

∫ a

0
λ[Nxxϵ

0
xx + Nyyϵ

0
yy + Nxyγ

0
xy]dxdy +

1
2

∫ b

0

∫ a

0
[Qxγ

0
xz + Qyγ

0
yz]dxdy. (18)

where 0 ≤ λ ≤ 1 is a membrane ‘knock-down’ factor so that λ = 0 corresponds to the condition208

when the boundary provides zero resistance to plate pull-in, whereas λ = 1 corresponds to the209

condition when there is strictly no pull-in so that the full membrane effect develops. Due to the210

insufficient clamping force at the boundary, in-plane deformation (also known as the ‘pulling-in211

effect’) emanated from the boundary edges as observed from the experiment [17]. In the large212

deflections of plate theory by Timoshenko and Woinowsky-Krieger[38], it was also suggested that213

when the edge is free to move in the radical direction, the membrane stretching effect should be214
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much less than that of a fully clamped boundary. It is often difficult to model the real boundary215

conditions of any experiment. Hence, the factor λ is employed here to modulate the influence of216

membrane stretch, and its concomitant effect on the reduction of the membrane energy component217

in Eq. 18 was accounted for by adjusting the membrane ‘knock-down’ factor λ, with λ = 1 and218

λ = 0 corresponding the lower and upper bounds of the current prediction. The value of λ will be219

calibrated based on the experimental results in the literature.220

Given that Lagrangian of a quarter of the laminated plate is:221

L = T + Π, (19)

the equation of motion governing w0(t), ζ(t), γxz0(t) and γyz0(t) are found by solving the well-known222

Lagrange equation of the 2nd kind numerically:223

d
dt

( ∂L
∂ẇ0

)
+
∂L

∂w0
= 0,

d
dt

(∂L
∂ζ̇

)
+
∂L

∂ζ
= 0,

d
dt

( ∂L
∂γ̇xz0

)
+
∂L

∂γxz0
= 0,

d
dt

( ∂L
∂γ̇yz0

)
+
∂L

∂γyz0
= 0. (20)

The above ordinary differential equations (ODEs) are solved numerically using the fourth-order224

Runge-Kutta method with the following initial conditions:225

w0(t = t1) = 0 ẇ0(t = t1) = v1 ζ(t = t1) = 0 (21)

where v1 was the projectile velocity at the end of phase I in Eq. 6.226

When the ODEs were solved, the remaining thickness of the intact plate h must be updated during227

each iteration. The remaining thickness depends upon the extent of penetration into the composite228

plies. To calculate the thickness of the intact composite (or the penetration depth), the thickness229

at the beginning of phase II was pre-discretised into h2/hL number of layers with hL being the230

sub-laminate thickness. During each time iteration, the damage of the impact-receiving layer that231

is in contact with the projectile is evaluated by the damage criteria in Section 2.3.2. If damage232

occurs, thickness is updated in the next time step, i.e. h = h − hL.233

Phase II ends either when the projectile and laminated plate cease motion, i.e. ẇ0(t = t f ) = 0 when234

h(t = t f ) > 0, or when full penetration occurs h < 0 leading to a finite value of residual velocity235

ẇ0(t = t f ) > 0. The initial velocity vi that corresponds to the critical condition of ẇ0(t = t f ) = 0236

and h(t = t f ) = 0 refers to the ballistic limit velocity vbl which can be obtained by incrementally237

increasing the value of vi.238

2.3.2. Damage criteria239

The progressive failure mechanism in phase II is depicted in Fig. 5. The composite plies can fail240

either by a mixed mode failure or tensile failure [36] in phase II. When the deformation is devel-241

oped during phase II, the composite plies fail under combined stress rather than pure transverse242

shear. On the other hand, tensile fracture could occur at individual composite ply due to transverse243

bulging deflection.244
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Figure 5: Schematic of deformation and failure of discretised layers in phase II. After the projectile
penetrates the jth layer, the substrate layers resist the foreign load together until failure occurs in
the j + 1th layer.

