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Abstract

This paper develops an analytical model for the ballistic impact response of UMHWPE laminated
plate, which is capable of capturing transient transverse bulging deformation and flexural wave
propagation. The mathematical framework of the analytical model is based on the is based on
first-order shear deformation plate theory, which uses damage mechanics to model the progressive
through-thickness fracture of the laminated plate. Compared to existing analytical models, the
current model does not need to make assumptions for the travelling hinge speed which is solved
via modal analysis and Lagrangian equation. Analytical predictions of transverse bulging deflec-
tion, travelling hinge position and ballistic limit velocity are validated against experimental data
reported in the literature and they will be shown to be in good agreement for varying projectile
sizes and laminate thicknesses. The maximum equivalent stress of the impact-receiving layer is
found to be governed by the travelling hinge’s position, which can be alleviated with the expan-
sion of the bulging deformation area. At an impact velocity above the ballistic limit, the energy
dissipated through transverse shear in the local penetration phase is significantly higher than in the
subsequent bulging deformation phase.
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13 1. Introduction

14 Ultra-high molecular weight polyethylene (UHMWPE) laminated plates have been increasingly
15 employed in armour systems, due to superior mechanical performance such as high specific strength

Nomenclature

a Half length of the laminated plate
Ajj Extensional stiffness

A, Cross-sectional area of the projectile
C, Transverse wave speed

D, D, Damage parameters

D;; Bending stiffness

E\,E,, E; Young’s modulus

Giy,Go3 Shear modulus

h Intact thickness

ho Total thickness

hy Perforated thickness in phase I

hy Remaining thickness at the beginning of phase II
hy Thickness of each layer

K Shear correction factor

L Lagrangian

m, Projectile mass

M Bending moment

N Membrane force

0 Shear force

0ij Plane stress-reduced stiffness components

R Projectile radius

t Time

H Time duration in phase I

ty Time instant when the motion of projectile ceases or full penetration occurs
t' =t—1t Passage of time in phase II

v =Wwy(t) Projectile’s velocity

Vi Initial velocity of the projectile

Vv, Residual velocity of the projectile

Vol Ballistic limit velocity

wo Transverse central bulging deflection
Y0, Vyz0  Shear displacements

€f Failure strain

€ij» Vij Strain components

e?j, el.lj Membrane and bending strains

€ Tensile strain
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4 Position of the travelling hinge

A Membrane effect coefficient

u Areal density the laminated plate
Vi2 Poisson’s ratio

I1 Total strain energy

ol Density the laminated plate

oy Failure stress

o Stress components

O max Maximum equivalent stress

and specific modulus with exceptionally high wave speeds, allowing for rapid energy absorption
and dispersion [1]. The cross-ply UMHWPE is a typical laminated plate, constructed from a high-
volume fraction of UHMWPE fibre composites (>80%) with a [0°/90°] cross-ply architecture,
and a low-volume fraction of thermoplastic polymer matrix (<20%), endowing excellent ballistic
resistance to high-speed localised impact [2]. In order to assess the consequence of the ballistic
impact or to achieve an optimised structural design, significant effort has been devoted to fostering
an understanding of the deformation and failure mechanisms of cross-ply UHMWPE laminated
plates under ballistic perforation. Transverse bulging deflection (TBD) at the non-impact-receiving
face (when the integrity of the laminated plates is not compromised) and the ballistic limit velocity
vy (above which the target is fully penetrated) are two important resultant effects, which attribute,
respectively, to the blunt trauma injury [3, 4] on the possible substrate occupant and overall ballistic
resistance performance [5, 6]. Although numerical models [7-10] exist that can provide high-
fidelity solutions of the ballistic response of the cross-ply UMHWPE laminated plate, they are,
in general, computationally expensive and are not feasible for large-scale iterative simulation in
optimisation. This highlights the importance of developing an analytical model that permits quick
and accurate estimation of the TBD and the v,; while capturing the various failure modes of the
cross-ply UMHWPE laminated plate at a wide range of impact velocities.

A considerable body of experimental work on the ballistic response of UMHWPE laminated plate
already exists [11-16]. One example is the experiment by Nguyen et al. [17] where it was shown
that the deformation and failure of UMHWPE laminated plate under ballistic impact can be de-
lineated into three sequential stages: stage I - shear plugging in the vicinity of the impact zone
with negligible TBD; stage II - delamination, matrix cracks, progressive through-thickness tearing
of the fibre with large TBD; stage III - further deformation of the intact laminated plate until full
penetration occurs. The progressive failure mechanisms during the aforesaid response stages are
quite complex and are found to be influenced by various factors such as impact velocity [18], plate
thickness [19], projectile shape [20] etc.

The response of composite laminates to localised transverse impact leads to bulging deformation
dictated by the propagation of longitudinal, shear and flexural waves travelling in the compos-
ite [21]. The region of non-zero transverse bulging deformation was governed by the ‘travelling
hinge’ (or known as the dynamic cone), which emanates from the target’s centre towards the pe-
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riphery [22]. Several experimental works [16, 23] studied the evolution of the lateral deformation
contour using high-speed camera and 3D-DIC techniques, and highlighted the importance of the
deformation pattern and the travelling hinge speed on the bulging deformation of the composite
laminates. Karthikeyan et al. [19] employed the dynamic shadow moiré method to acquire back
deformation data of UHMWPE laminated plates subjected to steel ball impact. They found that the
lateral deformation is in a diamond shape, which expands at an approximately constant speed from
the impact location until reaching the fixed boundaries. Zhu et al. [24] utilized 3D-DIC technology
to observe the impact response of UHMWPE orthogonal laminated plates subjected to large-sized
lead-core pistol projectile impacts. They noted that the convex deformation contour transformed
from the initial diamond shape to a circular or square shape when the hinge speed along the +45°
and +135° directions gradually exceeded that along the fibre direction. Similar phenomena were
also observed by Vargas-Gonzalez et al. [4] who studied the ballistic performance of large-sized
Spectra Shield laminated plates. Zhang et al. [25] employed 3D-DIC technology to capture the
evolution of the bulging deformation area of Dyneema® HB80 laminated plates subjected to pro-
jectile impacts and discovered that as the tensile wave propagated through the fibres to the edges
and reflected, the speed of lateral deformation decreased when reducing the initial impact velocity.

