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Abstract 16 

 17 

Zoonotic and vector-borne infectious diseases are among the most direct human health consequences of 18 

biodiversity change. The COVID-19 pandemic increased global health policymakers’ attention on the links 19 

between ecological degradation and disease, and sparked discussions around nature-based interventions 20 

to mitigate zoonotic emergence and epidemics. Yet though disease ecology provides an increasingly 21 

granular knowledge of wildlife disease in changing ecosystems, we still have a poor understanding of the 22 

net consequences for human disease. Here, we argue that a renewed focus on wildlife-borne diseases as 23 

complex socio-ecological systems – a “people and nature” paradigm – is needed to identify local 24 

interventions and transformative system-wide changes that could reduce human disease burden. We 25 

discuss longstanding scientific narratives of human involvement in zoonotic disease systems, which have 26 

largely framed people as ecological disruptors, and discuss three emerging research fields that provide 27 

wider system perspectives: how anthropogenic ecosystems construct new niches for infectious disease; 28 

feedbacks between disease, biodiversity and social vulnerability; and the role of human-to-animal 29 

pathogen transmission (“spillback”) in zoonotic disease systems. We conclude by discussing new 30 

opportunities to better understand the predictability of human disease outcomes from biodiversity 31 

change, and to integrate ecological drivers of disease into health intervention design and evaluation. 32 
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Introduction 43 

 44 

Biodiversity and ecosystem processes underpin human health and wellbeing, from food and water security 45 

to helping maintain a stable climate. Understanding these varied contributions to health, and their 46 

potential erosion by anthropogenic stressors such as climate change and land use change, has therefore 47 

emerged as one of the most pressing themes in biodiversity science (1–3). Directly measuring and 48 

attributing the contributions of biodiversity to health, and so communicating their value to policymakers, is 49 

a significant challenge due to their complexity: biodiversity-health links are mostly indirect (e.g. pollination 50 

contributing to food security), occur at scales ranging from the microbial to the planetary, and are 51 

mediated by numerous social and environmental forces that vary over space and time (4). Zoonotic and 52 

vector-borne infectious diseases (i.e. infections transmitted to humans from animals and/or by arthropod 53 

vectors) are unusual in being both an urgent concern for global public health, and a relatively direct, visible 54 

and measurable link between human health and local ecosystem processes (5). The past decade has seen 55 

a swift succession of infectious disease crises, from massive regional epidemics of dengue, chikungunya, 56 

Ebola and Lassa fever, to the worldwide spread of COVID-19, Zika and mpox. These have turned public 57 

awareness and global health policy attention towards how the biodiversity crisis and climate change may 58 

be impacting infectious disease trends, and sparked significant discussions around how best to include 59 

nature-based interventions in emerging disease and pandemic risk governance (6–8). This is, 60 

consequently, an important historical juncture in which insights from ecology and biodiversity sciences 61 

could significantly contribute to improving global public health. 62 

 63 

The emerging consensus in disease ecology is that anthropogenic ecosystem degradation and resulting 64 

ecological community changes - arising, for example, through habitat fragmentation, land use and climate 65 

change - on average tend to increase local pathogen transmission and disease in wildlife (5,9–11). Long-66 

term research in certain well-studied systems, such as Lyme disease in the US and Hendra virus disease in 67 

Australia, has demonstrated that these changes can have significant downstream impacts on infection risk 68 

to humans (12–14). Yet the intervening role of social and socioeconomic processes in determining realised 69 

human disease outcomes remains poorly understood, particularly outside the high-income settings where 70 

biodiversity-disease relationships have been most intensely studied. Zoonotic and vector-borne disease 71 

systems are inherently socio-ecological in nature: modifications of landscapes for agriculture, industry and 72 

cities construct new niches and stressors for hosts, vectors and their pathogens, so shaping infection 73 

hazards (9,15); social factors such as gender, wealth, livelihoods and nutrition influence human-wildlife 74 

contact and exposure to pathogens, susceptibility to disease, and access to healthcare (16) (Figure 1). 75 

What these processes look like varies widely across different regions and socioeconomic settings 76 

worldwide, and may depend more on political-economic and historical than proximate ecological 77 

circumstances (17–19). Identifying policy strategies to improve the health of both people and ecosystems 78 

therefore requires understanding not only the predictability of ecological drivers of disease hazards, but 79 

also how human activities, social and economic processes shape, mitigate or amplify them. In this article, 80 

we review several major emerging themes in socio-ecological research into biodiversity and zoonotic and 81 

vector-borne disease risks. We outline the history of scientific perspectives on ecosystems and zoonotic 82 

infection, discuss three priority areas for research, and close by discussing opportunities to better 83 

integrate ecological drivers of disease into health intervention planning at various scales. 84 

 85 
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Towards a renewed ‘people and nature’ lens on biodiversity and disease 86 

