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Abstract Abstract 

Fibrosis represents a highly conserved response to tissue injury. Assessing fibrosis is central in 
diagnostic pathology, evaluating treatment response and prognosis. Second harmonic generation 
digital pathology with artificial intelligence analyses provides unparalleled precision and granularity 
in quantifying tissue collagen in its natural, unstained environment.. This technology reveals new 
insights into the balance between fibrogenesis and fibrolysis, crucial in tracking disease evolution 
and treatment outcomes. This review describes applications of second harmonic generation digital 
pathology with artificial intelligence for detailed characterization of liver fibrosis, assessing 
treatment response in clinical trials, analyzing collagen features in other chronic diseases and 
cancers. Additionally, it offers a perspective on future developments in integrating various 
technologies into a comprehensive diagnostic workflow for more effective evaluation of therapy and 
disease prognosis. 

Examining tissue samples under a microscope is pivotal in modern medicine for diagnosis, 
molecular profiling, guiding therapy and assessing treatment response. The advent of 
digitized images in histopathology has transformed traditional light microscopy 
examination into what is now termed digital pathology.1,2 Digital pathology, facilitated 
by the introduction of whole slide imaging (WSI) technology, has garnered significant 
attention from pathologists and clinicians and is rapidly becoming a standard practice.3‑6 

Digital pathology encompasses digital or computer-assisted platforms for the acquisition, 
management, sharing and interpretation of histopathology information within a digital 
environment. Digital slides are generated by scanning glass slides with a scanning device 
to produce high-resolution images accessible on computer screens or mobile devices. 
Current imaging tools can scan both chemically stained tissue from glass slides or 
deparaffinized, unstained tissue sections visualized through second harmonic generation 
(SHG) imaging.7 Independent of the scanning technique, pixel-level data are acquired to 
reconstruct histological images. 

With the advent of WSI, digital pathology presents one of the most promising avenues for 
diagnostic medicine. It aims at providing faster, more efficient and accurate diagnoses, 
prognoses and predictions of cancer and other diseases. It is robust, quantitative and its 
outputs can be integrated with various clinical data sets. 

The advances in computing capabilities along with the growing volumes of data across all 
aspects of life have paved the way for the increasing adoption of artificial intelligence (AI). 
AI is defined as a computer system’s ability to perform tasks that typically require human 
intelligence.8 Machine learning (ML), is a subset of AI based on pattern recognition and 
computational statistics, and the models’ accuracy improves with experience. Broadly, 
ML is categorized into unsupervisedunsupervised and supervisedsupervised learnings.8 Unsupervised learning 
uses deep neural networks to analyze and cluster unlabeled data sets. These algorithms 
discover hidden patterns in data without the need for human intervention. Supervised 
learning is an ML approach which uses annotated, labeled data sets. These data sets are 

Author for correspondence – NV Naoumov, email: nikolainaoumov@yahoo.com a 

Naoumov NV, Chng E. Second harmonic generation digital pathology with artificial
intelligence: breakthroughs in studying fibrosis dynamics and treatment response.
FMAI. 2024;2(2). doi:10.2217/001c.121609

https://orcid.org/0009-0009-3091-4990
https://orcid.org/0009-0009-3091-4990
https://orcid.org/0009-0007-8535-2281
https://orcid.org/0009-0007-8535-2281
https://doi.org/10.2217/001c.121609
https://doi.org/10.2217/001c.121609


designed to train or ‘supervise’ algorithms into classifying data or predicting outcomes 
accurately. AI/ML identifies patterns, makes predictions and uncovers insights from large 
data sets that may be overlooked or undetected by an experienced human professional. 

Integrating AI with digital pathology can provide insights into receptor-ligand binding 
and quantifying immune cells. AI-based approaches may find applications in translational 
medicine and clinical practice by predicting gene mutations from routine histopathology 
slides.9 AI may facilitate the identification of novel morphological and 
immunohistochemical biomarkers in larger cohorts or clinical trials enhancing the 
quantification of tumor features and its microenvironment, such as, for instance, tumor 
infiltrating lymphocytes, macrophages, fibroblasts or vessels, and more precise analyses 
of immunohistochemical biomarkers.10,11 AI has proved useful in evaluating genomic 
instability and mutational landscapes, enabling the assessment of pathologic and 
genomic features concurrently.12 The advancements in digital pathology markedly extend 
the information obtained from traditional pathology. As a result of the improved 
sensitivity, precision and standardization, it increases the capability for remote review by 
multiple pathologists and the handling of large and complex data sets. Thus increasing 
the information and utility of pathology examinations.9,13,14 

This review describes the principles and applications of SHG microscopy integrated with 
AI, highlighting its specific benefits for the precise and granular evaluation of fibrosis. 
It provides an overview of how SHG digital pathology reveals new insights into fibrosis 
progression and regression, identifies mechanisms of action in response to therapeutic 
interventions. It also provides new parameters as predictors of prognosis and clinical 
outcomes as well as more sensitive assessment of treatment response. Additionally, it 
offers a perspective on future developments in integrating various technologies into a 
comprehensive diagnostic workflow to evaluate therapy and disease prognosis more 
effectively. 