The maximum equivalent stress criterion is used herein to predict the mixed mode failure of the245

individual layer:246

D1 =
σ

j
max

σ f
(22)

where D1 is the damage parameter; σ j
max denotes the maximum equivalent stress of the jth layer;247

σ f is the failure stress.248

The equivalent stress is found to be greatest at the centre of the laminated plate (this will be249

confirmed later in Section 4.1) such that250

σ
j
max = σ

j
eq(x = 0, y = 0) =

√
(σ j

xx + σ
j
yy)2 − 3(σ j

xxσ
j
yy − σ

j
xyσ

j
xy). (23)

Tensile failure occurs when the tensile strain reaches the failure strain:251

D2 =
ϵ

j
x

ϵ f
(24)

where D2 is the damage parameter; ϵ f is the failure strain in the maximum sense, i.e., the maximum252

between fracture strains in a uniaxial tensile test and in a shear test ϵ f = max(ϵxx, γxy) [39]. In Eq.253

24, the tensile strain is expressed as a function of transverse central deflection w0(t) [40]:254

ϵ j
x =

w0(t)
4ζ(t)

w0(t)
2h
. (25)

When either D1 or D2 reaches unity, failure occurs at the jth layer, which updates the value of255

remaining thickness in the next time step for the equation of motion, i.e. h = h2 − ( j − 1)hL. the256
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projectile was assumed to impact the subsequent layer ( j+ 1) without deceleration, the interaction257

of which could lead to further penetration according to Eq. 22 or Eq. 24.258

3. Validation259

Figure 6: Flow-chart on the numerical implementation of the analytical model in Section 2.

Analytical predictions of the TBD and ballistic limit velocity will now be validated against the260

experimental data of HB26 UHMWPE laminates by Nguyen et al. [17]. The numerical predictions261

in [17] are also included for comparison. The square UMHWPE laminated plate has an edge length262

of 2a = 0.3 m. Each homogenised layer’s thickness is hL = 0.24 mm since the thickness of a single263

ply is 60 µm according to [34]. Two projectile diameters, 12.7 mm and 20 mm, were used in [17].264

The thickness of the specimen ranged from 9 mm to 75 mm. The material properties of the HB26265

laminated plate (in the corresponding experiments) are tabulated in Table 2. A flow chart on the266

numerical implementation of Section 2 is shown in Fig. 6.267
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Table 2: The material properties of HB26 UHMWPE laminates used in the current analytical
model.

Material property Value Reference

ρ0 (kg/m3) 980 [17]
E1, E2 (GPa) 51.1 [17]

E3 (GPa) 3.62 [17]
G12 (GPa) 0.19 [17]
σ f (GPa) 10 [17]
ϵ f 0.8 [39]

3.1. TBD and travelling hinge position268

Figure 7 compares the analytical predictions of transient TBD and travelling hinge position to the269

experimental results in the work by Nguyen et al. [17] for HB26 UMHWPE laminated plate targets270

with three different thicknesses. Notice that the ballistic loads in all three tests were not sufficiently271

intense to cause full penetration. The predicted temporal evolution of TBD with λ = 0 agrees272

well with the experimental counterpart, including the maximum transverse bulging deflection and273

the time instant at which the maximum w0 was reached, as can be seen in Figs. 7a, 7c and 7e.274

Unsurprisingly, prediction of TBD with λ = 1 was significantly less than that with λ = 0 due275

to more structural resistance from the membrane action. Since the prediction based on the value276

of λ = 0 leads to the best fit with the experimental data, this value will be used throughout this277

work. Using λ = 0 would neglect the contribution from membrane effect. This coincides with the278

analytical work by Liu et al. [41] who neglected the membrane effect and used a SDOF model with279

only a bending stiffness to predict the large deflection response of UHWMPE composite under280

impact loading, the results of which agreed well the their experimental data. Unlike monolithic281

(metallic) plates, it is conjectured that the interlaminar strength of a composite plate does not282

typically offer sufficient resistance against pull-in and it is also impossible to replicate a through-283

thickness ‘fully-clamped’ boundary condition experimentally for any composite plate. Unlike284

[41], this work has laid a theoretical foundation which considers the effect of bending moment,285

membrane force and transverse shear during the dynamic response of UHMWPE composite under286

ballistic loading. Readers can adjust the effects of membrane force by changing the value of λ287

depending on the support condition. It is worth highlighting that in the case of body armour - this288

is mostly likely to be unsupported along the boundary - substantial pulling-in effect is expected.289

In this case, the membrane effect can be compensated by choosing a small value of λ.290

The analytical model successfully predicts the monotonic increase of dimensionless hinge position291

ζ/a over time, corroborating the expansion of the deformation region during the impact event.292

