
1

Augmentation Matters: A Mix-Paste Method for
X-Ray Prohibited Item Detection under Noisy

Annotations
Ruikang Chen, Yan Yan, Jing-Hao Xue, Yang Lu, Hanzi Wang

Abstract—Automatic X-ray prohibited item detection is vital
for public safety. Existing deep learning-based methods all
assume that the annotations of training X-ray images are correct.
However, obtaining correct annotations is extremely hard if not
impossible for large-scale X-ray images, where item overlapping
is ubiquitous. As a result, X-ray images are easily contaminated
with noisy annotations, leading to performance deterioration
of existing methods. In this paper, we address the challenging
problem of training a robust prohibited item detector under
noisy annotations (including both category noise and bounding
box noise) from a novel perspective of data augmentation, and
propose an effective label-aware mixed patch paste augmentation
method (Mix-Paste). Specifically, for each item patch, we mix
several item patches with the same category label from different
images and replace the original patch in the image with the
mixed patch. In this way, the probability of containing the
correct prohibited item within the generated image is increased.
Meanwhile, the mixing process mimics item overlapping, enabling
the model to learn the characteristics of X-ray images. Moreover,
we design an item-based large-loss suppression (LLS) strategy to
suppress the large losses corresponding to potentially positive
predictions of additional items due to the mixing operation. We
show the superiority of our method on X-ray datasets under noisy
annotations. In addition, we evaluate our method on the noisy
MS-COCO dataset to showcase its generalization ability. These
results clearly indicate the great potential of data augmentation
to handle noise annotations. The source code is released at
https://github.com/wscds/Mix-Paste.

Index Terms—Object Detection, Noisy Annotation, Data Aug-
mentation, X-Ray Prohibited Item Detection.

I. INTRODUCTION

OVER the past few years, automatic X-ray prohibited item
detection, which can assist security inspectors to quickly

identify the locations and categories of prohibited items, has
attracted much attention. A large number of prohibited item
detection methods [1]–[7] have been developed.

Generally, existing X-ray prohibited item detection methods
depend heavily on a large-scale dataset for model training.
Unfortunately, obtaining correct annotations with clean cat-
egory labels as well as accurate bounding boxes is labor-
expensive and requires the expertise of professionals. Notably,
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Fig. 1. Examples in an X-ray dataset [1]. (a) Examples with noisy category
labels (the correct labels from left to right are folding knife, utility knife, and
utility knife, respectively). (b) Examples with inaccurate bounding boxes. (c)
Examples with correct annotations in X-ray images, where item overlapping
is ubiquitous.

the ubiquitous item overlapping in X-ray images renders the
annotation of an X-ray dataset a challenging task. In many
practical applications, machine-assisted annotations or crowd-
sourcing are often employed to annotate large-scale data,
reducing the expensive cost of high-quality human annotations.
The machine-assisted process or the crowd-sourcing labeling
process easily leads to noisy annotations. As a result, some
existing X-ray datasets involve annotations with both category

noise (i.e., noisy category labels) and bounding box noise

(i.e., inaccurate ground-truth bounding boxes). Fig. 1 gives
some examples with noisy annotations in a public X-ray
dataset [1]. These noisy annotations greatly decrease the model
performance.

To address the problem of learning with label noise, ex-
isting methods [8]–[10] often adopt a label refinement or
loss correction paradigm. However, most of these methods
work on the image classification task without considering the
existence or the location of the objects/items. Unlike the image
classification task, the X-ray prohibited item detection task
introduces additional challenges caused by inaccurate ground-
truth bounding boxes. As a consequence, label noise learning
methods do not work well on the prohibited item detection
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task (a specialized task of object detection). Recently, some
works [11]–[15] have studied object detection under noisy an-
notations. But they are designed for common object detection
and are not well-suited for prohibited item detection due to
the presence of ubiquitous item overlapping in X-ray images.

To effectively train a robust prohibited item detector in noisy
scenarios, we revisit the fundamental aspect of learning with
noisy annotations (i.e., reducing the noise during training)
and the inherent characteristics of X-ray images (i.e., the
ubiquitous overlapping between items) from the perspective
of data augmentation. In particular, for an X-ray dataset
contaminated with noisy annotations, a collection of item
patches that share the same category label is more likely to
contain one correct prohibited item than the individual patch
in the collection. Inspired by this observation, we mix such
multiple item patches to generate a mixed patch and paste
it back into the original image for data augmentation. Thus,
the generated image can involve the correct prohibited item
with a high probability, reducing the negative influence of
noisy annotations. In fact, the mixing process of these multiple
item patches also effectively mimics item overlapping in X-ray
images, enabling the detector to gain a deeper understanding
of X-ray images and improve the detection performance.

Although the mixed patch can effectively alleviate the noisy
annotations, it may introduce additional noisy-labeled (caused
by category noise) prohibited items during training. In such a
case, the model tends to give predictions for all the possible
prohibited items in the mixed patch before overfitting noisy
labels. When the conventional classification loss is used for
model optimization, some accurate predictions of additional
prohibited items may be mistakenly considered as false pre-
dictions (since the category label of additional prohibited items
is noisy) and generate large losses. Such a way can be harmful
to model training. Hence, we should remove the large losses
corresponding to these potentially positive predictions during
loss calculation.

Based on the above analysis, we propose a simple yet
effective data augmentation method, called label-aware mixed
patch paste augmentation (Mix-Paste) to address the problem
of training a robust X-ray prohibited item detector under noisy
annotations. Specifically, for each item patch (corresponding
to a ground-truth bounding box) in the training image, we
first randomly choose several item patches (according to their
ground-truth bounding boxes) with the same category label
from different images. Then, we mix these patches and replace
the original patch in the image with the mixed patch, obtaining
a new image. By doing this, the probability of containing
the correct prohibited item within the generated image is
increased. It is worth pointing out that our method randomly
selects item patches with the same category label, where the
category label of some patches can be contaminated with
noise. In other words, it does not require the label of the
selected item patches to be clean. In fact, such a selection can
increase the probability of containing the correct prohibited
item in the mixed patch. To effectively optimize the model on
augmented data, we design an item-based large-loss suppres-
sion (LLS) strategy, suppressing the large losses corresponding
to potentially positive predictions of additional items caused

by the mixing operation in Mix-Paste.
In summary, our contributions are given as follows:

• We propose a new data augmentation method by mixing
item patches with the same category label for X-ray
prohibited item detection. Our method can significantly
reduce category noise and bounding box noise during
training, obtaining a noise-robust prohibited item de-
tector. To the best of our knowledge, we are the first
to address the problem of noisy annotations in X-ray
prohibited item detection from a novel perspective of data
augmentation.

• We design an effective loss suppression strategy for loss
calculation. Such a strategy overcomes the limitations of
the small-loss criterion [16], [17] for label noise learning
in our task. This greatly reduces the adverse influence of
the large losses corresponding to potentially positive pre-
dictions of additional items caused by the mixing process
of item patches and enhances the detection performance.

Our extensive experiments on public X-ray datasets validate
the effectiveness of our method under noisy annotations. We
also perform experiments on the noisy MS-COCO dataset [18],
which exists a certain level of object overlapping. Interestingly,
our method shows performance improvements on the common
object detection task. These results clearly indicate the advan-
tage of data augmentation to address the problem of learning
with noisy annotations.

The remainder of this paper is organized as follows. We first
review the related work in Section II. Then, we elaborately
introduce our proposed method in Section III. Next, we
conduct the experiments on the noisy X-ray datasets and the
noisy MS-COCO dataset in Section IV. Finally, we draw the
conclusion in Section V.

II. RELATED WORKS

In this section, we briefly review several related works.
We first introduce X-ray prohibited item detection methods
in Section II-A. Then, we review data augmentation methods
in Section II-B. Finally, we review the methods of learning
with label noise and learning with noisy annotations for object
detection in Section II-C and Section II-D, respectively.