Fibrosis: a common response to tissue injury and principal determinant of clinical Fibrosis: a common response to tissue injury and principal determinant of clinical 
outcomes outcomes 

Fibrosis represents a highly conserved and coordinated protective response to tissue 
injury.15 Fibrosis assessment in chronic diseases is central in diagnostic pathology and has 
a key role in evaluating treatment response and prognosis.8,16 

The liver serves as a prototype model for studying inflammation and repair, illustrating 
the intricate interactions among the inflammatory, myofibroblast and extracellular matrix 
(ECM) components inherent in the mammalian wound-healing response. Fibrosis is 
almost invariably preceded by inflammation and has crucial regulatory roles of both 
innate and adaptive immune systems.17 Commonly, a consequence of prolonged liver 
damage from various insults and inflammation, liver fibrosis exhibits distinct patterns 
that can progress to cirrhosis, depending on the underlying etiology.18 Contrary to the 
historical view of fibrosis as a passive and irreversible process, the potential for fibrosis 
regression has been established particularly in patients where the cause of the disease or 
pathogenic driver is eliminated or controlled by therapy.19,20 Examples include patients 
cured of hepatitis C virus infection, drug-induced suppression of hepatitis B virus 
replication, autoimmune hepatitis under effective immunosuppression or post-surgical 
biliary decompression in secondary biliary fibrosis.17,21 

The severity of hepatic fibrosis is the strongest predictor of clinical outcomes in chronic 
liver diseases, especially in metabolic dysfunction-associated steatohepatitis (MASH). 
Current research efforts are focused on identifying new therapies that improve fibrosis 
and resolve or mitigate the underlying mechanisms of MASH. Among the histologic 
characteristics of MASH, fibrosis stands out as the sole and most important feature 
correlating with clinical outcomes.22‑24 

To improve the quantitative assessment of fibrosis in liver biopsies, several platforms, 
using supervised or unsupervised ML approaches have been developed. These 
technologies enable precise quantification of not only the extent of scarring but also 
structural features of the ECM indicative of progression or regression.25‑29 SHG 
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Figure 1.Figure 1. SHG principles for fibrosis detection and comparison to conventional microscopy. SHG principles for fibrosis detection and comparison to conventional microscopy. 

(A)(A) SHG/TPEF stain-free imaging platform. (B)(B) Compared with conventional histology, which requires stains with 

Masson trichrome or picrosirius red for evaluating fibrosis, SHG/TPEF imaging eliminates the variations that are 

inherent in tissue staining. (C)(C) Digital image from a Masson trichrome stained biopsy (left), and an SHG/TPEF 

image of a parallel unstained section from the same biopsy (right). SHG/TPEF: Second harmonic generation/two-

photon excitation fluorescence. 

microscopy combined with AI analysis offers several advantages for fibrosis quantitation. 
While most digital pathology/AI approaches rely on WSI of chemically stained samples, 
which introduces the challenge of staining variability, utilizing AI with SHG images of 
unstained samples facilitates the optimization of histological tissue assessment.30 

SHG microscopy: principles for fibrosis detection in general SHG microscopy: principles for fibrosis detection in general 

In SHG, two photons interacting with a non-centrosymmetric structure combine to 
generate a new photon with exactly half the wavelength. This process underlies a 
nonlinear optical microscopy approach, which combines SHG images of collagen with two 
photon excitation fluorescence (TPEF) imaging of cells to produce digital images (Figure 1). 
Since SHG signal generation is based on molecular structure rather than dye binding, it 
circumvents issues related to staining variability and photobleaching. 

Biological SHG imaging was first reported in 1986 by Freund, who studied the polarity 
of collagen fibers in rat tail tendons at a resolution of approximately 50 μm.31 In 2002, 
Mohler and Campagnola reported the practical implementation of tissue imaging at high 
resolution and rapid data acquisition using laser scanning, and since then, SHG 
microscopy has been an increasingly used imaging tool.32 The unique triple-helix 
structure of collagen makes it exceptionally efficient in generating the second harmonic 
of incident light. In particular, it provides sensitive and high-resolution information on 
collagen distribution, discriminates between type I and type III collagen and one of the 
first study with SHG application on human liver tissue highlighted that its use provides 
greater understanding of liver cirrhosis.33 Along with SHG, third harmonic generation 
(THG) and multiphoton excitation are being developed for basic science research as well 
as for potential diagnostic applications in clinical settings, offering submicron resolution 
that exceeds the capabilities of conventional tomographic modalities such as computed 
tomography, magnetic resonance imaging and positron emission tomography, which are 
limited to resolutions around 1 mm.34 
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SHG microscopy enables quantitative collagen measurement in various organs with 
detailed information about fibrosis development.35‑38 As illustrated in Figure 1C, SHG/
TPEF provides a more sensitive and reproducible tool for collagen characterization in liver 
tissue than traditional staining methods like Masson’s trichrome or Picrosirius red.38 In a 
recent exploratory study, an AI tool for quantifying liver scarring in sections of picrosirius 
red-stained liver was compared with manual scoring using widely available color space 
thresholding and SHG imaging, a stain-free quantitative measure of collagen.39 The AI 
approach modestly outperformed morphometry with collagen proportionate area (CPA) 
measurement, highlighting the significant impact of staining variability on quantification, 
while the stain-free measurement with SHG was found to deliver a more accurate 
detection of minor scarring changes, beneficial for therapeutic trials.39 

A key advantage of SHG microscopy is in its ability to directly visualize tissue structures 
through endogenous contrast, avoiding the limitations of exogenous dyes. SHG signals, 
generated from induced polarization rather than absorption, significantly reduce 
photobleaching and phototoxicity compared with fluorescence methods (including 
multiphoton). With fundamental laser wavelengths typically in the near-infrared range 
(700–1000 nm), SHG microscopy achieves high-resolution imaging up to several hundred 
microns deep without sample deterioration or photodamage.34 This feature facilitates its 
application in pathology after SHG scanning, accommodating both frozen and paraffin-
embedded tissues and simplifies the standardization of measurements.40 Optical 
harmonic generation microscopies have emerged as powerful imaging modalities to 
examine structural properties of a wide range of biological tissues. The instrumentation 
used for these modalities, as well as the underlying theoretical principles of SHG and 
THG microscopies, and how these can extract unique structural information have been 
comprehensively outlined in literature.41 

