

An analytical model of the dynamic response of UHMWPE laminated plate to ballistic impact

Huiru Jia¹, Yongxi Jin⁴, Tan PJ⁵, Ye Yuan^{1,2,3*}

¹State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, PR China

²Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, PR China

³*China Safety Technology Research Academy of Ordnance Industry, Beijing 100053, PR China*

⁴ *Zhiyuan Research Institute, Hangzhou, PR China*

⁵ Department of Mechanical Engineering, University College London, London, UK

10 Abstract

This paper develops an analytical model for the ballistic impact response of UHMWPE laminated plate, which is capable of capturing transient transverse bulging deformation and flexural wave propagation. The mathematical framework of the analytical model is based on the first-order shear deformation plate theory, which uses damage mechanics to model the progressive through-thickness fracture of the laminated plate. Compared to existing analytical models, the current model does not need to make assumptions for the travelling hinge speed which is solved via modal analysis and Lagrangian equation. Analytical predictions of transverse bulging deflection, travelling hinge position and ballistic limit velocity are validated against experimental data reported in the literature and they will be shown to be in good agreement for varying projectile sizes and laminate thicknesses. The maximum equivalent stress of the impact-receiving layer is found to be governed by the travelling hinge's position, which can be alleviated with the expansion of the bulging deformation area. At an impact velocity above the ballistic limit, the energy dissipated through transverse shear in the local penetration phase is significantly higher than in the subsequent bulging deformation phase.

¹¹ *Keywords:* UHMWPE laminated plate; Analytical model; Ballistic limit velocity; Transverse
¹² bulging deflection; Travelling hinge

*Corresponding author
Email address: yuanye20@bit.edu.cn (Ye Yuan^{1,2,3})

13 **1. Introduction**

14 Ultra-high molecular weight polyethylene (UHMWPE) laminated plates have been increasingly
15 employed in armour systems, due to superior mechanical performance such as high specific strength

Nomenclature

a	Half length of the laminated plate
A_{ij}	Extensional stiffness
A_p	Cross-sectional area of the projectile
C_t	Transverse wave speed
D_1, D_2	Damage parameters
D_{ij}	Bending stiffness
E_1, E_2, E_3	Young's modulus
G_{12}, G_{23}	Shear modulus
h	Intact thickness
h_0	Total thickness
h_1	Perforated thickness in phase I
h_2	Remaining thickness at the beginning of phase II
h_L	Thickness of each layer
K	Shear correction factor
\mathcal{L}	<i>Lagrangian</i>
m_p	Projectile mass
M	Bending moment
N	Membrane force
Q	Shear force
Q_{ij}	Plane stress-reduced stiffness components
R	Projectile radius
t	Time
t_1	Time duration in phase I
t_f	Time instant when the motion of projectile ceases or full penetration occurs
$t' = t - t_1$	Passage of time in phase II
$v = \dot{w}_0(t)$	Projectile's velocity
v_i	Initial velocity of the projectile
v_r	Residual velocity of the projectile
v_{bl}	Ballistic limit velocity
w_0	Transverse central bulging deflection
$\gamma_{xz0}, \gamma_{yz0}$	Shear displacements
ϵ_f	Failure strain
$\epsilon_{ij}, \gamma_{ij}$	Strain components
$\epsilon_{ij}^0, \epsilon_{ij}^1$	Membrane and bending strains
ϵ_x	Tensile strain

ζ	Position of the travelling hinge
λ	Membrane effect coefficient
μ	Areal density the laminated plate
ν_{12}	Poisson's ratio
Π	Total strain energy
ρ	Density the laminated plate
σ_f	Failure stress
σ_{ij}	Stress components
σ_{\max}	Maximum equivalent stress

16

17 and specific modulus with exceptionally high wave speeds, allowing for rapid energy absorption
 18 and dispersion [1]. The cross-ply UHMWPE is a typical laminated plate, constructed from a high-
 19 volume fraction of UHMWPE fibre composites (>80%) with a [0°/90°] cross-ply architecture,
 20 and a low-volume fraction of thermoplastic polymer matrix (<20%), endowing excellent ballistic
 21 resistance to high-speed localised impact [2]. In order to assess the consequence of the ballistic
 22 impact or to achieve an optimised structural design, significant effort has been devoted to fostering
 23 an understanding of the deformation and failure mechanisms of cross-ply UHMWPE laminated
 24 plates under ballistic perforation. Transverse bulging deflection (TBD) at the non-impact-receiving
 25 face (when the integrity of the laminated plates is not compromised) and the ballistic limit velocity
 26 v_{bl} (above which the target is fully penetrated) are two important resultant effects, which attribute,
 27 respectively, to the blunt trauma injury [3, 4] on the possible substrate occupant and overall ballistic
 28 resistance performance [5, 6]. Although numerical models [7–10] exist that can provide high-
 29 fidelity solutions of the ballistic response of the cross-ply UHMWPE laminated plate, they are,
 30 in general, computationally expensive and are not feasible for large-scale iterative simulation in
 31 optimisation. This highlights the importance of developing an analytical model that permits quick
 32 and accurate estimation of the TBD and the v_{bl} while capturing the various failure modes of the
 33 cross-ply UHMWPE laminated plate at a wide range of impact velocities.

34 A considerable body of experimental work on the ballistic response of UHMWPE laminated plate
 35 already exists [11–16]. One example is the experiment by Nguyen et al. [17] where it was shown
 36 that the deformation and failure of UHMWPE laminated plate under ballistic impact can be de-
 37 lineated into three sequential stages: stage I - shear plugging in the vicinity of the impact zone
 38 with negligible TBD; stage II - delamination, matrix cracks, progressive through-thickness tearing
 39 of the fibre with large TBD; stage III - further deformation of the intact laminated plate until full
 40 penetration occurs. The progressive failure mechanisms during the aforesaid response stages are
 41 quite complex and are found to be influenced by various factors such as impact velocity [18], plate
 42 thickness [19], projectile shape [20] etc.

43 The response of composite laminates to localised transverse impact leads to bulging deformation
 44 dictated by the propagation of longitudinal, shear and flexural waves travelling in the compos-
 45 ite [21]. The region of non-zero transverse bulging deformation was governed by the ‘travelling
 46 hinge’ (or known as the dynamic cone), which emanates from the target’s centre towards the pe-

riphery [22]. Several experimental works [16, 23] studied the evolution of the lateral deformation contour using high-speed camera and 3D-DIC techniques, and highlighted the importance of the deformation pattern and the travelling hinge speed on the bulging deformation of the composite laminates. Karthikeyan et al. [19] employed the dynamic shadow moiré method to acquire back deformation data of UHMWPE laminated plates subjected to steel ball impact. They found that the lateral deformation is in a diamond shape, which expands at an approximately constant speed from the impact location until reaching the fixed boundaries. Zhu et al. [24] utilized 3D-DIC technology to observe the impact response of UHMWPE orthogonal laminated plates subjected to large-sized lead-core pistol projectile impacts. They noted that the convex deformation contour transformed from the initial diamond shape to a circular or square shape when the hinge speed along the $\pm 45^\circ$ and $\pm 135^\circ$ directions gradually exceeded that along the fibre direction. Similar phenomena were also observed by Vargas-Gonzalez et al. [4] who studied the ballistic performance of large-sized Spectra Shield laminated plates. Zhang et al. [25] employed 3D-DIC technology to capture the evolution of the bulging deformation area of Dyneema® HB80 laminated plates subjected to projectile impacts and discovered that as the tensile wave propagated through the fibres to the edges and reflected, the speed of lateral deformation decreased when reducing the initial impact velocity.

Different analytical models – based on either momentum [22, 26, 27] or energy conservation [28–30] – were developed to predict the temporal evolution of the TBD and the ballistic limit velocity of the UHMWPE laminated plate under ballistic impact. Based on an energy conservation approach, Li et al. [29] developed an analytical model to predict the time histories of the acceleration according to the energy absorbed by each through-thickness failure mode (including matrix crush, laminate shear, laminate compressive, fiber stretch, fiber break and delamination), as well as the ballistic limit velocity. The equation of motion is one-dimensional (in the out-of-plane direction) and did not consider the evolution of the lateral deformation (i.e. the travelling hinge phenomenon). Langston [30] proposed an analytical model to estimate the reduction of a projectile's kinetic energy by balancing it with the various energy absorption mechanisms activated in the composite (fiber tensile strain, delamination, matrix cracking, acceleration of the composite mass, and shear failure of the composite). As opposed to the approach in [29], the effect of the radius of wave propagation on the energy absorbed by tensile strain was considered. It was found that majority of the energy was dissipated by tensile strain and the acceleration of composite mass. Zhang et al. [27] developed an analytical model based on the conservation of momentum to predict the two-phase impact response (a local failure phase followed by a bulging deformation phase with progressive penetration of projectile) of UHMWPE laminated plate and its ballistic impact velocity. The lateral deformation was considered based on the assumption that the angle of the bulging cone is proportional to the cubic root of the initial velocity at the outset of the bulging deformation phase. Focusing on the low-speed impact case where only large deformation of the UHMWPE laminated plate is of interest, Yang et al. [22] also used conservation of momentum to derive the equation of motion for the UHMWPE laminated plate. The hinge speed was assumed to be a constant and was obtained via numerical simulation. As mentioned above, the fidelity of the analytical model relies upon the accurate prediction of the hinge speed which governs the lateral deformation region where various failure modes take place. In the above analytical models, however, the hinge speed was either approximated using or was obtained as a fixed constant

89 via numerical simulation, which cannot reflect the deformation mechanism due to the outward
90 travelling stress wave as observed in the past experiments.

91 The objective of this work is to develop an analytical model capable of providing, in a compu-
92 tational efficient way, accurate prediction of deformation (both lateral and transverse) and failure
93 associated with the dynamic elastic response of a UHMWPE laminated plate subjected to ballistic
94 impact. Modal analysis and Lagrangian equation – which were frequently used to deal with the
95 nonlinear response of metallic [31] and laminated [32, 33] plates involving complex behaviours
96 such as large deformation, flexural wave propagation, and fracture – will be used to derive the
97 governing equations to obtain the transient TBD and hinge velocity of the UHMWPE laminated
98 plate. Damage criteria, based on critical stress and strain, are incorporated to capture the pro-
99 gressive fracture. Predictions by the analytical model are validated against existing experimental
100 data. Insights into the dynamic deformation and failure response of the UHMWPE laminated plate
101 were revealed through the analytical predictions. A parametric study is carried out to investigate
102 the influence of impact velocity on the ballistic response of the laminated plate.

103 2. Modal formulation

104 This section presents the development of an analytical model which permits quick estimation of
105 transient bulging deflection and failure of a fully clamped UHMWPE laminated plate subjected
106 to ballistic impact. The key features of the proposed analytical model are as follows: (1) a bal-
107 listic model was used to simulate the local penetration phase of the UHMWPE laminated plate;
108 (2) the first-order shear deformation plate theory is used to model the deformation phase of the
109 laminated plate; (3) the region of non-zero deformation was dictated by the travelling hinge due to
110 flexural wave propagation; (4) governing equations of deformation and hinge speed were derived
111 based on modal analysis; (5) damage criteria were introduced to predict the progressive failure
112 of sub-laminates in the out-of-plane direction. The prediction will be validated against existing
113 experimental data in Section 3.

114 2.1. Problem statement and modeling approach

115 Consider a fully clamped square UHMWPE laminated plate subjected to the normal impact of a
116 rigid blunt projectile with an initial velocity of v_i as depicted in Fig. 1. The composite square plate
117 has a length of $2a$ and an initial thickness of h_0 . The projectile has mass m_p and a diameter of $2R$.
118 The UHMWPE laminated plate was made of a stack of $[0^\circ/90^\circ]$ orthogonal plies. To eliminate the
119 influence of ply orientation on the stiffness matrix computation, the laminated plate was discretised
120 into a stack of homogenous layers. Each layer consisted of four plies in a $[0^\circ/90^\circ/0^\circ/90^\circ]$ lay-up
121 with a sub-laminate thickness of h_L . This homogenisation approach follows the same used in [27]
122 to allow failure to occur progressively in each sub-laminate.

123 The penetration of the projectile into the target consists of two consecutive phases: phase I - local
124 penetration with no deformation and phase II - global deformation with progressive damage, as
125 shown in Fig. 2. For simplicity, it shall be assumed that response phases I and II are uncoupled.
126 In phase I, the projectile's velocity was estimated based on the contact stress (resulted from stress
127 wave propagation and reflection) exerted on the target. Phase I ends when the compression wave

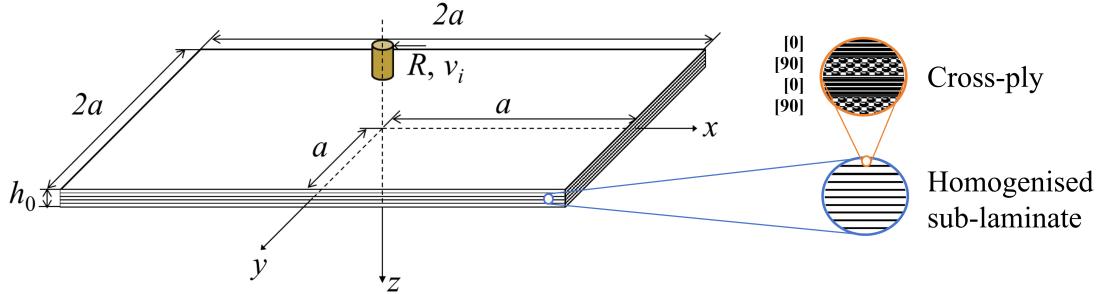


Figure 1: Schematic of UHMWPE laminated plate subjected to impact by a rigid blunt projectile.