A. X-Ray Prohibited Item Detection

With the development of deep learning technology, auto-
matic X-ray prohibited item detection has been widely applied
in security inspection. A variety of methods [1], [3], [4], [6],
[19]–[25] have been developed to address the severe occlusion
and item overlapping problems in X-ray images by introducing
attention mechanisms or specifically-designed modules. Wei et

al. [1] propose an attention mechanism to enhance the edge
and material information of prohibited items. Zhang et al.

[3] apply spatial- and channel-wise attention mechanisms to
extract discriminative features and incorporate a dependency
refinement module to explore long-range dependencies within
the feature map. Tao et al. [4] identify the object regions
for prohibited item detection by removing the noisy infor-
mation from neighboring regions and activating the boundary
information. Ma et al. [6] leverage dual-view X-ray images
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as the input and exploit non-overlapping information of two
images to enhance feature representations of prohibited items,
effectively mitigating background overlapping. Zhao et al. [19]
introduce a label-aware mechanism to tackle the item overlap-
ping problem by establishing the associations between feature
channels and labels. Based on this, they refine and adjust the
features to enhance prediction results according to the assigned
pseudo labels. Shao et al. [20] propose a foreground and
background separation (FBS) method, which can handle the
severe overlapping problem in X-ray images by separating
prohibited items from other irrelevant items. Velayudhan et al.

[21] introduce a baggage threat detection framework based on
broad learning. This framework leverages low-rank features to
identify and localize concealed and cluttered baggage threats.

Due to the ubiquitous item overlapping in X-ray images,
annotating an X-ray dataset becomes a challenging task. As a
result, some X-ray datasets involve noisy annotations with both
category noise and bounding box noise. Hence, it is crucial to
develop a noise-robust prohibited item detector.

B. Data Augmentation

Data augmentation aims to improve the generalization ca-
pability of models by artificially increasing the diversity of
the training data. Cutout [26] randomly applies masking to
square patches in the image, effectively enforcing the model
to learn from incomplete information. Mix-Up [27] generates
new training examples by linearly interpolating between two
images and their corresponding labels. This encourages the
model to generalize beyond the training data and reduce
sensitivity to adversarial examples. AlignMix [28] improves
representation learning by geometrically aligning and interpo-
lating features from multiple images. Such a way enhances the
model’s generalization and robustness. Mosaic [29] combines
four images into one, enabling the model to observe multiple
contexts in a single training step. This method increases the
diversity of the dataset and exposes the model to more com-
plex, multi-object scenes, enhancing robustness to variations
in object scale and occlusions. Channel augmentation [30]
explores the relationship between visible and infrared images
to obtain modality-invariant features.

Recently, some methods leverage CLIP [31] or the diffusion
model [32] to generate new data by using prompt words. Fang
et al. [33] propose a data augmentation pipeline based on
controllable diffusion models and CLIP for object detection.
Gannamaneni et al. [34] generate safety critical scenes by
inpainting with diffusion models conditioned on text and pose,
offering fine-grained control over pedestrian attributes.

Some of the above methods perform well in clean X-ray
datasets [35]. However, when applied to the X-ray datasets in-
volving noisy annotations, the generated X-ray images contain
significant disturbances, potentially degrading model perfor-
mance. Different from the above data augmentation methods,
we design a data augmentation method to effectively alleviate
noisy annotations in the X-ray dataset and improve the training
performance of the model in the noisy dataset.

C. Learning with Label Noise

A number of methods [8]–[10], [16], [36], [37] have been
developed for learning with label noise. Some methods [38]–
[41] address the label noise problem by employing a noise
transition matrix to refine predictions. Goldberger et al. [38]
adopt both an s-model and a c-model to effectively obtain
a noise transition matrix. Patrini et al. [39] explicitly model
the noise transition matrix to correct the loss. Several works
[10], [36], [42], [43] reveal that a loss function involving
symmetric properties exhibits enhanced robustness against
label noise. However, these methods may only be capable of
handling certain noisy rates. Recent methods focus on new
learning paradigms [9], [44]–[50]. For example, MentorNet
[44] leverages a teacher-student framework to learn a robust
student model by exploiting the knowledge of a teacher model.
Co-teaching [9] trains the two models simultaneously, where
each model selects the samples with the small-loss criterion
to update the other model. Co-teaching+ [45] improves the
performance of Co-teaching by training on disagreement data.
JoCoR [46] allows the two models to reach an agreement by
minimizing the distance loss predicted by the two models.
PurifyNet [48] introduces a hard-aware instance re-weighting
strategy to focus on hard samples in the noisy dataset. Ye et al.

[49] propose an online label co-refinement framework, which
progressively refines noisy labels during model optimization.

The above methods mainly handle label noise and focus
on the image classification task. In this paper, our method
addresses noisy annotations involving both category noise and
bounding box noise for training a robust prohibited item detec-
tor. Moreover, unlike the above methods that select clean data
by designing different strategies, our method addresses noisy
annotations from the perspective of data augmentation. In this
way, our method does not require estimating/predefining the
noise rates or selecting a clean subset as did in conventional
label noise learning methods.

D. Learning with Noisy Annotations for Object Detection

Recently, some methods [11]–[14] have been developed
to address robust training on noisy annotations for object
detection. Chadwick et al. [11] extend the Co-teaching strategy
to the field of object detection. Li et al. [12] decouple
bounding box noise from category noise and then leverage the
predicted output for category noise correction and bounding
box refinement. Yang et al. [13] reduce the influence of noisy
labels by employing diverse loss functions. Liu et al. [14] treat
each object as a bag of instances and select accurate instances
from the object bags for training. Wang et al. [15] develop
a novel Bayesian filter-based prediction ensemble method to
address noisy bounding box annotations within a teacher-
student learning framework.

The aforementioned methods are designed for common
object detection. In contrast, our method mixes multiple item
patches to mimic the characteristics of X-ray images (i.e., the
ubiquitous overlapping between items) for prohibited item de-
tection. Surprisingly, experiments show that our method is also
beneficial in improving the performance of common object
detection (which exists a certain level of object overlapping).
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Fig. 2. Overview of our proposed method for training a robust prohibited item detector under noisy annotations. (a) illustrates Mix-Paste which mixes
multiple item patches with the same category label (the correct label in the upper item patch is the scissor) for data augmentation. (b) illustrates the LLS
strategy which suppresses the large losses corresponding to potentially positive predictions of additional items during loss calculation. PBneg : the predicted
bounding boxes whose IoUs between them and the ground-truth bounding boxes are less than a threshold; PBfb: the predicted bounding boxes whose IoUs
are greater than a threshold and the predicted label is the background; PBpos: the predicted bounding boxes whose IoUs are greater than a threshold and the
predicted label is the same as the ground-truth category label; PBpp: the predicted bounding boxes whose IoUs are greater than a threshold and the predicted
label (not the background) is different from the ground-truth category label.

III. METHDOLOGY

In this section, we first give the problem formulation in
Section III-A. Then, we provide an overview of our method
in Section III-B. Next, we describe our Mix-Paste method in
detail in Section III-C. Finally, we introduce an LLS strategy,
which can be effectively combined with Mix-Paste to alleviate
the influence of noisy annotations during model training, in
Section III-D.

A. Problem Formulation

Some X-ray datasets involve noisy annotations due to the
difficulty of obtaining high-quality human annotations in X-
ray images, where item overlapping is prevalent. In this paper,
we address the problem of training a robust prohibited item
detector on the noisy X-ray dataset, where the noise contains a
mixture of category noise and bounding box noise. In addition,
we do not assume that a subset with clean annotations is
available.