SHG microscopy’s potential for medical applications lies in its capability to image and 
characterize fibrosis in different organs such as the kidneys, liver and lungs, where 
increased fibrillar collagen density, associated with chronic diseases like diabetes, 
hepatitis, etc., correlates with poor prognoses.34 Importantly, the technique’s capacity for 
acquiring 3D tissue images enables more comprehensive data collection than traditional 
histologic sections. Furthermore, SHG microscopy surpasses conventional histological 
imaging by allowing the monitoring of collagen formation and re-modeling at early fibrosis 
stages. This capability facilitates the differentiation between distributed and aggregated 
collagens fibers, essential for detecting subtle pathological changes.38 

SHG evaluation of liver fibrosis SHG evaluation of liver fibrosis 

Development of qFibrosisDevelopment of qFibrosis®®  for quantitative analyses of liver fibrosis for quantitative analyses of liver fibrosis 

Leveraging the principles of SHG microscopy, a highly sensitive system for quantifying liver 
fibrosis was developed, focusing on the measurement of collagen fibrillar properties.25,

35,38,42,43 Briefly, liver sections are de-paraffinized, and tissue scanning is performed 
using Genesis® 200, a fully automated, stain-free multiphoton fluorescence imaging 
microscope. For image acquisition, samples are laser-excited at 780 nm, SHG signals 
are recorded at 390 nm and TPEF signals were recorded at 550 nm. The TPEF signal 
is recorded to visualize the cellular components in liver tissue, thus providing valuable 
information on steatosis (fat accumulation within hepatocytes), inflammation and the 
presence of ballooned hepatocytes. Multiple adjacent image tiles are captured to 
encompass the entire tissue area on each slide. An AI algorithm was developed for 
image quantification analysis of collagen fiber characteristics within operator-defined 
regions of the liver samples.40,42 These regions encompass the entire liver section and 
five regions of the liver lobule: portal tract (PT), peri-portal, defined as the area 100 
µm circumferentially around the PT (peri-PT); perisinusoidal area or Zone 2; peri-central 
area, 100 µm circumferentially around the central vein (CV) - peri-CV; and central vein. A 
comprehensive set of 184 collagen parameters are quantified within these regions.27,43,

44 Sequential feature selection was used for parameter selection and a linear regression 
method was used to construct an overall index (qFibrosis®). This index reflects a 
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composite score across different regions, yielding a qFibrosis® score along a continuous 
scale with an expanded dynamic range. The repeatability and reproducibility of this 
approach was shown to be 86–89%.45 

An alternative approach for liver fibrosis quantification has been experimented using 
TPEF liver surface imaging on a rat model with a gradient-based bag-of-features image 
classification strategy.46 The precision and validity of this approach however has not 
been evaluated in clinical studies. The current manuscript includes data obtained with 
the established approach, with combined recording of both SHG and TPEF signals, which 
provides comprehensive assessment of liver structures – for fibrosis and the cellular 
components, respectively, with detailed identification of anatomical structures in different 
zones of liver lobules. 

The qFibrosis® index provides a continuous value with open-ended ranges, where higher 
values indicate more severe fibrosis. These continuous values can be translated into 
categorical qFibrosis stages/scores based on pre-determined cut-off values determined 
using Youden’s index.43 qFibrosis® has been shown to strongly correlate with the current 
(nonalcoholic steatohepatitis clinical research network) NASH CRN fibrosis scoring system 
(R = 0.776, p < 0.001), demonstrating the capability to accurately differentiate between 
fibrosis stages with an area under the curve greater than 0.87.43 

Recently, a different method called widefield SHG microscopy has been described, for 
visualization of collagen in lung tissue. It allows broader area coverage and quicker data 
acquisition, thereby enhancing the scalability of fibrosis evaluation.47 An important 
advantage of the tissue scanning performed using Genesis® 200 method, as described 
above, is that it provides uniformity of the scanned region of interest. 

Quantification of zonal fibrosis dynamics in liver lobule Quantification of zonal fibrosis dynamics in liver lobule 

A significant advantage of the SHG/TPEF quantification approach for liver fibrosis lies 
in its ability to analyze collagen fiber properties within precisely defined areas of liver 
lobule. The overall qFibrosis calculation is derived from normalized collagen parameters, 
measured as units per mm2, facilitating an unbiased, highly reproducible assessment 
of liver fibrosis severity. Moreover, the proportion of fibrosis area, expressed as a 
percentage of the total fibrosis area, is determined within the five operator-defined 
regions of the liver lobules, as outlined above.27 Furthermore, radar maps were utilized 
as a novel approach for visualizing fibrosis changes in liver lobules. It displays changes 
in fibrosis (as determined by the mean percentage change in fibrosis area overall and 
in different regions) for example, from baseline to end-of-treatment in a fivedimensional 
map corresponding to the regions measured (Figure 2).7,48 

Fibrous septa analyses Fibrous septa analyses 

A refined classification system has been proposed to better distinguish between 
progressive, regressive and intermediate fibrous septa, aiming to reflect variations in 
septal characteristics.49 This novel septum classification not only considers the extent 
of collagen deposition but also features indicative of the disease’s trajectory. However, 
like other scorings using conventional microscopy, the definitions for different septa 
categories were largely descriptive and subjective. 

The use of SHG/TPEF methodology allows for the precise categorization of fibrous septa 
into progressive, regressive or intermediate septa (Figure 3). The AI-based algorithm 
quantitatively assesses 12 distinct septa parameters, including area, length, width, 
number and characteristics of collagen fibers within the septa. This methodology provides 
an objective means to differentiate and analyze the progressive and regressive septa in 
liver fibrosis.48 

Moreover, this approach enables the quantification of the cellular and acellular 
components of fibrosis septa, as well as their alterations throughout the disease’s natural 
history or in response to therapeutic interventions. Utilizing AI-based software, it became 
possible to measure the average area of all septa in each liver specimen (i.e. total septa 
area normalized per number of septa) which was measured at baseline and end-of-
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Figure 2.Figure 2. qFibrosis readout of fibrosis changes in different areas of liver lobule. qFibrosis readout of fibrosis changes in different areas of liver lobule. 

