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Abstract

The immune system is a key player in the onset and progression of neurodegener-

ative disorders. While brain resident immune cell-mediated neuroinflammation and

peripheral immune cell (eg, T cell) infiltration into the brain have been shown to sig-

nificantly contribute to Alzheimer’s disease (AD) pathology, the nature and extent of

immune responses in the brain in the context of AD and related dementias (ADRD)

remain unclear. Furthermore, the roles of the peripheral immune system in driving

ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer’s

Association convened the Alzheimer’s Association International Conference (AAIC),
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Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide

range of topics were discussed, such as animal models that replicate human pathology,

immune-related biomarkers and clinical trials, and lessons from other fields describ-

ing immune responses in neurodegeneration. Thismanuscript presents highlights from

the conference and outlines avenues for future research on the roles of immunity in

neurodegenerative disorders.
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Highlights

The immune system plays a central role in the pathogenesis of Alzheimer’s disease.

The immune system exerts numerous effects throughout the brain on amyloid-beta,

tau, and other pathways.

The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations

on understanding the role of the immune system.

1 INTRODUCTION

Innate and adaptive immunity have emerged as key players in the onset

and progression of Alzheimer’s disease (AD) and related dementias

(ADRD).1 Beyond the well-established pathological hallmarks of AD—

extracellular amyloid-β (Aβ) plaques, and intracellular neurofibrillary

tangles (NFTs) composed of hyperphosphorylated tau—researchers

have increasingly appreciated the contribution of early neuroinflam-

mation, mediated by microglia and astrocytes, in AD pathology.2

Mounting evidence suggests that dysregulation of microglia, the

tissue-resident macrophages of the brain parenchyma and the primary

innate immune cells of the central nervous system (CNS), significantly

impacts AD pathogenesis. This impact occurs through involvement

in critical processes such as neuronal homeostasis, myelin turnover,

clearance of extracellular aggregates, synaptic plasticity, synaptic

pruning, cellular sensing, T-cell antigen presentation, and blood-brain

barrier (BBB) function.3,4 Reactive astrocytes trigger and interact

with microglia and release neurotoxic signals, such as inflammatory

cytokines and saturated lipids5,6 that accelerate degeneration and

tau phosphorylation in neurons.7,8 Moreover, adaptive immunity has

also been shown to be involved in ADRD pathology through lympho-

cyte infiltration into the CNS and cross-talk with CNS innate immune

cells.1

Though theCNSwas historically considered immune-privileged and

separated from the peripheral immune system, it has also become

increasingly evident that changes in the peripheral immune system

can impact the development of ADRD.9 A range of factors that pri-

marily engage peripheral immune responses and promote systemic

inflammation, including exposure to pathogens and toxins, gut micro-

biome dysbiosis, and defects or a loss of immunological tolerance

(ie, autoimmunity), may promote or exacerbate various neurodegen-

erative processes.9 Furthermore, genetic mutations or changes in

metabolic pathways that drive neurodegeneration can affect both the

CNS and peripheral immune responses,10 highlighting the importance

of studying the interplay between peripheral and central immune sys-

tems in the context of ADRD. A deeper understanding of the role of

central and peripheral immunity in driving ADRD pathology may help

elucidate immune system-targeted therapeutic strategies to alleviate

neurodegeneration.

To review research advancements on the role of innate and adaptive

immunity in ADRD, and discuss advances in modeling and thera-

peutically targeting the immune system in neurodegenerative dis-

eases, the Alzheimer’s Association convened a multidisciplinary group

of researchers at the Alzheimer’s Association International Confer-

ence (AAIC), Advancements: Immunity, on March 23–24, 2023. This

manuscript provides an overview of the discussions from this confer-

ence while highlighting gaps in the field that need to be addressed in

future research.

2 INNATE IMMUNITY IN ADRD

The innate immune system and neuroinflammation play a key role

in AD pathogenesis. In particular, an increased understanding of the

central contributions of microglia and astrocytes to this process is

crucial and has been driven by the application of genetic, functional

genomic, transcriptomic, proteomics, and other research tools.11 For

example, research has shown that microglia express a unique reper-

toire of genes not expressed by other brain cells, some of which are

also expressed by peripheral macrophages.12 Furthermore, many late-

onset AD (LOAD)-associated genes are expressed highly or exclusively

by microglia13 and/or astrocytes,14 highlighting the importance of this

glia inADpathology. These findings also suggest that identifying causes

of microglial and astrocyte dysfunction, genetic predisposition, or
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KLOSKE ET AL. 3

earlier life insults such as trauma, infection, or normal aging, could help

yield new approaches to prevent and treat AD.