Given a noisy dataset D = {(xi,eyi)}Ni=1, where xi is
the i-the training image and eyi = {ecj , ebj}Ji

j=1 denotes the
annotation of xi. Here, ecj denotes the label of the j-th
prohibited item, ebj = (ex, ey, ew,eh) represents the ground-truth
bounding box coordinates (ex and ey represent the coordinates of
the top-left corner, and ew and eh represent the width and height,
respectively) of the j-th prohibited item, and Ji is the number
of prohibited items for xi. Unlike the image classification task,
the prohibited item detection task often involves two types of
noise: category noise and bounding box noise. In this way, the
dataset contains class-corrupted instances where the category
labels are noisy, and position-corrupted instances where the
ground-truth bounding boxes are inaccurate. Hence, we aim

to train a noise-robust model based on D and evaluate its
performance on the test set.

B. Overview

In this paper, we develop a simple yet effective data aug-
mentation method called Mix-Paste for training on the noisy
X-ray dataset. Mix-Paste is a plug-and-play data augmentation
method that can be directly applied to the training of different
prohibited item detectors. The overview of our method is
shown in Fig. 2.

Specifically, for each item patch corresponding to a ground-
truth bounding box in the training image, we first randomly
select several item patches (specified by the ground-truth
bounding boxes with the same category label) from different
images. Then, we resize these item patches to the same size
and mix them. Finally, we can paste the mixed patch back
into the original item location in the image. In this way, the
mixture of item patches can generate a new training image
with reduced noise interference. Note that instead of applying
Mix-Paste to all the images, we apply our proposed Mix-Paste
to the randomly selected subset of the training set (with a
probability), maintaining consistency between the training and
test samples. In this way, some X-ray images are generated by
Mix-Paste while the other images are unchanged.

To obtain a robust detector on the augmented data, we
further design an item-based large-loss suppression (LLS)
strategy, which suppresses the large losses corresponding to
potentially positive predictions of additional items during
loss calculation. Technically, we first select the predicted
bounding boxes, for which the Intersection over Unions (IoUs)
between them and the ground-truth bounding boxes are larger
than a threshold. Then, we identify those predicted bounding
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boxes whose predicted label is different from the ground-truth
category label (except for predicted bounding boxes whose
predicted label is the background). Finally, the classification
losses corresponding to these identified bounding boxes are
suppressed and not counted for loss calculation. By doing this,
we effectively reduce the negative influence caused by the
patch mixing operations (which may involve several different
prohibited items due to category noise) for model optimization.

C. Mix-Paste

We generate a new patch by mixing multiple item patches
that share the same category label. To mix these item patches,
we crop the item patches from the selected images according to
the ground-truth bounding boxes and resize them to the same
size. Finally, the mixed patch is used to replace the original
patch. Note that we only randomly select patches with the
same category label from the whole dataset without assuming
that the labels of the selected patches are clean.

Mathematically, the process of generating the mixed patch
B̂ is formulated as

B̂ = ↵�Ba +
KX

n=2

1�↵

K � 1
� resize(Bn), (1)

where K is the total number of patches for mixing (including
the original item patch); Ba is the original item patch in
x; Bn is the n-th item patch randomly selected from the
whole dataset; ‘�’ is the element-wise multiplication; resize(·)
denotes the function that resizes the item patch to the same
size as Ba; ↵ is an edge smoothing mask to make the mixed
patch more natural.

The edge smoothing mask is defined as

↵(i, j) =

(
1� (1� �)(di,j/(� · w)), di,j  � · w,
�, di,j > � · w,

(2)

where di,j is the distance between the pixel (with the spatial
location of (i,j) in the patch) to the nearest boundary of the
patch; � denotes a threshold to control the smoothing area (we
empirically set � to 10%); w is the width of the bounding
box; � 2 [0, 1] is a random number generated from a Beta
distribution. Although the edge smoothing mask can allow for
the natural appearance of the mixed patch, we also observe
that simply merging the patches with linear combinations can
also achieve similar performance.

Note that some methods apply threat image projection for
image fusion. However, it is difficult to apply threat image
projection in our method due to the following several reasons.
First, some threat image projection methods [51], [52] require
X-ray images with plain backgrounds to segment prohibited
items and superimpose isolated prohibited items onto normal
images. As most X-ray datasets do not have X-ray images with
plain backgrounds, it is not trivial to obtain isolated prohibited
items. Second, traditional threat image projection methods
[53], [54] only work on the fusion of gray images. However,
most current X-ray datasets are color images (notice that the
color information of each prohibited item plays an important
role in detection due to the penetration characteristics of X-
rays). Therefore, these methods cannot be directly used in our

method. Although recent methods [52] extend threat image
projection to color X-ray images by superimposing pixel-level
isolated prohibited items onto normal images, the pixel-level
annotations are not available in our X-ray datasets. Third,
most threat image projection methods compute the image
intensity based on the X-ray energy, object material, and object
thickness. In this way, some parameters related to the X-
ray scanners (such as the X-ray energy) are required as a
prerequisite. But these parameters are not provided in existing
public X-ray datasets.

Subsequently, the mixed patch is pasted back into the
original image, which can be formulated as

x[ex : ex+ ew, ey : ey + eh] = B̂, (3)

where x denotes the original image corresponding to the item
patch; [ex : ex + ew, ey : ey + eh] denote the bounding box region
of the original item patch Ba.
Why does Mix-Paste work? We analyze the reasons why
our Mix-Paste can work on the training of X-ray prohibited
item detection under noisy annotations. First, Mix-Paste can
reduce category noise and bounding box noise explicitly. For
an annotated bounding box with the prohibited item label ecj
in the dataset involving the category noise rate of Pc, the
probability of the prohibited item within the bounding box
region is estimated as 1 � Pc. When K item patches with
the same category label ecj are mixed, the probability of the
existence of the item with the label ecj (which is computed as
1�PK

c ) is increased. Analogously, suppose that the bounding
box noise rate is Pb, the probability of the K mixed patch
that can accurately bound a correct prohibited item (which is
computed as 1�PK

b ) is also increased. Second, Mix-Paste can
effectively mimic item overlapping in X-ray images, thereby
enabling the detector to enhance its awareness of overlapping.
Third, Mix-Paste can generate more diverse training samples,
thereby enhancing the generalization ability of the model.
Can the mixing operation perfectly mimic item overlap-
ping in X-ray images? Some existing data augmentation
methods (such as Mix-Up [27]/CutMix [55]) fail to generate
data perfectly as the original dataset. However, these data
augmentation methods can significantly enhance the model
performance in various tasks by substantially increasing the
diversity of the dataset. In the same spirit, although the
mixing operation in Mix-Paste cannot perfectly mimic item
overlapping in X-ray images, it still can encourage the model
to learn some characteristics of X-ray images under item
overlapping conditions. More importantly, our Mix-Paste is
shown to be effective in alleviating the influence of noisy
annotations during model training.
Can Mix-Paste be applied to the segmentation task?
Unfortunately, our method is difficult to be applied to the
segmentation task. The core idea behind our method is to
increase the probability of the target prohibited item appearing
within a bounding box by mixing different item patches. It is
straightforward to adjust the different sizes of bounding boxes
for patch mixing since these boxes are rectangular. However,
it is not easy to align the object with different shapes at the
pixel level for the segmentation task. As a result, our method
is more suitable for object detection than segmentation.
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Comparison against traditional data augmentation meth-
ods. Both our method and traditional data augmentation meth-
ods combine the training samples to generate new samples.
However, there are some intrinsic differences (in terms of the
motivations and methodological details) between our method
and traditional methods. First, Mix-Up encourages the model
to behave linearly, reflecting a good inductive bias [27]. In
contrast, Mix-Paste aims to synthesize more training samples
with less annotation noise. Second, Mix-Up, which combines
the two images at the image level, is developed for image
classification. On the contrary, Mix-Paste, which mixes item
patches with the same category label at the patch level, is
designed for prohibited item detection. Our experiments fur-
ther validate that Mix-Paste significantly outperforms Mix-Up
for prohibited item detection under noisy annotations. CutMix
[55] randomly replaces a patch in the image with another patch
from another image. SaliencyMix [56] and Attentive CutMix
[57] enhance CutMix by pasting the most salient region onto
the corresponding location in the target image. Unlike the
above methods, Mix-Paste mixes multiple item patches with
the same category label.