128 in the penetration zone encounters the tension wave reflected from the back layer of the laminated
 129 plate [34]. The penetration depth in phase I is denoted as h_1 . The remaining intact laminated
 130 plate with a thickness of $h_2 = h_0 - h_1$ subsequently undergoes dynamic bulging deformation.
 131 The deformation of the laminated plate in phase II was governed by the propagation of flexural
 132 waves. The intact sub-laminate that resists the projectile gradually diminishes due to progressive
 133 penetration across the thickness. We employed a similar approach to that of Yuan et al. [32, 33] to
 134 derive the equation of motion in the form of ODEs. A critical equivalent stress and strain criteria
 135 were used to capture the progressive failure. Various assumptions concerning laminated plate
 136 deformation and failure criteria will be detailed in the following subsections.

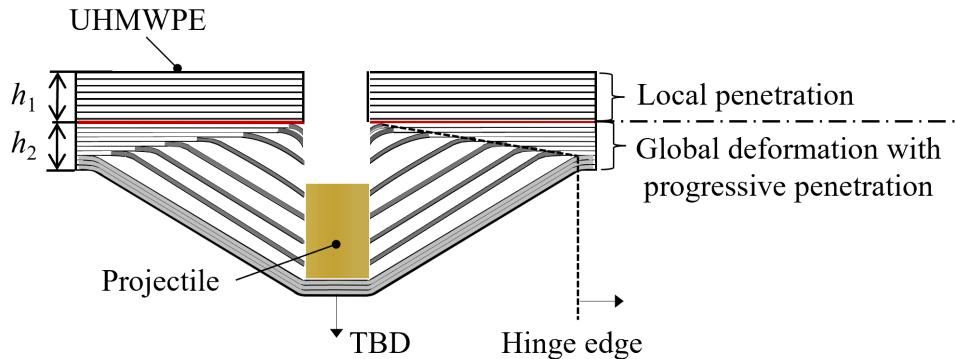


Figure 2: Schematic of two-phase penetration model for UHMWPE laminated plate.

137 2.2. *Phase I response (local penetration): $0 < t \leq t_1$*

138 Upon projectile impact as shown in Fig. 3, a compressive stress wave is generated in the laminated
 139 plate, propagating through its thickness at a transverse velocity C_t , given as

$$C_t = \sqrt{\frac{E_3}{\rho}} \quad (1)$$

140 where E_3 and ρ are the transverse elastic modulus and density of the composite. The compres-
 141 sive stress wave can be treated as one-dimensional (1D). The contact stress was related to the

142 projectile's velocity during phase I:

$$\sigma = \frac{M_p}{A_p} \frac{dv}{dt} = -\rho C_t v \quad (2)$$

143 where v is the projectile velocity at time t , and A_p is the cross-sectional area of the projectile. The
144 projectile velocity v was solved from Eq. 2 which is written in the following form:

$$v = v_i e^{-\rho C_t A_p t / m_p}. \quad (3)$$

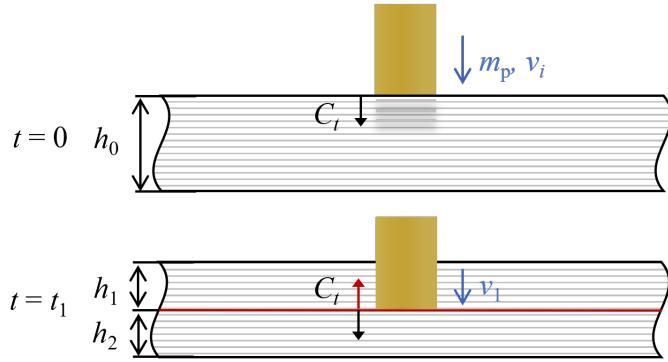


Figure 3: Schematic of the local penetration phase. The perforation depth is dictated by the propagation and reflection of compression waves.

145 Phase I ends at the time instant $t = t_1$ when the compression wave reaches the bottom of the
146 UHMWPE composite and reflects with a travelling distance of $2h_0 - h_1$. The duration for phase I
147 was therefore:

$$t_1 = (2h_0 - h_1) / C_t. \quad (4)$$

148 The penetration depth h_1 can be obtained by integrating Eq. 3 with time:

$$h_1 = \int_0^{t_1} v_i e^{-\rho C_t A_p t / m_p} dt. \quad (5)$$

149 Duration t_1 and penetration depth h_1 can be solved from Eqs. 4 and 5 for a given initial velocity
150 v_i . The projectile velocity at the end of phase I is written as:

$$v_1 = v(t = t_1) = v_i e^{-\rho C_t A_p t_1 / m_p} \quad (6)$$

151 which serves as the initial condition for phase II.

152 2.3. *Phase II response (transverse bulging deformation with progressive penetration): $t_1 < t \leq t_f$*

153 2.3.1. *Equation of motion*

154 In Phase II, the laminated plate with an intact thickness of $h_2 = h_0 - h_1$ was subjected to impact by
155 the projectile with a velocity of v_1 , which developed transverse bulging deformation (TBD). As the

156 flexural wave propagates outward from the impact point, the laminated plate undergoes transient
 157 deformation within a certain region according to the travelling hinge location, as illustrated in Fig.
 158 4. The travelling hinge position, denoted as $\zeta(t)$, advances toward the fixed boundaries ($x = a$ and
 159 $y = a$) over time. Once the travelling hinges coalesce with the boundary, it becomes a stationary
 160 one, i.e., $\zeta(t) = a$. For square laminated plates, the travelling hinges' motion in both the x - and y -
 161 directions are identical [31, 35]. It is assumed that the transverse normal remains perpendicular to
 162 the mid-surface after deformation.

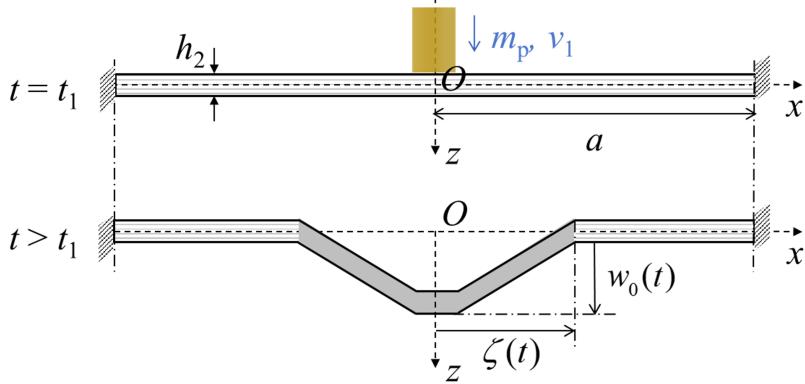


Figure 4: Schematic of the transverse bulging deformation mechanism in phase II.

163 In the modal analysis, it assumes that the ballistic response of the laminated plate results in deforma-
 164 tion that continually evolves towards a modal solution, i.e. the velocity field \dot{w} can be written
 165 as the product of separate functions of space and time $\dot{w}(x, y, t)$. The modal solution is a velocity
 166 field with separated functions for spatial and temporal variables. The admissible transverse veloc-
 167 ity field and shear deformation profiles used in [32] (originally for impact response of laminated
 168 glass) were adopted here:

$$\dot{w}(x, y, t) = \dot{w}_0(t) \left[1 - \frac{2x^2}{\zeta(t)^2} + \frac{x^3}{\zeta(t)^3} \right] \left[1 - \frac{2y^2}{\zeta(t)^2} + \frac{y^3}{\zeta(t)^3} \right] \quad (7)$$

169 and

$$\gamma_{xz}^0(x, y, t) = \gamma_{xz0}(t) \sin \left[\frac{\pi x}{2\zeta(t)} \right] \cos \left[\frac{\pi y}{2\zeta(t)} \right] \quad (8a)$$

$$\gamma_{yz}^0(x, y, t) = \gamma_{yz0}(t) \cos \left[\frac{\pi x}{2\zeta(t)} \right] \sin \left[\frac{\pi y}{2\zeta(t)} \right] \quad (8b)$$

171 where $\dot{w}_0(t)$ is the velocity at the plate's centre; the product of second and third terms in Eq. 7 is
 172 the *mode function* or *mode shape* that is governed by the travelling hinge position $\zeta(t)$ in x - and
 173 y -directions; $\gamma_{xz0}(t)$ and $\gamma_{yz0}(t)$ are shear displacements. In regions where $x > |\zeta(t)|$ and $y > |\zeta(t)|$,
 174 the laminated plate is assumed to remain undeformed, i.e., $\dot{w}_0(t) = 0$. After the hinge reaches the
 175 boundary, $\zeta(t) = a$ is substituted into Eqs. 7. Notice that the corresponding modal displacement
 176 (w_0) and acceleration (\ddot{w}_0) fields can also be written in the same partial functions.

177 The total kinetic energy of a quarter of the model (target and projectile) at any given moment t can
 178 be expressed as:

$$T = \frac{1}{2}\mu \int_0^{\zeta(t)} \int_0^{\zeta(t)} \dot{w}^2(x, y, t) dx dy + \frac{1}{8}m_p \dot{w}_0^2(t) \quad (9)$$

179 where $\mu = \rho h$ is the areal density of the intact laminated plate.

180 We now proceed to derive expressions for the total strain energy of the panel by first establishing
 181 the constitutive equation that relates the bending moment M , membrane force N and transverse
 182 shear force Q to the strains. Here, the first-order shear deformation plate theory is employed, which
 183 incorporates the effect of bending, membrane and transverse shear and uses damage mechanics to
 184 capture the progressive through-thickness fracture.

185 The components of stress σ in the laminated plate give rise to the following force resultants for
 186 bending moment M , membrane force N and shear force Q given by

$$\begin{Bmatrix} N_{xx} \\ N_{yy} \\ N_{xy} \end{Bmatrix} = \int_{-h/2}^{h/2} \begin{Bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{Bmatrix} dz \quad \begin{Bmatrix} M_{xx} \\ M_{yy} \\ M_{xy} \end{Bmatrix} = \int_{-h/2}^{h/2} \begin{Bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{Bmatrix} z dz \quad \begin{Bmatrix} Q_x \\ Q_y \end{Bmatrix} = \int_{-h/2}^{h/2} \begin{Bmatrix} \sigma_{xz} \\ \sigma_{yz} \end{Bmatrix} dz. \quad (10)$$

187 where h is the thickness of the intact laminated plate.

188 The linear-elastic constitutive relation between the stress and strain components for the laminated
 189 plate is

$$\begin{Bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{Bmatrix} = \begin{Bmatrix} Q_{11} & Q_{12} & 0 & 0 & 0 \\ Q_{12} & Q_{22} & 0 & 0 & 0 \\ 0 & 0 & Q_{44} & 0 & 0 \\ 0 & 0 & 0 & Q_{44} & 0 \\ 0 & 0 & 0 & 0 & Q_{66} \end{Bmatrix} \begin{Bmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{Bmatrix} \quad (11)$$

190 where Q_{ij} are the plane stress-reduced stiffness components; $Q_{11} = E_1/(1 - \nu_{12}\nu_{21})$, $Q_{22} = E_2/(1 - \nu_{12}\nu_{21})$, $Q_{12} = Q_{21} = \nu_{12}Q_{11}$, $Q_{44} = Q_{22} = Q_{11}$ and $Q_{66} = G_{12}$. Here, E_1 and E_2 are Young's
 191 moduli in the 0° and 90° material directions, respectively, ν_{12} and ν_{21} are the Poisson's ratios, and
 192 G_{12} is the in-plane shear modulus. Notice that isotropic material properties were assumed for the
 193 laminated plate, i.e. $E_1 = E_2$.