Different analytical models — based on either momentum [22, 26, 27] or energy conservation [28—
30] — were developed to predict the temporal evolution of the TBD and the ballistic limit velocity
of the UMHWPE laminated plate under ballistic impact. Based on an energy conservation ap-
proach, Li et al. [29] developed an analytical model to predict the time histories of the accelera-
tion according to the energy absorbed by each through-thickness failure mode (including matrix
crush, laminate shear, laminate compressive, fiber stretch, fiber break and delamination), as well
as the ballistic limit velocity. The equation of motion is one-dimensional (in the out-of-plane di-
rection) and did not consider the evolution of the lateral deformation (i.e. the travelling hinge
phenomenon). Langston [30] proposed an analytical model to estimate the reduction of a projec-
tile’s kinetic energy by balancing it with the various energy absorption mechanisms activated in
the composite (fiber tensile strain, delamination, matrix cracking, acceleration of the composite
mass, and shear failure of the composite). As opposed to the approach in [29], the effect of the
radius of wave propagation on the energy absorbed by tensile strain was considered. It was found
that majority of the energy was dissipated by tensile strain and the acceleration of composite mass.
Zhang et al. [27] developed an analytical model based on the conservation of momentum to pre-
dict the two-phase impact response (a local failure phase followed by a bulging deformation phase
with progressive penetration of projectile) of UMHWPE laminated plate and its ballistic impact
velocity. The lateral deformation was considered based on the assumption that the angle of the
bulging cone is proportional to the cubic root of the initial velocity at the outset of the bulging
deformation phase. Focusing on the low-speed impact case where only large deformation of the
UMHWPE laminated plate is of interest, Yang et al. [22] also used conservation of momentum to
derive the equation of motion for the UMHWPE laminated plate. The hinge speed was assumed
to be a constant and was obtained via numerical simulation. As mentioned above, the fidelity
of the analytical model relies upon the accurate prediction of the hinge speed which governs the
lateral deformation region where various failure modes take place. In the above analytical mod-
els, however, the hinge speed was either approximated using or was obtained as a fixed constant
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via numerical simulation, which cannot reflect the deformation mechanism due to the outward
travelling stress wave as observed in the past experiments.

The objective of this work is to develop an analytical model capable of providing, in a compu-
tational efficient way, accurate prediction of deformation (both lateral and transverse) and failure
associated with the dynamic elastic response of a UMHWPE laminated plate subjected to ballistic
impact. Modal analysis and Lagrangian equation — which were frequently used to deal with the
nonlinear response of metallic [31] and laminated [32, 33] plates involving complex behaviours
such as large deformation, flexural wave propagation, and fracture — will be used to derive the
governing equations to obtain the transient TBD and hinge velocity of the UMHWPE laminated
plate. Damage criteria, based on critical stress and strain, are incorporated to capture the pro-
gressive fracture. Predictions by the analytical model are validated against existing experimental
data. Insights into the dynamic deformation and failure response of the UMHWPE laminated plate
were revealed through the analytical predictions. A parametric study is carried out to investigate
the influence of impact velocity on the ballistic response of the laminated plate.

2. Modal formulation

This section presents the development of an analytical model which permits quick estimation of
transient bulging deflection and failure of a fully clamped UHMWPE laminated plate subjected
to ballistic impact. The key features of the proposed analytical model are as follows: (1) a bal-
listic model was used to simulate the local penetration phase of the UHMWPE laminated plate;
(2) the first-order shear deformation plate theory is used to model the deformation phase of the
laminated plate; (3) the region of non-zero deformation was dictated by the travelling hinge due to
flexural wave propagation; (4) governing equations of deformation and hinge speed were derived
based on modal analysis; (5) damage criteria were introduced to predict the progressive failure
of sub-laminates in the out-of-plane direction. The prediction will be validated against existing
experimental data in Section 3.

2.1. Problem statement and modeling approach

Consider a fully clamped square UHMWPE laminated plate subjected to the normal impact of a
rigid blunt projectile with an initial velocity of v; as depicted in Fig. 1. The composite square plate
has a length of 2a and an initial thickness of hy. The projectile has mass m, and a diameter of 2R.
The UMHWPE laminated plate was made of a stack of [0°/90°] orthogonal plies. To eliminate the
influence of ply orientation on the stiffness matrix computation, the laminated plate was discretised
into a stack of homogenous layers. Each layer consisted of four plies in a [0°/90°/0°/90°] lay-up
with a sub-laminate thickness of /;. This homogenisation approach follows the same used in [27]
to allow failure to occur progressively in each sub-laminate.