(A)(A) Zonal fibrosis quantitation, as a percentage change of fibrosis area from BL to EOT, reveals marked fibrosis 

reduction in the perisinusoidal area. (B)(B) Radar maps visualize the different patterns in fibrosis dynamics from BL 

to EOT in two representative cases who were considered as ‘No Change’ by the NASH CRN, while qFibrosis result 

in each of those cases showed either fibrosis progression, or regression. 

(A)(A) Reproduced with permission from Elsevier; Naoumov et al. J Hepatol. 77(5), 1399-1409 (2022). 

(B)(B) Reproduced with author permission; Naoumov et al. EASL 2023). BL: Baseline; CI: Confidence interval; EOT: 

End-of-treatment; LS: Least squares; NASH CRN: Nonalcoholic steatohepatitis clinical research 

Figure 3.Figure 3. Comparison of regressive septa versus progressive septa. Comparison of regressive septa versus progressive septa. 

Images of progressive and regressive septa with conventional microscopy tissue sections stained with H&E and 

MT, and SHG microscopy of the unstained parallel sections from the same liver tissue. 

treatment liver biopsies. These measurements are reported as a median area and range 
for each liver biopsy, introducing a new cumulative parameter to monitor the dynamics of 
septal fibrosis.48 
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Fibrosis assessment in cirrhosis Fibrosis assessment in cirrhosis 

For the quantitative fibrosis analyses in liver specimens from patients with cirrhosis, an 
ML model was developed to address changes in liver architecture and its correlation 
with the hepatic venous portal gradient (HVPG).50 This model utilized SHG/TPEF images 
of unstained slides, analyzed with a digital image processing algorithm capable of 
quantifying: morphological characteristics of septa, including area, length and width and 
the collagen and cellular regions within the septal area; nodule parameters, such as 
number and length of nodules; 184 fibrosis parameters across various regions of liver 
lobule. In total, 448 criteria were quantified by the algorithm.50 The septa, nodules and 
fibrosis parameters were integrated to build three distinct models: SNOF SNOF 
(ssepta-nonodule-ffibrosis) score, correlated with HVPG, SNOF-VSNOF-V score – associated with the 
presence or development of varices, and SNOF-CSNOF-C score, which correlates with a change 
in HVPG of >20% or ≤20% between baseline and end-of-treatment, regardless of the 
treatment group. 

qFibrosis® is superior to CPA measurement by morphometric analysis 

Several morphometric image analyses have been employed for the quantitative 
evaluation of liver fibrosis.51‑55 One such digital technique focuses on picrosirius red-
stained slides, developed to provide an objective quantification of tissue collagen as 
CPA.39,53‑55 CPA measures the area occupied by collagen (stained with the picrosirius red) 
as a proportion of the total surface area of the liver biopsy core section. This metric has 
been shown to correlate with semi-quantitative fibrosis scores and predict outcomes in 
patients with chronic hepatitis and cirrhosis.56,57 However, CPA measurement does not 
take into account the lobular architectural changes associated with vascular compromise 
and structural remodeling during fibrosis, necessitating a pathologist interpretation.1 

Additionally, CPA measurement has limitations due to the variability of picrosirius red 
staining and the need for manual image curation.39,58 Furthermore, the morphometry 
analysis of CPA lacks AI or ML methodologies, limiting its ability to provide information 
beyond those visible to the human eye.30 

The growing evidence demonstrates that quantitative fibrosis assessment using SHG-
microscopy with AI analyses should be considered as the new standard for measuring 
liver fibrosis.58 The SHG methodology offers several advantages over traditional 
morphometric analyses as it is standardized and reproducible, offers greater sensitivity 
and granularity, eliminates variability associated with picrosirius red or other staining 
methods, and reveals changes in the nano-architecture of collagen fibers and other details 
not discernible by the human eye. Importantly, the role of the liver pathologist remains 
central in ensuring the quality of tissue and machine output is maintained, detecting 
potentially important biopsy information relevant to diagnosis and activity.1,58 

Application of SHG in MASH clinical trials Application of SHG in MASH clinical trials 

SHG improves pathologists’ concordance SHG improves pathologists’ concordance 

The severity of liver fibrosis is a key determinant of clinical outcomes and mortality in 
patients with MASH, serving as a key primary end point in MASH trials for conditional 
drug approval.59 However, a major challenge in drug development for MASH lies in the 
substantial variability of fibrosis assessment by conventional microscopy using ordinal 
scoring systems such as the NASH CRN system.60 There is a pressing need for tools that 
can assist pathologists for reliable and reproducible identification and quantification of 
histological changes in MASH liver biopsies.30,60 Another challenge in assessing fibrosis 
changes in MASH trials is the simultaneous occurrence of fibrosis progression and 
treatment-induced fibrosis regression, which cannot be accurately captured by ordinal 
systems like NASH CRN.30 

SHG/TPEF microscopy with AI has proved that it can overcome these challenges and 
an increasing number of clinical trials have adopted this methodology for assessing 
fibrosis changes and treatment response.27,61‑65 qFibrosis®, when utilized both as a 
continuous value and converted to a categorical score, has demonstrated the ability to 
detect treatment effects not identified with conventional NASH CRN fibrosis scoring.27,
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62 An AI-assistive tool, qFibrosis® improves interpathologist agreement to near-perfect 
levels, with a 93% agreement and 95% retention rate among pathologists with varying 
experience.66 Tools like qFibrosis® not only standardize pathologic assessment but could 
also play a crucial role in determining subject eligibility and assessing treatment effects in 
MASH clinical trials. 