194 The strain components have the form,

$$\begin{Bmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{Bmatrix} = \begin{Bmatrix} \epsilon_{xx}^0 \\ \epsilon_{yy}^0 \\ \gamma_{yz}^0 \\ \gamma_{xz}^0 \\ \gamma_{xy}^0 \end{Bmatrix} + z \begin{Bmatrix} \epsilon_{xx}^1 \\ \epsilon_{yy}^1 \\ 0 \\ 0 \\ \gamma_{xy}^1 \end{Bmatrix} \quad (12)$$

195 where $(\epsilon_{xx}^0, \epsilon_{yy}^0, \gamma_{xy}^0)$ are the membrane strains expressed as a function of admissible displacement
 196 field (see Eq. 7),

$$\epsilon_{xx}^0 = \frac{1}{2} \left[\frac{\partial W(x, y, t)}{\partial x} \right]^2 \quad \epsilon_{yy}^0 = \frac{1}{2} \left[\frac{\partial W(x, y, t)}{\partial y} \right]^2 \quad \gamma_{xy}^0 = \frac{\partial W(x, y, t)}{\partial x} \frac{\partial W(x, y, t)}{\partial y} \quad (13)$$

198 and $(\epsilon_{xx}^1, \epsilon_{yy}^1, \gamma_{xy}^1)$ are the bending strains, also known as curvatures, written as

$$\epsilon_{xx}^1 = \frac{\partial \theta_x(x, y, t)}{\partial x} \quad \epsilon_{yy}^1 = \frac{\partial \theta_y(x, y, t)}{\partial y} \quad \gamma_{xy}^1 = \frac{\partial \theta_x(x, y, t)}{\partial y} \frac{\partial \theta_y(x, y, t)}{\partial x} \quad (14)$$

199 in which the rotations of a transverse normal about y and x axis are respectively

$$\theta_x(x, y, t) = \gamma_{xz}(x, y, t) - \frac{\partial W(x, y, t)}{\partial x} \quad (15a)$$

$$\theta_y(x, y, t) = \gamma_{yz}(x, y, t) - \frac{\partial W(x, y, t)}{\partial y}. \quad (15b)$$

200 201 Substituting Eqs. 11 and 12 into Eq. 10 and re-arranging give the constitutive equations:

$$\begin{Bmatrix} N_{xx} \\ N_{yy} \\ N_{xy} \end{Bmatrix} = \begin{Bmatrix} A_{11} & A_{12} & 0 \\ A_{12} & A_{11} & 0 \\ 0 & 0 & A_{66} \end{Bmatrix} \begin{Bmatrix} \epsilon_{xx}^0 \\ \epsilon_{yy}^0 \\ \gamma_{xy}^0 \end{Bmatrix} \quad (16a)$$

$$\begin{Bmatrix} M_{xx} \\ M_{yy} \\ M_{xy} \end{Bmatrix} = \begin{Bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{11} & 0 \\ 0 & 0 & D_{66} \end{Bmatrix} \begin{Bmatrix} \epsilon_{xx}^1 \\ \epsilon_{yy}^1 \\ \gamma_{xy}^1 \end{Bmatrix} \quad (16b)$$

$$\begin{Bmatrix} Q_x \\ Q_y \end{Bmatrix} = K \frac{1-\nu}{2} \begin{Bmatrix} A_{11} & 0 \\ 0 & A_{11} \end{Bmatrix} \begin{Bmatrix} \gamma_{xz}^0 \\ \gamma_{yz}^0 \end{Bmatrix} \quad (16c)$$

202 203 204 where K is the shear correction factor; note that in Mindlin's plate theory, $K = 5/6$ for rectangular cross-sections; A_{ij} and D_{ij} are extensional and bending stiffnesses, which are defined in terms of 205 206 the lamina stiffness Q_{ij} as

$$(A_{ij}, D_{ij}) = \int_{-h/2}^{h/2} Q_{ij}(1, z^2) dz. \quad (17)$$

207 The strain energy for the quarter of a laminated plate can be written as:

$$\begin{aligned} \Pi = \Pi_b + \Pi_m + \Pi_s &= \frac{1}{2} \int_0^b \int_0^a [M_{xx} \epsilon_{xx}^1 + M_{yy} \epsilon_{yy}^1 + M_{xy} \gamma_{xy}^1] dx dy \\ &+ \frac{1}{2} \int_0^b \int_0^a \lambda [N_{xx} \epsilon_{xx}^0 + N_{yy} \epsilon_{yy}^0 + N_{xy} \gamma_{xy}^0] dx dy + \frac{1}{2} \int_0^b \int_0^a [Q_x \gamma_{xz}^0 + Q_y \gamma_{yz}^0] dx dy. \end{aligned} \quad (18)$$

208 209 210 211 212 213 214 where $0 \leq \lambda \leq 1$ is a membrane 'knock-down' factor so that $\lambda = 0$ corresponds to the condition when the boundary provides zero resistance to plate pull-in, whereas $\lambda = 1$ corresponds to the condition when there is strictly no pull-in so that the full membrane effect develops. Due to the insufficient clamping force at the boundary, in-plane deformation (also known as the 'pulling-in effect') emanated from the boundary edges as observed from the experiment [17]. In the large deflections of plate theory by Timoshenko and Woinowsky-Krieger[38], it was also suggested that when the edge is free to move in the radical direction, the membrane stretching effect should be

215 much less than that of a fully clamped boundary. It is often difficult to model the real boundary
 216 conditions of any experiment. Hence, the factor λ is employed here to modulate the influence of
 217 membrane stretch, and its concomitant effect on the reduction of the membrane energy component
 218 in Eq. 18 was accounted for by adjusting the membrane ‘knock-down’ factor λ , with $\lambda = 1$ and
 219 $\lambda = 0$ corresponding the lower and upper bounds of the current prediction. The value of λ will be
 220 calibrated based on the experimental results in the literature.

221 Given that *Lagrangian* of a quarter of the laminated plate is:

$$\mathcal{L} = T + \Pi, \quad (19)$$

222 the equation of motion governing $w_0(t)$, $\zeta(t)$, $\gamma_{xz0}(t)$ and $\gamma_{yz0}(t)$ are found by solving the well-known
 223 Lagrange equation of the 2nd kind numerically:

$$\frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{w}_0}\right) + \frac{\partial \mathcal{L}}{\partial w_0} = 0, \quad \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\zeta}}\right) + \frac{\partial \mathcal{L}}{\partial \zeta} = 0, \quad \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\gamma}_{xz0}}\right) + \frac{\partial \mathcal{L}}{\partial \gamma_{xz0}} = 0, \quad \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{\gamma}_{yz0}}\right) + \frac{\partial \mathcal{L}}{\partial \gamma_{yz0}} = 0. \quad (20)$$

224 The above ordinary differential equations (ODEs) are solved numerically using the fourth-order
 225 Runge-Kutta method with the following initial conditions:

$$w_0(t = t_1) = 0 \quad \dot{w}_0(t = t_1) = v_1 \quad \zeta(t = t_1) = 0 \quad (21)$$

226 where v_1 was the projectile velocity at the end of phase I in Eq. 6.

227 When the ODEs were solved, the remaining thickness of the intact plate h must be updated during
 228 each iteration. The remaining thickness depends upon the extent of penetration into the composite
 229 plies. To calculate the thickness of the intact composite (or the penetration depth), the thickness
 230 at the beginning of phase II was pre-discretised into h_2/h_L number of layers with h_L being the
 231 sub-laminate thickness. During each time iteration, the damage of the impact-receiving layer that
 232 is in contact with the projectile is evaluated by the damage criteria in Section 2.3.2. If damage
 233 occurs, thickness is updated in the next time step, i.e. $h = h - h_L$.

234 Phase II ends either when the projectile and laminated plate cease motion, i.e. $\dot{w}_0(t = t_f) = 0$ when
 235 $h(t = t_f) > 0$, or when full penetration occurs $h < 0$ leading to a finite value of residual velocity
 236 $\dot{w}_0(t = t_f) > 0$. The initial velocity v_i that corresponds to the critical condition of $\dot{w}_0(t = t_f) = 0$
 237 and $h(t = t_f) = 0$ refers to the ballistic limit velocity v_{bl} which can be obtained by incrementally
 238 increasing the value of v_i .

239 2.3.2. Damage criteria

240 The progressive failure mechanism in phase II is depicted in Fig. 5. The composite plies can fail
 241 either by a mixed mode failure or tensile failure [36] in phase II. When the deformation is devel-
 242 oped during phase II, the composite plies fail under combined stress rather than pure transverse
 243 shear. On the other hand, tensile fracture could occur at individual composite ply due to transverse
 244 bulging deflection.

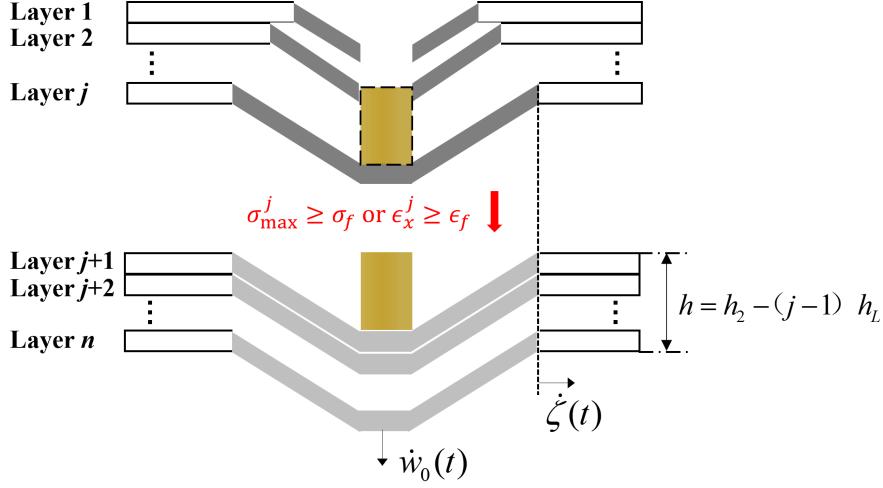


Figure 5: Schematic of deformation and failure of discretised layers in phase II. After the projectile penetrates the j th layer, the substrate layers resist the foreign load together until failure occurs in the $j + 1$ th layer.

245 The maximum equivalent stress criterion is used herein to predict the *mixed mode failure* of the
 246 individual layer:

$$D_1 = \frac{\sigma_{\max}^j}{\sigma_f} \quad (22)$$

247 where D_1 is the damage parameter; σ_{\max}^j denotes the maximum equivalent stress of the j th layer;
 248 σ_f is the failure stress.

249 The equivalent stress is found to be greatest at the centre of the laminated plate (this will be
 250 confirmed later in Section 4.1) such that

$$\sigma_{\max}^j = \sigma_{\text{eq}}^j(x = 0, y = 0) = \sqrt{(\sigma_{xx}^j + \sigma_{yy}^j)^2 - 3(\sigma_{xx}^j \sigma_{yy}^j - \sigma_{xy}^j \sigma_{xy}^j)}. \quad (23)$$

251 Tensile failure occurs when the tensile strain reaches the failure strain:

$$D_2 = \frac{\epsilon_x^j}{\epsilon_f} \quad (24)$$

252 where D_2 is the damage parameter; ϵ_f is the failure strain in the maximum sense, i.e., the maximum
 253 between fracture strains in a uniaxial tensile test and in a shear test $\epsilon_f = \max(\epsilon_{xx}, \gamma_{xy})$ [39]. In Eq.
 254 24, the tensile strain is expressed as a function of transverse central deflection $w_0(t)$ [40]:

$$\epsilon_x^j = \frac{w_0(t)}{4\zeta(t)} \frac{w_0(t)}{2h}. \quad (25)$$

255 When either D_1 or D_2 reaches unity, failure occurs at the j th layer, which updates the value of
 256 remaining thickness in the next time step for the equation of motion, i.e. $h = h_2 - (j - 1)h_L$. the

257 projectile was assumed to impact the subsequent layer ($j + 1$) without deceleration, the interaction
 258 of which could lead to further penetration according to Eq. 22 or Eq. 24.

259 **3. Validation**

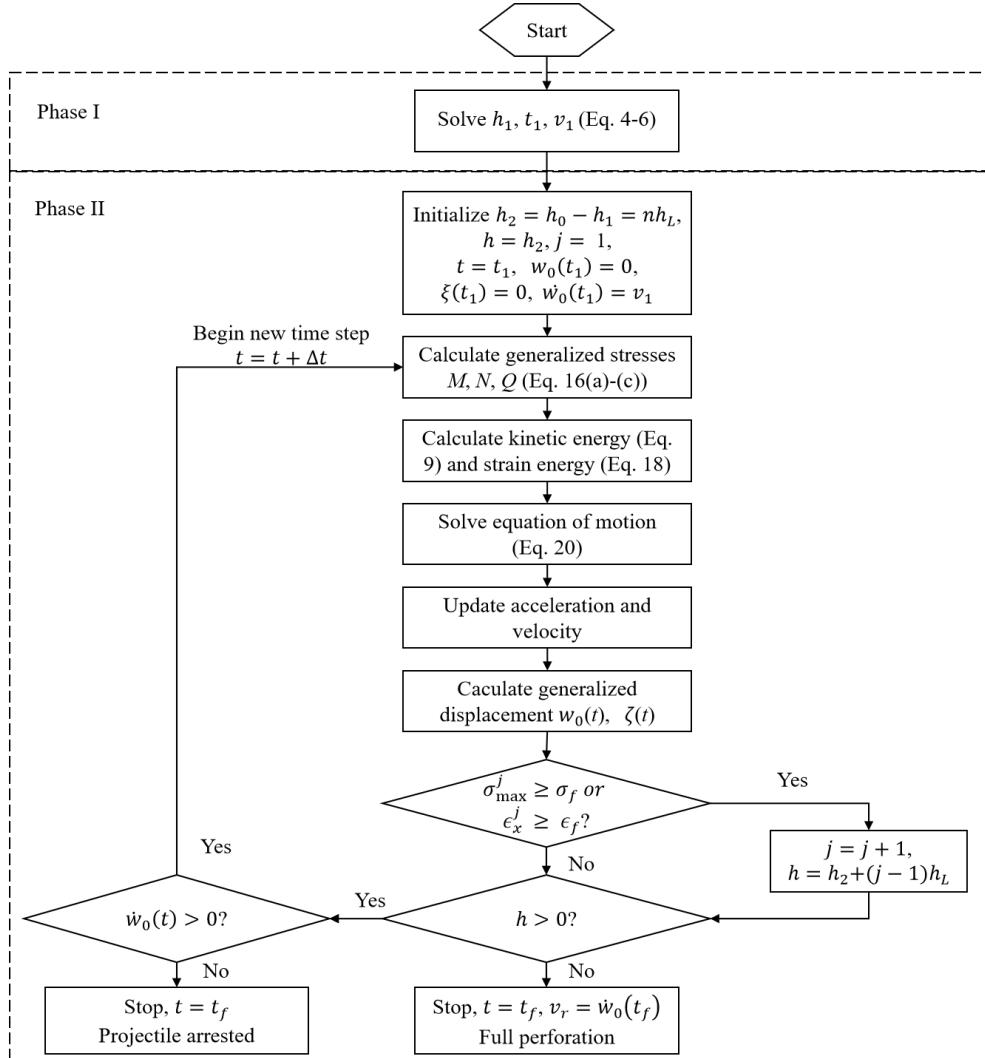


Figure 6: Flow-chart on the numerical implementation of the analytical model in Section 2.