2.1 Genetic contributions to innate immune
dysfunction in ADRD

Researchers have comparedbrain tissue from individualswith sporadic

and atypical dementia to catalog differences and similarities across

disorders, including the changes in immune cells. This approach

integrates cell-specific molecular profiling of human disease tissue,

genomics, and bioinformatics to identify various cell states and genetic

differences that contribute to disease. The data generated can be

used to leverage mouse models and systematically model gene net-

work drivers seen in the disease.15 Research suggests that scientists

can recapitulate gene expression changes reported in humanmicroglia

transitions from early stages of tau pathology to later stages of

tau-driven neurodegeneration. This modeling has allowed the iden-

tification of multiple transcriptomically-defined and distinct types of

microglia transition states that shift from an early innate immune

phase before neurodegeneration to a delayed immune phase after the

onset of neurodegeneration. Partitioning of these microglial transi-

tions to the genetic heritability of three tauopathies—AD, progres-

sive supranuclear palsy (PSP), and frontotemporal dementia (FTD)—

revealed shared and distinct disease states of varied cell types (ie,

microglia, other glia, neurons, and lymphocytes) and brain regions,

with distinct gene regulatory networks defining disorder-specific

states. Moreover, the microglia-associated neuroimmune modules

converge on viral response as a common causal factor. These find-

ings from a weighted gene co-expression analysis (WGCNA) show

that disease-specific cell states and gene-regulatory networks are

uniquely enriched for microglial-immune signaling markers and genes,

implicating them in causal diseasemechanisms of sporadic dementia.16

The apolipoprotein E (APOE) genotype is themost impactful genetic

risk factor for sporadic LOAD, with the APOE ε4 variant significantly

increasing AD risk compared to the APOE ε3 variant inWhiteWestern

Europeanpopulations. Recent studieshave focusedon the roleofAPOE

genotype on brain microglial and immune functions.17 The transition

of microglia from the homeostatic phenotype to disease-associated

microglia (DAM) phenotypes includes a multi-step process. From a

homeostatic phenotype to DAM1 (triggering receptor expressed on

myeloid cells 2 [Trem2] independent), there is a signal such as AD

pathology, aging, or another trigger to become activated. From DAM1

to DAM2 (Trem2 dependent), Trem2 is required for the final transi-

tion. In aging and neurodegenerative diseases, this has been shown to

be modulated by differential expression of multiple genes, including

upregulation of APOE in DAM1 microglia.18 The isoform-dependence

of APOE genotypes on immunomodulation was investigated by com-

paring brain tissues from APOE ε3 and APOE ε4 individuals with AD

pathology or normal aging pathology.19 Future mechanistic studies

will further investigate differences between APOE ε3 and APOE ε4
microglial neuroinflammatory responses. Important also is an under-

standing of APOE isotype functional changes in astrocytes, which

RESEARCH INCONTEXT

1. Systematic review: The role of immunity in neurodegen-

erative diseases, including Alzheimer’s and other demen-

tias, is an active and growing area of research. The

authors of this manuscript report updates and advances

in research presented at the 2023 AAIC, Advancements:

Immunity, held inMarch 2023.

2. Interpretation: There have been strides in research iden-

tifying the role of immunity in dementia research. This

manuscript highlights the research presented at the 2023

AAIC, Advancements: Immunity, including the role of

innate and adaptive immunity, central and peripheral

immune contributions, therapeutic advances in immunity,

lessons from other fields, andmore.

3. Future directions: Understanding the multifaceted roles

of immunity in AD pathogenesis will help develop tar-

geted interventions for AD and advance the field of AD

precisionmedicine.

express considerably more APOE than other CNS cells. As astrocyte-

derived APOE/J lipoparticles are an integral trafficking route for neu-

rotoxic long-chain free fatty acids,6 understanding how APOE genetics

may also impact astrocyte responses to AD pathology and genetics

remains integral. In mice, humanized APOE2/3/4 lines crossed with

the P301S tau model previously reported increased astrocyte “reac-

tivity” coincidentwith increasedneurodegeneration,20 highlighting the

intricate communication between astrocytes, microglia, and neuronal

health.

2.2 The role of aging in innate immune
dysfunction in ADRD

Variousnon-genetic factors canplay a role inmicroglia dysfunction. For

instance, aging and neurodegenerative diseases sharemany hallmarks,

including cellular senescence.

Accumulation of cellular senescence has been identified in aging.

In the aged brain, senescent cells are heterogeneous and sparsely

localized, representing only up to 2% of cells.21 Senescent glial cells,

including microglia, are present in the brains of AD patients and AD-

relevant animal models of neurodegeneration.22 To investigate where

and when senescent cells appear during brain aging and neurode-

generation, spatial transcriptomics has been used to map senescent

cell types using a library that includes 400 senescence, inflamma-

tion, and cell marker genes based on previously published senescence

signatures.23 This analysis showed that senescentmicrogliawere iden-

tified sparsely in the aging animal brains and numerously in the tau

MAPT P301S PS19 transgenic mouse line. Some microglia exclusively

expressed the DAM signature while others co-expressed both DAM

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14291 by Soyon H

ong - T
est , W

iley O
nline L

ibrary on [27/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 KLOSKE ET AL.

and senescent signatures, suggesting that there are different triggers

of DAM and senescent signatures. Ongoing studies are investigating

senescence inotherCNScell types trying tounderstandhowthesemay

contribute to AD and other neurodegenerative diseases. Important

to these efforts are comparisons between mechanistic rodent studies

and correlations possible using human postmortem brain samples. An

important question to unravel is what the function of senescent cells is,

and what influence theymay have on their surroundings.

Elements within the cell, such as lysosomes, can also contribute

to microglia dysfunction. Lysosomes play essential roles in cellular

metabolism and clearance through coordinated lysosome-to-nucleus

signaling. The transcription factor EB (TFEB)—a master regulator of

genes involved in lysosomal biogenesis and function as well as a

broad range of other targets—mediates the degradation of cellular

organelles and long-lived proteins such as tau and NFTs.24,25 Inves-

tigating the specific role of lysosomal TFEB in AD pathogenesis by

manipulating the vacuolar ATPase (v-ATPase) transcriptional program

has further demonstrated that the lysosomal TFEB pathway is essen-

tial for maintaining lysosomal pH and homeostasis under physiological

conditions and the induction of microglia activation in response to

tau pathology.26 In addition, single-cell pathway analysis identified

metabolic signatures that suggest impaired metabolic responses of

lysosomes inmicroglia to pathological conditions.26

3 ADAPTIVE IMMUNITY IN ADRD

In addition to the role of innate immunity, recent studies have impli-

cated a role for the adaptive immune response in ADRD. The role

of adaptive immunity in AD pathology has been suggested by animal

studies involving the depletion of T cells, B cells, and NK cells.1 Fur-

thermore, accumulating evidence suggests T-cell infiltration in theCNS

promotes neurodegeneration and functional decline in AD, but what

causes this infiltration is not well understood. Several studies have

sought to characterize the molecular mechanisms involved in T-cell

infiltration, link T cells to distinct hallmark pathological features of AD,

and identify T-cell populations in the presence of various antigens in

the context of AD.27

3.1 Role of T cells in AD

T cells have been implicated in both the pathogenesis and prevention

of AD pathologies in preclinical animal models, but the T cell subtypes

and cytokines involved in either pathway remain unclear. Research

conducted by various groups focusing on specific subtypes of CD4+
T cells in AD mice has led to divergent findings. For instance, a study

depleting regulatory CD4+ T cells (Tregs) in the amyloid 5xFADmouse

model demonstrated a reduction in pathology,28 whereas another

study involving Treg depletion in the 3xTg-AD mouse model reported

increased Aβ plaques in the hippocampus associated with a marked

aggravation of the spatial learning deficits of the treatedmice.29 These

conflicting results may arise from different AD models and artifacts

related to transgene expression,30,31 disease progression stages, crite-

ria for pathological assessment, or techniques employed for inducingor

depleting Tregs. However, they may also indicate a nuanced interplay

between AD pathology and immune tolerance. Recently, in a tauopa-

thy mouse model, infiltrating T cells promoted microglia-mediated

cell death in the CNS, and depletion of these T cells alleviated this

cell loss.32 However, enhancing the response of Tregs in the brain

through checkpoint blockade also reduced microglial reactivity and

neurodegeneration,32 highlighting the disparate roles different T-cell

subtypes can play in AD pathology.