 87 

In an influential commentary published a decade ago, Georgina Mace offered a historical view of how 88 

scientific framings of biodiversity conservation have evolved over the past half-century, and their 89 

consequences for research, practice and policy (20). She outlined how dominant paradigms within 90 

conservation science have historically been motivated either by protecting nature’s intrinsic value from 91 

threats posed by human activities (which she termed “nature despite people”) or, more recently, 92 

maintaining the benefits and utility that people receive from ecosystems (i.e. ecosystem services; “nature 93 

for people”). As many scholars have discussed, these long standing scientific framings of the relationships 94 

between people, wildlife and ecosystems remain wedded to conservation’s western philosophical roots, 95 

which position ‘nature’ as distinct and separate from human societies (and thus as an external resource 96 

open to exploitation) (21,22). However, she also highlighted the more recent adoption of transdisciplinary 97 

conservation science framings that view humans as an inherent part of ecosystems, and which draw 98 

influence variously from socio-ecological systems theory, political ecology and Indigenous perspectives on 99 

nature (20). Although still nascent in biodiversity sciences, such “people and nature”  perspectives – which 100 

emphasise the importance of socio-ecological interactions and feedbacks for maintaining resilient and 101 

healthy ecosystems – seem particularly well-suited to the challenges of understanding the complex 102 

ecologies of health and disease (23,24).  103 

 104 

Socio-ecological systems approaches in biodiversity science share both intellectual roots and personnel 105 

with foundational early work on emerging infectious diseases, which described how pathogens emerge 106 

from the convergence of social, political-economic, eco-evolutionary and environmental forces that span 107 

scales from molecular to global (25–28). Over a quarter-century later, this whole systems perspective 108 

persists in critical scholarship on disease emergence (18,29–31) and in the holism of organising frameworks 109 

such as One Health and Planetary Health, which both frame human health as intrinsically dependent on the 110 

health of wildlife and ecosystems (32). However, in practice, scientific knowledge production around 111 

emerging disease risks has stayed largely fragmented, discipline-specific, and centred in Global North 112 

institutions. Epidemiological research has focused on proximate social risk factors and spread of disease in 113 

human populations, while rarely considering wider landscape and ecosystem contexts that shape infection 114 

and susceptibility. Conversely, disease ecology research has hugely advanced our understanding of multi-115 

host infection dynamics in changing ecosystems, but while largely taking a simplified view of human 116 

involvement centred mainly on ecological disruption (31). Dominant scientific and popular narratives tend 117 

to frame zoonotic spillover in “nature despite people” conservation terms: human activities and behaviours 118 

produce risks by degrading biodiversity, encroaching into wild habitats or creating interfaces (e.g. 119 

expanding forest edges, live animal markets), across which pathogens make the “jump” across the nature-120 

society divide to threaten global health security. Humans are characterised as target hosts that receive 121 

(mostly) unidirectional flows of pathogens from risky wildlife host species (33,34), with zoonotic spillovers 122 

typically framed as rare and high-consequence events that might be preventable, including through 123 

conservation interventions. This kind of ecological outbreak narrative has substantially shaped wider 124 

perceptions of zoonotic risks and influenced practice in research and policy, from local epidemiological 125 

investigation practices (35) to global advocacy around ecological levers for pandemic prevention (6). 126 

 127 
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Global health security-based framings of biodiversity and disease leave many important questions 128 

untouched, even as evidence points towards more complex realities. Only a small subset of known wildlife 129 

pathogens follow the pattern of sporadic spillovers leading to sustained global human-to-human 130 

epidemics or pandemics (such as SARS-CoVs, influenza A viruses and Ebola) and, although ecological 131 

processes may contribute to index case spillover events, following emergence their overall burden and 132 

distribution depends on societal factors. In contrast, serological evidence for many zoonoses indicates 133 

that human infections are not rare and isolated events, but instead occur frequently in populations at risk, 134 

often during childhood, and do not always cause significant disease. This includes World Health 135 

Organization priority pathogens such as Lassa, Crimean-Congo haemorrhagic fever and Rift Valley fever 136 

viruses (36–38), indicating that many infections typically considered “emerging threats” should instead be 137 

treated as neglected endemic diseases (39). Indeed, a recent IUCN situation report concluded that most of 138 

the global human burden of zoonotic disease is endemic and attributable to recurring spillovers within 139 

anthropogenic habitats, transmitted by vectors, livestock and synanthropic wildlife (40). Growing evidence 140 

also suggests that human-to-animal pathogen transmission (“spillback”) might contribute substantially to 141 

pathogen maintenance and evolution in anthropogenic landscapes - a contrast to the general framing of 142 

ecosystems as sources of infection (41).  143 

 144 

Together this evidence indicates that cross-species transmission of microorganisms - among wildlife and 145 

livestock, to humans and from humans - is a relatively ubiquitous ecological process (42,43). 146 

Understanding how biodiversity (and its loss) contributes to the burden of human infectious disease 147 

therefore requires a renewed attention to the social and ecological interactions that determine not only 148 

human infection risk (i.e. the spillover process) (44), but also the consequent impacts of disease on 149 

individuals and populations. This requires asking broader questions, such as: how do human-constructed 150 

habitats shape both short-term routes and dynamics of pathogen transmission, and the longer-term 151 

evolution of hosts, vectors and microorganisms? Under what circumstances, and for whom, are 152 

ecologically-driven changes in infection risk most consequential for health? What sets of interventions - 153 

ecosystem-based, health systems-based or otherwise - could be most effective at simultaneously curbing 154 

biodiversity loss and reducing the burden of disease? To explore these questions in more depth, the 155 

following sections discuss emerging research priorities in three areas: how human landscapes construct 156 

distinct niches for infectious disease; feedbacks between ecosystems and social vulnerabilities to 157 

infection; and the potential role of spillback in generating and sustaining disease risks. 158 