260 Analytical predictions of the TBD and ballistic limit velocity will now be validated against the
 261 experimental data of HB26 UHMWPE laminates by Nguyen et al. [17]. The numerical predictions
 262 in [17] are also included for comparison. The square UMHWPE laminated plate has an edge length
 263 of $2a = 0.3$ m. Each homogenised layer's thickness is $h_L = 0.24$ mm since the thickness of a single
 264 ply is $60 \mu\text{m}$ according to [34]. Two projectile diameters, 12.7 mm and 20 mm, were used in [17].
 265 The thickness of the specimen ranged from 9 mm to 75 mm. The material properties of the HB26
 266 laminated plate (in the corresponding experiments) are tabulated in Table 2. A flow chart on the
 267 numerical implementation of Section 2 is shown in Fig. 6.

Table 2: The material properties of HB26 UHMWPE laminates used in the current analytical model.

Material property	Value	Reference
ρ_0 (kg/m ³)	980	[17]
E_1, E_2 (GPa)	51.1	[17]
E_3 (GPa)	3.62	[17]
G_{12} (GPa)	0.19	[17]
σ_f (GPa)	10	[17]
ϵ_f	0.8	[39]

3.1. TBD and travelling hinge position

Figure 7 compares the analytical predictions of transient TBD and travelling hinge position to the experimental results in the work by Nguyen et al. [17] for HB26 UHMWPE laminated plate targets with three different thicknesses. Notice that the ballistic loads in all three tests were not sufficiently intense to cause full penetration. The predicted temporal evolution of TBD with $\lambda = 0$ agrees well with the experimental counterpart, including the maximum transverse bulging deflection and the time instant at which the maximum w_0 was reached, as can be seen in Figs. 7a, 7c and 7e. Unsurprisingly, prediction of TBD with $\lambda = 1$ was significantly less than that with $\lambda = 0$ due to more structural resistance from the membrane action. Since the prediction based on the value of $\lambda = 0$ leads to the best fit with the experimental data, this value will be used throughout this work. Using $\lambda = 0$ would neglect the contribution from membrane effect. This coincides with the analytical work by Liu et al. [41] who neglected the membrane effect and used a SDOF model with only a bending stiffness to predict the large deflection response of UHMWPE composite under impact loading, the results of which agreed well with their experimental data. Unlike monolithic (metallic) plates, it is *conjectured* that the interlaminar strength of a composite plate does not typically offer sufficient resistance against pull-in and it is also impossible to replicate a through-thickness ‘fully-clamped’ boundary condition experimentally for any composite plate. Unlike [41], this work has laid a theoretical foundation which considers the effect of bending moment, membrane force and transverse shear during the dynamic response of UHMWPE composite under ballistic loading. Readers can adjust the effects of membrane force by changing the value of λ depending on the support condition. It is worth highlighting that in the case of body armour - this is mostly likely to be unsupported along the boundary - substantial pulling-in effect is expected. In this case, the membrane effect can be compensated by choosing a small value of λ .

The analytical model successfully predicts the monotonic increase of dimensionless hinge position ζ/a over time, corroborating the expansion of the deformation region during the impact event. However, the analytical model with $\lambda = 0$ over-predicts the dimensionless hinge position after $t' = 200 \mu\text{s}$. The overprediction is more evident in relatively thick targets, i.e. $h_0 = 20$ and 36 mm. The discrepancy may be due to the ‘pulling-in’ effect resulting from a lack of clamping force in the experiments where significant in-plane displacement of the composite at the boundary was observed in the experiments. Therefore, it was difficult for the hinge to reach the boundary in the

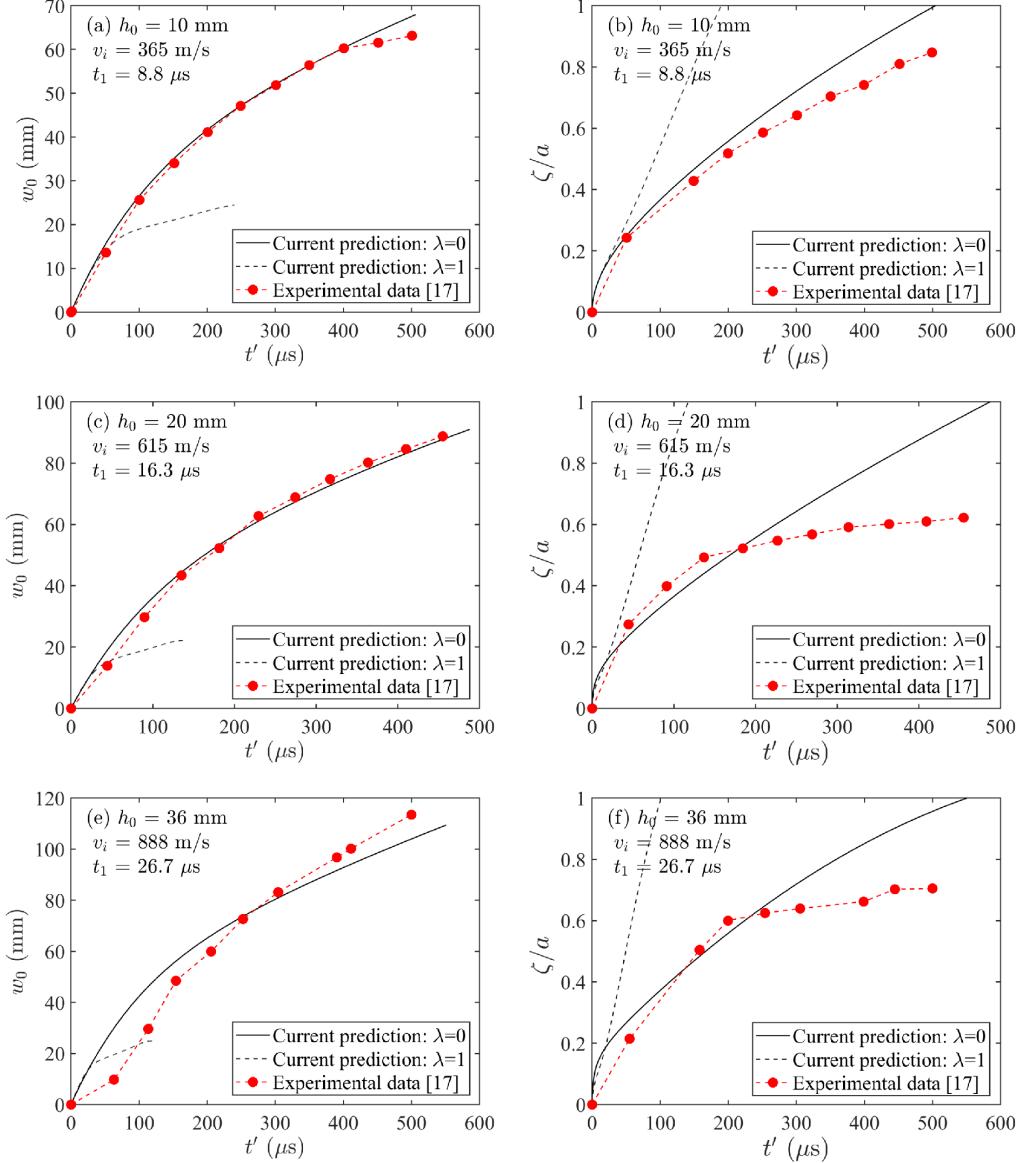


Figure 7: Comparison between the analytical predictions and the experimental data in [17] for HB26 UHMWPE laminates of three different thicknesses ($h_0 = 10, 20, 36$ mm): transient bulging deflection $w_0(t)$ (left column) and dimensionless hinge position $\zeta(t)/a$ (right column). The blunt projectile has a diameter of $2R=20$ mm. Notice that in the experimental work of [17], the time duration for phase I was not reported. In this case, w_0 was plotted as a function of $t' = t - t_1$ to allow the comparison to be made. The value of t_1 in the analytical prediction was inserted in each subplot. $\lambda = 1$ and $\lambda = 0$ refer to the lower and upper bounds of the current prediction respectively.

298 experiments.

299 3.2. *Ballistic limit*

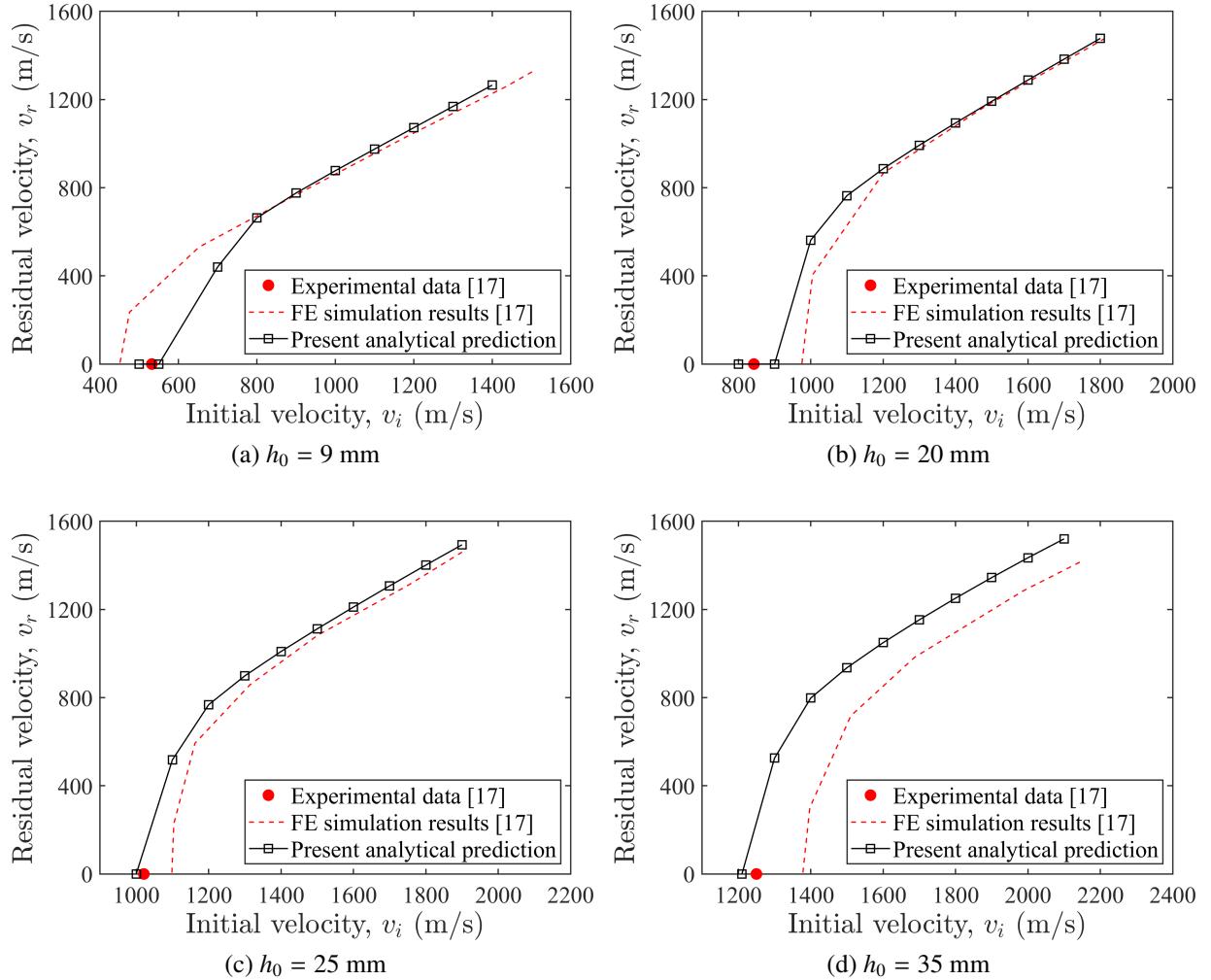


Figure 8: Comparison between analytical predicted residual velocity and published data [17] for HB26 UHMWPE laminates of four different thicknesses ($h_0 = 9, 20, 25, 35$ mm). The blunt projectile has a diameter of $2R = 12.7$ mm.