A recent prospective study employing a cross-over modality design to validate qFibrosis’ 
utility as an aid for pathologist assessment of fibrosis showed that qFibrosis-assisted 
reads significantly improve interobserver kappa for fibrosis staging, notably within the 
F0-F2 population. In the context of MASH clinical trials, this kappa improvement could 
reduce the need for third-reader adjudication by 30%.67 The study also highlighted 
qFibrosis’s role in enhancing concordance rates among four pathologists for inclusion of 
MASH with F2-F3 fibrosis stage, exclusion of MASH (F0, F1, F4 stage), and assessment of 
fibrosis response. The improvement in agreement, particularly in borderline cases, would 
have similarly reduced the adjudication necessity by 30%.67 Additionally, incorporating 
SHG as an assistive tool for pathologists can also reduce the high screen failure rate 
observed in MASH trials by offering a more sensitive and consistent assessment of milder 
fibrosis stages, such as F1-F2.68 

Greater granularity and more information in assessing fibrosis dynamics compared with Greater granularity and more information in assessing fibrosis dynamics compared with 
conventional microscopy conventional microscopy 

The enhanced sensitivity of SHG/TPEF evaluation of liver fibrosis enables the objective 
detection of changes within the 48- to 72-week timeframes typical of Phase II and the 
initial stages of Phase III MASH trials. Recent studies have demonstrated the advantages 
of AI in digital pathology by revealing anti-fibrotic effects of investigational drugs that 
were not captured by the NASH CRN scoring system and conventional microscopy.27,61 

Specifically, regressive changes in septa morphology and collagen fiber parameters were 
noted in patients with F3 fibrosis, who were previously categorized as ‘unchanged’ by 
conventional scoring, thereby revealing greater detail and granularity.48 

Furthermore, SHG provides novel insights into the pathogenesis of fibrosis regression, 
particularly in the perisinusoidal area.27 Contrary to the sequential progression of fibrosis 
stages outlined by the NASH CRN staging – from an initial ‘chicken-wire’ pattern in the 
perisinusoidal areas (F1), to perisinusoidal plus portal fibrosis (F2) and then to bridging 
fibrosis (F3) – the SHG data revealed significant fibrosis regression initially in the 
perisinusoidal areas, in response to decreased fat and lipotoxic drivers in hepatocytes, 
which subsequently extends to portal fibrosis, suggesting a general response to treatment 
with anti-metabolic drugs.27,62 

These observations align with findings from a recent preclinical study, which showed 
progressive changes in multiple qFibrosis parameters following a high-fat sugar-water 
diet for 40–52 weeks in DIAMOND mice. Notably, fibrosis regression was observed upon 
diet reversal, even when a full stage of fibrosis regression, based on the ordinal NASH 
CRN scoring, was not evident.44 The link between fibrosis progression with high fat 
and sugar intake, and regression upon removal of these etiological factors supports the 
reliability of changes observed in qFibrosis® and septa parameters, as determined by 
SHG microscopy, and they are indicative of fibrosis progression and regression, both in 
preclinical models and clinical trial settings.44 

The enhanced sensitivity and reproducibility of digital fibrosis assessment also improved 
the scoring accuracy of liver biopsies in pediatric patients with MASH.69 In cirrhotic 
patients, ML algorithm has accurately extrapolated HVPG, clinically significant portal 
hypertension, its changes and the development of varices from liver histology.50 The 
integration of SHG-derived scores – SNOF for HVPG correlation; SNOF-V for varices 
presence and SNOF-C for clinically significant HVPG changes – can be utilized in MASH 
cirrhosis clinical trials without the need for direct HVPG measurements. This approach 
potentially increases the accuracy of the efficacy end points in cirrhotic MASH trials.50 
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Assessment of steatosis, hepatocyte ballooning and colocalization of steatosis/fibrosis Assessment of steatosis, hepatocyte ballooning and colocalization of steatosis/fibrosis 
and ballooning/fibrosis and ballooning/fibrosis 

SHG/TPEF microscopy with AI analyses also quantifies liver fat content (qSteatosis®) 
across the entire liver specimen and has demonstrated a strong correlation (R = 0.71) 
with magnetic resonance imaging-PDFF assessment of steatosis.61 In addition, this 
methodology enables the detailed evaluation of the size and numbers of fat vacuoles in 
hepatocytes and their changes due to treatment.27 Precise liver fat quantification by SHG/
TPEF provides an opportunity for more accurately determining fibrosis changes following 
treatment with potent anti-metabolic agents that significantly reduce liver fat. 

Treatment of MASH with potent anti-metabolic compounds can markedly reduce liver 
fat content, thus altering the fibrosis quantification area. Steatosis correction has been 
applied during fibrosis dynamics assessment within the liver lobule to accurately quantify 
fibrosis changes across different liver lobule zones that may not be captured by NASH 
CRN scoring system.27 In MASH trials with compounds like the selective thyroid hormone 
receptor β-agonist (resmetirom), resmetirom-treated patients have shown significant 
reduction in liver volume versus placebo. In addition to drastic hepatic fat reduction 
of more than 60%, qFibrosis® can incorporate normalization procedures to account for 
hepatic fat and liver volume reduction thereby improving the detection of fibrosis 
changes.62,63,70 The use of steatosis and/or liver volume corrections in assessing liver 
histology in MASH trials is a new area where use of SHG with AI analyses suggests 
that these drug-induced liver fat content and liver volume reductions may impact the 
assessment of fibrosis. Further analyses are needed to better characterize the potential 
implication for drug efficacy evaluation. 