Several factors, such as aging, genetics, cellular senescence, and

pathogen exposure, that influence AD progression and onset may also

directly impact the T-cell repertoire.33 Cellular senescence is associ-

ated with telomere shortening, and a common feature is senescent-

associated B-galactosidase (SA-β-gal) activity.34 Senescent CD8+ T

cells express higher SA-β-gal activity in older individuals compared

to younger individuals, and this was observed in African Americans

and non-African Americans.35 Interestingly, high levels of senescent

CD8+ T cells correlate with decreased performance in the acquired

equivalence task, decreased physical activity, and poorer VO2 max

scores as described at the conference,36 thus suggesting a relationship

between immune senescence and physical activity and subsequently

between immune senescence and AD risk factors. Future studies need

to evaluate the relationship between other AD-associated markers

with immune cell senescence profiling, with particular emphasis on

mitochondrial dysregulation and CD8+ T-cell subsets in aging as well

as the function of senescent cells.

Another example is during aging, senescent and exhausted T

cells exhibit loss of CD27 and CD28 costimulatory molecules,

decreased telomerase activity, reduced immune responsiveness,

increased susceptibility to infections, and decreased T-cell recep-

tor repertoire.37 In addition, exposure to antigens from viruses or

bacteria may lead to T-cell exhaustion and secretion of cytotoxic

cytokines, which can be particularly detrimental in AD brains.33

Polymorphisms in the human leukocyte antigen (HLA) gene can lead

to differential processing and presentation of antigens to T cells,

which could confer differential immune responses in the context of

AD. Furthermore, T-cell responses to self-antigens—including Aβ and
tau—and microbial non-self-antigens may exacerbate T-cell responses

in AD.38

3.2 Peripheral T-cell alterations and preclinical
AD

To investigate whether peripheral adaptive immune cell alterations

reflect early changes in AD biomarkers, peripheral blood mononu-

clear cells of 251 participants (cognitively healthy, or those with mild

cognitive impairment or probable AD) were immunophenotyped in

cross-sectional and longitudinal studies. Usingmultidimensional mass-

cytometry combined with unbiased machine-learning techniques,

researchers have recently shown that increased levels of Aβ in the

brain and changes in plasma AD biomarkers were associated with an

increase in antigen-experienced adaptive immune cells in the blood,
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particularly CD45RA-reactivated T-cell effector memory (TEMRA)

cells, even in cognitively healthy subjects. These data suggest that

peripheral changes in adaptive immune cellsmay be used as a proxy for

CNS biomarker changes.39

3.3 Microglia-mediated T-cell infiltration and
reactivity

Microglia may drive the link between adaptive immunity in AD

pathology by mediating T-cell infiltration in the CNS, which is further

exacerbated by tau-mediated neurodegeneration.1,32 Immune single-

cell RNA profiling showed that a T-cell population is strongly increased

in the brains of mice with tau pathology but not in those with Aβ depo-
sition. Infiltrated T-cell numbers aswell as tau pathologywere reduced

on microglia depletion. This suggests a pivotal role for microglia, in the

setting of a tauopathy-specific immune environment by recruiting T

cells into the brain parenchyma and a detrimental role. It was further

shown that microglia are required for T-cell infiltration in the brain by

regulating the interferon response and antigen-presenting features.

T cells correlated with the extent of neuronal loss and dynamically

transformed their cellular characteristics from activated to exhausted

states along with unique T-cell receptor clonal expansion.1,32,40

Together, these data suggest that neuronal loss may be due in part to

T-cell infiltrationmediated bymicroglia in the presence of tau.

Microglia are antigen-presenting cells in the CNS and express

human leukocyte antigen–DR isotype (HLA-DR),41 which may be

important for driving neuroinflammation. Among many genetic vari-

ations, a single nucleotide polymorphism (SNP) in the non-coding

region in HLA-DR is associated with late-onset sporadic Parkinson’s

disease (PD), and expression is elevated in sporadic and familial

PD patients.42 HLA-DR (or MHCII in mice) expression is also cor-

related with brain CD4+ and CD8+ T-cell infiltration in human

postmortem tissue and a mouse model of PD.43 T cells recognize

and respond to α-synuclein peptides which have a high affinity for

binding to two HLA alleles.44 Alpha-synuclein is implicated in PD

risk and researchers have demonstrated that α-synuclein promotes

microglia antigen processing and presentation, CD4 T-cell activation,

and proliferation in vitro and in vivo.45 Overexpression of human

α-synuclein in neurons of a PDmurine model increasedMHCII expres-

sion and T-cell (CD4+) infiltration.46,47 Moreover, MHCII expression

on CNS-residentmacrophages drives CD4+ T-cell infiltration and neu-

rodegeneration. Blocking MHCII expression or CD4 T cells attenuates

α-synuclein-mediated inflammation and neurodegeneration, and thus

demonstrates that the interaction between antigen-presenting cells

and CD4+ T cells is required for dysregulated immunity that occurs

during neurodegeneration.