However, the analytical model with λ = 0 over-predicts the dimensionless hinge position after293

t′ = 200 µs. The overprediction is more evident in relatively thick targets, i.e. h0 = 20 and 36294

mm. The discrepancy may be due to the ‘pulling-in’ effect resulting from a lack of clamping force295

in the experiments where significant in-plane displacement of the composite at the boundary was296

observed in the experiments. Therefore, it was difficult for the hinge to reach the boundary in the297
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Figure 7: Comparison between the analytical predictions and the experimental data in [17] for
HB26 UHMWPE laminates of three different thicknesses (h0 = 10, 20, 36 mm): transient bulging
deflection w0(t) (left column) and dimensionless hinge position ζ(t)/a (right column). The blunt
projectile has a diameter of 2R=20 mm. Notice that in the experimental work of [17], the time
duration for phase I was not reported. In this case, w0 was plotted as a function of t′ = t − t1

to allow the comparison to be made. The value of t1 in the analytical prediction was inserted in
each subfigure. λ = 1 and λ = 0 refer to the lower and upper bounds of the current prediction
respectively.

experiments.298
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3.2. Ballistic limit299

(a) h0 = 9 mm (b) h0 = 20 mm

(c) h0 = 25 mm (d) h0 = 35 mm

Figure 8: Comparison between analytical predicted residual velocity and published data [17] for
HB26 UHMWPE laminates of four different thicknesses (h0 = 9, 20, 25, 35 mm). The blunt pro-
jectile has a diameter of 2R = 12.7 mm.

The predicted residual velocities with λ = 0 are compared to the corresponding data (numerical300

and experimental) in the literature for ballistic impact in Figs 8 and 9. In general, the analytical301

model is capable of predicting the ballistic curve of UHMWPE composite for a wide range of302

thicknesses (10 ≤ h0 ≤ 75 mm) under two different projectile diameters (2R = 12.7 and 20 mm).303

For the ballistic impact under two projectile sizes, the current prediction of residual velocity agrees304

well with the finite element results in [17] for all the target thicknesses with the notable exceptions305

of h0 = 35 mm, 2R =12.7 mm and h0 = 75 mm, 2R =20 mm where the current prediction of306

residual velocity is greater than that predicted by the numerical model in [17]. The intersection307

of the ballistic curve to the x-axis in Figs. 8 and 9 refers to the ballistic limit velocity. In the308

current analytical model, ballistic limit velocity can be obtained by finding the initial velocity of309
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(a) h0 = 10 mm (b) h0 = 20 mm

(c) h0 = 36 mm (d) h0 = 75 mm

Figure 9: Comparison between analytical predicted residual velocity and published data [17] for
HB26 UHMWPE laminates of four different thicknesses (h0 = 10, 20, 36, 75 mm). The blunt
projectile has a diameter of 2R =20 mm. The analytical prediction by Zhang et al. [27] was also
inserted for comparison for cases of h0 = 10 and 20 mm.

the projectile to cause complete penetration of the target with zero residual velocity in an iterative310

process. The analytical predictions of ballistic limit velocities were in excellent correlation with311

the experimental counterpart as seen in Figs. 10a and 10b.312

4. Discussion313

In this section, the validated model is employed to provide further insights into the dynamic fail-314

ure behaviour, travelling hinge phenomenon and the effect of impact velocity during the ballistic315

impacts of UMHWPE laminated plate. A typical laminated plate with material properties and in-316

plane dimensions identical to those studied in the preceding section was used here. A thickness of317
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(a) (b)

Figure 10: Comparison between analytical prediction and published data [17] for ballistic limit
velocity under blunt projectiles of diameters of (a) 2R=12.7 mm and (b) 2R=20 mm.

36 mm and a projectile diameter of 20 mm were used throughout this section.318

4.1. Evolution of damage319

To provide insights into the evolution of failure, damage parameters D1 and D2 were plotted as320

a function of time in Fig. 11a at vi = 888 m/s. The initial velocity was deliberately chosen321

to be below the ballistic limit velocity (901 m/s). The horizontal dash line refers to the critical322

condition of the damage parameters reaching unity. Failure, due to either mixed mode failure or323

tensile failure, would not take place if the damage curve is below this horizontal dash line. Part324

of the figure (27 ≤ t ≤ 50µs) was magnified to showcase the prediction of equivalent stress at325

the laminated plate centre during the initial response in phase II. It can be seen that the maximum326

equivalent stress criterion (Eq. 22) was satisfied at the outset of the phase II response, leading327

to the instant failure of the impact-receiving layer. The damage parameter D1 then oscillates328

close to the value of one. The intersection points of the black curve with the horizontal dash line329