 159 

Ecological communities and disease dynamics within anthropogenic ecosystems 160 

 161 

Since most pathogen exposures occur around homes or during the course of people’s livelihoods (e.g. via 162 

agricultural activities), zoonotic risks arise within environments that are often profoundly shaped by 163 

human activities (45). Within these settings, invertebrate vectors such as mosquitoes and ticks play an 164 

important role in spreading infection either from animals to humans (e.g. borrelioses, rickettsial fevers, 165 

yellow fever, West Nile) or from human to human (e.g. dengue, chikungunya). High densities of livestock 166 

can support increased vector populations, act as bridging hosts for wildlife-borne infections, and act as 167 

key reservoirs for pathogen evolution and emergence (e.g. highly-pathogenic avian influenzas in industrial 168 

poultry setups). Direct transmission from wildlife appears rarer with certain exceptions, such as viruses 169 

transmitted by synanthropic rodents (e.g. arenaviruses and hantaviruses). The local taxonomic and 170 

https://paperpile.com/c/Io7oZa/R7fAs+iiZvZ+lEvXM
https://paperpile.com/c/Io7oZa/W9sH0
https://paperpile.com/c/Io7oZa/tFE03
https://paperpile.com/c/Io7oZa/2DpDr
https://paperpile.com/c/Io7oZa/4dXR4+3JVmq
https://paperpile.com/c/Io7oZa/ximE
https://paperpile.com/c/Io7oZa/YVTKL


 

4 

functional diversity of host and vector communities thus determines the specific diversity, prevalence, 171 

transmission potential and evolution of pathogen hazards (9) (Figure 2).  172 

 173 

Human landscape modifications construct new configurations of infectious disease, both by creating new 174 

resource aggregations and ecological opportunities for resilient or invasive hosts and vectors to exploit, 175 

and by releasing remaining species from top-down ecological regulation by the predators and competitors 176 

that are extirpated (46,47). On average these community transitions tend to decrease biodiversity and 177 

favour increasing transmission and prevalence of multi-host pathogens in the remaining, more resilient 178 

host species (the dilution effect) (10,48). However, the overall picture for human disease burden is likely 179 

complex, as the responses of different pathogens - many of which are maintained in complex multi-species 180 

sylvatic cycles - inherently depend on the varied responses of their host and vector assemblages. For 181 

example, increasing land use intensity tends to favour rodent and bat zoonotic hosts and certain 182 

competent Culex and Aedes mosquito vectors of human disease, while other groups such as primates and 183 

certain Anopheles mosquitoes decline (33,49,50). Rather than directional trends in total disease 184 

incidence, the end result may often be compositional shifts in pathogen diversity, and thus a transition in 185 

disease syndromes and burden in human populations (Figure 2). For example, in Brazil, increasing 186 

anthropogenic landscape transformation correlates with a transition away from parasitic diseases 187 

transmitted by rural vectors (malaria, leishmaniasis) and towards urban mosquito-transmitted arboviral 188 

diseases (dengue, Zika, chikungunya) (51). Importantly, those host species that persist in close proximity 189 

to humans tend to be more stressed, which can impact immunocompetence, pathogen prevalence and 190 

shedding, and so exacerbate human risks (reviewed in (52)). A key emerging theme for disease ecology is 191 

therefore to better understand how infection dynamics are shaped by the distinct ecologies and climates 192 

of anthropogenic landscapes, and how this might differ across regional syndromes, modes and intensities 193 

of land use (43). 194 

 195 

Understanding and predicting how host and pathogen communities vary across anthropogenic landscapes 196 

requires a deeper knowledge of why certain species can tolerate or thrive in close proximity to people 197 

(synanthropy). At the species-level, species trait syndromes that are associated with resilience to 198 

anthropogenic pressures (e.g. fast life histories, wide geographic ranges) also tend to correlate to 199 

observed zoonotic reservoir status (53,54) - meaning that (known) zoonotic hosts disproportionately 200 

persist in human-disturbed landscapes (33,55). However, increasing evidence indicates that synanthropy 201 

is not entirely species-intrinsic, but can be region-specific, historically contingent, and plastic in response 202 

to the opportunities and stresses of specific human-driven environments. Such differences can 203 

significantly impact spatial interaction networks and foci of infection risk. For example, the space-use of 204 

macaques in fragmented forest-agricultural landscapes in Borneo influences their prevalence of zoonotic 205 

malaria infection (Plasmodium knowlesi), and micro-hotspots of human exposure emerge at forest edges 206 

where interactions between macaques, mosquito vectors and people are highest (56); conversely, 207 

macaque P. knowlesi prevalence is often lower in peri-urban habitat, likely owing to the absence of suitable 208 

vectors (57). The social inequalities that structure urban communities, environments and infrastructure - 209 

for example, historical district redlining in US cities (58) - can strongly impact local species diversity and 210 

composition, with poorly-understood implications for pathogen exposure. At a broader scale, the 211 

multimammate rat Mastomys natalensis shows significant variation in synanthropy between its East and 212 