Pathogen infection of microglia activates many immune signaling

pathways which may be involved in recruiting T cells to the CNS. Her-

pes simplex virus type 1 (HSV-1) is of particular interest, as it has been

implicated inADdevelopment and is a risk factor in individualswho are

APOE4 carriers. LOAD genetic variation may modulate the microglia

response to HSV-1, but studies of this require a model for HSV-1

microglia infection. To address this, researchers generated human

microglia-like cells (MDMi) and infected them with HSV-1. HSV-1-

infectedMDMi cells had higher expression of interleukin (IL)-1β, tumor

necrosis factor (TNF)-α, and interferon-stimulated gene 15 (ISG15)

that was time- and dose-dependent.48 Furthermore, HSV-1 infection

of MDMi cells induced CXCR3+ CD8+ effector T cells but led to a

decrease of cytotoxic CD8+ T cells expressing granzyme B.49 Future

studies are focused on understanding the role of microglial genetics on

MDMi response to HSV-1 infection and the T-cell response.

3.4 APOE and T-cell regulation

APOE genotypes lead to differentially expressed (DE) genes that may

lead to the development of AD. Furthermore, these APOE genotypes

regulate epigenetic changes, specifically differential accessibility (DA)

in the chromatin.Monocytes, B cells, and CD8+ T cells in the periphery

of AD patients have more accessible chromatin compared to healthy

controls. APOE ε4/ε4 monocytes in AD patients have the most DE

genes compared to healthy controls. The overlap between DA asso-

ciated with a DE gene is of particular interest because chromatin

accessibility is a key factor influencing gene expression. Monocytes

have the most overlapping genes followed by T cells and NK cells.

Cytokine genes found in the overlap region of AD monocytes are IL-

β, CCL4L2, and CCL3. Notably, the transcription factor binding sites

in APOE ε4/ε4 carriers are enriched but not in APOE ε3/ε3 carriers.

Thus, APOE ε4/ε4 CD8+ T cells have increased accessibility and DE

genes in AD compared to healthy controls. Importantly, AD risk genes

from genome-wide association studies (GWAS) are also expressed by

peripheral immune cells and have differentially accessible chromatin

regions in AD.50

4 CENTRAL AND PERIPHERAL IMMUNE
CONTRIBUTIONS TO NEURODEGENERATION

Peripheral immune cells communicate and modulate brain function

during homeostasis and AD progression. Furthermore, peripheral

immune insults or dysregulation may contribute to cognitive and

functional decline in AD.51 However, there are no consistent data sug-

gesting that peripheral immune mechanisms directly drive AD patho-

genesis. A multi-platform proteomic analysis of AD cerebrospinal fluid

(CSF) and plasma that are associated with proteostasis and the matri-

some revealed CNS pathways and lack a robust peripheral immune

signature.52 Therefore, the absence of peripheral biomarkers could be

an indicator that the peripheral immune system is not directly involved

in driving AD pathogenesis. Furthermore, most immunemarkers in the

CSF reflect changes in the CNS but not peripheral changes. Genes

or candidate genes for AD risk such as TREM2, SPP1, APOE, INPP5D,

and PLCG2 that affect immune function are expressed by immune

cells in the brain.53–57 Finally, research shows that peripheral immune

cells do not directly affect neurons and synapses but rather interact

with brain-resident immune cells such as microglia, border-associated

macrophages (BAMs), and glia (astrocytes/oligodendrocytes).3,32,58–60

Consistent, reproducible data are needed to fully implicate the
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6 KLOSKE ET AL.

peripheral immune system as a direct driver of AD pathology. How-

ever, crosstalk between the peripheral immune system and the CNS

may contribute to cognitive decline in AD.

4.1 Crosstalk between the peripheral and CNS
immune systems

Research shows substantial crosstalk between the peripheral immune

system and the CNS during homeostasis and disease. This crosstalk

includes indirect communication mediated through cytokines as well

as physical infiltration of peripheral immune cells into the CNS.51

4.1.1 Cytokines

Numerous peripheral cytokines (eg, IL-4 and IL-17), many of which are

produced by meningeal T cells, can communicate with the CNS and

contribute to cognitive function. For example, IL-4-producing T cells

accumulated in the meninges of mice performing cognitive tasks, and

loss of IL-4 resulted in cognitive defects.61 In addition, IL-17 derived

from meningeal γδ T cells has been shown to control synaptic plas-

ticity and short-term memory.62 Depletion of IL-17 rescued cognitive

impairment and synaptic dysfunction in an ADmousemodel.63

IFN-γ expression leads to age-progressive midbrain pathologies

in mice.64 IFN-γ stimulation of monocytes and T cells results in

the upregulation of numerous interferon-stimulated genes, including

leucine-rich repeat kinase 2 (LRRK2).65 Genetic mutations in LRRK2,

including the G2019S mutation, cause autosomal dominant PD,66 but

whether LRRK2 G2019S and IFN-γ synergize to accelerate the devel-

opment of a PD phenotype remains unclear. Expression of IFN-γ in

neonatal LRRK2 G2019S knock-in mice67 led to increased tau phos-

phorylation on specific epitopes in the cortex andmidbrain, potentially

explaining why some LRRK2 G2019S PD patients present with tau

pathology.