(D1 = 1) refer to the time instants when progressive layer-by-layer damage happens across the330

thickness. After t > 50 µs, the damage parameter D1 reduces monotonically with time indicating331

that mixed mode failure was absent. This prediction coincides to that in the analytical work by332

Olsson [37] who also showed that the stress predicted by classical plate theory increases and then333

decreases over time for composite plates. The red solid curve in Fig. 11a denotes the time history334

of the damage parameter for the tensile failure D2, which increases monotonically with time. The335

maximum value of D2 at t f = 536 µs was less than unity, corroborating that tensile failure was336

absent. That damage parameter D1 or D2 is less than unity when the projectile’s velocity reduces337

to zero confirms that full penetration did not take place, which is in line with the experimental338

observation.339

Figure 11b shows the corresponding analytical prediction of the temporal evolution of the thick-340

ness for the intact composite in phase I and II response. The thickness drops from 36 mm to 15.2341
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(a) Evolution of damage parameter

(b) Thickness of intact composite during phase I and II

Figure 11: Analytical predictions of the time-history of (a) damage parameters, (b) thickness of
intact composite for 36 mm thick laminated plate impacted by a projectile of diameter 2R =20 mm
at vi =888 m/s. The projectile did not penetrate completely the target.

mm during the local penetration (phase I) under only 27 µs. In phase II, mixed-mode failure occurs342

continuously at the impact-receiving layer, albeit only for a short period of 13 µs. The UMHWPE343

laminated plate has a remaining thickness of 7.5 mm to withstand the projectile until it is fully344

arrested.345

The analytical prediction of the evolution of equivalent stress distribution (Eq. 23) for the same346

impact case in Fig. 11 was shown in Fig. 12. The stress contour on the impact-receiving layer347

(the sub-laminate that was in contact with the projectile) was given. The prediction was mapped348

across the symmetrical planes to showcase the stress contour on the entire plane. The maximum349

equivalent stress was found to be always at the centre at different time frames, which justifies the350

assumption made in the analytical model regarding Eq. 23. The equivalent stress was localised at351

the central region in the vicinity of the impact at the initial stage in phase II. A more uniform dis-352
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Figure 12: Analytical prediction of the evolution of equivalent stress contours (in GPa) on the
impact-receiving layer of a 36 mm thick laminated plate impacted by a blunt projectile of diameter
2R =12.7 mm at vi =888 m/s. The projectile was arrested at the time instant of t f = 536µs.

tribution of the equivalent stress was noted with the passage of time. The spread of the equivalent353

stress is attributed to the high wave speed of the UMHWPE laminated plate which is beneficial to354

transform a local impact to a global response. The hinge reaches the boundary at the cessation of355

motion according to Fig. 7f.356

Figure 13 and 14 present the analytical predictions for the ballistic impact case of vi =1200 m/s.357

The initial velocity was deliberately chosen to exceed the ballistic limit velocity. The time history358

of damage parameters, the remaining thickness of intact composite, projectile velocity and hinge359

position were plotted in Figs. 13a, 13b, 13c and 13d respectively. In phase I, projectile velocity360

reduces from 1200 to 922 m/s (in Fig. 13c) with a significant penetration depth of 25.8 mm (in361

Fig. 13b). Phase II begins with the initial condition of v1 = 922 m/s and h2 = 10.2 mm. As362

seen in Fig. 13a, the stress-based damage parameter D1 drops quickly to unity, and maintains363

at one until t f =67 µs, which indicates that progressive ply-by-ply failure occurs continuously364

in phase II. The stress-based damage is more dominant than the strain-based damage since D1365

is greater than D2 for the majority of the response. D2 finally increases up to unity at t = 67366

µs, at which instant the remaining composite abruptly ruptures almost instantaneously, as seen in367
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(a) Evolution of damage parameter (b) Thickness of intact composite

(c) Evolution of velocity (d) Dimensionless hinge position

Figure 13: Analytical predictions of the time-history of (a) damage parameters, (b) thickness of
intact composite and (c) velocity and (d) dimensionless hinge position for a 36 mm thick lami-
nated plate impacted by a blunt projectile of diameter 2R =12.7 mm at vi =1200 m/s. Complete
penetration occurs at the time instant of t f = 67µs.