D. Item-Based Large-Loss Suppression (LLS) Strategy

After the mixing operation, the probability of the mixed
patch containing the correct target prohibited item is increased
(the detailed analysis about why our Mix-Paste can work
on the training of X-ray prohibited item detection under
noisy annotations is given in Section III-C). However, the
mixing operation is likely to introduce additional noisy-labeled
prohibited items (caused by category noise in some selected
patches) during training. In fact, the probability that the
selected patches consist of all correct prohibited items is only
(1 � Pc)K , where Pc denotes the category noise rate and K
is the number of patches. Consequently, the mixing operation
may introduce additional noisy-labeled prohibited items during
training. In such a case, the model tends to predict these items
for the newly generated image during training. However, these
predicted bounding boxes will be mistakenly considered as
false predictions since their corresponding correct labels are
not available. Hence, these potentially positive predictions give
large losses in the conventional classification loss calculation,
resulting in a negative influence on model training.

To alleviate this problem, we propose an item-based large-
loss suppression (LLS) strategy. As illustrated in Fig. 2, we
categorize the prediction results into four parts, including (1)
(1) PBneg: the predicted bounding boxes whose IoUs between
them and the ground-truth bounding boxes are less than a
threshold (e.g., there is no matching between the ground-truth
bounding box and the predicted bounding box in Fig. 2(b)); (2)
PBfb: the predicted bounding boxes whose IoUs are greater
than a threshold and the predicted label is the background
(e.g., the predicted bounding box position is correct but the
category label is predicted to the background in Fig. 2(b)); (3)
PBpos: the predicted bounding boxes whose IoUs are greater
than a threshold and the predicted label is the same as the
ground-truth category label (e.g., both the predicted bounding
box position and category label are correct in Fig. 2(b)); (4)

PBpp: the predicted bounding boxes whose IoUs are greater
than a threshold and the predicted label (not the background)
is different from the ground-truth category label (e.g., the
predicted bounding box position is correct but the predicted
category label is incorrect in Fig. 2(b)).

When calculating the classification loss, we suppress PBpp

from the prediction results and focus on the remaining three
parts. Hence, the final loss is calculated as

L = Lbbox + Lclsneg + Lclspos + Lclsfb , (4)

where Lbbox denotes the bounding box regression loss;
Lclsneg , Lclsfb , and Lclspos denote the classification losses for
PBneg , PBfb, and PBpos, respectively.

For learning with label noise on image classification, the
popular small-loss criterion [16], [17] treats samples with
small losses as clean samples and considers samples with
large losses as noisy samples. However, for prohibited item
detection, the loss calculation contains both foreground and
background predictions, where the background predictions
account for the majority of the total loss. As a result, the
small-loss criterion mainly focuses on background predictions
and may ignore foreground predictions in this task. In contrast,
our LLS strategy is highly effective in handling category noise
by removing only the potentially positive predictions.
Why does the LLS strategy work? In the LLS strategy, we
ignore the predicted bounding boxes whose predicted labels
are different from the ground-truth category labels (except
for those whose predicted label is the background) when
calculating the classification loss. In noisy scenarios, the mixed
patches may contain multiple prohibited items because of
category noise. Consequently, when these newly generated
images are used for training, the model tends to give correct
predictions for additional items. However, since these items
are not associated with correct labels, they are considered as
false predictions and consequently give large losses during
model training. This will lead to incorrect model optimization,
reducing the overall performance of the model. To mitigate
this and enhance the model performance, we suppress the
large losses corresponding to potentially positive predictions of
additional items for loss calculation. Note that we still compute
the loss for those predicted bounding boxes whose predicted
labels are the background since the predicted bounding box
region contains a prohibited item.

IV. EXPERIMENTS

In this section, we first introduce the datasets and evaluation
metrics in Section IV-A. Then, we present the noise rate
estimation and implementation details of our method in Sec-
tion IV-B and Section IV-C, respectively. Next, we compare
our method with state-of-the-art methods on the noisy X-ray
datasets in Section IV-D and the noisy MS-COCO dataset in
Section IV-E. After that, we conduct ablation studies in Section
IV-F. Finally, we give some visualization results in Section
IV-G.

A. Datasets

In this paper, we conduct experiments on two popular
X-ray datasets, i.e., OPIXray [1] and PIDray [3]. OPIXray
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TABLE I
COMPARISON RESULTS (%) ON THE OPIXRAY DATASET. Pc AND Pb DENOTE THE CATEGORY NOISE RATE AND BOUNDING BOX NOISE RATE,

RESPECTIVELY.

Method
Pc = 20% Pb = 20% Pc = 40% Pb = 40% Pc = 60% Pb = 60%

mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 81.1 (+0.0) 31.5 (+0.0) 70.0 (+0.0) 25.7 (+0.0) 56.7 (+0.0) 18.4 (+0.0)

LIM (ICCV, ’21) [4] 83.7 (+2.6) 34.6 (+3.1) 80.2 (+10.2) 31.3 (+5.6) 72.7 (+16.0) 26.4 (+8.0)

SDANet (IJCV, ’23) [3] 83.9 (+2.8) 32.6 (+1.1) 71.2 (+1.2) 25.1 (-0.6) 52.4 (-4.3) 17.1 (-1.3)

GADet (SENS J., ’24) [25] 81.2 (+0.1) 34.5 (+3.0) 77.5 (+7.5) 32.5 (+6.8) 69.7 (+13.0) 27.9 (+9.5)

SCE (ICCV, ’19) [10] 81.8 (+0.7) 32.5 (+1.0) 72.1 (+2.1) 25.2 (-0.5) 48.6 (-8.1) 16.1 (-2.3)

LNCIS (ECCV, ’20) [13] 84.3 (+3.2) 34.2 (+2.7) 80.4 (+10.4) 29.6 (+3.9) 65.9 (+9.2) 23.4 (+5.0)

OA-MIL (ECCV, ’22) [14] 82.2 (+1.1) 31.3 (-0.2) 70.2 (+0.2) 27.5 (+1.8) 56.4 (-0.3) 21.6 (+3.2)

Ours 87.0 (+5.9) 38.3 (+6.8) 86.7 (+16.7) 37.0 (+11.3) 81.8 (+25.1) 33.7 (+15.3)

TABLE II
COMPARISON RESULTS (%) ON THE PIDRAY DATASET. Pc AND Pb DENOTE THE CATEGORY NOISE RATE AND BOUNDING BOX NOISE RATE,

RESPECTIVELY. WE REPORT MAP@[.5, .95] AS THE EVALUATION METRIC.

Method
Pc = 40% Pb = 40% Pc = 60% Pb = 60%

easy hard hidden Avg easy hard hidden Avg

FRCNN (PAMI, ’17) [58] 42.5 (+0.0) 40.1 (+0.0) 19.9 (+0.0) 34.2 (+0.0) 29.4 (+0.0) 27.4 (+0.0) 13.3 (+0.0) 23.4 (+0.0)

LIM (ICCV, ’21) [4] 53.6 (+11.1) 49.2 (+9.1) 27.6 (+7.7) 43.5 (+9.3) 43.8 (+14.4) 40.5 (+13.1) 19.9 (+6.6) 34.7 (+11.3)

SDANet (IJCV, ’23) [3] 40.8 (-1.7) 37.8 (-2.3) 19.3 (-0.6) 32.6 (-1.6) 26.0 (-3.4) 25.0 (-2.4) 11.1 (-2.2) 20.7 (-2.7)

GADet (SENS J., ’24) [25] 47.9 (+5.4) 42.9 (+2.8) 18.9 (-1.0) 36.6 (+2.4) 41.3 (+11.9) 34.5 (+7.1) 16.7 (+3.4) 30.8 (+7.4)