The penetration of the projectile into the target consists of two consecutive phases: phase I - local
penetration with no deformation and phase II - global deformation with progressive damage, as
shown in Fig. 2. For simplicity, it shall be assumed that response phases I and II are uncoupled.
In phase I, the projectile’s velocity was estimated based on the contact stress (resulted from stress
wave propagation and reflection) exerted on the target. Phase I ends when the compression wave
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Figure 1: Schematic of UMHWPE laminated plate subjected to impact by a rigid blunt projectile.

in the penetration zone encounters the tension wave reflected from the back layer of the laminated
plate [34]. The penetration depth in phase I is denoted as /#;. The remaining intact laminated
plate with a thickness of h, = hy — h; subsequently undergoes dynamic bulging deformation.
The deformation of the laminated plate in phase II was governed by the propagation of flexural
waves. The intact sub-laminate that resists the projectile gradually diminishes due to progressive
penetration across the thickness. We employed a similar approach to that of Yuan et al. [32, 33] to
derive the equation of motion in the form of ODEs. A critical equivalent stress and strain criteria
were used to capture the progressive failure. Various assumptions concerning laminated plate
deformation and failure criteria will be detailed in the following subsections.

UHMWPE

h, ﬁ Local penetration

progressive penetration

>

Y TBD Hinge. edge
Figure 2: Schematic of two-phase penetration model for UMHWPE laminated plate.

2.2. Phase I response (local penetration): 0 <t < t

Upon projectile impact as shown in Fig. 3, a compressive stress wave is generated in the laminated
plate, propagating through its thickness at a transverse velocity C;, given as

C = \/g (1)
Jo,

where E5 and p are the transverse elastic modulus and density of the composite. The compres-
sive stress wave can be treated as one-dimensional (1D). The contact stress was related to the
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projectile’s velocity during phase I:
—pCyv (2)

where v is the projectile velocity at time #, and A, is the cross-sectional area of the projectile. The
projectile velocity v was solved from Eq. 2 which is written in the following form:

V= vie_pCIApt/mp. (3)

t=0 hy 2 Gt 8

Figure 3: Schematic of the local penetration phase. The perforation depth is dictated by the
propagation and reflection of compression waves.

Phase I ends at the time instant # = #; when the compression wave reaches the bottom of the
UHMWPE composite and reflects with a travelling distance of 2hy — h;. The duration for phase I
was therefore:

t = (2hg — ) /C.. “4)

The penetration depth /; can be obtained by integrating Eq. 3 with time:
1
h = f vie PCAntimp gy (5)
0

Duration #; and penetration depth /; can be solved from Eqs. 4 and 5 for a given initial velocity
v;. The projectile velocity at the end of phase I is written as:

vi =W = 1) = ve PO ©
which serves as the initial condition for phase II.

2.3. Phase Il response (transverse bulging deformation with progressive penetration): t; <t <ty
2.3.1. Equation of motion

In Phase II, the laminated plate with an intact thickness of 4, = hy — h; was subjected to impact by
the projectile with a velocity of v;, which developed transverse bulging deformation (TBD). As the
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flexural wave propagates outward from the impact point, the laminated plate undergoes transient
deformation within a certain region according to the travelling hinge location, as illustrated in Fig.
4. The travelling hinge position, denoted as {(#), advances toward the fixed boundaries (x = a and
y = a) over time. Once the travelling hinges coalesce with the boundary, it becomes a stationary
one, i.e., {(t) = a. For square laminated plates, the travelling hinges’ motion in both the x— and y—
directions are identical [31, 35]. It is assumed that the transverse normal remains perpendicular to
the mid-surface after deformation.

Figure 4: Schematic of the transverse bulging deformation mechanism in phase II.

In the modal analysis, it assumes that the ballistic response of the laminated plate results in defor-
mation that continually evolves towards a modal solution, 1.e. the velocity field w can be written
as the product of separate functions of space and time Ww(x,y, ). The modal solution is a velocity
field with separated functions for spatial and temporal variables. The admissible transverse veloc-
ity field and shear deformation profiles used in [32] (originally for impact response of laminated
glass) were adopted here:

2x? x° ][1 2y i]

W =wo0|1 - 7o+ w1 - d * @

and -
Y2(X,3, 1) = Yaeo(£) sin [2§(t)] [24(»] (8a)
Ye 3 0) = Yyt cos | 57 m)] i [z’gt)] (8b)

where W (t) 1s the velocity at the plate’s centre; the product of second and third terms in Eq. 7 is

the mode function or mode shape that is governed by the travelling hinge position {(#) in x— and
y— directions; y,.0(f) and y,,(?) are shear displacements. In regions where x > |{(¢)| and y > |{(?)],
the laminated plate is assumed to remain undeformed, i.e., wo(#) = 0. After the hinge reaches the
boundary, {(¢) = a is substituted into Egs. 7. Notice that the corresponding modal displacement
(wo) and acceleration (V) fields can also be written in the same partial functions.
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The total kinetic energy of a quarter of the model (target and projectile) at any given moment ¢ can
be expressed as:

1 (@) @ 1
T = —uf f Ww2(x, y, )dxdy + —m,,w%;(t) 9)
where u = ph is the areal density of the intact laminated plate.

We now proceed to derive expressions for the total strain energy of the panel by first establishing
the constitutive equation that relates the bending moment M, membrane force N and transverse
shear force Q to the strains. Here, the first-order shear deformation plate theory is employed, which
incorporates the effect of bending, membrane and transverse shear and uses damage mechanics to
capture the progressive through-thickness fracture.