Fig. 13b. This is because, in the current analytical modelling, the tensile strain at the plate centre368

is identical for different sub-laminates since it was assumed that the deformation was unvaried369

through the thickness. Therefore, when the failure occurs at D2 = 1, the damage criterion would be370

satisfied across all the sub-laminates. This prediction is reasonable since according to experimental371

observation in [11, 19] that the intact composite can be ruptured together by tensile tearing. Since372

the intact composite was penetrated continuously during phase II, the resistance force to arrest the373

projectile was minimal, leading to a significant residual velocity of vr = 849 m/s. Due to the rather374

transient response, i.e. t f=67 µs, the distance that the hinge travels is limited ζ(t = t f )/a = 0.14 as375

seen in Fig. 13d.376
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Figure 14: Analytically predicted equivalent stress contours (in GPa) on the impact-receiving layer
of a 36 mm thick laminated plate impacted by a projectile of diameter 2R =12.7 mm at vi =1200
m/s.

Figure 14 shows the equivalent stress distribution on the impact-receiving layer at selected time377

frames from t = 25 − 65 µs. The equivalent stress was concentrated at the impact zone during378

the entire ballistic response, which attributed to the progressive failure and reduction of thickness379

according to the stress-based damage criterion as seen previously in Fig. 13. The rather short380

distance travelled by the hinge leads to the stress concentration.381

4.2. Travelling hinge382

As alluded to in the introduction, various assumptions and theories were used in the literature383

[22, 27, 43] regarding the motion of the hinge in the analytical modelling of the dynamic response384

of UHMWPE laminates subjected to ballistic impact. In this subsection, the assumptions in the385

literature were scrutinised. In the experimental work by Nguyen et al. [17], hinge position and386

speed of UHWMPE composite with three different thicknesses ranging from h0 = 10−36 mm were387

recorded which served as benchmarks to evaluate the efficacy of predictions based on different388

assumptions. Notice that in all three test cases studied in this subsection (which coincide to the389

same in Fig. 7), full penetration did not take place.390
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(a) Normalised deflection profile (b) travelling hinge velocity (in m/s)

Figure 15: Comparison of experimental measurement to predictions by different models: (a) nor-
malised deflection profiles and (b) hinge velocities. – – by Nguyen et al. [17]; — by current
analytical model; - - - by Leigh Phoenix and Porwal [42]; - - - by Smith et al. [43]; - - - by Yang
et al. [22].
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Figure 15a compares the normalised deflection profile (ζ/a as a function of w0/h0) obtained ex-391

perimentally (extracted and re-arranged based on the experiment data of [17]) to the analytical392

predictions. Through a one-dimensional (1D) yarn impact model, Leigh Phoenix and Porwal [42]393

found that the deflection (or cone) angle γ is a constant value dependent only on the initial velocity394

of projectile vi and the longitudinal wave velocity CL, i.e.395

γ ≈ (2vi/CL)1/3. (26)

This approximation of deflection angle was employed recently in the analytical model by Zhang396

et al. [27]. Notice that tan γ is the slope of the blue dashed line in Fig. 15a. It can be seen that397

unlike the approximation made in [27, 42] where the slope is a constant, the dimensionless hinge398

position ζ/a increases nonlinearly with dimensionless deflection w0/h0 as seen in the experimen-399

tal observation. The current analytical model successfully captured the nonlinear behaviour of the400

hinge position as a function of deformation. Both the current analytical prediction and the pre-401

diction based on Eq. 26 agree well with the experimental counterpart for the thin target (h0 = 10402

mm). However, for relatively thick targets (h0 = 20 and 36 mm) where the ‘pulling-in’ effect was403

evident, both models led to overprediction of the hinge position for a given dimensionless TBD.404

Figure 15b compares the time-history of hinge speed measured in the experiment of [17] to the405

predictions by different models (including the current analytical model, theoretical methods in406