SCE (ICCV, ’19) [10] 40.3 (-2.2) 37.9 (-2.2) 21.5 (1.6) 33.2 (-1.0) 24.7 (-4.7) 23.3 (-4.1) 11.1(-2.2) 19.7(-3.7)

LNCIS (ECCV, ’20) [13] 48.2 (+5.7) 45.2 (+5.1) 25.9 (+6.0) 39.8 (+5.6) 33.4 (+4.0) 30.9 (+3.5) 14.5 (+1.2) 26.3 (+2.9)

OA-MIL (ECCV, ’22) [14] 44.6 (+2.1) 39.6 (-0.5) 23.8 (+3.9) 36.0 (+1.8) 30.5 (+1.1) 25.0 (-2.4) 10.6 (-2.7) 22.0 (-1.4)

Ours 57.4 (+14.9) 53.2 (+13.1) 31.9 (+12.0) 47.5 (+13.3) 51.3 (+21.9) 47.9 (+20.5) 21.9 (+8.6) 40.4 (+17.0)

contains 8,885 images with 5 categories of prohibited items
(i.e., different types of cutters). Following [1], we use 7,109
images for training and 1,776 images for testing. We report
mAP@.5 and mAP@[.5, .95] as the evaluation metrics. PIDray
contains 29,457 images for training and 18,220 images for
testing, covering 12 different categories. The images in the
test set are further divided into 3 subsets (i.e., easy, hard,
and hidden) according to their detection difficulty. Following
[3], we use 29,457 images for training and 18,220 images for
testing. We report mAP@[.5, .95] as the evaluation metric.

To validate the generalization ability of our method to com-
mon object detection, we also conduct experiments on MS-
COCO [18]. MS-COCO is a public common object detection
dataset, which contains more than 135k images for training
and 5k images for testing, covering 80 different categories.
Following [12], we use train2017 as training data, and report
mAP@.5 and mAP@[.5, .95] on val2017.

B. Noise Rate Estimation

Our research has shown variability in noise rates across dif-
ferent X-ray datasets. Specifically, while some X-ray datasets
(such as the PIDray dataset) exhibit minimal noisy annotations,
we identify that some X-ray datasets (such as the OPIXray
dataset) contain a number of noisy annotations (including both
category noise and bounding box noise). In these datasets,

TABLE III
BOUNDING BOX NOISE RATE ESTIMATION OF THE OPIXRAY DATASET.

Category Total Samples Noise Samples Noise Rate

Scissor 1494 73 4.89%

Utility Knife 1635 70 4.28%

Multi-Tool Knife 1612 81 5.02%

Straight Knife 809 34 4.20%

Folding Knife 1589 33 2.08%

Total 7139 291 4.08%

many bounding box annotations are larger than the actual
position of prohibited items while the category labels of some
prohibited items are mislabeled due to the great similarity
between some prohibited items.

We conduct a quantitative analysis of the noise rate on
the OPIXray dataset. Specifically, for bounding box noise,
we first train a model on the original dataset by treating all
the categories as one category. In this way, the influence of
category noise is removed. Then, we compare the detection
results with the ground-truth labels and filter out samples
whose IoUs are less than 0.70. These samples are manually
checked to identify noisy-labeled samples. For category noise,
we randomly select a certain number of samples (500 samples
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in total) in the dataset and manually check whether they are
labeled incorrectly. Based on the above steps, the category
noise rate in the OPIXray dataset is estimated as about
5%. The bounding box noise rate in the OPIXray dataset is
estimated as about 4%. We also estimate the bounding box
noise rate for each class in the OPIXray dataset in Table III.
The above analysis validates the existence of noisy annotations
in some X-ray datasets.

C. Implementation Details

To effectively evaluate the performance of our method under
noisy annotations, we introduce different types of noise to
the original dataset. For category noise, we randomly replace
the original category label with another category label, with
a replacement probability of Pc. For bounding box noise, we
randomly perturb the original bounding box with a probability
of Pb. Specifically, for a bounding box with coordinates
(x, y, w, h), we randomly perturb the coordinates with a
probability of Pb by shifting and scaling the box as follow:

ex = x+�x ⇥ w,

ey = y +�y ⇥ h,

ew = w ⇥ (1 +�w),

eh = h⇥ (1 +�h),

(5)

where �x, �y , �w, and �h are randomly sampled from a
uniform distribution U(��, �) (� is the perturbation level). We
set � to 0.3 in all experiments.

For all the datasets, we adopt Faster R-CNN (FRCNN) [58]
with ResNet-50 as the backbone network. The backbone is
initialized with the weights pretrained on ImageNet [59]. The
whole network is optimized by the stochastic gradient descent
(SGD) algorithm with a momentum of 0.9 and a weight decay
of 0.0001. The batch size is set to 2. The initial learning rate
is set to 0.005 and decreased by a factor of 10 at the 17th and
21st epochs. The total number of training epochs is 24. The
number of item patches K for mixing is set to 2. We apply
Mix-Paste to the training set with a probability of 0.6. We
only employ the random flip to all the comparison methods.
All the competing methods are trained on a machine with an
NVIDIA RTX 3090 GPU.

D. Experiments on the X-Ray Datasets

To verify the effectiveness of our method, we perform
experiments on two X-ray datasets with different levels of
noise rates for both category noise and bounding box noise.
We compare our method with several state-of-the-art methods,
including the baseline method (FRCNN [58]), prohibited item
detection methods (LIM [4], SDANet [3], and GADet [25]),
and learning with noisy annotations methods (SCE [10],
LNCIS [13], and OA-MIL [14]). The results are shown in
Table I and Table II.

For the OPIXray dataset, we can observe that the noise-
robust loss function-based method SCE does not perform
well. Compared with the baseline, SCE only gives marginal
performance improvements at low noise rates. Moreover, when
the noise rates are large, the performance obtained by SCE

TABLE IV
COMPARISON RESULTS (%) ON THE MS-COCO DATASET. Pc AND Pb

DENOTE THE CATEGORY NOISE RATE AND BOUNDING BOX NOISE RATE,
RESPECTIVELY.

Method
Pc = 40% Pb = 40% Pc = 60% Pb = 60%

mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 50.4 (+0.0) 30.2 (+0.0) 43.2 (+0.0) 23.3 (+0.0)

SCE (ICCV, ’19) [10] 44.6 (-5.8) 27.1 (-3.1) 36.8 (-6.4) 20.5 (-2.8)

LNCIS (ECCV, ’20) [13] 50.9 (+0.5) 30.9 (+0.7) 44.2 (+1.0) 24.8 (+1.5)

OA-MIL (ECCV, ’22) [14] 47.4 (-3.0) 28.2 (-2.0) 43.8 (+0.6) 24.7 (+1.4)

Ours 51.2 (+0.8) 31.5 (+1.3) 45.3 (+2.1) 26.2 (+2.9)

is even lower than that obtained by the baseline method.
The performance degradation of SCE can be attributed to
its limited ability to handle the bounding box noise. In
other words, when both the bounding box noise rate and
the category noise rate are high, the performance of SCE
is severely affected. The X-ray prohibited item detector LIM
shows relatively good anti-noise ability. At some noise rates,
it even performs better than LNCIS, a method specifically
designed to deal with object detection noise. This is because
LIM can filter out irrelevant noisy information in features,
making it less prone to overfit the noise. The X-ray prohibited
item detector GADet also demonstrates good performance in
terms of mAP@[.5,.95]. This can be attributed to its IoU-
aware label assignment strategy, which selects high-quality
and precise positive samples while ignoring potentially noisy
low-quality predictions. Among all the competing methods,
our Mix-Paste method achieves the best results at all noise
rates. Specifically, our method achieves 81.8% mAP@.5 and
33.7% mAP@[.5, .95] (at the noise rates of Pc = 60% and
Pb = 60%), which is 25.1% and 15.3% higher than the
baseline, respectively.