4.1.2 T cells

T cells themselves also mediate physical communication between the

periphery and the CNS. In mice, CD4+ T cells infiltrating the CNS are

required to drive the maturation of microglia.68 Additionally, infiltrat-

ing peripheral T cells contribute to the maintenance of neurogenesis

and spatial learning abilities in adult mice.69 Throughout aging, T-cell

infiltration into different areas of the mouse brain increases. These

T-cell infiltrates modify the inflammatory profiles of microglia and

oligodendrocytes70 and decrease neural stem cell proliferation.71

4.1.3 Macrophages

Macrophages and monocyte-derived cells can also infiltrate the CNS

during certain disease states. Recently, peripheral disease inflamma-

tory macrophages (DIMs) that are distinct from CNS-resident DAMs

have been identified in aged brains with Aβ plaques.72 Depletion

of peripheral monocyte-derived cells via splenectomy leads to an

increase in Aβ plaques,73 and C-C chemokine receptor type 2 (CCR2)-

expressing perivascular macrophages have been shown to clear Aβ
plaques.74

4.1.4 Sepsis mouse models

Sepsis is characterized by multi-organ dysfunction following unre-

solved infections leading to adysregulated immune response.75 Elderly

sepsis survivors are over three times more likely to develop severe

cognitive impairment compared to elderly, non-septic individuals, sug-

gesting that systemic inflammation associated with sepsis may modify

AD pathogenesis.76 Modeling of sepsis in rodents has been compli-

cated by the lack of standardization across protocols for inducing sep-

sis as well as the environment and age of the animals used.75,77 Most

sepsis models in mice use lipopolysaccharide-induced endotoxicosis,

thereby not capturing the dual inflammatory and immunosuppressive

phenotypesobserved in sepsis patients.78 Asa result, studiesofADand

sepsis in animal models have produced conflicting results. Despite this,

some studies have shown that sepsis can trigger synapse loss, and spa-

tial memory defects, as well as influence Aβ deposition, although the

degree and severity depend on the model.75,79 However, how sepsis-

induced peripheral immune system changes impact the CNS in these

models remains unclear.

To directly examine how changes in peripheral immunity influenced

the CNS, a recent study induced sepsis in an early-onset AD mouse

model using cecal ligation and puncture combined with daily chronic

stress for 7 days.80 A sex-dimorphic and transgene-specific alteration

was observed in splenic hematodysplasia. Further, mice thatwere aged

following recovery from sepsis accumulated a higher Aβ burden. Sep-
sis induced a sex-dependent increase in astrocyte proliferation in all

animals, but brain-resident microglia in AD mice failed to proliferate.

These CNS changes resulting from sepsis suggest that infection in the

peripherymay play a role in AD pathogenesis.81

5 IMPROVED MODELING OF IMMUNE
RESPONSES IN PRECLINICAL MODELS

Characterizing immune system contributions to AD requires the con-

tinued development of appropriate cellular and animal models. In

particular, model systems for studying the effect of the peripheral

immune response on the CNS should mirror human disease courses

and be standardized across the field. In addition, genetic factors rel-

evant to these immune system contributions—and that reflect the

broader complexity of AD—must be reflected in animal models.82 Var-

ious heritable risk alleles in the human genome are associated with AD

development, and frequently, multiple genes contribute to the disease.

Severalmousemodels thathavemadeprogress in achieving thesegoals

were presented at the conference and are highlighted below.
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KLOSKE ET AL. 7

5.1 Mouse models of Alzheimer’s disease risk
alleles

Mouse models that express human AD genetic risk alleles are impor-

tant tools for studying the pathogenesis of AD.83,84 The Model

Organism Development & Evaluation for Late-Onset Alzheimer’s Dis-

ease (MODEL-AD) consortiumhas developednumerousmousemodels

based on risk alleles for LOAD. Mice are genetically modified based

on the risk allele of interest, then aged and conditioned with the

appropriate environmental stimuli such as a high-fat diet to acceler-

ate induced neurodegeneration.85 These models are comprehensively

characterized with all the models and data available without licens-

ing restrictions, and data can be used for the evaluation of potential

therapeutics.86,87 One example presented at the conference is a

mouse model of the Inpp5d, which encodes inositol polyphosphate-5-

phosphatase D/SHIP1.88 Specifically, many DE genes associated with

neurodegenerationwere identified in themicroglia of Inpp5d-deficient

mice, and this differential gene expression was more pronounced in

female mice.89 In particular, previous use of spatial transcriptomics to

investigate Cx3cr1-dependent deletion of Inpp5d, when crossed with

APP/PS1 amyloidosis mice, highlighted an extended gene expression

signature associated with plaques and identified CST7 (cystatin F) as

a novel marker of plaques.90

5.2 Humanized mouse models

While rodent models are important tools for studying AD, rodents do

not recapitulate all human AD pathologies due to numerous genetic

and cellular differences. These differences, as well as lifespan and

environmental differences, contribute to the discrepancy between

rodent and human immune responses.91 Mouse models that incorpo-

rate human cells allow for the study of human cells and genetics in

an experimentally manipulatable system. For example, the microglia

in vitro generation refined for advanced transplantation experiments

(MIGRATE) protocol is used to transplant humanmicroglia intomice.92

Human induced pluripotent stem cells (iPSCs) are cultured, differ-

entiated into microglia, and then transplanted into the brains of

immunodeficient mice. In addition, a human CSF1R variant has been

engineered to provide a nontoxic microglial replacement, suggest-

ing the potential therapies involving the delivery of tissue-resident

macrophages as living therapies to modulate microglial function and

genetics in the diverse neuropathologies.93,94

Despite the advantages ofmousemodels for studying immunity and

AD,manyorthologues of humanandmouseADrisk genes share limited

homology that limits opportunities to explore the therapeutic poten-

tial in the models. To address these interspecies differences, studies

have investigated the extent to which mimicking the developmen-

tal ontology of microglia in vitro can help differentiate human iPSCs

intomicroglia.95–103 However, becausemicroglia cultured in vitro con-

taining serum exhibit rapid changes in RNA expression104 (though

it should be noted this can be minimized with omission of serum

and use of defined trophic culture media105) researchers investigated

whether in vivo transplantationof human iPSCs intomousebrainmight

induce amorehuman-likemicroglial phenotype.Notably, this approach

requires immune-deficient mice, thus creating amicroglial model inde-

pendent of T-cell interactions. Validation studies show that, indeed,

transplanting human microglia progenitors into neonatal mouse fore-

brain promotes the adoption of an in vivo-likemicroglial transcriptome

and microglial functions. In addition, transplantation in the 5XFAD AD

model revealed characteristic microglial migration toward Aβ plaques
and broad changes in gene expression toward a DAM-like phenotype.