[43] and finite element model in [22]). Smith [43] proposed that the travelling hinge velocity in407

isotropic one-dimensional elastic fibres is constant over time and can be expressed by:408

dζ
dt
= CL

[ √
ϵ0 (1 + ϵ0) − ϵ0

]
(27)

where ϵ0 ≈
(√

2vi/CL

)4/3
is the 1D tensile strain. Notice that Smith’s formula to estimate the409

travelling hinge speed was extensively used in the existing analytical work [30, 44]. On the other410

hand, Yang et al. [22] assumed a constant hinge velocity in their analytical model based on finite411

element simulation results for the same three tests in Fig. 15a. They found that travelling hinge412

velocity stabilises at a constant value of 165 m/s after an initial deceleration, which is regardless of413

the thickness of the UMHWPE laminated plate and the projectile velocity. The two horizontal lines414

refer to Eq. 27 and the constant value (165 m/s) used in the analytical model of [22]. It can be seen415

that hinge speed being a constant value was a crude assumption when comparing the horizontal416

lines to the experimental counterpart. The current analytical model captured qualitatively the417

significant drop in hinge speed with time. The hinge speed indeed reduces to a plateau value418

according to the experimental results. The predicted plateau value of the hinge speed agrees well419

with the numerical prediction by the sophisticated three-dimensional finite element model in [22],420

highlighting the accuracy of the current prediction on hinge speed. It is noteworthy that using421

detailed 3D finite element simulation to obtain value for the key variable defeats the purpose of422

quick analytical estimation.423

4.3. The effect of increasing impact velocities424

A finite number of analytical simulations were carried out to investigate the effect of initial veloc-425

ities on the permanent hinge position, residual thickness and energy absorption characteristics of426
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(a) Permanent dimensionless hinge position (b) Residual thickness

Figure 16: Analytical predictions of (a) permanent dimensionless hinge position and (b) residual
thickness of a 36 mm thick laminated plate impacted by a projectile of diameter 2R =20 mm at at
different initial velocities.

Figure 17: Proportion of penetration depth in phase I and phase II of a 36 mm thick laminated
plate impacted by a projectile of diameter 2R =20 mm at at different initial velocities.

the UMHWPE laminated plate. The analytical predictions are shown in Figs. 16-18. The hinge427

can only reach the boundary at a low level of initial velocity as seen in Fig. 16a. The permanent428

hinge position reduces abruptly with increasing vi after full penetration occurs. With a higher ini-429

tial velocity, the residual thickness decreases monotonically, as seen in Fig. 16b. The proportions430

of penetration depths in phase I and II as well as the residual thickness were delineated in Fig.431

17. It is increasing to note that phase I dominates the penetration depth regardless of the initial432
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Figure 18: Partition of energy in phase I and II.

velocity. Progressive failure may not occur (zero perforated thickness in phase II) when the impact433

loading is not sufficiently intense. After full penetration occurs, perforated thickness reduces and434

increases in phase I and II respectively with increasing initial velocity.435

Figure 18 presents the partitioning of energy in phase I and II as a function of initial velocity436

vi. The proportion of energy absorbed during local penetration in phase I decreases slightly with437

higher initial impact velocity. Bulging deformation response in phase II plays a key role in dissi-438

pating the kinetic energy of the projectile at an initial velocity that is lower than the ballistic limit439

velocity. When full penetration occurs, the energy absorption during phase II quickly diminishes440

with greater vi leading to a significant residual kinetic energy of the projectile.441

5. Conclusion442

An analytical model is developed and validated against existing experimental data, which is ca-443

pable of predicting the transient bulging deflection and ballistic limit velocity of a fully clamped444

square UMHWPE laminated plate subjected to ballistic impact by a rigid blunt cylindrical projec-445

tile. The structural response of the UMHWPE laminated plate was separated into two uncoupled446

sequential phases: phase I is the local penetration into the laminated plate with negligible bulging447

deformation; phase II is the large bulging deformation with progressive failure through the thick-448

ness. Through the incorporation of an equivalent stress and a tensile strain criteria, the model can449

capture the progressive layer-by-layer failure in phase II. The travelling hinge is considered in the450

admissible velocity field within the modal analysis and is solved through the Lagrangian equa-451

tion. Predictions by the analytical model are shown to be in reasonable agreement with existing452

experimental results. The following conclusions were made following our analysis:453

• Equivalent stress was found to be maximum at the plate center which was initially concen-454
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trated at the impact zone before spreading to a larger region with the travelling hinge.455

• Travelling hinge’s velocity drops nonlinearly with time before reaching a plateau value.456

• Increasing the initial velocity of the projectile beyond ballistic limit would lead to a reduc-457

tion of permanent hinge position, a reduction of proportion of perforated thickness in phase458

II.459

• Energy absorbed in phase I is significantly higher than that in phase II when full penetration460

occurs.461
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