The components of stress o in the laminated plate give rise to the following force resultants for
bending moment M, membrane force N and shear force Q given by

Nxx h/2 | O xx Mxx n/2 | O xx Q h/2 o
Ny = f Oy pdz My = f Tyy 2dz { Qx} = f {O_)fz} dz. (10)
Ny “h2 oy M, “h2 oy y —h2 \9yz

where £ is the thickness of the intact laminated plate.

The linear-elastic constitutive relation between the stress and strain components for the laminated
plate is

T xx On O O 0 0 Exx
Oyy On On O 0 0 €y
0

Oy ¢ = 0 0 Q44 0 Yyz ( 11 )
ag Xz O 0 0 Q44 0 yXZ
O xy 0 0 0 0 Q66 Yxy

where Q;; are the plane stress-reduced stiffness components; Q11 = E; /(1 —=vi2v21), O = E>/(1 -
viava1), Q12 = 021 = vi2Qi1, Qua = O = Oy and Qg = Gi. Here, E; and E, are Young’s
moduli in the 0° and 90° material directions, respectively, v;, and v,; are the Poisson’s ratios, and
G, is the in-plane shear modulus. Notice that isotropic material properties were assumed for the
laminated plate, i.e. E| = E,.

The strain components have the form,

1
€xx Exx exx
€ € €l
Yy )E)y yy
’}/yZ = ?/yz + 4 O ( 1 2)
0
yxz )/xz O
0 1
yx)’ 7xy ny

where (€),, €),, 7)) are the membrane strains expressed as a function of admissible displacement
field (see Eq. 7),

60 _ ll:aW(x,yat)]z EO _ l[aw(xay7l):|2 0 _ aW(X,y,t)aW(X,y’t)
w0 Ox R Oy Yoy = ox dy
9

(13)



s and (e, €! y)lcy) are the bending strains, also known as curvatures, written as

o Sy
L 00(x,y, ) 00(x,y,0) | 90(x,y,1) 00,(x,y,1)
€y =2 €= ——— Yy = (14)
Ox Y dy Y dy Ox
199 1n which the rotations of a transverse normal about y and x axis are respectively
oW (x,y,1)
Hx(x’y’ t) = sz(x’y, t) - 6— (153-)
b
200 aW( )
x,y,t
ey(xay’ t) = Vyz(x,% t) - 8— (15b)
Y
201 Substituting Egs. 11 and 12 into Eq. 10 and re-arranging give the constitutive equations:
Ny An An 0 fgx
Nyy = A12 All 0 e;)y (163.)
Nyy 0 0 Al ),
202
M, Dy D O E;x
Myy = D]2 D]] 0 E;y (16b)
Mxy 0 O D66 y}cy
203 1 0
O, —VvI[Ay 0| [y
=K % 16¢
{Qy 210 Auf ¥ (169

20« Where K is the shear correction factor; note that in Mindlin’s plate theory, K = 5/6 for rectangular
205 Ccross-sections; A;; and D;; are extensional and bending stiffnesses, which are defined in terms of

206 the lamina stiffness Q;; as
h/2

(AijaDij) = Qij(l,ZZ)dZ (17)
—h/2

207 The strain energy for the quarter of a laminated plate can be written as:

1 b a
=11, +1I, +1II, = 3 fo j; [Me,, + Myye) + M,y ldxdy

1 b a 1 b a
*+3 f f AN €, + Niy€y, + Ny, Jdxdy + 5 f f [0y, + Oyyy.ldxdy. (18)
0 0 0 0

28  where 0 < 4 < 1 is a membrane ‘knock-down’ factor so that 4 = 0 corresponds to the condition
200 when the boundary provides zero resistance to plate pull-in, whereas 4 = 1 corresponds to the
o condition when there is strictly no pull-in so that the full membrane effect develops. Due to the
1 insufficient clamping force at the boundary, in-plane deformation (also known as the ‘pulling-in
» effect’) emanated from the boundary edges as observed from the experiment [17]. In the large
s deflections of plate theory by Timoshenko and Woinowsky-Krieger[38], it was also suggested that
+ when the edge is free to move in the radical direction, the membrane stretching effect should be
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much less than that of a fully clamped boundary. It is often difficult to model the real boundary
conditions of any experiment. Hence, the factor A is employed here to modulate the influence of
membrane stretch, and its concomitant effect on the reduction of the membrane energy component
in Eq. 18 was accounted for by adjusting the membrane ‘knock-down’ factor A, with 4 = 1 and
A = 0 corresponding the lower and upper bounds of the current prediction. The value of A will be
calibrated based on the experimental results in the literature.

Given that Lagrangian of a quarter of the laminated plate is:
L=T+Tl, (19)

the equation of motion governing wy(?), (), ¥x,0(#) and (¢ are found by solving the well-known
Lagrange equation of the 2nd kind numerically:

d, oL\, 0L d oL, 0L d, oL oL d, oL oL
—\=—)+=—=0, —(\—=)+—=0, —(—)+ =0, —(=—)+ =0. (20
dt (aWO) ( 62: ) 6( dr a'ysz aysz dr aYyZO 8)’)20 ( )

owg Todt

The above ordinary differential equations (ODEs) are solved numerically using the fourth-order
Runge-Kutta method with the following initial conditions:

wot=1)=0 wot=n)=v {(t=1)=0 1)

where v; was the projectile velocity at the end of phase I in Eq. 6.