300 The predicted residual velocities with $\lambda = 0$ are compared to the corresponding data (numerical
 301 and experimental) in the literature for ballistic impact in Figs 8 and 9. In general, the analytical
 302 model is capable of predicting the ballistic curve of UHMWPE composite for a wide range of
 303 thicknesses ($10 \leq h_0 \leq 75$ mm) under two different projectile diameters ($2R = 12.7$ and 20 mm).
 304 For the ballistic impact under two projectile sizes, the current prediction of residual velocity agrees
 305 well with the finite element results in [17] for all the target thicknesses with the notable exceptions
 306 of $h_0 = 35$ mm, $2R = 12.7$ mm and $h_0 = 75$ mm, $2R = 20$ mm where the current prediction of
 307 residual velocity is greater than that predicted by the numerical model in [17]. The intersection
 308 of the ballistic curve to the x -axis in Figs. 8 and 9 refers to the ballistic limit velocity. In the
 309 current analytical model, ballistic limit velocity can be obtained by finding the initial velocity of

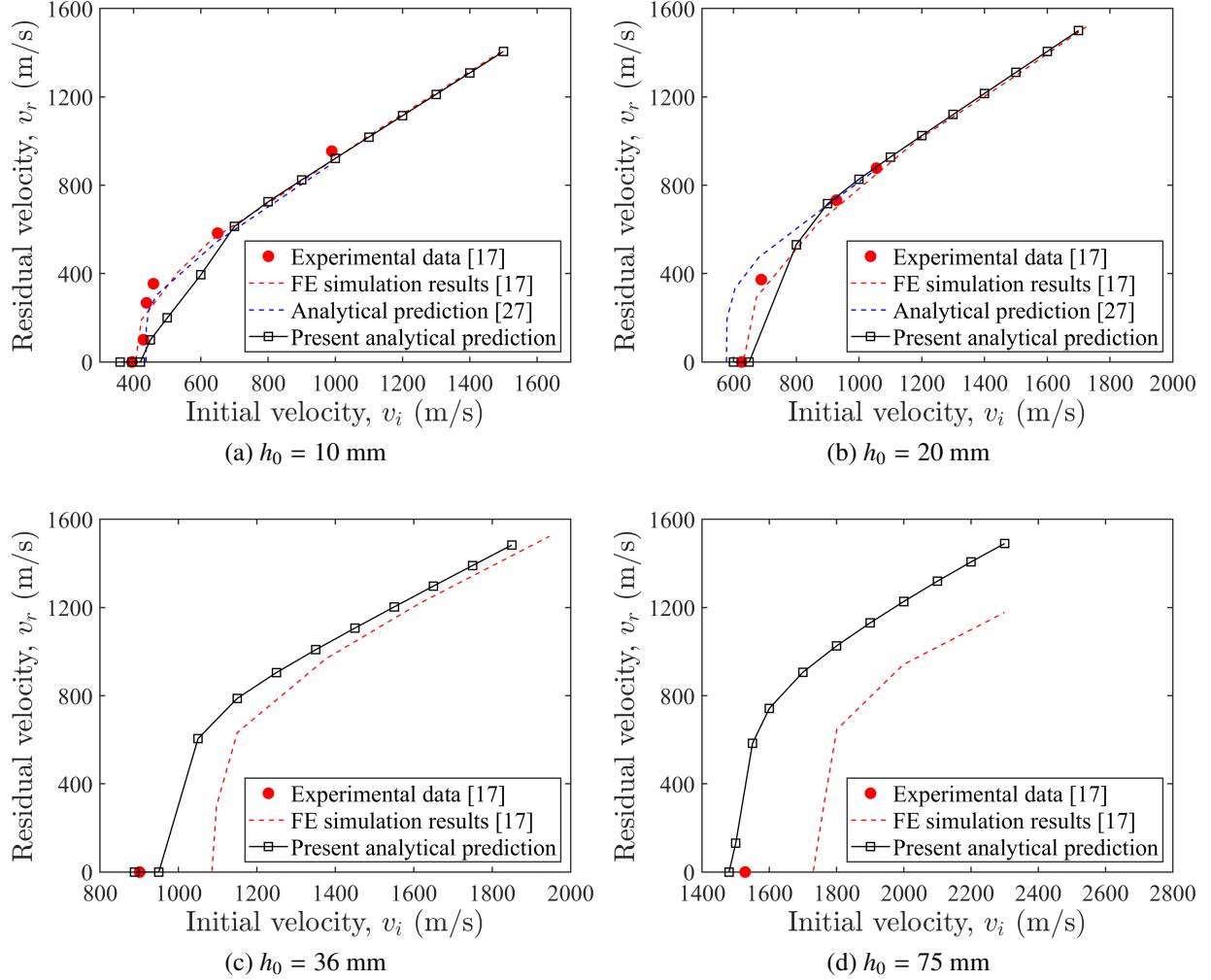


Figure 9: Comparison between analytical predicted residual velocity and published data [17] for HB26 UHMWPE laminates of four different thicknesses ($h_0 = 10, 20, 36, 75$ mm). The blunt projectile has a diameter of $2R = 20$ mm. The analytical prediction by Zhang et al. [27] was also inserted for comparison for cases of $h_0 = 10$ and 20 mm.

310 the projectile to cause complete penetration of the target with zero residual velocity in an iterative
 311 process. The analytical predictions of ballistic limit velocities were in excellent correlation with
 312 the experimental counterpart as seen in Figs. 10a and 10b.

313 4. Discussion

314 In this section, the validated model is employed to provide further insights into the dynamic fail-
 315 ure behaviour, travelling hinge phenomenon and the effect of impact velocity during the ballistic
 316 impacts of UHMWPE laminated plate. A typical laminated plate with material properties and in-
 317 plane dimensions identical to those studied in the preceding section was used here. A thickness of

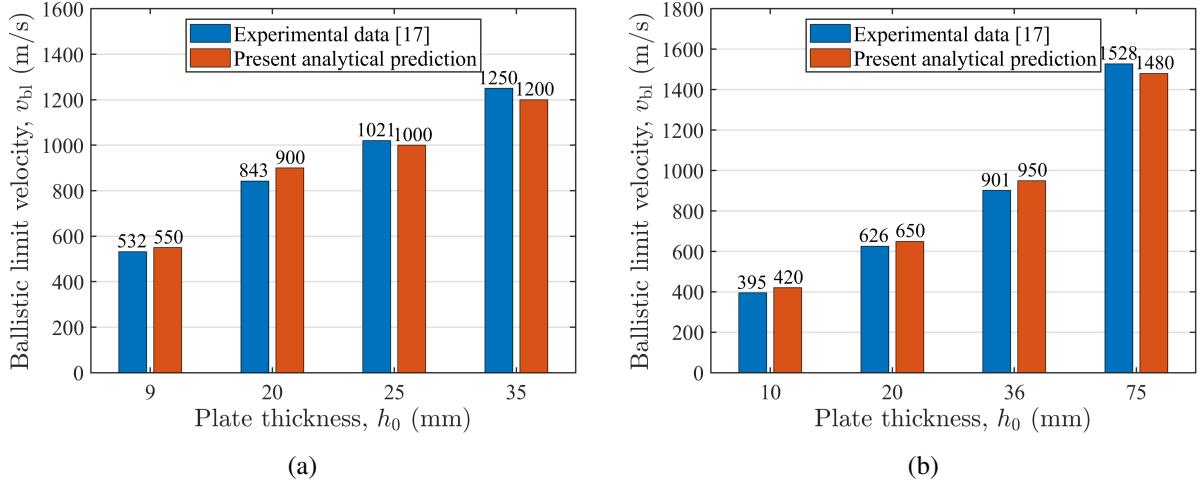


Figure 10: Comparison between analytical prediction and published data [17] for ballistic limit velocity under blunt projectiles of (a) $2R=12.7$ mm and (b) $2R=20$ mm.

318 36 mm and a projectile diameter of 20 mm were used throughout this section.

319 *4.1. Evolution of damage*

320 To provide insights into the evolution of failure, damage parameters D_1 and D_2 were plotted as
321 a function of time in Fig. 11a at $v_i = 888$ m/s. The initial velocity was deliberately chosen
322 to be below the ballistic limit velocity (901 m/s). The horizontal dash line refers to the critical
323 condition of the damage parameters reaching unity. Failure, due to either mixed mode failure or
324 tensile failure, would not take place if the damage curve is below this horizontal dash line. Part
325 of the figure ($27 \leq t \leq 50\mu\text{s}$) was magnified to showcase the prediction of equivalent stress at
326 the laminated plate centre during the initial response in phase II. It can be seen that the maximum
327 equivalent stress criterion (Eq. 22) was satisfied at the outset of the phase II response, leading
328 to the instant failure of the impact-receiving layer. The damage parameter D_1 then oscillates
329 close to the value of one. The intersection points of the black curve with the horizontal dash line
330 ($D_1 = 1$) refer to the time instants when progressive layer-by-layer damage happens across the
331 thickness. After $t > 50\mu\text{s}$, the damage parameter D_1 reduces monotonically with time indicating
332 that mixed mode failure was absent. This prediction coincides to that in the analytical work by
333 Olsson [37] who also showed that the stress predicted by classical plate theory increases and then
334 decreases over time for composite plates. The red solid curve in Fig. 11a denotes the time history
335 of the damage parameter for the tensile failure D_2 , which increases monotonically with time. The
336 maximum value of D_2 at $t_f = 536\mu\text{s}$ was less than unity, corroborating that tensile failure was
337 absent. That damage parameter D_1 or D_2 is less than unity when the projectile's velocity reduces
338 to zero confirms that full penetration did not take place, which is in line with the experimental
339 observation.

340 Figure 11b shows the corresponding analytical prediction of the temporal evolution of the thickness
341 for the intact composite in phase I and II response. The thickness drops from 36 mm to 15.2

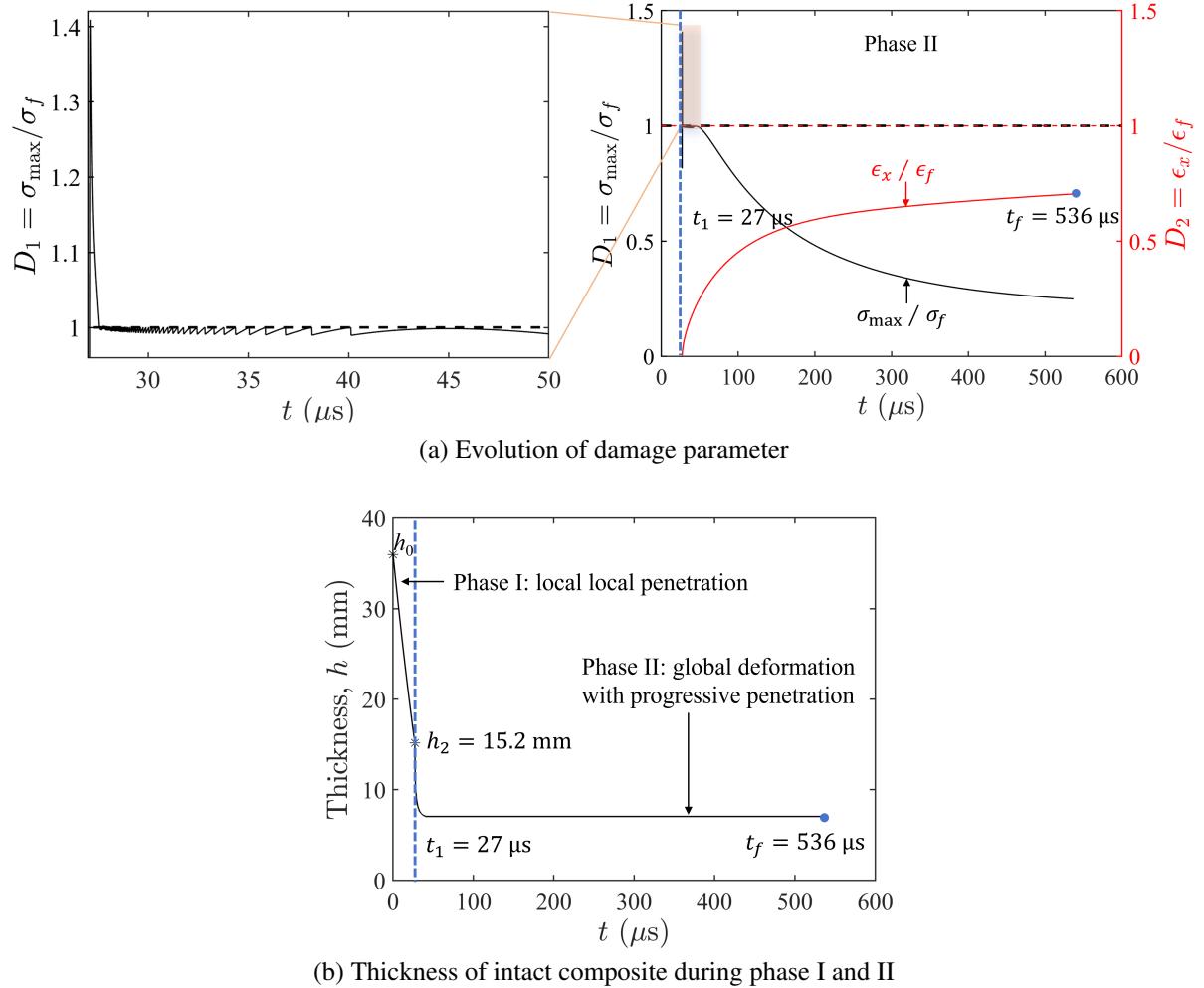


Figure 11: Analytical predictions of the time-history of (a) damage parameters, (b) thickness of intact composite for 36 mm thick laminated plate impacted by a projectile of diameter $2R = 20\text{ mm}$ at $v_i = 888\text{ m/s}$. The projectile did not penetrate completely the target.

342 mm during the local penetration (phase I) under only $27\mu\text{s}$. In phase II, mixed-mode failure occurs
 343 continuously at the impact-receiving layer, albeit only for a short period of $13\mu\text{s}$. The UHMWPE
 344 laminated plate has a remaining thickness of 7.5 mm to withstand the projectile until it is fully
 345 arrested.