West African subpopulations, living in closest proximity to human homes in rural West Africa - where it acts 213 

https://paperpile.com/c/Io7oZa/lanzZ
https://paperpile.com/c/Io7oZa/6h867+ZiNGu
https://paperpile.com/c/Io7oZa/tmvKh+HjgY
https://paperpile.com/c/Io7oZa/HTKvR+Y7anq+BKpua
https://paperpile.com/c/Io7oZa/cwEOh
https://paperpile.com/c/Io7oZa/i9Rcb
https://paperpile.com/c/Io7oZa/3JVmq
https://paperpile.com/c/Io7oZa/WVrDu+wRKev
https://paperpile.com/c/Io7oZa/JTctS+HTKvR
https://paperpile.com/c/Io7oZa/hxA44
https://paperpile.com/c/Io7oZa/ZGccE
https://paperpile.com/c/Io7oZa/9Tkgn
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as principal Lassa fever reservoir - but rarely occurring in urban areas due to competitive exclusion by 214 

invasive rodent species (59). Over longer timescales, adaptations to urban living can lead to evolutionary 215 

transitions to synanthropy (60), such as the divergence of human-specialist Aedes aegypti mosquitoes 216 

from their tree hole-breeding ancestor several hundred years ago (61), or recent morphological changes in 217 

urbanizing UK urban fox populations (62).  218 

 219 

Compared to minimally-disturbed ecosystems, anthropogenic habitats often show markedly different - 220 

and in many cases more extreme - environmental variability over time, such as seasonal fluctuations in 221 

water availability (e.g. transient versus year-round), vegetation and food resources (e.g. cropping cycles) 222 

and local climates (e.g. heat island effects). Many zoonotic and vector-borne diseases are climate 223 

sensitive, with temperature, rainfall and humidity impacting host and vector population dynamics, 224 

physiology and body condition, behaviour and host-pathogen interactions, as well as pathogen 225 

persistence in the external environment (63). Theory and a burgeoning empirical literature show that the 226 

synergistic effects of land use and climate can therefore significantly modify the timing, intensity and 227 

spatial patterns of spillover and epidemics. Such impacts may often be mediated by wildlife host 228 

populations and behaviour, such as the combined impacts of El Niño droughts and fragmented habitat in 229 

driving Hendra virus spillover from fruit bats (13), or oscillations in rodent host populations and viral 230 

infection in agro-ecosystems where seasonal cropping determines food availability (64). However, 231 

climate-land use-disease synergies have so far been more commonly studied for vector-borne infections 232 

(65), for example evidence that impacts of temperature on malaria transmission in Venezuela are more 233 

pronounced in gold mining areas (66), and that dengue incidence increases more sharply after extreme 234 

rainfall in rural than urban areas of Brazil (potentially because better urban drainage infrastructure reduces 235 

vector breeding sites) (67). Accounting for these kinds of interactions will be crucial to improve outbreak 236 

forecasting and preparedness in a changing climate (68). Importantly, as these examples indicate, human-237 

driven landscapes and their amplification or mitigation effects on climate-sensitive diseases are not 238 

homogeneous, but are instead shaped by historical and spatial socioeconomic disparities (69). In densely 239 

built-up and poorer neighbourhoods, urban heat island effects and low-quality water and sanitation 240 

infrastructure can increase both thermal suitability and breeding site availability for mosquito reproduction 241 

and vector competence, and thereby concentrate arbovirus burden in marginalised communities (68,70). 242 

As we discuss below, such interactions at the nexus of ecology, economy, climate and infection have 243 

potential to further reinforce and embed existing social vulnerabilities.  244 

 245 

How does the socio-ecological context shape exposure and susceptibility to infection? 246 

 247 

To date, research into relationships between ecosystem change and human infectious disease has 248 

principally focused on changing assemblages of hosts, vectors and pathogens (i.e. shifts in hazards, as 249 

described above; Figure 1) (71). Focusing too narrowly on this dimension, however, risks missing the bigger 250 

picture of how ecological degradation contributes to how people are differentially exposed and made 251 

vulnerable to infection (25,27). Social inequalities across dimensions such as gender, race, wealth and 252 

livelihood, and ensuing biosocial determinants such as nutrition, coinfection, stress and 253 

immunocompetence, shape who is most susceptible to disease, who gets sick following infection, and 254 

whether disease is then diagnosed, treated and reported (27). The interplay of ecological and biosocial 255 

processes in driving infectious disease outcomes is complex (Figure 1) and still poorly understood. 256 

https://paperpile.com/c/Io7oZa/NKqQ2
https://paperpile.com/c/Io7oZa/1EFc3
https://paperpile.com/c/Io7oZa/dAfH5
https://paperpile.com/c/Io7oZa/gwiZb
https://paperpile.com/c/Io7oZa/UylwP
https://paperpile.com/c/Io7oZa/83yfs
https://paperpile.com/c/Io7oZa/S8N9c
https://paperpile.com/c/Io7oZa/DuLxP
https://paperpile.com/c/Io7oZa/lfmjh
https://paperpile.com/c/Io7oZa/cOacF
https://paperpile.com/c/Io7oZa/PGlqg
https://paperpile.com/c/Io7oZa/BgnnA
https://paperpile.com/c/Io7oZa/fxAZy+PGlqg
https://paperpile.com/c/Io7oZa/o8HO6
https://paperpile.com/c/Io7oZa/i1ovT+8zdiP
https://paperpile.com/c/Io7oZa/8zdiP