For the PIDray dataset, the X-ray prohibited item detector
LIM and GADet shows good performance. LNCIS can also
alleviate the negative influence of noisy annotations to a
certain extent. However, it exhibits only marginal performance
improvements at high noise rates. At some high noise rates, the
performance obtained by OA-MIL is inferior to the baseline,
indicating its instability. Compared with the other competing
methods, our method consistently gives the best results across
all noise rates. Specifically, at the noise rates of Pc = 60% and
Pb = 60%, our method achieves a mAP@[.5, .95] of 51.3%,
47.9%, and 21.9% in the easy, hard, and hidden test sets,
which is 21.9%, 20.5%, and 8.6% higher than the baseline,
respectively.

The above results show that our method can greatly improve
the performance of the model at both low and high noise rates
and enhance the robustness of the model.

E. Experiments on the MS-COCO Dataset

Our method is mainly designed for prohibited item detection
under noisy annotations by considering the characteristics of
X-ray images, where item overlapping is ubiquitous. Interest-
ingly, object overlapping also exists in some natural images
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TABLE V
ABLATION STUDY RESULTS (%) ON THE KEY COMPONENTS OF OUR

METHOD ON THE OPIXRAY DATASET.

Method Mix-Paste LLS mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 56.7 18.4

Ours
! 80.3 31.5

! ! 81.8 33.7
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Fig. 3. (a) Ablation study results on the influence of the number of patches
for Mix-Paste on the OPIXray dataset. (b) Training curve comparison between
our Mix-Paste and the baseline method on the OPIXray dataset.

for the common object detection task. Hence, the idea of
increasing the probability of target objects in the generated
images by fusing the same category label can be also applied
to common object detection.

To evaluate the generalizability of our proposed method,
we conduct experiments on the widely used common object
detection dataset, the MS-COCO dataset. The evaluation re-
sults are shown in Table IV. From Table IV, we observe that
SCE performs poorly. LNCIS shows moderate performance
improvements over the baseline method (the vanilla FRCNN).
The performance of OA-MIL is unstable, and its performance
is even worse than the baseline at some noise rates (e.g.,
Pc = 40% and Pb = 40%). Compared with the other
competing methods, our method gives better performance at
different noise rates. Specifically, at the noise rates of Pc =
60% and Pb = 60%, our method achieves 45.3% mAP@.5
and 26.2% mAP@[.5, .95], which is 2.1% and 2.9% higher
than the baseline, respectively. These results demonstrate the
effectiveness of our method on the noisy MS-COCO dataset,
indicating the robustness and broad applicability of our method
to data beyond X-ray images.

F. Ablation Studies

We conduct ablation studies to study the effectiveness of
each component in our method. Unless otherwise specified,
the noise rates are set to Pc = 60% and Pb = 60% and the
LLS strategy is not used (we focus on the evaluation of Mix-
Paste). The OPIXray dataset is used.
Effectiveness of Mix-Paste and LLS. The ablation study
results on the key components of our method are shown in
Table V. We can see that the performance of our method with
only Mix-Paste is better than the baseline by 13.1% mAP@[.5,
.95]. This demonstrates the effectiveness of Mix-Paste, which
mixes multiple item patches with the same category label

TABLE VI
ABLATION STUDY RESULTS (%) ON THE INFLUENCE OF THE EDGE

SMOOTHING MASK ON THE OPIXRAY DATASET WITHOUT INTRODUCING
ANY ADDITIONAL NOISE. ONLY MIX-PASTE IS USED IN THIS

EXPERIMENT.

Method Linear Combination Edge Smoothing Mask

mAP@[.5,.95] 31.3 31.5

TABLE VII
COMPARISON OF TRAINING TIME, INFERENCE TIME AND PERFORMANCE

(%) ON THE ORIGINAL OPIXRAY DATASET WITHOUT INTRODUCING
ADDITIONAL NOISE.

Method mAP@.5 mAP@[.5,.95]
Training Inference

Time Time(fps)

FRCNN (PAMI, ’17) [58] 86.1 36.9 4h 27min 18.7

LIM (ICCV, ’21) [4] 88.6 38.9 19h 18min 7.3

SDANet (IJCV, ’23) [3] 88.1 38.3 6h 20min 16.2

SCE (ICCV, ’19) [10] 85.9 36.7 4h 28min 19.3

LNCIS (ECCV, ’20) [13] 88.1 37.6 4h 30min 19.3

OA-MIL (ECCV, ’22) [14] 87.3 37.4 4h 33min 19.4

Mix-Paste + LLS 90.1 40.3 4h 30min 19.0

to alleviate the influence of noisy annotations. After further
applying the LLS strategy, the performance of our method
is further improved by 2.2%, verifying the importance of the
LLS strategy, which ignores the potentially positive predictions
during the mixing process.
Influence of the Number of Patches K. We investigate the
influence of the number of patches K used in Mix-Paste, as
shown in Fig. 3(a). Our method gives a good performance
when the values of K are set to 2 and 3. However, when
the value of K becomes large (e.g., 4 or 5), the performance
obtained by our method decreases. When more patches are
mixed, the likelihood of capturing the correct prohibited item
is increased. However, such a way also raises the probability of
introducing additional prohibited items. As a result, excessive
patch mixing can negatively influence the extraction of rele-
vant information in the original patch, hindering the learning
of correct prohibited items.
Training Curve. To verify whether our Mix-Paste can help
alleviate the overfitting of noise during model training, we plot
the training curve in Fig. 3(b). We can see that the performance
obtained by the baseline model increases at the early training
stage but gradually decreases at the later training stage. In
contrast, the performance obtained by our method is relatively
stable at the later training stage. This demonstrates that our
method can effectively alleviate the overfitting of the model
to noise during training.
Effectiveness of the Patch Mixing Strategy. In Mix-Paste,
we mix multiple item patches with the same category label
to generate a mixed patch and paste it back into the original
image for data augmentation. To show the effectiveness of our
patch mixing strategy, we compare the performance between
our strategy and a variant (which mixes multiple randomly
selected item patches with different category labels). The
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TABLE VIII
ABLATION STUDY RESULTS (%) ON THE EFFECTIVENESS OF THE PATCH

MIXING STRATEGY. RANDOM-MIX DENOTES THE METHOD THAT SELECTS
TWO RANDOM ITEM PATCHES FOR THE MIXING OPERATION. THE NOISE

RATES ARE SET TO Pc = 60% AND Pb = 60%

Method mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 56.7 18.4

Random-Mix 55.7 21.0

Mix-Paste 80.3 31.5

results are shown in Table VIII.
We can see that our patch mixing strategy achieves better

performance than the variant. Mixing item patches with dif-
ferent category labels not only brings additional disturbances
caused by different prohibited items, but also does not increase
the probability of containing the correct prohibited item in
the generated image, thereby decreasing the final performance.
The above results further validate the superiority of our patch
mixing strategy.
Effectiveness of the Edge Smoothing Mask. For our Mix-
Paste, we use an edge smoothing mask to mix multiple item
patches, generating images with more natural appearances
(some generated images are illustrated in Fig. 4). We conduct
experiments to investigate the influence of the edge smoothing
mask. We compare the edge smoothing mask with the simple
linear combination of multiple item patches (i.e., all the pixels
in the edge smoothing mask are set to a fixed value). The
results are given in Table VI. We can see that the performance
obtained by our method with the edge smoothing mask is
only slightly better than that with the linear combination. This
can be ascribed to the fact that the model focuses on the
appearance of the prohibited items, and thus it does not pay
too much attention to the edges of the mixed patches during
the learning process. This result also aligns with the principle
of Occam’s razor, where the linear combination indicates a
simple fusion method.
Effectiveness on the Original X-ray Dataset. We conduct
experiments to investigate the effectiveness of our method on
the original X-ray dataset. We test all the competing methods
on the OPIXray dataset without introducing additional noise.
We also report the training time and inference time of different
methods. The results are shown in Table VII. From Table VII,
we can observe that our method achieves better performance
than the other competing methods. This is because the original
dataset also contains a certain amount of noisy annotations,
and our method can effectively alleviate the negative influence
of noisy annotations during the model training. Note that
although the LIM and SDANet methods also outperform the
baseline method (FRCNN), the training time and inference
time of these methods is significantly longer.
Effectiveness on Different Category Noise Rates and
Bounding Box Noise Rates. We conduct experiments to in-
vestigate the effectiveness of our method on different category
noise rates and bounding box noise rates on the OPIXray
dataset. The results are shown in Table IX. From the results,
we can see that OA-MIL is good at addressing category noise,

TABLE IX
COMPARISON RESULTS (%) OF DIFFERENT CATEGORY NOISE RATES AND

BOUNDING BOX NOISE RATES ON THE OPIXRAY DATASET. Pc AND Pb
DENOTE THE CATEGORY NOISE RATE AND THE BOUNDING BOX NOISE

RATE, RESPECTIVELY.