When the ODEs were solved, the remaining thickness of the intact plate 4 must be updated during
each iteration. The remaining thickness depends upon the extent of penetration into the composite
plies. To calculate the thickness of the intact composite (or the penetration depth), the thickness
at the beginning of phase II was pre-discretised into h,/h; number of layers with 4, being the
sub-laminate thickness. During each time iteration, the damage of the impact-receiving layer that
is in contact with the projectile is evaluated by the damage criteria in Section 2.3.2. If damage
occurs, thickness is updated in the next time step, i.e. h = h — hy.

Phase II ends either when the projectile and laminated plate cease motion, i.e. Wy(f = t7) = 0 when
h(t = ty) > 0, or when full penetration occurs 2 < 0 leading to a finite value of residual velocity
Wwo(t = t;) > 0. The initial velocity v; that corresponds to the critical condition of W(t = t7) = 0
and h(t = t;) = O refers to the ballistic limit velocity vy, which can be obtained by incrementally
increasing the value of v;.

2.3.2. Damage criteria

The progressive failure mechanism in phase II is depicted in Fig. 5. The composite plies can fail
either by a mixed mode failure or tensile failure [36] in phase II. When the deformation is devel-
oped during phase II, the composite plies fail under combined stress rather than pure transverse
shear. On the other hand, tensile fracture could occur at individual composite ply due to transverse
bulging deflection.
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Figure 5: Schematic of deformation and failure of discretised layers in phase II. After the projectile
penetrates the jth layer, the substrate layers resist the foreign load together until failure occurs in
the j + 1th layer.

The maximum equivalent stress criterion is used herein to predict the mixed mode failure of the
individual layer:
J
o
D, = —= (22)
or
where D is the damage parameter; o) . denotes the maximum equivalent stress of the jth layer;
o ¢ 1s the failure stress.

The equivalent stress is found to be greatest at the centre of the laminated plate (this will be
confirmed later in Section 4.1) such that

T = o= 0,3 = 0) = (ol + )2 = 3rharly - ), 23)
Tensile failure occurs when the tensile strain reaches the failure strain:
D, = — (24)

where D, is the damage parameter; € is the failure strain in the maximum sense, i.e., the maximum
between fracture strains in a uniaxial tensile test and in a shear test €y = max(€,, y.,) [39]. In Eq.
24, the tensile strain is expressed as a function of transverse central deflection wy () [40]:

o = wo(1) wo(t)
Y401 2k

(25)

When either D; or D, reaches unity, failure occurs at the jth layer, which updates the value of
remaining thickness in the next time step for the equation of motion, i.e. A = h, — (j — 1)h,. the
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projectile was assumed to impact the subsequent layer (j + 1) without deceleration, the interaction
of which could lead to further penetration according to Eq. 22 or Eq. 24.

3. Validation

Phase I Solve hq, ty, v; (Eq. 4-6)

I
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Phase IT Initialize h, = hy — h, = nhy,
h=h,j=1,
t=1t;, we(ty) =0,
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Figure 6: Flow-chart on the numerical implementation of the analytical model in Section 2.

Analytical predictions of the TBD and ballistic limit velocity will now be validated against the
experimental data of HB26 UHMWPE laminates by Nguyen et al. [17]. The numerical predictions
in [17] are also included for comparison. The square UMHWPE laminated plate has an edge length
of 2a = 0.3 m. Each homogenised layer’s thickness is #; = 0.24 mm since the thickness of a single
ply is 60 um according to [34]. Two projectile diameters, 12.7 mm and 20 mm, were used in [17].
The thickness of the specimen ranged from 9 mm to 75 mm. The material properties of the HB26
laminated plate (in the corresponding experiments) are tabulated in Table 2. A flow chart on the
numerical implementation of Section 2 is shown in Fig. 6.
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Table 2: The material properties of HB26 UHMWPE laminates used in the current analytical
model.

Material property Value Reference

po(kgm®) 980  [17]
E, E,(GPa)  51.1 [17]
E; (GPa) 3.62 [17]
G, (GPa) 0.19 [17]
o/ (GPa) 10 [17]
€ 0.8 [39]

3.1. TBD and travelling hinge position

Figure 7 compares the analytical predictions of transient TBD and travelling hinge position to the
experimental results in the work by Nguyen et al. [17] for HB26 UMHWPE laminated plate targets
with three different thicknesses. Notice that the ballistic loads in all three tests were not sufficiently
intense to cause full penetration. The predicted temporal evolution of TBD with 4 = 0 agrees
well with the experimental counterpart, including the maximum transverse bulging deflection and
the time instant at which the maximum w, was reached, as can be seen in Figs. 7a, 7c and 7e.
Unsurprisingly, prediction of TBD with 4 = 1 was significantly less than that with 4 = 0 due
to more structural resistance from the membrane action. Since the prediction based on the value
of 4 = 0 leads to the best fit with the experimental data, this value will be used throughout this
work. Using 4 = 0 would neglect the contribution from membrane effect. This coincides with the
analytical work by Liu et al. [41] who neglected the membrane effect and used a SDOF model with
only a bending stiffness to predict the large deflection response of UHWMPE composite under
impact loading, the results of which agreed well the their experimental data. Unlike monolithic
(metallic) plates, it is conjectured that the interlaminar strength of a composite plate does not
typically offer sufficient resistance against pull-in and it is also impossible to replicate a through-
thickness ‘fully-clamped’ boundary condition experimentally for any composite plate. Unlike
[41], this work has laid a theoretical foundation which considers the effect of bending moment,
membrane force and transverse shear during the dynamic response of UHMWPE composite under
ballistic loading. Readers can adjust the effects of membrane force by changing the value of 1
depending on the support condition. It is worth highlighting that in the case of body armour - this
is mostly likely to be unsupported along the boundary - substantial pulling-in effect is expected.
In this case, the membrane effect can be compensated by choosing a small value of A.