 

6 

Degradation of ecosystem processes can influence not only circulating pathogen diversity but also human 257 

immunocompetence and susceptibility to disease (for example by impacting nutrition, water security and 258 

coinfection); poverty and social marginalisation increase exposure to many of these pathogens while 259 

simultaneously reducing access to healthcare, reinforcing disparities in the health and economic burden of 260 

disease (for example between between richer and poorer communities; Figure 1). More ecologically-261 

degraded areas are also less resilient to climate extremes and disasters such as flooding and landslides 262 

(72), which affects infrastructure, livelihoods and infection risks, and potentially further increases pressure 263 

on local biodiversity. Theoretical models indicate that feedbacks like these can have serious societal 264 

implications, for example suggesting the existence of self-sustaining rural ‘poverty traps’, driven by vicious 265 

cycles of disease and economic burden (73,74). The statistical challenge of disentangling such complex 266 

relationships from observational data means that empirical examples remain sparse, with some notable 267 

exceptions: for example, there is evidence for negative malaria-deforestation feedbacks in the Brazilian 268 

Amazon (75).  269 

 270 

In some circumstances, the combined effects of ecosystem degradation, climate change and 271 

socioeconomic inequalities can simultaneously increase both people’s exposure to (multiple) wildlife-272 

borne pathogens and, once infected, their susceptibility to disease. Such interactions between multiple 273 

pathologies are studied in public health as syndemics (synergistic epidemics), i.e. situations where the co-274 

occurrence of more than one health or social condition produces worse outcomes than either in isolation, 275 

with a canonical human example being substance misuse, violence and HIV/AIDS (76–78). Biodiversity-276 

disease research has largely focused on hazards within single-pathogen single-disease systems, so 277 

shared drivers and probable syndemic interactions with wider social, ecological and health conditions - 278 

including inequalities, comorbidities and coinfection - are still poorly understood (79–81). Studying these 279 

interactions has clear importance for public health, for example by helping to understand why many 280 

important zoonotic and vector-borne infections show such wide variation in clinical severity. Social and 281 

ecological circumstances shape individuals’ lifetime pathogen exposure histories and thereby 282 

susceptibility to subsequent infections, which could either increase (e.g. heterotypic dengue virus 283 

infection (82)) or decrease the risk of severe disease (e.g. early-life microbial exposures potentially priming 284 

the immune system against future infections (83,84)). Closely overlapping niches across different 285 

pathogens - arising via shared host and vector communities - can also cluster coinfection risks in space, 286 

time and in response to ecological drivers, increasing the potential for complex multi-pathogen 287 

interactions (43). For example, Aedes-borne arboviruses (e.g. dengue, Zika, chikungunya) and water-borne 288 

infections (e.g. leptospirosis) tend to cluster in poorer and peripheral neighbourhoods of tropical cities 289 

(85). Coinfection can worsen or complicate individual disease outcomes (80), but co-circulation at 290 

population level can also worsen outcomes by interfering with prompt diagnosis, especially for rarer and 291 

non-specific infections. In West Africa, initial misdiagnosis of Lassa fever as malaria can delay appropriate 292 

treatment by several days, increasing the risk of mortality (86). Historical and ongoing ecosystem 293 

degradation and social marginalisation, for example in racialised and Indigenous communities, also impact 294 

rates of noncommunicable disease in ways that exacerbate susceptibility to many infections (87); one 295 

particularly visible recent example was the clustering of COVID-19 morbidity and mortality in many 296 

marginalised communities (88). One so-far-neglected role for ecologists in supporting public health 297 

decisions would be better understanding and mapping such compound hazards, their intersection with 298 

other health and economic conditions; and, crucially, the upstream forces (including neocolonial 299 

https://paperpile.com/c/Io7oZa/eAygR
https://paperpile.com/c/Io7oZa/7BpGA+npqn6
https://paperpile.com/c/Io7oZa/Sd2fI
https://paperpile.com/c/Io7oZa/JP1CS+j055j+1wN4
https://paperpile.com/c/Io7oZa/ROJa9+VVeFl+7o0iu
https://paperpile.com/c/Io7oZa/6v43G
https://paperpile.com/c/Io7oZa/QoMHw+i9ofZ
https://paperpile.com/c/Io7oZa/3JVmq
https://paperpile.com/c/Io7oZa/HkK55
https://paperpile.com/c/Io7oZa/VVeFl
https://paperpile.com/c/Io7oZa/QYZbm
https://paperpile.com/c/Io7oZa/vqbhF
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relationships with Global North states and financial interests; Figure 1) that generate and sustain them 300 