346 The analytical prediction of the evolution of equivalent stress distribution (Eq. 23) for the same
 347 impact case in Fig. 11 was shown in Fig. 12. The stress contour on the impact-receiving layer
 348 (the sub-laminate that was in contact with the projectile) was given. The prediction was mapped
 349 across the symmetrical planes to showcase the stress contour on the entire plane. The maximum
 350 equivalent stress was found to be always at the centre at different time frames, which justifies the
 351 assumption made in the analytical model regarding Eq. 23. The equivalent stress was localised at
 352 the central region in the vicinity of the impact at the initial stage in phase II. A more uniform dis-

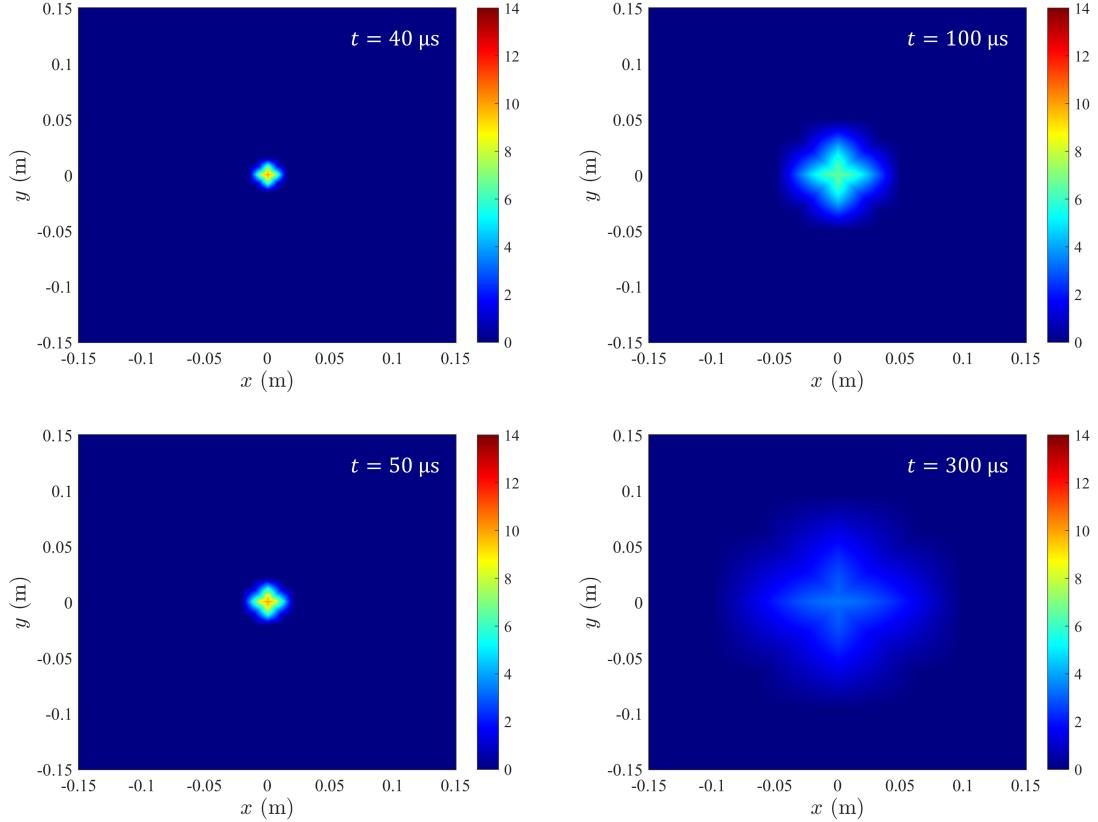


Figure 12: Analytical prediction of the evolution of equivalent stress contours (in GPa) on the impact-receiving layer of a 36 mm thick laminated plate impacted by a blunt projectile of diameter $2R = 12.7$ mm at $v_i = 888$ m/s. The projectile was arrested at the time instant of $t_f = 536\mu\text{s}$.

tribution of the equivalent stress was noted with the passage of time. The spread of the equivalent stress is attributed to the high wave speed of the UHMWPE laminated plate which is beneficial to transform a local impact to a global response. The hinge reaches the boundary at the cessation of motion according to Fig. 7f.

Figure 13 and 14 present the analytical predictions for the ballistic impact case of $v_i = 1200$ m/s. The initial velocity was deliberately chosen to exceed the ballistic limit velocity. The time history of damage parameters, the remaining thickness of intact composite, projectile velocity and hinge position were plotted in Figs. 13a, 13b, 13c and 13d respectively. In phase I, projectile velocity reduces from 1200 to 922 m/s (in Fig. 13c) with a significant penetration depth of 25.8 mm (in Fig. 13b). Phase II begins with the initial condition of $v_1 = 922$ m/s and $h_2 = 10.2$ mm. As seen in Fig. 13a, the stress-based damage parameter D_1 drops quickly to unity, and maintains at one until $t_f = 67\mu\text{s}$, which indicates that progressive ply-by-ply failure occurs continuously in phase II. The stress-based damage is more dominant than the strain-based damage since D_1 is greater than D_2 for the majority of the response. D_2 finally increases up to unity at $t = 67\mu\text{s}$, at which instant the remaining composite abruptly ruptures almost instantaneously, as seen in

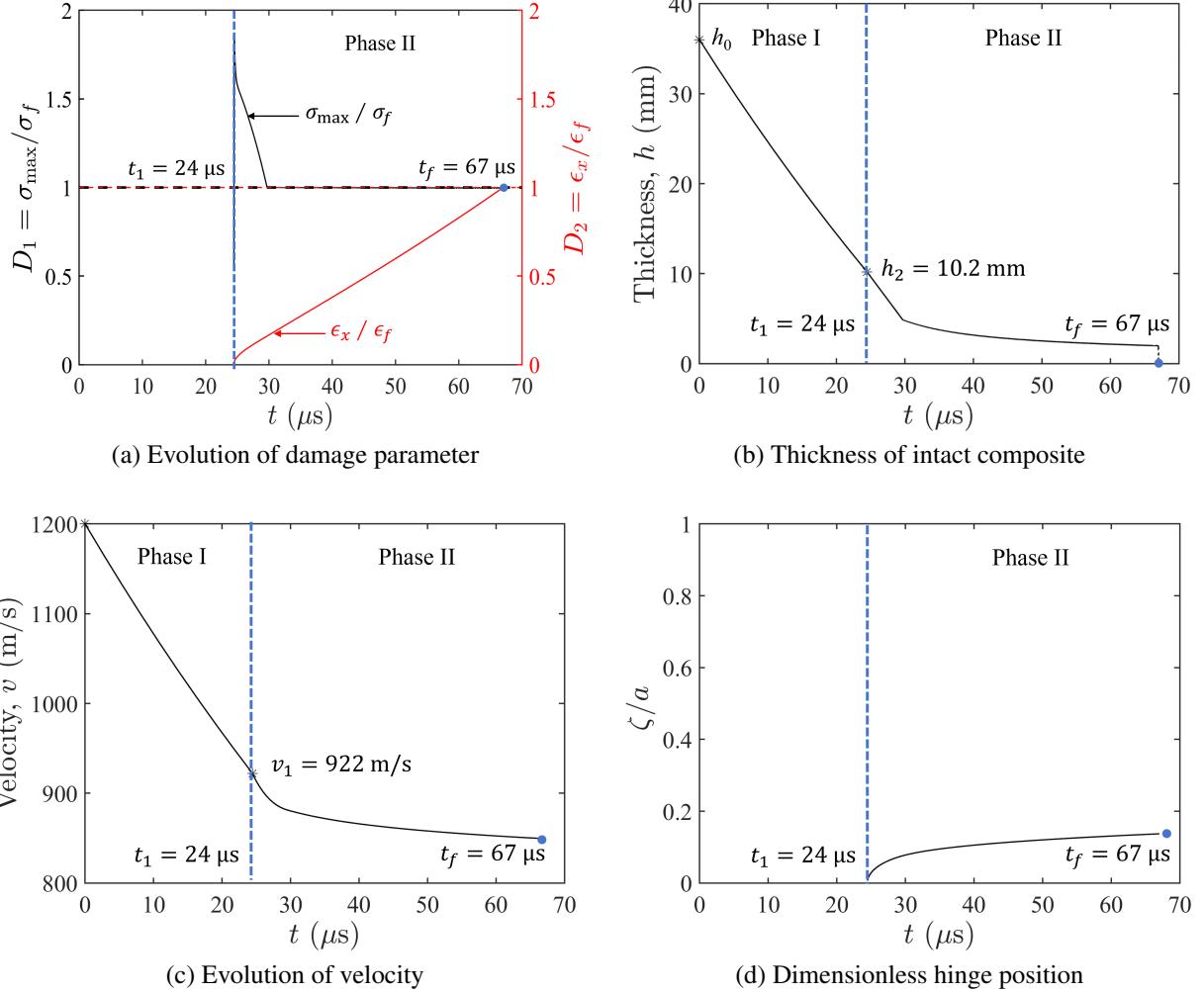


Figure 13: Analytical predictions of the time-history of (a) damage parameters, (b) thickness of intact composite and (c) velocity and (d) dimensionless hinge position for a 36 mm thick laminated plate impacted by a blunt projectile of diameter $2R = 12.7$ mm at $v_i = 1200$ m/s. Complete penetration occurs at the time instant of $t_f = 67 \mu s$.

368 Fig. 13b. This is because, in the current analytical modelling, the tensile strain at the plate centre
 369 is identical for different sub-laminates since it was assumed that the deformation was unvaried
 370 through the thickness. Therefore, when the failure occurs at $D_2 = 1$, the damage criterion would be
 371 satisfied across all the sub-laminates. This prediction is reasonable since according to experimental
 372 observation in [11, 19] that the intact composite can be ruptured together by tensile tearing. Since
 373 the intact composite was penetrated continuously during phase II, the resistance force to arrest the
 374 projectile was minimal, leading to a significant residual velocity of $v_r = 849$ m/s. Due to the rather
 375 transient response, i.e. $t_f = 67 \mu s$, the distance that the hinge travels is limited $\zeta(t = t_f)/a = 0.14$ as
 376 seen in Fig. 13d.

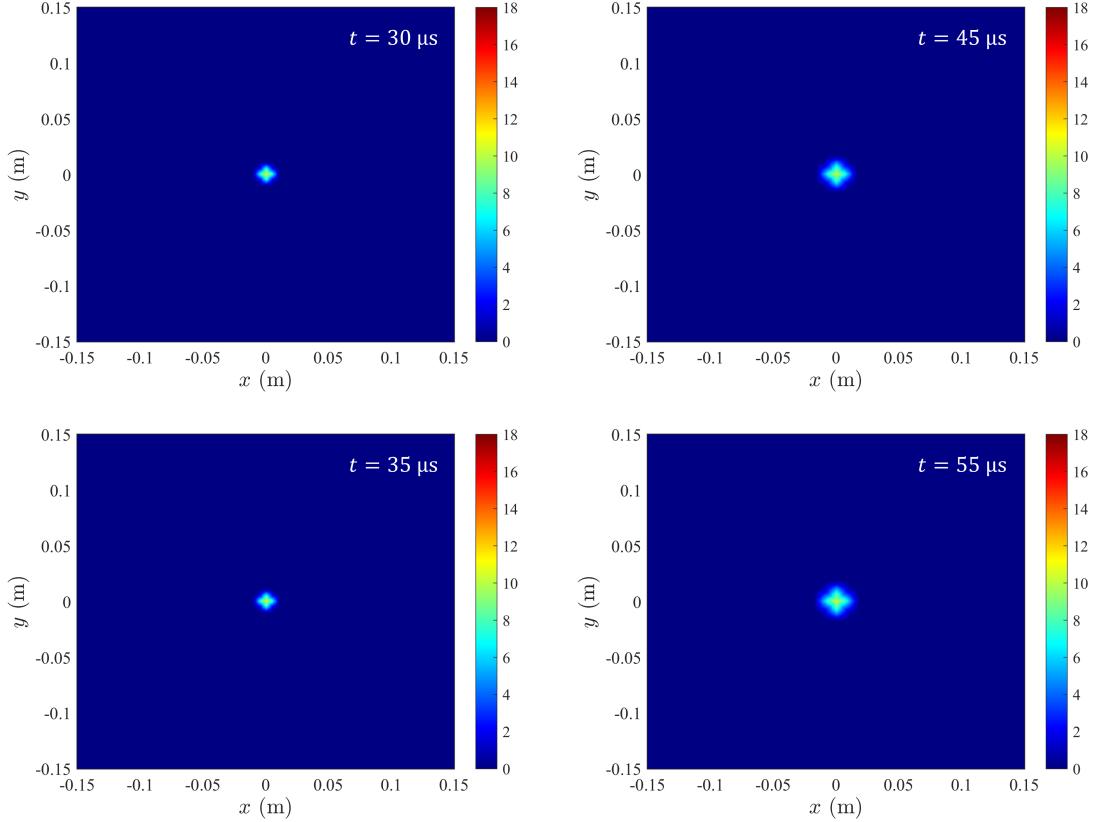


Figure 14: Analytically predicted equivalent stress contours (in GPa) on the impact-receiving layer of a 36 mm thick laminated plate impacted by a projectile of diameter $2R = 12.7$ mm at $v_i = 1200$ m/s.