Ballooned hepatocytes are a histological hallmark of hepatocyte injury in MASH. SHG/
TPEF with AI analyses also enables the detection of the number of ballooned hepatocytes 
in the entire liver specimen, along with quantification of parameters such as the area 
and density of ballooned cells, and collagen fibers around ballooned cells.27,71 These 
parameters are normalized per tissue area, and a continuous qBallooning® value is 
generated using an algorithm trained by nine internationally recognized expert liver 
pathologists.71 

The high resolution of SHG/TPEF microscopy permits the simultaneous quantification of 
steatosis and nearby collagen fibers, as well as clusters of ballooned hepatocytes and its 
surrounding collagen fibers (Figure 4). Colocalization analyses deepen the understanding 
of MASH pathogenesis and the spatial relationship between liver injury, fat accumulation, 
ballooned cells and fibrogenesis. Such analyses were pivotal in gaining novel perspective 
into fibrosis regression in the perisinusoidal area27 and in evaluating the mechanism of 
actions of different compounds in combination therapy.65 

Use of SHG in evaluating drug efficacy of combination therapies for MASH 

In trials evaluating combination therapy for MASH, digital pathology plays an important 
role by providing detailed information on drug-induced fibrosis changes which is essential 
for developing and evaluating drug efficacy. For instance, the TANDEM trial, which 
investigated a combination therapy of a farnesoid X receptor agonist (tropifexor) and an 
anti-inflammatory compound (cenicriviroc, CVC), qFibrosis® analyses provided additional 
insights into fibrosis changes.65 Although conventional microscopy did not reveal any 
significant differences in liver fibrosis stages across the four treatment arms, qFibrosis® 

quantification across different liver lobule zones revealed that the tropifexor and CVC 
combination had an additive effect. This combination resulted in substantial fibrosis 
reduction near the areas of steatosis in all three zones of the liver lobule compared 
with monotherapy groups. These digital data could also be visualized with radar maps, 
highlighting the multidimensional changes of fibrosis within the liver biopsy.7 

Employing SHG with AI analyses in combination trials for MASH could provide invaluable 
insights into the mechanisms of action of the different components. Its greater granularity 
allows for a detailed evaluation of each compound’s contribution to the combination. 
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Figure 4.Figure 4. Colocalization analyses of steatosis/fibrosis and ballooned hepatocytes/fibrosis. Colocalization analyses of steatosis/fibrosis and ballooned hepatocytes/fibrosis. 

(A)(A) Concomitant quantitation of steatosis and fibrosis in the same area of the liver lobule. Collagen near steatosis 

is the collagen in the area within 14 μm around fat vacuoles. (B and C)(B and C) Colocalization of ballooned hepatocytes 

and collagen fibers within liver lobule. The characteristics of collagen fibers within 14 μm around ballooned cells 

were determined. 

Furthermore, the sensitive detection of fibrosis changes in early-stage Phase II trials can 
aid in efficacy and dose-response assessments or facilitate go/no-go decisions for moving 
forward to more advanced trials of the combination regimens. 

qFibrosis® parameters and relation to clinical outcomes 

Although it is increasingly recognized that digital pathology with AI analysis provides 
enhanced granularity and sensitivity in assessing liver histology changes, establishing the 
clinical relevance of changes in digital parameters is essential.30 It is crucial for fibrosis 
scores to accurately reflect both progression and regression of fibrosis. 

A recent study from the University of Edinburgh using liver biopsy material with linked 
long-term clinical outcome data from SteatoSITE has elucidated the relationship between 
SHG-derived qFibrosis® parameters and clinical outcomes.72 The authors developed 
individual risk indices that directly predict hard end points in patients with metabolic 
dysfunction-associated steatotic liver disease and do not rely on ordinal fibrosis scores 
as a surrogate. These tools were found to have greater predictive value than pathologist-
assigned NASH CRN fibrosis stage. Ongoing studies in longitudinal cohorts aim to further 
analyze and validate the utilization of key qFibrosis® parameters in predicting clinical 
outcome and mortality. 

In summary, SHG microscopy together with AI algorithms offers a sensitive and precise 
quantification of fibrosis dynamics across different zones of the liver lobule. The greater 
granularity has broadened our current knowledge of MASH pathobiology by revealing: 
the initiation of fibrosis regression from the perisinusoidal area, fibrosis progression or 
regression in patients previously categorized as ‘unchanged’ in F3 or F4 stage according to 
the NASH CRN scoring system and mechanistic details in evaluating treatment responses. 
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SHG analyses of liver fibrosis in other liver diseases SHG analyses of liver fibrosis in other liver diseases 

SHG microscopy has been applied to evaluate fibrosis characteristics and changes after 
antiviral therapy in patients with chronic hepatitis B.73,74 A comparison between the 
ordinal Ishak fibrosis scoring, which defined six fibrosis stages, and qFibrosis® in chronic 
hepatitis B patients with paired liver biopsies before and after 78 weeks of antiviral 
therapy highlighted SHG’s greater granularity in detecting fibrosis changes. Patients 
diagnosed with ‘no change’ in the Ishak stage were further categorized by qFibrosis® 

into three subgroups: ‘Regression by qFibrosis’ (47.6%), stable (34.5%) and ‘Progression 
by qFibrosis’(17.9%).73 Effective viral suppression led to fibrosis improvement, with SHG 
providing precise quantification of septal area and width as key histological features of 
liver fibrosis changes post-antiviral treatment. Importantly, the use of SHG microscopy 
and qFibrosis® represents a valuable tool in multicenter clinical trials for its standardized 
and highly reproducible fibrosis assessments.74 