Method
Pc = 20% Pb = 40% Pc = 40% Pb = 20%

mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 78.4 (+0.0) 28.9 (+0.0) 72.7 (+0.0) 28.5 (+0.0)

LIM (ICCV, ’21) [4] 82.0 (+3.6) 32.2 (+3.3) 81.5 (+8.8) 32.7 (+4.2)

SDANet (IJCV, ’23) [3] 80.1 (+1.7) 28.3 (-0.6) 74.4 (+1.7) 29.6 (+1.1)

GADet (SENS J., ’24) [25] 77.5 (-0.9) 32.1 (+3.1) 77.9 (+5.2) 34.0 (+5.5)

SCE (ICCV, ’19) [10] 76.7 (-1.7) 27.3 (-1.6) 75.4 (+2.7) 29.8 (+1.3)

LNCIS (ECCV, ’20) [13] 78.9 (+0.5) 28.5 (-0.4) 81.9 (+9.2) 33.3 (+4.8)

OA-MIL (ECCV, ’22) [14] 54.8 (+3.8) 20.8 (+2.4) 73.3 (+0.6) 28.2 (-0.3)

Mix-Paste + LLS 86.2 (+7.8) 36.9 (+8.0) 86.3 (+13.6) 37.7 (+9.2)

TABLE X
ABLATION STUDY RESULTS (%) ON THE INFLUENCE OF THE

PROBABILITY OF APPLYING MIX-PASTE ON THE OPIXRAY DATASET.
ONLY MIX-PASTE IS USED IN THIS EXPERIMENT.

Probability 0 0.2 0.4 0.6 0.8 1

mAP@[.5,.95] 18.4 31.2 31.4 31.5 30.8 0.4

and LNCIS works well on handling bounding box noise.
Among all the competing methods, our method can effectively
deal with both category noise and bounding box noise, and
achieve the best results in all the cases. This proves that our
method has a strong anti-noise ability.
Influence of the Probability of Applying Mix-Paste. We
investigate the influence of the probability p of applying Mix-
Paste for augmentation during training. The results are shown
in Table X. We can see that when the value of p is 0.6, our
method can achieve the best performance. When the value
of p approaches 1, the performance obtained by our method
decreases or even the training fails. This is because when
p is close to 1, all samples are artificially generated. Such
a manner can lead to significant inconsistency between the
training samples and the test samples, making the distribution
of the training set greatly inconsistent with that of the test set.
As a consequence, our method is unable to learn the true data
distribution from the training set. In this paper, we fix p = 0.6
in all experiments.
Influence of the Perturbation Level. We conduct experiments
to investigate the influence of perturbation level (which is used
to generate bounding box noise). We test our method under
two perturbation levels (i.e., � = 0.5 and � = 0.3) on the
OPIXray dataset. The results are shown in Table XI. We can
see that even when the perturbation level is large (� = 0.5), our
method can still achieve the best results, while other methods
suffer from a serious performance decline. This shows that
our method has a strong anti-noise ability in the case of high
perturbation levels.
Influence of Different Detectors. Our Mix-Paste, which is
a data augmentation method, can be applied to different
object detectors. We evaluate the performance obtained by our
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(a)

(b)

Fig. 4. Examples of generated images on the OPIXray dataset. (a) The generated images with the linear combination. (b) The generated images with the
edge smoothing mask.

TABLE XI
COMPARISON RESULTS (%) UNDER DIFFERENT PERTURBATION LEVELS

ON THE OPIXRAY DATASET.

Method

� = 0.3 � = 0.5

Pc = 60% Pb = 60% Pc = 60% Pb = 60%

mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 56.7 (+0.0) 18.4 (+0.0) 42.7 (+0.0) 12.7 (+0.0)

LIM (ICCV, ’21) [4] 72.7 (+15.0) 26.4 (+8.0) 65.7 (+23.0) 23.6 (+10.9)

SDANet (IJCV, ’23) [3] 52.4 (-4.3) 17.1 (-1.3) 38.2 (-4.5) 10.7 (-2.0)

GADet (SENS J., ’24) [25] 69.7 (+13.0) 27.9 (+9.5) 59.6 (+16.9) 24.1 (+7.4)

SCE (ICCV, ’19) [10] 48.6 (-8.1) 16.1 (-2.3) 35.0 (-7.7) 10.5 (-2.2)

LNCIS (ECCV, ’20) [13] 65.9 (+9.2) 23.4 (+5.0) 46.6 (+3.9) 14.0 (+1.3)

OA-MIL (ECCV, 22) [14] 56.4 (-0.3) 21.6 (+3.2) 44.9 (+2.2) 15.0 (+2.3)

Mix-Paste+LLS 81.8 (+25.1) 33.7 (+15.3) 76.1 (+33.4) 29.9 (+17.2)

TABLE XII
THE MAP@[.5, .95] (%) AND MAP@.5 OBTAINED BY DIFFERENT

DETECTORS ON THE OPIXRAY DATASET WITH NOISE RATE OF Pc = 60%
AND Pb = 60%. ONLY MIX-PASTE IS USED IN THIS EXPERIMENT.

Method
Original +Mix-Paste

mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 56.7 18.4 80.3 31.5

RetinaNet (ICCV, ’17) [60] 56.1 20.8 61.7 26.1

Cascade RCNN (CVPR, ’18) [61] 47.6 16.0 78.6 31.6

ATSS (CVPR, ’20) [62] 55.5 18.7 68.2 28.2

LIM (ICCV, ’21) [4] 72.7 26.4 78.1 31.1

SDANet (IJCV, ’23) [3] 52.4 17.1 77.8 31.6

method on different detectors, including two-stage detectors
(FRCNN [58] and Cascade RCNN [61]), one-stage detectors
(RetinaNet [60] and ATSS [62]), and X-ray prohibited item
detectors (SDANet [3] and LIM [4]). For all the detectors,
we use the default hyper parameters in the MMDetection
framework [63] for training. The results are shown in Table
XII. We can observe that all the detectors with our method
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Fig. 5. Performance comparison between Mix-Paste and the competing
methods at different noise rates under (a) category noise and (b) bounding
box noise on the OPIXray dataset.

outperform those without our method. These results show
the superiority of our proposed Mix-Paste. Note that the
experimental settings in Table XII and Table VII are different.
In Table XII, the results are obtained on the noisy OPIXray
dataset under the settings that both the bounding box noise rate
and the label noise rate are 60%. Hence, the mAP obtained
by FRCNN is low (18.4%). In Table VII, the results are
obtained on the original OPIXray dataset without introducing
any synthetic noise. Hence, the mAP obtained by FRCNN in
Table VII is higher than that in Table XII.
Robustness to Different Types of Noise. We investigate the
robustness of our method at different noise rates under two
types of noise, including category noise and bounding box
noise. The results are shown in Fig. 5. For category noise, it
is evident that both SCE and OA-MIL struggle to mitigate
the adverse influence of category noise on the model. In
contrast, both LNCIS and our method show great effectiveness
in dealing with category noise. Notably, our method exhibits
the best performance at different noise rates, demonstrating
its effectiveness in handling category noise. For bounding box
noise, our method outperforms the baseline method by a large
margin at the high bounding box noise rates. Moreover, the
performance obtained by some competing methods (such as
SCE and LNCIS) shows a significant performance decline
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Fig. 6. Some detection results on the OPIXray dataset. (a) The detection results obtained by the baseline method (FRCNN). (b) The detection results obtained
by our method. The model is trained under the noise rates of Pl = 60% and Pb = 60%. The blue annotation and bounding box denote the ground-truth
annotation and bounding box, and the red annotation and bounding box denote the detection result.