377 Figure 14 shows the equivalent stress distribution on the impact-receiving layer at selected time
 378 frames from $t = 25 - 65 \mu\text{s}$. The equivalent stress was concentrated at the impact zone during
 379 the entire ballistic response, which attributed to the progressive failure and reduction of thickness
 380 according to the stress-based damage criterion as seen previously in Fig. 13. The rather short
 381 distance travelled by the hinge leads to the stress concentration.

382 4.2. Travelling hinge

383 As alluded to in the introduction, various assumptions and theories were used in the literature
 384 [22, 27, 43] regarding the motion of the hinge in the analytical modelling of the dynamic response
 385 of UHMWPE laminates subjected to ballistic impact. In this subsection, the assumptions in the
 386 literature were scrutinised. In the experimental work by Nguyen et al. [17], hinge position and
 387 speed of UHMWPE composite with three different thicknesses ranging from $h_0 = 10 - 36$ mm were
 388 recorded which served as benchmarks to evaluate the efficacy of predictions based on different
 389 assumptions. Notice that in all three test cases studied in this subsection (which coincide to the
 390 same in Fig. 7), full penetration did not take place.

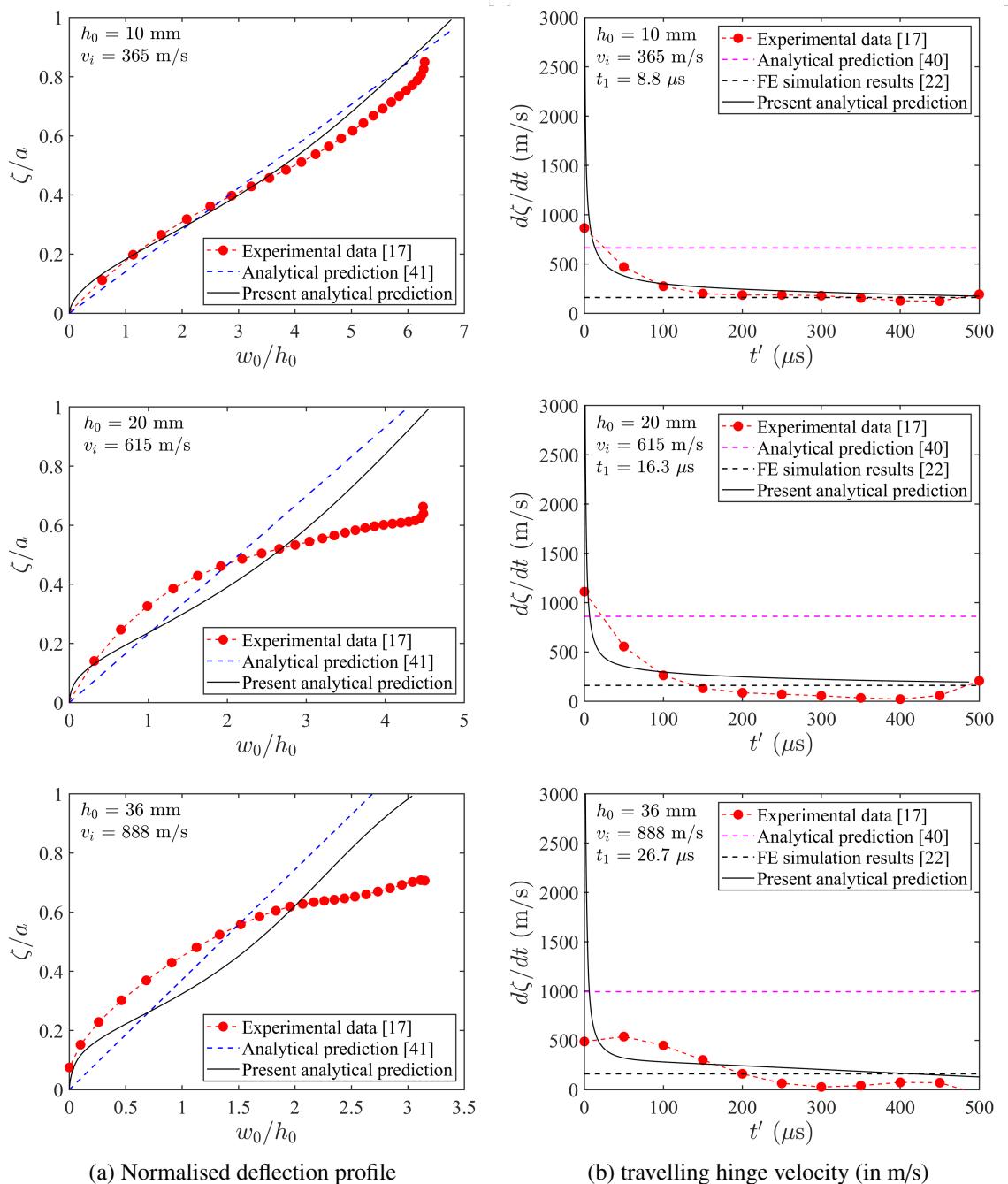


Figure 15: Comparison of experimental measurement to predictions by different models: (a) normalised deflection profiles and (b) hinge velocities. $\text{---} \bullet$ by Nguyen et al. [17]; --- by current analytical model; $\text{---} \text{---}$ by Leigh Phoenix and Porwal [42]; $\text{---} \text{---}$ by Smith et al. [43]; $\text{---} \text{---}$ by Yang et al. [22].

391 Figure 15a compares the normalised deflection profile (ζ/a as a function of w_0/h_0) obtained ex-
 392 perimentally (extracted and re-arranged based on the experiment data of [17]) to the analytical
 393 predictions. Through a one-dimensional (1D) yarn impact model, Leigh Phoenix and Porwal [42]
 394 found that the deflection (or cone) angle γ is a constant value dependent only on the initial velocity
 395 of projectile v_i and the longitudinal wave velocity C_L , i.e.

$$\gamma \approx (2v_i/C_L)^{1/3}. \quad (26)$$

396 This approximation of deflection angle was employed recently in the analytical model by Zhang
 397 et al. [27]. Notice that $\tan \gamma$ is the slope of the blue dashed line in Fig. 15a. It can be seen that
 398 unlike the approximation made in [27, 42] where the slope is a constant, the dimensionless hinge
 399 position ζ/a increases nonlinearly with dimensionless deflection w_0/h_0 as seen in the experimen-
 400 tal observation. The current analytical model successfully captured the nonlinear behaviour of the
 401 hinge position as a function of deformation. Both the current analytical prediction and the pre-
 402 diction based on Eq. 26 agree well with the experimental counterpart for the thin target ($h_0 = 10$
 403 mm). However, for relatively thick targets ($h_0 = 20$ and 36 mm) where the ‘pulling-in’ effect was
 404 evident, both models led to overprediction of the hinge position for a given dimensionless TBD.

405 Figure 15b compares the time-history of hinge speed measured in the experiment of [17] to the
 406 predictions by different models (including the current analytical model, theoretical methods in
 407 [43] and finite element model in [22]). Smith [43] proposed that the travelling hinge velocity in
 408 isotropic one-dimensional elastic fibres is constant over time and can be expressed by:

$$\frac{d\zeta}{dt} = C_L \left[\sqrt{\epsilon_0(1 + \epsilon_0)} - \epsilon_0 \right] \quad (27)$$

409 where $\epsilon_0 \approx (\sqrt{2}v_i/C_L)^{4/3}$ is the 1D tensile strain. Notice that Smith’s formula to estimate the
 410 travelling hinge speed was extensively used in the existing analytical work [30, 44]. On the other
 411 hand, Yang et al. [22] assumed a constant hinge velocity in their analytical model based on finite
 412 element simulation results for the same three tests in Fig. 15a. They found that travelling hinge
 413 velocity stabilises at a constant value of 165 m/s after an initial deceleration, which is regardless of
 414 the thickness of the UHMWPE laminated plate and the projectile velocity. The two horizontal lines
 415 refer to Eq. 27 and the constant value (165 m/s) used in the analytical model of [22]. It can be seen
 416 that hinge speed being a constant value was a crude assumption when comparing the horizontal
 417 lines to the experimental counterpart. The current analytical model captured qualitatively the
 418 significant drop in hinge speed with time. The hinge speed indeed reduces to a plateau value
 419 according to the experimental results. The predicted plateau value of the hinge speed agrees well
 420 with the numerical prediction by the sophisticated three-dimensional finite element model in [22],
 421 highlighting the accuracy of the current prediction on hinge speed. It is noteworthy that using
 422 detailed 3D finite element simulation to obtain value for the key variable defeats the purpose of
 423 quick analytical estimation.

424 4.3. The effect of increasing impact velocities

425 A finite number of analytical simulations were carried out to investigate the effect of initial veloc-
 426 ities on the permanent hinge position, residual thickness and energy absorption characteristics of

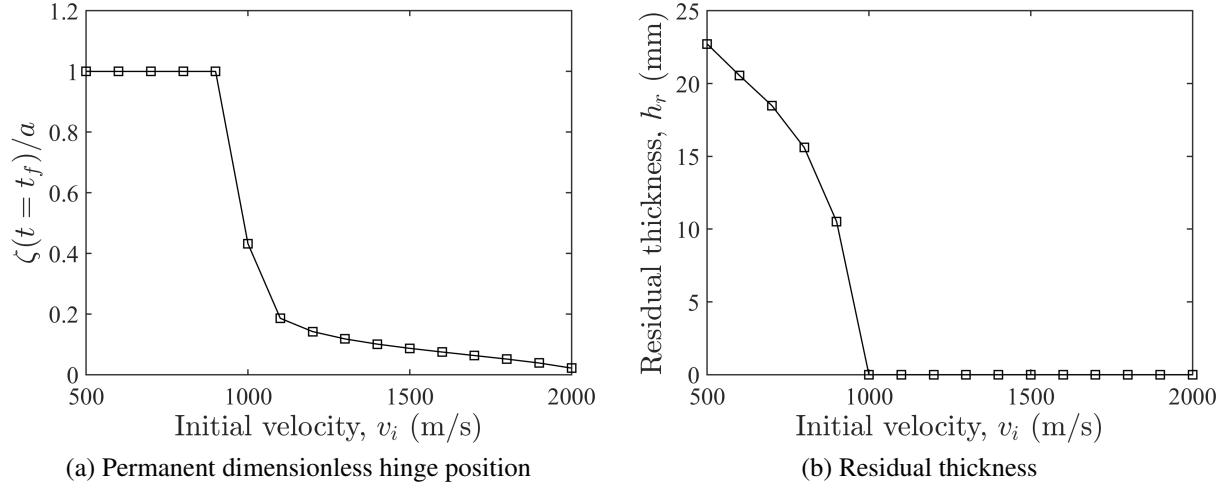


Figure 16: Analytical predictions of (a) permanent dimensionless hinge position and (b) residual thickness of a 36 mm thick laminated plate impacted by a projectile of diameter $2R = 20$ mm at different initial velocities.

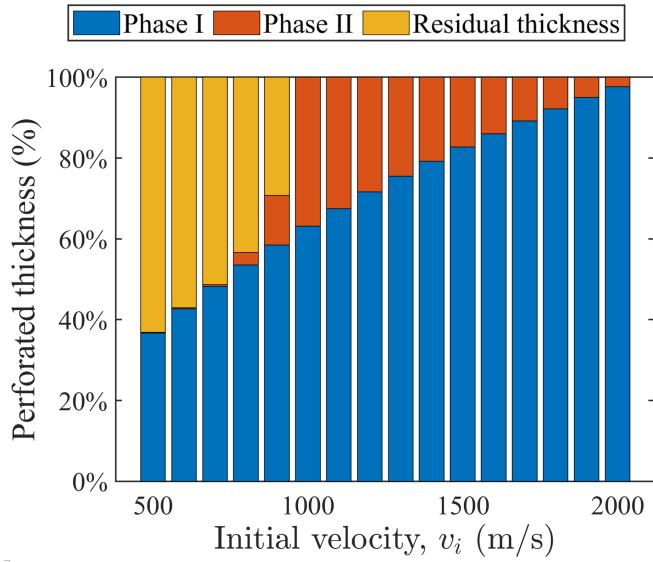


Figure 17: Proportion of penetration depth in phase I and phase II of a 36 mm thick laminated plate impacted by a projectile of diameter $2R = 20$ mm at different initial velocities.

427 the UMHWPE laminated plate. The analytical predictions are shown in Figs. 16-18. The hinge
 428 can only reach the boundary at a low level of initial velocity as seen in Fig. 16a. The permanent
 429 hinge position reduces abruptly with increasing v_i after full penetration occurs. With a higher ini-
 430 tial velocity, the residual thickness decreases monotonically, as seen in Fig. 16b. The proportions
 431 of penetration depths in phase I and II as well as the residual thickness were delineated in Fig.
 432 17. It is increasing to note that phase I dominates the penetration depth regardless of the initial

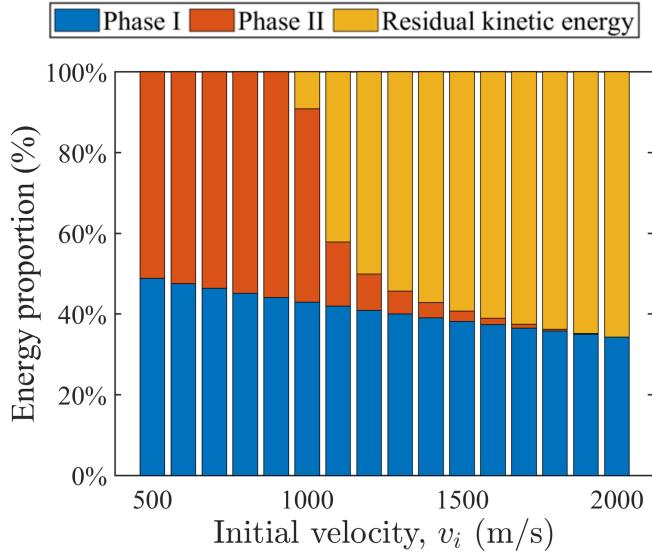


Figure 18: Partition of energy in phase I and II.