Notably, however, expressed human and mouse DAM genes over-

lapped by only 10%, providing clear evidence for species differences

in microglial responses. Chimeric models can also be combined with

CRISPR editing to examine the impact of other AD risk genes (eg,

TREM2).106

Transplantation of human iPSC-microglial progenitors is also being

developed for therapeutic applications. As proof-of-principle, using

CRISPR engineering for regulated delivery of neprilysin, an Aβ-
degrading enzyme, in an AD mouse model demonstrated reduced Aβ
pathology and astrogliosis and protection from the loss of synaptic

proteins. Ongoing studies are focused on scaling up this approach to

improvemicroglial-payload delivery in the adult brain.94

5.3 Marmoset models of Alzheimer’s disease

Non-human primates, like marmosets, undergo age-dependent

changes in motor and cognitive function, spontaneously present

Aβ plaques and neurofibrillary tangles, have high genetic homology

with humans, and can be genetically manipulated.107,108 Addition-

ally, there is significant homology between marmoset and human

immune responses.109 As proof of concept, PSEN1 mutations iden-

tified in human AD (C410Y and A426P) were introduced into

marmosets.108,110 Cognitive and behavioral assessments coupled

with measures of fluid biomarkers as well as multi-omic analyses

will be used to track AD pathogenesis in marmosets.108,111 Notably,

marmoset models could be used to identify early molecular deter-

minants of AD pathogenesis prior to symptom onset and frank

neuropathology.

6 BIOMARKERS FOR IMMUNE CELL CHANGES
IN THE BRAIN

AD therapeutics development should include interventions that con-

sider and potentially harness the peripheral immune system.Designing

appropriate therapeutics requires the identification and longitudinal

tracking of biomarkers in the periphery and CNS to identify potential

drug targets and assess therapeutic efficacy, as well as an understand-

ing of the role of these biomarkers in diverse populations. Progress

on both goals has pointed the way toward promising therapeutics

targeting the immune system.112
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8 KLOSKE ET AL.

6.1 Free water in the brain as a biomarker to
assess inflammation

The use of immune modulators to treat AD requires assessment of

changes in inflammation-associated biomarkers such as free water

in the brain.113 Healthy, myelinated axons are surrounded by free

water, and in AD patients, there is an increase in free water levels.113

Research presented at the conference indicated that free water levels

asmeasured bywhitematter neuroimaging correlatedwith a variety of

AD biomarkers, CSF inflammatory proteins, and worsening cognition.

Free water measurements, coupled with measurements of inflamma-

tion in the CSF and white matter microstructural changes, indicated

that xPro1595, a next-generation selective inhibitor of soluble TNF,

decreased neuroinflammationwhile improvingwhitemattermeasures

of apparent fiber density and radial diffusivity in a Phase 1b trial of AD

patients (NCT05522387).

6.2 Immune-related plasma proteins and
microbiome biomarkers of AD pathology

Systemic health—particularly immunologically relevant conditions,

such as autoimmune or inflammatory disease—are known to influence

the risk of AD and other dementias.114 Researchers suspect that pro-

teins circulating in the blood likely mediate this link between systemic

health and dementia risk.115,116 To ascertain which blood proteinsmay

increase AD risk, researchers can now make use of protein quantita-

tive trait loci (pQTLs) recently made available as a result of the broad

implementation of high-throughput proteomic platforms and genetic

analysis on a population level.117 Using identified genetic loci that

code for blood protein abundance, researchers can now use observa-

tional data in aging cohorts to predictwhich plasmaproteins likely have

a mechanistic relationship with AD and related phenotypes. Studies

using this approach to identify putative causal proteins in blood have

consistently implicated immune-related proteins, including SERPINA3

and SVEP1 as peripheral drivers of AD risk.116–118

Another important component of systemic health is the micro-

biome, and recently themicrobiota-gut-brain axis has gained attention

in Alzheimer’s research. Studies suggest that changes in gutmicrobiota

are linked to AD progression, with various proposed mechanisms.119

Fecal transplant from healthy to AD mice has been shown to reduce

Aβ plaques in the brain,120 and this clearance has been associated

with lower levels of Bacteroides fragilis.121 To determine how B. fragilis

affects the immune-mediated clearance of Aβ plaques, B. fragilis was

administered to AD-predisposed mice. B. fragilis exposure resulted in

an increase in Aβ plaques in the brain of AD mice as well as reduced

uptake of Aβ peptides bymicroglia.122

6.3 Mouse models of protein biomarkers

Classic AD biomarkers include Aβ plaques and tau tangles, but other

proteins have also been established as potential biomarkers, including

TAR DNA-binding protein 43 (TDP-43) and chitinase-3-like protein 1

(CHI3L1).123 Despite their status as biomarkers, their contribution to

disease pathology remains unclear. Manipulating TDP-43 and CHI3L1

expression in mouse models can help elucidate their roles in disease

and reveal potential therapeutic opportunities.

TDP-43 is a ubiquitously expressed nucleic acid-binding protein

localized predominantly in cell nuclei under normal physiological

conditions.124–127 However, studies have identified extranuclear TDP-

43 inneurons andglial cells, includingoligodendrocytes andastrocytes,

in various neurological disorders, including AD.128–133 For example,

recent work suggests that TDP-43 can be mislocalized in hippocampal

astrocytes in AD and FTD. In mice, TDP-43 mislocalization in hip-

pocampal astrocytes resulted in increased neuroimmune signaling and

interferon-related gene expression, including leading to increased lev-

els of astrocytic C-X-C motif chemokine ligands 9 and 10 (CXCL9 and

CXCL10) as well as their receptor, CXCR3, in excitatory presynaptic

terminals. Increased CXCR3 signaling altered excitatory transmis-

sion that contributed to memory deficits.134 Additionally, astrocyte-

specific TDP-43mislocalization led to increased expression of antiviral

factors, including cytosolic double-strandedRNA (dsRNA) sensors, and

cell-autonomous susceptibility to viral pathogens, including HSV-1.134

These findings suggest a model in which astrocytic TDP-43 dysregu-

lation contributes to pathogenesis in AD and FTD through alterations

in neuroimmune signaling and viral susceptibility, potentially due to

aberrant host RNA processing.