TABLE XIII
COMPARISON RESULTS (%) AGAINST SOME POPULAR DATA

AUGMENTATION METHODS ON THE OPIXRAY DATASET.

Method mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 56.7 18.4

Mix-Up (arXiv, ’17) [27] 46.2 15.5

Cutout (arXiv, ’17) [26] 58.7 21.0

Mosaic (arXiv, ’20) [29] 58.7 19.9

Color jitter
57.6 19.4

(Commun. ACM, ’17) [59]

Blur 61.7 21.8

Mix-Paste 80.3 31.5

at high bounding box noise rates. This further validates the
superiority of our method in handling bounding box noise.
Comparison against Popular Data Augmentation Methods.
Table XIII shows the comparison results between our method
and some popular data augmentation methods. We observe that
the performance obtained by Mix-Up is even lower than that
obtained by the baseline method. Our method is specifically
designed to address the challenge of noisy annotations while
Mix-Up does not consider such a challenge. In fact, the
mixing process in Mix-Up cannot reduce the noise, and can
significantly introduce additional noisy samples, leading to
model overfitting to noisy annotations. Moreover, our method
greatly outperforms other competing methods (such as Mosaic,
Cutout and Color jitter), showing its effectiveness.
Comparison against the Small-Loss Criterion. We compare
our LLS with the small-loss criterion. The small-loss criterion
is a widely used method in label noise learning for the image
classification task. Due to the difference between the object
detection task and the image classification task, we implement
three different versions of the small-loss criterion. The first
version (Small-Loss V1) is that we select samples with small
losses from all classification losses as clean samples and
add them to the loss calculation. The second version (Small-
Loss V2) is that we divide all classification results into two

TABLE XIV
COMPARISON RESULTS (%) AGAINST THE SMALL-LOSS CRITERION ON

THE OPIXRAY DATASET.

Method mAP@.5 mAP@[.5, .95]

Mix-Paste 80.3 31.5

Mix-Paste+Small-Loss V1 64.2 23.6

Mix-Paste+Small-Loss V2 62.8 23.1

Mix-Paste+Small-Loss V3 62.4 21.0

Mix-Paste+LLS 81.8 33.7

categories: positive predictions (whose IoUs between predicted
boxes and the ground truth are greater than a threshold) and
negative predictions (whose IoUs between predicted boxes and
the ground truth are less than a threshold), and select a certain
proportion of small-loss predictions from the two parts and
add them to the loss calculation. The third version (Small-
Loss V3) is that we select a certain proportion of samples
with small losses from the total loss (both the classification
loss and the regression loss) as clean samples and add them to
the loss calculation. For a fair comparison, both the small-loss
criterion and our LLS are based on our Mix-Paste. The results
are shown in Table XIV. The clean sample proportion in the
small-loss criterion is set to 1 � ⌧ · min(T/5, 1) as done in
[9], where ⌧ is the noise rate (we set it to 0.6) and T is the
training epoch.

We can see that the three versions of the small-loss criterion
fail to improve the performance of Mix-Paste. On the contrary,
our LLS can be effectively combined with Mix-Paste to
improve the performance, which validates the importance of
LLS in learning with noisy annotations.
Influence of Bounding Box Noise Distribution. Existing

noisy-robust object detection methods (such as [12], [14])
often apply the uniform distribution to generate bounding
box noise. In this paper, we follow the same settings as
these methods [12], [14]. In this subsection, we also evaluate
the effectiveness of our method by applying the Gaussian
distribution to generate bounding box noise. Specifically, we
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TABLE XV
ABLATION STUDY RESULTS (%) ON THE INFLUENCE OF THE BOUNDING
BOX NOISE DISTRIBUTION ON THE OPIXRAY DATASET. WE ADD NOISE

TO THE BOUNDING BOX USING THE GAUSSIAN DISTRIBUTION.

Method

Pc = 60% Pc = 60%

µ = 0 � = 0.1 µ = 0 � = 0.2

mAP@.5 mAP@[.5, .95] mAP@.5 mAP@[.5, .95]

FRCNN (PAMI, ’17) [58] 57.6 (+0.0) 20.0 (+0.0) 39.1 (+0.0) 10.4 (+0.0)

LIM (ICCV, ’21) [4] 72.6 (+15.0) 28.1 (+8.1) 60.4 (+21.3) 19.3 (+8.9)

SDANet (IJCV, ’23) [3] 57.2 (-0.4) 19.9 (-0.1) 34.8 (-4.3) 8.9 (-1.5)

GADet (SENS J., ’24) [25] 69.4 (+11.8) 28.3 (+8.3) 57.3 (+18.2) 20.5 (+10.1)

SCE (ICCV, ’19) [10] 53.1 (-4.5) 18.4 (-1.6) 58.7 (+19.6) 21.0 (+10.6)

LNCIS (ECCV, ’20) [13] 71.3 (+13.7) 26.5 (+6.5) 42.2 (+3.1) 11.7 (+1.3)

OA-MIL (ECCV, ’22) [14] 54.8 (-2.8) 20.8 (+0.8) 49.0 (+9.9) 16.5 (+6.1)

Mix-Paste+LLS 84.2 (+26.6) 35.8 (+15.8) 72.1 (+33.0) 25.7 (+15.3)

apply Gaussian noise to the training dataset and evaluate the
detection performance. The shifting and scaling are changed
as ex = x + N(µ,�2) ⇥ w, ey = y + N(µ,�2) ⇥ h,
ew = w ⇥ (1 + N(µ,�2)), eh = h ⇥ (1 + N(µ,�2)), where
N(·) denotes the Gaussian distribution which is characterized
by the mean (µ) and the standard deviation (�). Note that in
our experiments ex, ey, ew and eh are constrained to be positive
numbers. The results are given in Table XV.

From Table XV, we can observe that our method can
also effectively reduce the influence of bounding box noise
generated by the Gaussian distribution, showing the robustness
of our method.

G. Visualization Results

We visualize some detection results obtained by the baseline
method (i.e., FRCNN) and our method on the OPIXray dataset,
as shown in Fig. 6. We can see that the baseline method
gives false predictions with high confidence. In some cases,
both the predicted category labels and predicted bounding box
coordinates are inaccurate (see the images in the first row).
This is because the training of the baseline model is easily
affected by noisy annotations. On the contrary, our method can
give more accurate and correct predictions. This indicates that
our method is a simple yet effective data augmentation method,
which can significantly improve the detection performance of
X-ray prohibited items for learning with noisy annotations.

V. CONCLUSION

In this paper, we address the problem of training a robust
X-ray prohibited item detector under noisy annotations from
the novel perspective of data augmentation. We propose Mix-
Paste by mixing multiple item patches with the same category
label and generating a new image involving a mixed patch.
Such a manner not only effectively increases the probability
of containing the correct prohibited item but also mimics
item overlapping in X-ray images. Moreover, we design an
LSS strategy for loss calculation. Our strategy alleviates the
negative influence of mistakenly treating potentially positive
predictions as false predictions caused by the mixing process

of item patches. We perform extensive experiments on two X-
ray datasets to demonstrate the effectiveness of our method in
training a noise-robust detector. We also conduct experiments
on the MS COCO dataset to verify the generalization ability of
our method on the common object detection task. These results
demonstrate the benefits of data augmentation in tackling the
challenges posed by learning with noisy annotations.
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