In liver tumor evaluation, SHG microscopy has elucidated unique details by quantifying 
the tumor’s 3D structural collagen framework, fibrosis amount, collagen features in the 
peritumor liver tissue, impacting disease prognosis. SHG/TPEF microscopy with AI 
analyses of the fibrotic status of the peri-tumor liver tissue identified a high-risk subgroup 
for hepatocellular carcinoma (HCC) recurrence post-curative resection.75 qFibrosis® could 
predict early HCC recurrence post-liver resection in patients with hepatitis B virus or 
hepatitis C virus. The fibrosis patterns in liver tissue may differ between viral and nonviral-
related HCC patients, and treatment response to checkpoint inhibitors is known to vary 
between HCC related to MASH or viral hepatitis, highlighting an area for future research. A 
study of 198 patients with liver resection for HCC investigating the stromal remodeling in 
tumor microenvironment, collagen realignment and features of collagen fibers revealed 
that qFibrosis® could predict clinical outcomes such as development of portal vein 
thrombosis and metastasis development during follow-up after radical treatment.76 

Intrahepatic cholangiocarcinoma (iCC), the second most frequent primary liver 
malignancy, is characterized by the presence of a desmoplastic stroma. A multimodal 
approach combining morphological, immunophenotypical and SHG microscopy analysis 
was applied to determine the amount and the 3D structural network of the desmoplastic 
stroma in 49 resected iCCs.77 This analysis identified two iCC types, of these the one 
with more fibrous and less cellular type was associated with better outcomes. In addition, 
the use of SHG revealed that the patients with tumor displaying high degree of collagen 
cross-linking had a worse prognosis. Significantly, the high proportionated stromal area 
was inversely correlated with vascular invasion (62.5 vs 95.7%, p = 0.006) and positively 
correlated with well-differentiated grade (60 vs 12.5%, p = 0.001). Patients with high 
proportionated stromal area had a better disease-free survival than patients with low 
stromal area.77 

In preclinical models of liver fibrosis induced by chemical treatment with thioacetamide, 
or carbon tetrachloride, or after bile duct ligation, SHG/TPEF microscopy with AI provided 
superior and more informative results than Ishak staging scores or CPA quantification 
after picrosirius red staining.78 

Assessing fibrosis in other organs using SHG Assessing fibrosis in other organs using SHG 

The presence and burden of interstitial fibrosis in kidneys is an important predictor of 
renal failure in various chronic renal diseases. SHG microscopy showed high accuracy 
in the quantification plus providing 3D imaging of interstitial renal fibrosis and arterial 
remodeling.79,80 In particular, it has enabled the analysis of fibrillar collagen accumulation 
in conditions such as experimental hypertensive renal fibrosis and human chronic 
allograft nephropathy, allowing for precise measurement of hypertensive vascular 
remodeling at the micrometer scale. Furthermore, SHG microscopy enhanced the 
characterization of hypertensive renal fibrosis induced by angiotensin II in mice, revealing 
the spatio-temporal progression of fibrosis across different renal compartments.79 In 
donor kidney classification, SHG was applied for the quantification of renal interstitial 
fibrosis in preimplantation kidney biopsies, determining the amount and 3D features of 
interstitial fibrosis.81 In clear cell renal cell carcinoma (ccRCC), the precise quantification 
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of renal fibrosis was analyzed in relation to the clinical and pathological characteristics 
and prognosis. In this study, SHG/TPEF evaluated intratumoral fibrosis, pseudo-capsule 
(PC) fibrosis and adjacent normal renal interstitial fibrosis in 73 ccRCC specimen pairs. A 
significant decrease in progression-free survival was observed for patients with higher PC 
CPA compared with those with lower PC CPA (p < 0.05). The data suggest that intratumoral 
fibrosis and PC fibrosis are associated with ccRCC progression. In addition, PC fibrosis may 
act as a marker of PC invasion and an effective quantitative measurement for assessing 
prognosis.82 

The spatial arrangements of ECM components in their native environment in lung alveoli, 
and their structural 3D remodeling in different lung diseases (e.g., chronic obstructive 
pulmonary disease, interstitial pulmonary fibrosis, pulmonary arterial hypertension-
associated fibrosis, post-transplant changes in lung graft or lung cancer) could be mapped 
and quantified without exogenous fluorescent labels, which may be crucial for 
comprehensive tissue analysis.47,83 SHG probes collagen and elastin in the ECM and 
reveals marked changes in the collagen macro/supramolecular structure in the abnormal 
fibrotic collagen, which could serve as biomarkers for IPF diagnosis and progression. 
These changes could help in improving diagnosis or better prognosis assessment of 
interstitial lung diseases (e.g., idiopathic fibrosis), as well as understanding the disease 
pathogenesis and progression.84,85 Furthermore, SHG could also help in distinguishing 
between treatable and intractable pulmonary fibroses (e.g., cryptogenic organizing 
pneumonia vs usual interstitial pneumonia).86 

Several studies have indicated that SHG microscopy is a valuable approach for 
quantitative assessment of skin collagen.41,87‑89 Combining SHG and THG microscopy 
allowed imaging skin in vivo for assessing morphological changes due to aging, or for 
noninvasive analysis of skin cancer biopsies.41 Furthermore, SHG images allowed 
discriminating collagen features in abnormal versus normal skin scars87; objective 
identification of histological changes and more accurate classification of atopic 
dermatitis88; as well as quantitative insights into collagen fiber structure and changes with 
skin aging.89 

SHG imaging has proved useful for characterizing collagen features in bone, ovarian 
cancers and in studies of cardiomyopathies, using human tissue and/or animal 
models.90‑92 