CHI3L1 functions in the periphery as a signaling mediator for a

range of immune responses.135 In humans, CHI3L1 is predominantly

expressed in astrocytes.136 In mice, Chi3l1 is equally expressed by

both astrocytes and oligodendrocytes and global overexpression of

Chi3l1 drives subsequent increased chemoattractant receptor homol-

ogous molecule expressed on T helper type 2 cells (CRTH2) signaling

in neuronal stem cells (NSCs) causing decreased NSC proliferation.137

Reduced NSC proliferation can lead to impaired adult hippocampus

neurogenesis and decreased cognitive performance. Because deple-

tion of CHI3L1 can rescue this phenotype, CHI3L1may be a promising

therapeutic target for AD.137

7 CLINICAL TRIALS AND EMERGING
PERIPHERAL THERAPEUTICS IN DEMENTIA

Potential AD therapeutics that leverage the peripheral immune system

include preexisting drugs such as antivirals, immunization targetingAβ,
and novel methods to induce differentiation of Aβ-targeting immune

cells.

7.1 Diversity and inclusivity in clinical trials

Traditionally, AD clinical trials and biomarker identifications have been

conducted in non-Hispanic Whites. However, a meta-analysis demon-

strated that the AD rate for Black/African American adults was 64%

higher than for Whites.138 Despite this, Black/African Americans are
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KLOSKE ET AL. 9

underrepresented in clinical trials for AD, and current data lack infor-

mation on AD biomarkers in Black/African Americans. To address this

gap, researchers enrolled healthy middle-aged non-Hispanic Whites

and Black/African Americans at risk for AD in a longitudinal study

(ASCEND Study) to investigate the interplay between AD biomarkers,

brain and systemic inflammation, and AD development. Early analysis

indicates that Black/African Americans have lower levels of tau but

higher pro-inflammatory markers in the blood compared to non-

HispanicWhites, indicating biomarkers differ between populations.139

7.2 Antiviral treatment

HSV-1 is detected in the brain of AD patients at higher rates than in

cognitively normal patients and is associated with worse cognition.140

In mice, HSV-1 infection induces Aβ and tau formation; administer-

ing antiviral drugs can protect against these effects.141 In a pilot trial

of 33 patients, valacyclovir 3 gm daily was well-tolerated and showed

measurable changes in CSF levels of inflammatory markers.142 Two

ongoing controlled clinical trials aim to assess the effects of vala-

cyclovir versus placebo in HSV seropositive patients with mild to

moderate AD (VALAD) or mild cognitive impairment (VALMCI).143

Patients will be evaluated for changes in cognition, function, and

biomarkers such as Aβ and tau via positron emission tomography (PET)

imaging.

7.3 Aβ immunization

Clinical trials targeting Aβ have been under investigation for over

two decades,144 highlighting their potential as a promising therapeutic

approach in AD. Initial evidence of their efficacy emerged from post-

mortem analyses of the AN1792 active Aβ immunotherapy trial. These

analyses demonstrated Aβ clearance in a subset of patients, irrespec-

tive of dementia progression.145–149 This finding prompted a series of

critical questions regarding the cellularmechanisms responsible for Aβ
removal and the precise role of Aβ in the progression of dementia.146

7.4 Cell transplantation

T cells targeting AD-associated proteins like Aβ precursor protein

(APP) could help restrict AD pathology. However, during development

in the thymus, T cells that are specific to APP expressed on thymic

epithelial cells (TECs) may be pruned to eliminate self-reactive T cells.

Additionally, aged AD mice have reduced T cell generation because of

enhanced loss of TECs compared to non-AD agedmice. To combat this,

researchers supplemented these mice with APP-expressing or APP-

depleted TECs. Transplantation of APP-competent or APP-depleted

TECs into mice attenuated AD pathology, but APP-depleted TECs

exhibited greater effectiveness, leading to an increase in Aβ-specific
T cells. Transplantation of APP-depleted human TECs is a potential

therapy for AD patients.150

8 CROSS-DISEASE INSIGHTS FOR AD

Dysregulated cellular interactions between immune and non-immune

cells in the CNS and between the CNS and the peripheral immune

system may contribute to AD pathology. Thus, targeting proteins

that regulate these cellular networks and generally treating diseases

that trigger dysregulated immune interactions may be viable ther-

apeutic strategies. However, therapeutic development first requires

further elucidation of both the protein and cellular networks and dis-

eases involved. Lessons from other fields offer insights into potential

directions for future research.

8.1 Cellular communication in the CNS

Cell-cell interactions control CNS physiology and pathology, and fur-

ther development of unbiased methods is needed to holistically study

the complexity of cell-cell communication. Recent studies have devel-

oped two methods for studying cell interactions in the CNS—rabies

barcoding in droplets followed by sequencing (RABID-seq)151 and

stimulation, perturbation, and encapsulation of interacting cells fol-

lowed by sequencing (SPEAC-seq).152

RABID-seq involves injectingbarcoded rabies viruses into thebrains

of mice and using these barcodes to reconstruct cell interactions

with single-cell RNA sequencing.151 This method, used to examine

the role of semaphorin 4D (SEMA4D) in an experimental autoim-

mune encephalomyelitis (EAE) model of multiple sclerosis (MS) has

provided crucial insights into the role of inflammation in neurodegen-

erationwhich are relevant toADpathology aswell. RABID-seq analysis

indicated that SEMA4D on microglia interacted with receptors on

astrocytes, leading to increased inflammation and neurodegeneration.

SEMA4Dwas found to be upregulated in neurons during Huntington’s

disease (HD) andADdisease progression. SEMA4Dnormally regulates

the actin cytoskeleton and inflammatory transformation through cog-

nate receptors expressed on glial cells, and during neurodegeneration

increases astrocyte reactivity and inhibits their normal homeostatic

metabolic functions.153 These findings led to a trial of an SEMA4D

antibody (pepinemab) in HD patient cohorts, which restored deficits

in metabolic activity as measured by fluorodeoxyglucose (FDG)-PET

and delayed cognitive decline.154 This example illustrates how insights

fromMS andHD research can inform therapeutic strategies for AD.

Further screening of cell interactors can be done with SPEAC-seq.