(17,18). 301 

 302 

These socio-ecological complexities present both opportunities and challenges for designing and 303 

evaluating interventions to reduce disease risks. Social and behavioural change interventions can be 304 

designed to target human activities that increase risk of direct and indirect forms of animal contact (e.g., 305 

wildlife hunting or use of animal products as fertiliser, food storage practices), aim to increase knowledge, 306 

risk perception, or self-efficacy, and take care not to stigmatise cultural and need-based practices (89). 307 

Ecological interventions could be designed to reduce sylvatic circulation and human hazards for groups of 308 

priority pathogens at regional levels, for example via conservation, restoration or agroecosystem 309 

management activities (23,90). However, diseases differ widely in their hosts, pathogen life cycles, and 310 

socio-ecological contexts, indicating that effective one-size-fits-all ecological interventions may be rare 311 

(43). Certain global solutions might even risk unintended consequences for other dimensions of health if 312 

applied too broadly. For example, tighter regulation of deforestation and wildlife trade have been proposed 313 

as global solutions to mitigate emerging zoonosis risks (6). However, the militarised turn in conservation 314 

(91) and examples of land dispossessions under schemes such as REDD+ (92) indicate that the way that 315 

such programmes are implemented could have significant health consequences for local and Indigenous 316 

communities, with potential to be unjust and counterproductive; these may include loss of land, nutrition 317 

and income sources, stress, and exposure to other infections. More positively, multiple social and 318 

ecological ‘weak points’ could be targeted to variously interrupt transmission, reduce susceptibility to 319 

disease and improve healthcare access, and the most effective strategies for net health benefits may 320 

consider several at once. For example, hunting of wild meat is an important transmission pathway for 321 

multiple zoonoses, but also important for food, nutrition, and economic security (93–95); any disease risk 322 

interventions targeting this pathway would need to take these interactions (and possible unintended 323 

consequences of regulation) into account (Figure 1). The early and sustained involvement of affected 324 

communities is therefore critical to ensuring the design of socio-ecological interventions that are 325 

equitable, recognise and value local knowledges and perspectives, and thereby provide net benefits to 326 

health and wellbeing (see ‘Future horizons’ ). 327 

 328 

The role of human-to-animal pathogen transmission in sustaining zoonotic risks 329 

 330 

Scientific narratives around disease emergence have traditionally centred on humans as target hosts of 331 

spillover infections from wildlife reservoirs. This anthropocentric view has been shaped, in large part, by 332 

ongoing (and understandable) research biases towards hosts and pathogens of known medical relevance 333 

to humans (96). However, continual improvements in genomic/metagenomic tools and network science 334 

methods now offer an increasingly broad, holistic view of a continuous flow of microorganisms among 335 

humans, non-humans and their environments (42,97). One important implication of this shift in perspective 336 

is that people and livestock are, in fact, increasingly large and well-connected nodes in multi-species 337 

pathogen sharing networks, and so may play substantial roles in transmitting infection to other species 338 

(i.e. zooanthroponosis or “spillback”) (98). Pathogen transmission from people to wildlife poses a well-339 

known threat to certain wildlife populations, such as respiratory virus spillback to some primates (41). In 340 

contrast, much remains unknown about how human-to-wildlife or livestock-to-wildlife transmission - 341 
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particularly to synanthropic species with whom we share landscapes - might be important in creating and 342 

sustaining zoonotic risks.  343 

 344 

The consequences of spillback can include the establishment of reservoirs within new hosts and 345 

geographic locations: for example, multiple introductions of SARS-CoV-2 have established endemic 346 

circulation in white-tailed deer in North America, which could ultimately serve as a source of novel variants 347 

to re-emerge in humans (99). Human-to-wildlife transmission might also contribute to maintaining long-348 

term (enzootic) pathogen prevalence in highly dynamic synanthropic host populations, such as rodent 349 

hosts of arenaviruses (100), but its importance remains poorly understood. Livestock populations can also 350 

play important epidemiological roles, including by sustaining epizootics, supporting arthropod vector 351 

populations, and acting as conduits for infection between disparate geographical areas; for example, 352 

cattle may play a significant (but still poorly-defined) role in the ecology of Crimean-Congo haemorrhagic 353 

fever (101). Genomic tools offer a promising route to identify these probable sources and sinks for infection 354 

in multi-host systems (102); one recent such study at the global scale suggests that spillback may be very 355 

widespread, although this pattern is difficult to conclusively distinguish from human-centric surveillance 356 

biases at this scale (98). Moving forward, more granular datasets that are not solely focused on wildlife 357 

hosts or vectors - for example, samples and individual-level metadata collected from human, wildlife and 358 

livestock populations in the same landscapes (97) - will afford opportunities to test hypotheses around the 359 

relative frequency, drivers, and epidemiological significance of spillback in human-driven landscapes. 360 