The analytical model successfully predicts the monotonic increase of dimensionless hinge position
{/a over time, corroborating the expansion of the deformation region during the impact event.
However, the analytical model with 4 = 0 over-predicts the dimensionless hinge position after
t" = 200 us. The overprediction is more evident in relatively thick targets, i.e. hy = 20 and 36
mm. The discrepancy may be due to the ‘pulling-in’ effect resulting from a lack of clamping force
in the experiments where significant in-plane displacement of the composite at the boundary was
observed in the experiments. Therefore, it was difficult for the hinge to reach the boundary in the
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Figure 7: Comparison between the analytical predictions and the experimental data in [17] for
HB26 UHMWPE laminates of three different thicknesses (hy, = 10, 20,36 mm): transient bulging
deflection w(#) (left column) and dimensionless hinge position {(¢)/a (right column). The blunt
projectile has a diameter of 2R=20 mm. Notice that in the experimental work of [17], the time
duration for phase I was not reported. In this case, wy, was plotted as a function of ' = t — 1;
to allow the comparison to be made. The value of #; in the analytical prediction was inserted in
each subfigure. 4 = 1 and 4 = O refer to the lower and upper bounds of the current prediction
respectively.
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Figure 8: Comparison between analytical predicted residual velocity and published data [17] for
HB26 UHMWPE laminates of four different thicknesses (hy = 9, 20, 25,35 mm). The blunt pro-
jectile has a diameter of 2R = 12.7 mm.

The predicted residual velocities with 4 = 0 are compared to the corresponding data (numerical
and experimental) in the literature for ballistic impact in Figs 8 and 9. In general, the analytical
model is capable of predicting the ballistic curve of UHMWPE composite for a wide range of
thicknesses (10 < hy < 75 mm) under two different projectile diameters (2R = 12.7 and 20 mm).
For the ballistic impact under two projectile sizes, the current prediction of residual velocity agrees
well with the finite element results in [17] for all the target thicknesses with the notable exceptions
of hy = 35 mm, 2R =12.7 mm and hy = 75 mm, 2R =20 mm where the current prediction of
residual velocity is greater than that predicted by the numerical model in [17]. The intersection
of the ballistic curve to the x-axis in Figs. 8 and 9 refers to the ballistic limit velocity. In the

current analytical model, ballistic limit velocity can be obtained by finding the initial velocity of
16
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Figure 9: Comparison between analytical predicted residual velocity and published data [17] for
HB26 UHMWPE laminates of four different thicknesses (hy = 10,20,36,75 mm). The blunt
projectile has a diameter of 2R =20 mm. The analytical prediction by Zhang et al. [27] was also

inserted for comparison for cases of 4y = 10 and 20 mm.

the projectile to cause complete penetration of the target with zero residual velocity in an iterative
process. The analytical predictions of ballistic limit velocities were in excellent correlation with

the experimental counterpart as seen in Figs. 10a and 10b.
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4. Discussion

In this section, the validated model is employed to provide further insights into the dynamic fail-
ure behaviour, travelling hinge phenomenon and the effect of impact velocity during the ballistic
impacts of UMHWPE laminated plate. A typical laminated plate with material properties and in-
plane dimensions identical to those studied in the preceding section was used here. A thickness of
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Figure 10: Comparison between analytical prediction and published data [17] for ballistic limit
velocity under blunt projectiles of diameters of (a) 2R=12.7 mm and (b) 2R=20 mm.

36 mm and a projectile diameter of 20 mm were used throughout this section.

4.1. Evolution of damage

To provide insights into the evolution of failure, damage parameters D; and D, were plotted as
a function of time in Fig. 11la at v; = 888 m/s. The initial velocity was deliberately chosen
to be below the ballistic limit velocity (901 m/s). The horizontal dash line refers to the critical
condition of the damage parameters reaching unity. Failure, due to either mixed mode failure or
tensile failure, would not take place if the damage curve is below this horizontal dash line. Part
of the figure (27 < t < 50us) was magnified to showcase the prediction of equivalent stress at
the laminated plate centre during the initial response in phase II. It can be seen that the maximum
equivalent stress criterion (Eq. 22) was satisfied at the outset of the phase II response, leading
to the instant failure of the impact-receiving layer. The damage parameter D, then oscillates
close to the value of one. The intersection points of the black curve with the horizontal dash line
(D; = 1) refer to the time instants when progressive layer-by-layer damage happens across the
thickness. After # > 50 us, the damage parameter D, reduces monotonically with time indicating
that mixed mode failure was absent. This prediction coincides to that in the analytical work by
Olsson [37] who also showed that the stress predicted by classical plate theory increases and then
decreases over time for composite plates. The red solid curve in Fig. 11a denotes the time history
of the damage parameter for the tensile failure D,, which increases monotonically with time. The
maximum value of D, at t; = 536 us was less than unity, corroborating that tensile failure was
absent. That damage parameter D; or D, is less than unity when the projectile’s velocity reduces
to zero confirms that full penetration did not take place, which is in line with the experimental
observation.