Collagen is a major structural ECM component in different cancers, acting both as a 
barrier against cancer cell migration and facilitating metastasis when stromal collagen 
increases. Several studies have demonstrated the diagnostic benefits of using SHG 
microscopy to analyze stromal organization and its impact on invasion and metastasis 
of breast and ovarian cancers.93‑97 The SHG-determined tumor-associated collagen 
signature was suggested as a new biomarker which is significantly associated with the 
long-term survival of patients with breast cancer and could be used as an adjunct to 
the routine histological evaluation to inform patient diagnosis.93 The assessment of 
intertumoral collagen by SHG imaging was shown to be of prognostic value, especially in 
the luminal subtype breast cancer.94 

Interestingly, SHG microscopy’s ability to quantify collagen subtypes, particularly types 
I and III, has provided additional information into breast and ovarian cancers.96,97 In 
ovarian cancer, the upregulation of the minor isoform of collagen III in invasive disease 
and the differentiation between collagens I and III in self-assembled gels underscores 
the clinical significance of understanding the collagens I/III balance changes in disease 
progression.97 

Conclusion and future perspective Conclusion and future perspective 

Fibrosis assessment in chronic diseases is central in diagnostic pathology, evaluation of 
treatment response and prognosis. SHG/TPEF microscopy accompanied by AI analyses 
has shown unparalleled precision in quantifying tissue collagen in its natural unstained 
environment. It allows analyses of the 3D structure and features of fine collagen fibers 
in both normal and malignant tissues, and uncovering fibrosis dynamics beyond the 
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Figure 5.Figure 5. Current status and future perspective for second harmonic generation fibrosis assessment with AI Current status and future perspective for second harmonic generation fibrosis assessment with AI 
analyses. analyses. 

AI: Artificial intelligence; BL: Baseline; CI: Confidence interval; EOT: End-of-treatment; LS: Least squares; SHG: 

Second harmonic generation; TXR: Tropifexor. 

capabilities of the human eye. The SHG microscopy provides new insights into the balance 
between fibrogenesis and fibrolysis, with greater granularity and sensitivity in tracking 
disease evolution, treatment outcomes, plus identifying novel mechanism-of-action 
specific patterns of response to therapies. Today, the SHG/TPEF microscopy with AI 
provides an invaluable aiding tool to pathologists in achieving standardized, detailed 
quantification and comprehensive analyses of collagen deposition across various 
diseases, ultimately allowing to break away from the currently used subjective staging of 
fibrosis burden (Figure 5). Initial results of SHG application in liver diseases, and MASH 
in particular, demonstrate that the SHG-determined fibrosis parameters correlate with 
clinical outcomes, which is further investigated in ongoing studies with large longitudinal 
cohorts. Upon full validation in the near future, it is expected that SHG/AI assessment of 
fibrosis will re-define the end points in MASH clinical trials and be able to better predict 
clinical events such as liver failure, the need for liver transplantation, development of 
hepatocellular carcinoma and survival and facilitating drug development. This assessment 
will still be done under the supervision of pathologists, as the new technologies are 
aiming to complement and enhance human resources rather than replacing them, both 
in chronic diseases as well as in oncology. Classification of breast cancer into subtypes or 
prostate cancer diagnosis involving digital pathology represent examples for successful 
implementation of ML approaches into clinical setting. Looking ahead, the benefits of 
SHG microscopy investigation of tissue fibrosis will be even greater as part of complex 
evaluations and multimodal analyses including histology, imaging, -omics methodologies 
and serum biomarkers. Together with AI applications, this approach promises to deliver 
personalized disease assessments, comprehensive predictions of therapy outcomes and 
prognosis in chronic diseases and in oncology. 

Summary points Summary points 

• Digital pathology represents one of the most promising avenues for diagnostic 
medicine, aiming to deliver faster, more efficient and accurate diagnosis, 
phenotypic characterization and outcome prediction in cancer and other 
diseases. 

• Digital pathology extends the information obtained from the traditional 
pathology because of improved sensitivity, precision, standardization and the 
ability of handling large and complex data sets. 
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• Second harmonic generation (SHG)/two photon excitation fluorescence) digital 
pathology with integrated AI analyses has shown unparalleled precision in 
quantifying tissue collagen in its natural unstained environment. 

• It allows analyses of the 3D structure and features of collagen fibers in both 
normal and malignant tissues, and uncovering fibrosis dynamics beyond the 
capabilities of the human eye. 

• Leveraging the principles of SHG microscopy, a highly sensitive system for 
quantification and AI analyses of liver fibrosis has been developed and 
expressed as a continuous qFibrosis® index. 

• This approach provides high sensitivity and granularity in analyzing liver fibrosis 
in different areas of liver lobule, quantitative differentiation between 
progressive and regressive fibrous septa and colocalization analyses of fibrosis/
steatosis and fibrosis/ballooned hepatocytes. 

• The use of SHG digital pathology in clinical trials for metabolic dysfunction-
associated steatohepatitis was shown to overcome current challenges in 
assessment of liver histology by improving the concordance rates between 
pathologists, along with increased information and granularity in assessing 
fibrosis dynamics compared with conventional microscopy. 

• Ongoing studies involving large prospective and/or retrospective cohorts of 
patients with metabolic dysfunction-associated steatotic liver disease will 
determine the clinical relevance and prognostic significance of changes in 
digital fibrosis parameters. 

• SHG microscopy was shown to elucidate unique details of 3D structural 
collagen framework, fibrosis amount, collagen features in liver, breast or 
ovarian cancers, thus providing new biomarkers for differentiation of different 
subtypes, inform patient diagnosis and treatment response and/or be of 
prognostic value. 

• In future, the benefits of SHG microscopy investigation of tissue fibrosis will be 
even greater as part of complex evaluations and multimodal analyses including 
histology, imaging, -omics methodologies and serum biomarkers in chronic 
diseases and in oncology. 
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