 361 

Future horizons 362 

 363 

Over the last two decades, research into biodiversity and infectious disease has largely been motivated by 364 

two parallel missions - to reduce biodiversity loss and ecosystem degradation, and to improve human 365 

health - and the tensions and trade-offs between these two desired outcomes have not always been as 366 

clearly articulated as their possible synergies. Recent progress towards a reconciled scientific consensus 367 

on biodiversity-disease relationships has helped to defuse long-standing debates in disease ecology and 368 

provided important nuance (5,48,103). Yet we remain far from an actionable science that could, for 369 

example, provide well-grounded predictions of how specific land use or conservation policies would affect 370 

the net burden of human disease (and its wider social and economic ramifications). As we have discussed, 371 

this issue arises from both the inherent challenge of measuring the many contributions of biodiversity to 372 

human health, and the need to better understand the social settings that drive pathogen transmission and 373 

disease (Figure 1). Nonetheless, patterns of infectious disease are underpinned by general ecological and 374 

evolutionary processes that should provide sources of predictability that can inform policy, even across 375 

diverse social contexts. In the later stages of her career Georgina Mace focused on bridging 376 

communication gaps between research and policy; in that spirit, this final section offers a reflection on 377 

emerging opportunities to implement biodiversity-disease knowledge to improve health. 378 

 379 

Looking forward, a crucial step in any disease system is to identify the most effective intervention 380 

strategies, which could aim to reduce hazards, exposure, vulnerability, or potentially a combination of all 381 

three (Figure 1). More targeted activities could address proximal drivers of specific diseases, focusing 382 

variously on lowering pathogen prevalence within host populations (e.g. land use policies, ecological 383 

restoration, host or vector control, wildlife vaccination); interrupting human exposure pathways (e.g. 384 
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reducing hunting or trade of high-risk species, improving water and sanitation infrastructure); reducing 385 

human susceptibility to disease (e.g. vaccination, improving food security, better prevention and 386 

treatment of comorbidities); or ensuring prompt diagnosis and treatment following infection (e.g. 387 

improving health systems infrastructure and accessibility). Improvements in statistical methods for causal 388 

inference from observational data are increasingly entering ecology from the health sciences (104). 389 

Applied to infection datasets from people and wildlife, these offer a promising means to infer likely drivers 390 

of disease risk (e.g., climate, land use, poverty, etc.), which can then inform the iterative design and 391 

evaluation of combined ecological, social and/or health system interventions. Large-scale, long-term 392 

human disease surveillance datasets are crucial to robustly attribute climatic drivers (105,106), however 393 

these datasets suffer from pervasive geographical surveillance biases that make detecting more localised, 394 

transient, lagged or synergistic driver effects - such as local land use changes - far more challenging (43). 395 

Unpacking how ecosystem-based interventions could reduce disease will often instead require starting 396 

locally. Simultaneous surveys of people, wildlife, livestock and environments enable the identification of 397 

key pathways and drivers of cross-species infection; combined with emerging genomic and network 398 

science methods these have potential to significantly improve our understanding of pathogen diversity 399 

and sharing across space, time and species. 400 

 401 

These natural sciences-based approaches can provide a starting point by identifying critical risk pathways 402 

to target, but achieving truly effective and just interventions will require breaking with the dominant 403 

paradigm of exploitative, top-down and parachute research. Early and ongoing involvement of affected 404 

communities in co-design and implementation is key to ensuring that proposed interventions are rooted in 405 

local knowledge, perspectives and existing resilience or risk-mitigation strategies. Participatory studies 406 

and intervention scenario mapping with at-risk communities, as well as integrating local representatives 407 

into research teams and accountability structures, can help in achieving this (107). Ensuring sustainable 408 

net benefits to local health and wellbeing will likely involve accounting for numerous ecosystem services 409 

beyond just disease risk, as well as addressing social disparities such as healthcare access. Recent and 410 

ongoing work on zoonotic malaria and Lassa fever has shown the value of such detailed socio-ecological 411 

research for informing disease prediction and prevention (56,108). Shifting research norms towards 412 

participatory and co-design approaches will require tackling significant institutional and structural barriers. 413 

These include improving academic institutional and funding support for interdisciplinary research and the 414 

development of equitable North-South research partnerships, recognising that these relationships are 415 

slower to establish; require the development of trust, shared values and working frameworks across 416 

significant geographical and economic distances; and so may often be slower to produce measurable 417 

outputs. They also include the need for institutional commitments and funding to close persistent capacity 418 

gaps between Global North and Global South research communities that sustain research and knowledge 419 

inequities, including (but not limited to) building analytical, data science and modelling capacities, and 420 

disincentivising parachute research. 421 

 422 

In parallel with local-scale interventions, there is also an obvious need to provide better recommendations 423 

around biodiversity impacts on disease to regional and global health and environmental policymakers. This 424 

need has been clearly demonstrated in, for example, the formation of the United Nations’ cross-sectoral 425 

One Health Quadripartite collaboration and One Health High-Level Expert Panel (8), and recent discussions 426 

around the priority of ecosystem-based “primary prevention” activities in global emerging disease 427 
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governance (6,7). At these broader scales, the limitations and biases inherent to pathogen surveillance 428 

data for many emerging infections become more visible and problematic (43). However, it also becomes 429 

possible to leverage data from wider biodiversity and environmental monitoring initiatives, to identify the 430 

ecological changes that underpin disease risks; from host community responses to environmental 431 

pressures (33,109), to geographies of viral diversity and their eco-evolutionary histories (110), to regional 432 

syndromes of anthropogenic landscape and socioeconomic pressures and their political economic drivers 433 