Figure 11b shows the corresponding analytical prediction of the temporal evolution of the thick-
ness for the intact composite in phase I and II response. The thickness drops from 36 mm to 15.2

18



342

343

344

345

346

347

348

349

350

351

352

1.3 -
S 3
et el
& 12 &
I I
S L S

30 35 40 45 50 0 100 200 300 400 500 600
t (us) t (us)
(a) Evolution of damage parameter

«— Phase I: local local penetration

Phase II: global deformation

1
1
1
]
1
1
1
]
! . . .
! with progressive penetration -
I

h, = 15.2 mm

Thickness, h (mm)

H °
it1=27us tr = 536 us
1

0 100 200 300 400 500 600
t (us)
(b) Thickness of intact composite during phase I and II

Figure 11: Analytical predictions of the time-history of (a) damage parameters, (b) thickness of
intact composite for 36 mm thick laminated plate impacted by a projectile of diameter 2R =20 mm
at v; =888 m/s. The projectile did not penetrate completely the target.

mm during the local penetration (phase I) under only 27 us. In phase II, mixed-mode failure occurs
continuously at the impact-receiving layer, albeit only for a short period of 13 us. The UMHWPE
laminated plate has a remaining thickness of 7.5 mm to withstand the projectile until it is fully
arrested.

The analytical prediction of the evolution of equivalent stress distribution (Eq. 23) for the same
impact case in Fig. 11 was shown in Fig. 12. The stress contour on the impact-receiving layer
(the sub-laminate that was in contact with the projectile) was given. The prediction was mapped
across the symmetrical planes to showcase the stress contour on the entire plane. The maximum
equivalent stress was found to be always at the centre at different time frames, which justifies the
assumption made in the analytical model regarding Eq. 23. The equivalent stress was localised at
the central region in the vicinity of the impact at the initial stage in phase II. A more uniform dis-
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Figure 12: Analytical prediction of the evolution of equivalent stress contours (in GPa) on the
impact-receiving layer of a 36 mm thick laminated plate impacted by a blunt projectile of diameter
2R =12.7 mm at v; =888 m/s. The projectile was arrested at the time instant of 1 = 536us.

tribution of the equivalent stress was noted with the passage of time. The spread of the equivalent
stress is attributed to the high wave speed of the UMHWPE laminated plate which is beneficial to
transform a local impact to a global response. The hinge reaches the boundary at the cessation of
motion according to Fig. 7f.

Figure 13 and 14 present the analytical predictions for the ballistic impact case of v; =1200 m/s.
The initial velocity was deliberately chosen to exceed the ballistic limit velocity. The time history
of damage parameters, the remaining thickness of intact composite, projectile velocity and hinge
position were plotted in Figs. 13a, 13b, 13c and 13d respectively. In phase I, projectile velocity
reduces from 1200 to 922 m/s (in Fig. 13c) with a significant penetration depth of 25.8 mm (in
Fig. 13b). Phase II begins with the initial condition of v; = 922 m/s and h, = 10.2 mm. As
seen in Fig. 13a, the stress-based damage parameter D; drops quickly to unity, and maintains
at one until £, =67 us, which indicates that progressive ply-by-ply failure occurs continuously
in phase II. The stress-based damage is more dominant than the strain-based damage since D,
is greater than D, for the majority of the response. D, finally increases up to unity at t = 67
us, at which instant the remaining composite abruptly ruptures almost instantaneously, as seen in
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Figure 13: Analytical predictions of the time-history of (a) damage parameters, (b) thickness of
intact composite and (c) velocity and (d) dimensionless hinge position for a 36 mm thick lami-
nated plate impacted by a blunt projectile of diameter 2R =12.7 mm at v; =1200 m/s. Complete
penetration occurs at the time instant of 7, = 67us.

Fig. 13b. This is because, in the current analytical modelling, the tensile strain at the plate centre
is identical for different sub-laminates since it was assumed that the deformation was unvaried
through the thickness. Therefore, when the failure occurs at D, = 1, the damage criterion would be
satisfied across all the sub-laminates. This prediction is reasonable since according to experimental
observation in [11, 19] that the intact composite can be ruptured together by tensile tearing. Since
the intact composite was penetrated continuously during phase 11, the resistance force to arrest the
projectile was minimal, leading to a significant residual velocity of v, = 849 m/s. Due to the rather
transient response, 1.e. 1;=67 us, the distance that the hinge travels is limited (¢ = t;)/a = 0.14 as
seen in Fig. 13d.
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Figure 14: Analytically predicted equivalent stress contours (in GPa) on the impact-receiving layer
of a 36 mm thick laminated plate impacted by a projectile of diameter 2R =12.7 mm at v; =1200
m/s.

Figure 14 shows the equivalent stress distribution on the impact-receiving layer at selected time
frames from ¢ = 25 — 65 us. The equivalent stress was concentrated at the impact zone during
the entire ballistic response, which attributed to the progressive failure and reduction of thickness
according to the stress-based damage criterion as seen previously in Fig. 13. The rather short
distance travelled by the hinge leads to the stress concentration.

4.2. Travelling hinge

As alluded to in the introduction, various assumptions and theories were used in the literature
[22, 27, 43] regarding the motion of the hinge in the analytical modelling of the dynamic response
of UHMWPE laminates subjected to ballistic impact. In this subsection, the assumptions in the
literature were scrutinised. In the experimental work by Nguyen et al. [17], hinge position and
speed of UHWMPE composite with three different thicknesses ranging from /o = 10-36 mm were
recorded which served as benchmarks to evaluate the efficacy of predictions based on different
assumptions. Notice that in all three test cases studied in this subsection (which coincide to the
same in Fig. 7), full penetration did not take place.
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Figure 15a compares the normalised deflection profile ({/a as a function of wy/hj) obtained ex-
perimentally (extracted and re-arranged based on the experiment data of [17]) to the analytical
predictions. Through a one-dimensional (1D) yarn impact model, Leigh Phoenix and Porwal [42]
found that the deflection (or cone) angle vy is a constant value dependent only on the initial velocity
of projectile v; and the longitudinal wave velocity Cy, i.e.