433 velocity. Progressive failure may not occur (zero perforated thickness in phase II) when the impact
 434 loading is not sufficiently intense. After full penetration occurs, perforated thickness reduces and
 435 increases in phase I and II respectively with increasing initial velocity.

436 Figure 18 presents the partitioning of energy in phase I and II as a function of initial velocity
 437 v_i . The proportion of energy absorbed during local penetration in phase I decreases slightly with
 438 higher initial impact velocity. Bulging deformation response in phase II plays a key role in dissipating
 439 the kinetic energy of the projectile at an initial velocity that is lower than the ballistic limit
 440 velocity. When full penetration occurs, the energy absorption during phase II quickly diminishes
 441 with greater v_i leading to a significant residual kinetic energy of the projectile.

442 5. Conclusion

443 An analytical model is developed and validated against existing experimental data, which is ca-
 444 pable of predicting the transient bulging deflection and ballistic limit velocity of a fully clamped
 445 square UHMWPE laminated plate subjected to ballistic impact by a rigid blunt cylindrical projec-
 446 tile. The structural response of the UHMWPE laminated plate was separated into two uncoupled
 447 sequential phases: phase I is the local penetration into the laminated plate with negligible bulging
 448 deformation; phase II is the large bulging deformation with progressive failure through the thick-
 449 ness. Through the incorporation of an equivalent stress and a tensile strain criteria, the model can
 450 capture the progressive layer-by-layer failure in phase II. The travelling hinge is considered in the
 451 admissible velocity field within the modal analysis and is solved through the Lagrangian equa-
 452 tion. Predictions by the analytical model are shown to be in reasonable agreement with existing
 453 experimental results. The following conclusions were made following our analysis:

454 • Equivalent stress was found to be maximum at the plate center which was initially concen-

455 trated at the impact zone before spreading to a larger region with the travelling hinge.

456 • Travelling hinge's velocity drops nonlinearly with time before reaching a plateau value.

457 • Increasing the initial velocity of the projectile beyond ballistic limit would lead to a reduction

458 of permanent hinge position, a reduction of proportion of perforated thickness in phase

459 II.

460 • Energy absorbed in phase I is significantly higher than that in phase II when full penetration

461 occurs.

462 Acknowledgment

463 This research was financially supported by the National Science Foundation of China under Grant

464 No. 12102049 and 12221002, and the Program for Innovative Research Team Project in NOR-

465 INCO GROUP. The authors are grateful to the anonymous reviewers for their helpful comments.

466 References

- 467 [1] Wu, S., Sikdar, P., Bhat, G. S., Recent progress in developing ballistic and anti-impact materials: Nanotechnology and main approaches, *Defence Technology* 21 (2023) 33–61.
- 468 [2] Joshi, A., Mishra, A., Saxena, V. K., Impact response and energy absorption mechanisms of uhmwpe fabric
- 469 and composites in ballistic applications: A comprehensive review, *Composites Part A: Applied Science and*
- 470 *Manufacturing* 185 (2024) 108314.
- 471 [3] Zhu, Y., Song, Y., Wu, W., Niu, W., Fan, Z., Wen, Y., Xu, C., Xia, M., Ballistic impact wave and bulge profile
- 472 propagation characteristics and blunt injury assessment of uhmwpe laminate composite, *Journal of Materials*
- 473 *Research and Technology* (2024) In press.
- 474 [4] Vargas-Gonzalez, L. R., Gurganus, J. C., Hybridized composite architecture for mitigation of non-penetrating
- 475 ballistic trauma, *International Journal of Impact Engineering* 86 (2015) 295–306.
- 476 [5] Cong, C., Zhu, W., Liu, J., Wei, X., A review on the analytical and numerical models for ballistic limit of
- 477 fiber-reinforced composites, *Composite Structures* 345 (2024) 118392.
- 478 [6] Doddamani, S., Kulkarni, S. M., Joladarashi, S., T s, M. K., Gurjar, A. K., Analysis of light weight natural fiber
- 479 composites against ballistic impact: A review, *International Journal of Lightweight Materials and Manufacture*
- 480 6 (3) (2023) 450–468.
- 481 [7] Yuan, Z., Wang, K., Qiu, J., Xu, Y., Chen, X., A numerical study on the mechanisms of dyneema® quasi-
- 482 isotropic woven panels under ballistic impact, *Composite Structures* 236 (2020) 111855.
- 483 [8] Hazzard, M. K., Trask, R. S., Heisserer, U., Van Der Kamp, M., Hallett, S. R., Finite element modelling of
- 484 dyneema® composites: From quasi-static rates to ballistic impact, *Composites Part A: Applied Science and*
- 485 *Manufacturing* 115 (2018) 31–45.
- 486 [9] Gilson, L., Imad, A., Rabet, L., Coghe, F., On analysis of deformation and damage mechanisms of dyneema
- 487 composite under ballistic impact, *Composite Structures* 253 (2020) 112791.
- 488 [10] Zhu, Y., Liu, K., Wen, Y., Cui, G., Niu, W., Wang, Y., Cao, Y., Xu, C., Experimental and numerical study on the
- 489 ballistic performance of ultrahigh molecular weight polyethylene laminate, *Polymer Composites* 42 (10) (2021)
- 490 5168–5198.
- 491 [11] Cao, M., Zhou, D., Wang, Z., Chen, L., An experimental study of the penetration resistance of uhmwpe laminates
- 492 with limited thickness, *Thin-Walled Structures* 196 (2024) 111438.
- 493 [12] O'Masta, M. R., Crayton, D. H., Deshpande, V. S., Wadley, H. N. G., Mechanisms of penetration in polyethylene
- 494 reinforced cross-ply laminates, *International Journal of Impact Engineering* 86 (2015) 249–264.
- 495 [13] Ćwik, T. K., Iannucci, L., Curtis, P., Pope, D., Investigation of the ballistic performance of ultra high molecular
- 496 weight polyethylene composite panels, *Composite Structures* 149 (2016) 197–212.

498 [14] Haris, A., Tan, V. B. C., Effects of spacing and ply blocking on the ballistic resistance of uhmwpe laminates, International Journal of Impact Engineering 151 (2021) 103824.

499 [15] He, Y., Jiao, Y., Zhou, J. Q., Lei, H., Jia, N., Chen, L., Zhang, D., Ballistic response of ultra-high molecular weight polyethylene laminate impacted by mild steel core projectiles, International Journal of Impact Engineering 169 (2022) 104338.

500 [16] Wang, H., Hazell, P. J., Shankar, K., Morozov, E. V., Escobedo, J. P., Impact behaviour of dyneema® fabric-reinforced composites with different resin matrices, Polymer Testing 61 (2017) 17–26.

501 [17] Nguyen, L. H., Lässig, T. R., Ryan, S., Riedel, W., Mouritz, A. P., Orifici, A. C., A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact, Composites Part A: Applied Science and Manufacturing 84 (2016) 224–235.

502 [18] O'Masta, M. R., Deshpande, V. S., Wadley, H. N. G., Mechanisms of projectile penetration in dyneema encapsulated aluminum structures®, International Journal of Impact Engineering 74 (2014) 16–35.

503 [19] Karthikeyan, K., Russell, B. P., Polyethylene ballistic laminates: Failure mechanics and interface effect, Materials & Design 63 (2014) 115–125.

504 [20] Zhu, W., Huang, G., Feng, S., Stronge, W. J., Conical nosed projectile perforation of polyethylene reinforced cross-ply laminates: Effect of fiber lateral displacement, International Journal of Impact Engineering 118 (2018) 39–49.

505 [21] Schiffer, A., Cantwell, W. J., Tagarielli, V. L., An analytical model of the dynamic response of circular composite plates to high-velocity impact, International Journal of Impact Engineering 85 (2015) 67–82.

506 [22] Yang, S., Yan, Z., Gao, Y., Zhang, Y., Wang, Y., Liu, Z., Numerical and theoretical modeling of the elastic-plastic bulging deformation of uhmwpe composite laminate under high-speed impact, International Journal of Impact Engineering 182 (2023) 104771.

507 [23] Chocron, S., King, N., Bigger, R., Walker, J. D., Heisserer, U., van der Werff, H., Impacts and waves in dyneema® hb80 strips and laminates, Journal of Applied Mechanics 80 (031806).

508 [24] Zhu, Q., Yu, Z., A perturbation-based model for the prediction of responses involving delamination during small mass impacts on orthotropic composite plates, Composites Science and Technology 208 (2021) 108754.

509 [25] Zhang, T. G., Satapathy, S. S., Vargas-Gonzalez, L. R., Walsh, S. M., Ballistic impact response of ultra-high-molecular-weight polyethylene (uhmwpe), Composite Structures 133 (2015) 191–201.

510 [26] He, Y., Zhou, J. Q., Jiao, Y., Lei, H., Zhao, Z., Fang, D., Ballistic response mechanism and resistance-driven evaluation method of uhmwpe composite, Defence Technology (2024) In press.

511 [27] Zhang, R., Han, B., Zhou, Y., Qiang, L., Zhao, C., Zhao, Z., Zhang, Q., Ju, Y., Lu, T. J., Mechanism-driven analytical modelling of uhmwpe laminates under ballistic impact, International Journal of Mechanical Sciences 245 (2023) 108132.

512 [28] Liu, P., Wang, Z., Zhou, H., Zhang, H., Huang, G., An analytical model to predict back face deformation of hybrid soft body armors under ballistic impact, International Journal of Impact Engineering 180 (2023) 104723.

513 [29] Jintao, L., Moubin, L., An analytical model to predict the impact of a bullet on ultra-high molecular weight polyethylene composite laminates, Composite Structures 282 (2022) 115064.

514 [30] Langston, T., An analytical model for the ballistic performance of ultra-high molecular weight polyethylene composites, Composite Structures 179 (2017) 245–257.

515 [31] Yuan, Y., Zhu, L., Bai, X., Yu, T. X., Li, Y., Tan, P. J., Pressure–impulse diagrams for elastoplastic beams subjected to pulse-pressure loading, International Journal of Solids and Structures 160 (2019) 148–157.

516 [32] Yuan, Y., Xu, C., Xu, T., Sun, Y., Liu, B., Li, Y., An analytical model for deformation and damage of rectangular laminated glass under low-velocity impact, Composite Structures 176 (2017) 833–843.

517 [33] Yuan, Y., Tan, P. J., Li, Y., Dynamic structural response of laminated glass panels to blast loading, Composite Structures 182 (2017) 579–589.

518 [34] Nguyen, L. H., Ryan, S., Cimpoeru, S. J., Mouritz, A. P., Orifici, A. C., The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite, International Journal of Impact Engineering 75 (2015) 174–183.

519 [35] Yu, T. X., Chen, F. L., The large deflection dynamic plastic response of rectangular plates, International Journal of Impact Engineering 12 (4) (1992) 605–616.

520 [36] Hoo Fatt, M. S., Lin, C., Perforation of clamped, woven e-glass/polyester panels, Composites Part B: Engineering 548 (2023) 109748.

549 ing 35 (5) (2004) 359–378.

550 [37] Olsson, R., Impact response of orthotropic composite plates predicted from a one-parameter differential equa-
551 tion, *AIAA Journal* 30 (6) (1992) 1587–1596.

552 [38] Timoshenko, S., Woinowsky-Krieger, S., *Theory of Plates and Shells*, Engineering mechanics series, McGraw-
553 Hill, 1959.

554 URL <https://books.google.com/books?id=rTQFAAAAMAAJ>

555 [39] Guo, G., Alam, S., Peel, L. D., An investigation of deformation and failure mechanisms of fiber-reinforced
556 composites in layered composite armor, *Composite Structures* 281 (2022) 115125.

557 [40] Jones, N., *Structural Impact*, 2nd Edition, Cambridge University Press, New York, 2012.

558 [41] Liu, Y., Zhang, H., Huang, G., Zhou, H., Chen, J., Wang, Z., *Theoretical model for predicting stabbing resistance
559 of soft body armor comprising fibrous composites*, *International Journal of Impact Engineering* 180 (2023)
560 104716.

561 [42] Leigh Phoenix, S., Porwal, P. K., A new membrane model for the ballistic impact response and v50 performance
562 of multi-ply fibrous systems, *International Journal of Solids and Structures* 40 (24) (2003) 6723–6765.

563 [43] Smith, J. C., McCrackin, F. L., Schiefer, H. F., Stress-strain relationships in yarns subjected to rapid impact
564 loading: Part v: Wave propagation in long textile yarns impacted transversely, *Textile Research Journal* 28 (4)
565 (1958) 288–302.

566 [44] Mamivand, M., Liaghat, G. H., A model for ballistic impact on multi-layer fabric targets, *International Journal
567 of Impact Engineering* 37 (7) (2010) 806–812.