In SPEAC-seq, one cell of interest (eg, microglia) is transduced with a

CRISPR/Cas9 library while the target cell (eg, astrocyte) is transduced

with a fluorescent reporter that is expressed after activation of a target

gene (eg, NF-κB). The cells are then co-cultured in droplets followed by
quantification of the fluorescent reporter to develop a catalog of genes

in the cell of interest that signal to the target cell to induce expres-

sion of the target gene. SPEAC-seq was recently used to determine

that astrocyte-derived IL33 induces amphiregulin (Areg) expression in

microglia which in turn decrease NF-kB signaling andminimized astro-

cyte reactivity in EAE, indicating IL33-AREG-NF-kB signaling controls

an astrocyte–microglia regulatory circuit.152
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10 KLOSKE ET AL.

8.2 Peripheral communication with the CNS

Genetic mutations that drive disease are not restricted to cells in

the brain, and systemic changes resulting from these mutations may

influence disease pathology. For example, research on heterozygous

loss-of-function mutations in granulin (GRN) associated with fron-

totemporal lobar degeneration (FTLD) has shown how peripheral

immune responses can affect CNS pathology, suggesting potential

therapeutic targets for AD. In the CNS, the depletion of GRN from

mice resulted in increased synaptic pruning by microglia.155 In aged

GRN-deficient mice, less reactive monocytes infiltrated the brain at

higher levels whichwas coupledwith an increase in peripheral immune

responses.156 Thus, targeting myeloid cell trafficking into the CNS

could be a potential therapeutic target to alleviate neurodegeneration.

Inflammatory signaling from both the periphery and the CNS plays

a critical role in the progression of neurodegenerative disorders.157

The fruit fly, Drosophila melanogaster, is a model organism equipped

with genetic and physiological tools to study the contributions of

peripheral and CNS inflammatory signaling pathways in the context

of neurodegenerative diseases. These techniques enable the devel-

opment of humanized flies to model disorders such as PD and AD,

providing a platform to study cellular mechanisms and potential thera-

peutic targets tomimic PDpathology; human alpha-synuclein (hSNCA)

andmutant hSNCAwere expressed in either the brain or the periphery

of Drosophila. Expression of both wild-type and mutant hSNCA in the

brain or gut resulted in phosphorylation and accumulation of hSNCA

in the brain158 and led to behavioral deficits that include motor activ-

ity deficiencies and sleep disturbances. Gut expression of hSNCA was

associatedwith a significant increase in TNFandToll receptor signaling

proinflammatory markers.158 Future studies using this physiological

platform will further investigate the cellular mechanisms that lead to

neuronal dysfunction and behavioral symptoms resulting from hSNCA

expression in peripheral organs or the brain.158

8.3 CNS metabolism

Quantitative proteomics of brain and CSF samples have indicated

a strong relationship between AD pathology and metabolic path-

ways associated with microglia and astrocyte reactivity.159 Many of

these pathways are regulated by insulin signaling, suggesting insulin

treatment may be a potential AD therapy. For example, the repur-

posing of insulin enhances immunometabolism in the brain160 and

counter-regulates tau pathologies.161 In a recent Phase IIB clinical

trial, intranasal insulin (INI) delivered to the brain of AD patients162

improved AD biomarker profiles and inflammation163 while slowing

vascular damage indicated by slowed white matter hyperintensity

progression.164

8.4 Autoimmunity

An increased understanding of autoimmune disorders associated with

ADmayhelp identifymechanismsof howanoveractive immune system

influences AD pathogenesis.165 Data from electronic medical records

(EMRs) was used to determine if autoimmunity increased the odds of

developing AD. Diagnosis of an autoimmune disease, especially one

related to the endocrine, hematologic, and musculoskeletal systems,

increased the odds of anADdiagnosiswhile decreasing the time to that

diagnosis.166

Increased prevalence of autoimmunity has also been associated

with other neuropathologies, including concurrent amyotrophic lat-

eral sclerosis (ALS) and MS.167 All patients with concurrent ALS

and MS had a mutation in C9orf72, a protein involved in lysoso-

mal trafficking.167 To determine whether C9orf72 contributed to

both autoimmunity and neurodegeneration, researchers generated

C9orf72-deficient mice. Some C9orf72-deficient mice spontaneously

developed a fatal autoimmune phenotype.168 This phenotype was

associated with enhanced type-I IFN signaling in DCs caused by

delayedSTINGdegradation.169 AgedC9orf72-deficientmice exhibited

enhanced synapse loss, complement deposition, and memory deficits

as well as systemic inflammation.170 Paradoxically, C9orf72-deficient

microglia were better at clearing plaques despite promoting increased

synaptic damage. This suggests that genetic mutations associated with

the development of autoimmune disorders may also play an important

role in neuropathologies.

9 CONCLUSION

The biomedical research community has made significant progress in

understanding the role of immunity in the development of AD and

other neurodegenerative diseases. The 2023 AAIC, Advancements:

Immunity, helped to facilitate discussions on emerging research in

immunity and ADRD and provide a forward perspective on the field.

Sessionshighlighted the roleof the innateandadaptive immunesystem

in neurodegenerative diseases, animal models of immunity in AD that

replicate human pathology, immune-related biomarkers, clinical trials,

and lessons from other fields describing the role of the immune system

in neurodegeneration. Understanding the role of immunity in AD and

other dementias requires further attention to bidirectional commu-

nication between the brain and periphery. While human studies have

been correlative and have not demonstrated the direct involvement of

the peripheral immune responses in AD pathologies, there have been a

number of tightly controlled animal studies that showmechanisms and

the crosstalk between the periphery and CNS suggesting that various

aspects of the peripheral immune systemmay be potential therapeutic

targets for AD.51,115

While the 2023 AAIC, Advancements: Immunity, highlighted

research on the role of immunity in ADRD, it also demonstrated areas

in which further work is needed to clarify how the components of the

immune system contribute to either disease progression or protection.

Delineating the roles of key CNS immune cells as well as elucidating

how peripheral inflammation affects the CNS requires models that

reflect human immune system complexity and techniques incorpo-

rating lessons from other fields. Understanding how the immune

system modulates AD pathogenesis will be essential for developing

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14291 by Soyon H

ong - T
est , W

iley O
nline L

ibrary on [27/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KLOSKE ET AL. 11

therapeutics harnessing either the central or peripheral immune

response to treat neurodegenerative disease.
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