y ~ (2v;/Cp)'. (26)

This approximation of deflection angle was employed recently in the analytical model by Zhang
et al. [27]. Notice that tanvy is the slope of the blue dashed line in Fig. 15a. It can be seen that
unlike the approximation made in [27, 42] where the slope is a constant, the dimensionless hinge
position {/a increases nonlinearly with dimensionless deflection wy/h as seen in the experimen-
tal observation. The current analytical model successfully captured the nonlinear behaviour of the
hinge position as a function of deformation. Both the current analytical prediction and the pre-
diction based on Eq. 26 agree well with the experimental counterpart for the thin target (hy = 10
mm). However, for relatively thick targets (hy = 20 and 36 mm) where the ‘pulling-in’ effect was
evident, both models led to overprediction of the hinge position for a given dimensionless TBD.

Figure 15b compares the time-history of hinge speed measured in the experiment of [17] to the
predictions by different models (including the current analytical model, theoretical methods in
[43] and finite element model in [22]). Smith [43] proposed that the travelling hinge velocity in
isotropic one-dimensional elastic fibres is constant over time and can be expressed by:

d
% Valra -« @7)

dr

where ¢ = (\/ivi/ C L)4/3 is the 1D tensile strain. Notice that Smith’s formula to estimate the
travelling hinge speed was extensively used in the existing analytical work [30, 44]. On the other
hand, Yang et al. [22] assumed a constant hinge velocity in their analytical model based on finite
element simulation results for the same three tests in Fig. 15a. They found that travelling hinge
velocity stabilises at a constant value of 165 m/s after an initial deceleration, which is regardless of
the thickness of the UMHWPE laminated plate and the projectile velocity. The two horizontal lines
refer to Eq. 27 and the constant value (165 m/s) used in the analytical model of [22]. It can be seen
that hinge speed being a constant value was a crude assumption when comparing the horizontal
lines to the experimental counterpart. The current analytical model captured qualitatively the
significant drop in hinge speed with time. The hinge speed indeed reduces to a plateau value
according to the experimental results. The predicted plateau value of the hinge speed agrees well
with the numerical prediction by the sophisticated three-dimensional finite element model in [22],
highlighting the accuracy of the current prediction on hinge speed. It is noteworthy that using
detailed 3D finite element simulation to obtain value for the key variable defeats the purpose of
quick analytical estimation.

4.3. The effect of increasing impact velocities

A finite number of analytical simulations were carried out to investigate the effect of initial veloc-
ities on the permanent hinge position, residual thickness and energy absorption characteristics of
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Figure 17: Proportion of penetration depth in phase I and phase II of a 36 mm thick laminated
plate impacted by a projectile of diameter 2R =20 mm at at different initial velocities.

the UMHWPE laminated plate. The analytical predictions are shown in Figs. 16-18. The hinge
can only reach the boundary at a low level of initial velocity as seen in Fig. 16a. The permanent
hinge position reduces abruptly with increasing v; after full penetration occurs. With a higher ini-
tial velocity, the residual thickness decreases monotonically, as seen in Fig. 16b. The proportions
of penetration depths in phase I and II as well as the residual thickness were delineated in Fig.
17. It is increasing to note that phase I dominates the penetration depth regardless of the initial
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Figure 18: Partition of energy in phase I and II.

velocity. Progressive failure may not occur (zero perforated thickness in phase 1I) when the impact
loading is not sufficiently intense. After full penetration occurs, perforated thickness reduces and
increases in phase I and II respectively with increasing initial velocity.

Figure 18 presents the partitioning of energy in phase I and II as a function of initial velocity
v;. The proportion of energy absorbed during local penetration in phase I decreases slightly with
higher initial impact velocity. Bulging deformation response in phase II plays a key role in dissi-
pating the kinetic energy of the projectile at an initial velocity that is lower than the ballistic limit
velocity. When full penetration occurs, the energy absorption during phase II quickly diminishes
with greater v; leading to a significant residual kinetic energy of the projectile.

5. Conclusion

An analytical model is developed and validated against existing experimental data, which is ca-
pable of predicting the transient bulging deflection and ballistic limit velocity of a fully clamped
square UMHWPE laminated plate subjected to ballistic impact by a rigid blunt cylindrical projec-
tile. The structural response of the UMHWPE laminated plate was separated into two uncoupled
sequential phases: phase I is the local penetration into the laminated plate with negligible bulging
deformation; phase II is the large bulging deformation with progressive failure through the thick-
ness. Through the incorporation of an equivalent stress and a tensile strain criteria, the model can
capture the progressive layer-by-layer failure in phase II. The travelling hinge is considered in the
admissible velocity field within the modal analysis and is solved through the Lagrangian equa-
tion. Predictions by the analytical model are shown to be in reasonable agreement with existing
experimental results. The following conclusions were made following our analysis:

e Equivalent stress was found to be maximum at the plate center which was initially concen-
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trated at the impact zone before spreading to a larger region with the travelling hinge.
e Travelling hinge’s velocity drops nonlinearly with time before reaching a plateau value.

e Increasing the initial velocity of the projectile beyond ballistic limit would lead to a reduc-
tion of permanent hinge position, a reduction of proportion of perforated thickness in phase
II.

e Energy absorbed in phase I is significantly higher than that in phase II when full penetration
occurs.
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