(111,112). Expanding this potential will require facilitating discussions between biodiversity monitoring, 434 

disease ecology and disease surveillance communities, to align on data and metadata standards, ensure 435 

relevant data are collected and reported wherever possible, and ensure proper source attribution (for 436 

example, Verena’s PHAROS database standard; https://pharos.viralemergence.org/). An important future 437 

analytical challenge will then be to identify at what spatial scales such macro-level monitoring data could 438 

be translated to useful information for disease prediction and intervention activities. For example, host, 439 

vector and pathogen communities may show relatively consistent and predictable responses to land use 440 

and climate change within individual ecoregions or regional biomes (113,114) (Figure 2). In many cases, it 441 

may be possible to align these with similarly region-specific typologies of land change, agroecology, 442 

priority social and health issues, and policy stakeholder networks, where such data exist and are accessible 443 

(111). Integrating the disease costs of ecosystem change into health economic analyses - including the 444 

distinct economic burdens of endemic and epidemic infections - may also be most tractable and policy-445 

relevant at these regional or national scales (115). There are clear synergies, then, between enhancing 446 

biodiversity monitoring and strengthening health systems-based disease detection, treatment and 447 

response: both have potential to significantly improve our baseline knowledge and situational awareness, 448 

which will be especially valuable in the context of rapid global change. 449 

 450 

Finally, “people and nature” perspectives on wildlife-borne disease offer a reminder to pose questions that, 451 

as Richard Levins wrote, are big enough to encompass the problems we seek to address (25,116). As we 452 

have discussed, much of the research into biodiversity and disease dynamics over the last two decades 453 

has made important advances via the study of specific wildlife disease systems, theory development, and 454 

proximal rather than upstream drivers. Yet the COVID-19 pandemic highlighted the current limits of this 455 

ecological knowledge to either inform specific health and environmental decisions, or contextualise 456 

disease emergence as a product of the wider, interlinked systemic crises of capital, inequality, biodiversity 457 

and climate change (27,30) (Figure 1). Looking forward, socio-ecological approaches to biodiversity and 458 

infectious disease research have great potential to contribute to this much wider understanding, and so 459 

help to identify and advocate for transformative system-wide interventions - including expanding global 460 

access to high-quality healthcare, climate change mitigation, economic redistribution, and challenging 461 

powerful financial interests - that will support sustainable, just and healthy futures for ecosystems and 462 

people. 463 
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Figures  514 

 515 

Figure 1: Local social-ecological feedbacks generate and reinforce infectious disease risks. Human 516 

zoonotic and vector-borne disease risks (blue triangle) arise from the convergence of circulating pathogen 517 

hazards within local ecosystems (shaped by host and pathogen diversity and prevalence), drivers that 518 

create opportunities for exposure (e.g. agricultural activities, urbanisation and infrastructure, land 519 

conversion, wildlife hunting, hydrometeorological extremes), and individual- and population-level factors 520 

that influence vulnerability to disease and epidemics (e.g. individual physical condition and immunity; 521 

health systems access and functionality; inequality and social cohesion). Although often discussed and 522 

studied as separate phenomena (71), these processes are interdependent and subject to numerous 523 

feedback effects (orange arrows and text) that can generate or reinforce disease risks. For example, a high 524 

burden of disease (hazard) can impact community livelihoods and poverty (vulnerability), leading to 525 

increased reliance on local environment, land use or wildlife (exposure) which in turn can further impact 526 

local ecological communities (hazard). All these local processes are shaped by global forces including 527 

unequal and extractive power relations, climate change and biodiversity degradation (yellow boundary), 528 

which can simultaneously impact pathogen hazards, exposure processes, and vulnerabilities. 529 

 530 

 531 
 532 
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Figure 2: Compositional shifts in host and disease diversity under intensifying land use. Increasing 533 

intensities of anthropogenic land use intensity, from minimally disturbed habitat, to rural ecosystems, 534 

towards high-intensity agriculture and urbanisation, are generally associated with declines in overall local 535 

biodiversity (top graph). This overall trend masks compositional shifts in host and arthropod vector 536 

diversity that can significantly alter the local diversity and burden of zoonotic and vector-borne disease 537 

(ZVBD; middle and bottom graphs), including losses of more human-sensitive taxa (and their specialist 538 

pathogens; red line), the rise of highly synanthropic species (yellow line) and variable or hump-shaped 539 

responses of other species (blue line). These community shifts will reshape local disease transmission 540 

ecologies and create differences in disease diversity and burden in different types of landscape (examples 541 

in bottom graph captions). A deeper understanding of these changes in host, vector and pathogen 542 

diversity in response to human pressures at the level of biomes or ecoregions - for example, through 543 

leveraging global biodiversity data - may help to improve prediction of the infectious disease 544 

consequences of biodiversity change for many under-studied pathogens (see “Future horizons”). 545 

 546 

 547 

 548 

 549 

 550 
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