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s u m m a r y

Background: Patients with Gram-negative bloodstream infections are at risk of serious adverse outcomes 
without active treatment, but identifying who has antimicrobial resistance (AMR) to target empirical 
treatment is challenging.
Methods: We used XGBoost machine learning models to predict antimicrobial resistance to seven anti-
biotics in patients with Enterobacterales bloodstream infection. Models were trained using hospital and 
community data from Oxfordshire, UK, for patients with positive blood cultures between 01-January-2017 
and 31-December-2021. Model performance was evaluated by comparing predictions to final microbiology 
results in test datasets from 01-January-2022 to 31-December-2023 and to clinicians’ prescribing.
Findings: 4709 infection episodes were used for model training and evaluation; antibiotic resistance rates 
ranged from 7–67%. In held-out test data, resistance prediction performance was similar for the seven 
antibiotics (AUCs 0.680 [95%CI 0.641–0.720] to 0.737 [0.674–0.797]). Performance improved for most an-
tibiotics when species identifications (available ∼24 h later) were included as model inputs (AUCs 0.723 
[0.652–0.791] to 0.827 [0.797–0.857]). In patients treated with a beta-lactam, clinician prescribing led to 
70% receiving an active beta-lactam: 44% were over-treated (broader spectrum treatment than needed), 26% 
optimally-treated (narrowest spectrum active agent), and 30% under-treated (inactive beta-lactam). Model 
predictions without species data could have led to 79% of patients receiving an active beta-lactam: 45% 
over-treated, 34% optimally-treated, and 21% under-treated.
Conclusions: Predicting AMR in bloodstream infections is challenging for both clinicians and models. 
Despite modest performance, machine learning models could still increase the proportion of patients re-
ceiving active empirical treatment by up to 9% over current clinical practice in an environment prioritising 
antimicrobial stewardship.
© 2024 The Authors. Published by Elsevier Ltd on behalf of The British Infection Association. This is an open 

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Active and timely antibiotic treatment of severe bacterial infec-
tions potentially saves lives and improves patient outcomes.1 How-
ever, it can take 24–48 h or more to obtain microbiology results to 
guide treatment, and many important infections remain culture 

negative.2 Therefore, substantial reliance is placed on antibiotic 
guidelines that are designed to maximise active empirical treatment 
of infections before microbiology results are available, while also 
minimising overuse of broad-spectrum antibiotics to avoid driving 
antimicrobial resistance (AMR).

Population-level antibiotic recommendations can be refined for 
individual patients, e.g. considering previous resistance or prior 
antibiotic exposure. However, this does not happen consistently, e.g. 
due to limited time available to retrieve earlier results or variable 
prescriber experience. Therefore, several previous studies have 
evaluated whether combining electronic healthcare record (EHR) 
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data with predictive algorithms could improve AMR detection and 
hence lead to better targeted prescribing (Table 1).3–18 These studies 
typically focus on patients with positive microbiology and use ma-
chine learning to predict resistance to key antibiotics. Most previous 
studies focused on urinary tract infections or all infections (likely 
dominated by urine cultures), in part due to the availability of large 
datasets for model training.5–18 Only a minority focus specifically on 
bloodstream infection despite its clinical importance.3,4 Several data 
types have been shown to be potentially informative, including a 
history of isolates with AMR, population AMR rates, previous per-
sonal antimicrobial exposure, past medical history, and demo-
graphics. Data are typically obtained from a single hospital or 
community setting, but occasionally from a whole healthcare 
network. 

In previous studies, predictive performance for detecting AMR 
has been relatively modest, e.g. area under the receiver operating 
curve (AUC) values for important pathogen-antibiotic combinations 
of around 0.65–0.75, but varying between drugs and settings. If 
species identification is included as a model input performance 
improves, e.g. AUCs of 0.80–0.88.8,17 However, species is unknown 
when starting empirical treatment, becoming available ∼24 h later. 
Most studies use test data from the same setting either randomly 
chosen from the same period or from shortly after the training 
period, limiting generalisability over geographic locations and time. 
Within 16 previous studies identified, only two externally validated 
their findings using data from a different area/hospital.14,15 Most 
approaches do not address how to update models over time. Four 
studies retrospectively compared model performance to clinical 
decision-making, showing models could potentially reduce in-
appropriate antibiotic treatments.5,9,10,15 Taken together, alongside 
technical barriers to interfacing with EHR systems and im-
plementing models in healthcare settings, to date, uptake of such 
predictions into clinical practice has been very limited. 

Here we apply machine learning predictions to an important, but 
only partially studied patient group at particular risk of poor out-
comes from AMR, those with Enterobacterales bloodstream infec-
tion.19 Our models are designed to be used in suspected bloodstream 
infections where Enterobacterales species are the most probable 
cause, e.g. with urinary or intra-abdominal focus. We use a com-
prehensive input feature set addressing potential limitations of some 
earlier studies, by combining data from hospital EHRs with com-
munity microbiology results. We also evaluate how performance 
changes over time and test approaches for updating models as new 
data emerges. We describe how well clinicians detect AMR and 
compare the performance of our models to actual prescribing and 
simulate the impact that a prediction system might have on the 
number of patients receiving active antibiotic treatment, and the 
wider impact on use of broad-spectrum antibiotics. 

Methods 

Study design and population 

We used data from Oxford University Hospitals (OUH), four 
teaching hospitals collectively providing 1100 beds, serving 750,000 
residents in Oxfordshire, ∼1% of the UK population. The hospitals’ 
microbiology laboratory also provides nearly all community testing 
for the region. Deidentified data were obtained from Infections in 
Oxfordshire Research Database, which has approvals from the South 
Central-Oxford C Research Ethics Committee (19/SC/0403), the 
Health Research Authority, and the Confidentiality Advisory Group 
(19/CAG/0144) as a deidentified database without individual 
consent. 

We included all patients aged ≥16 years with a positive blood 
culture containing a single Enterobacterales species between 01- 
January-2017 and 31-December-2023. Polymicrobial blood cultures 

were excluded as these potentially contained non-Enterobacterales 
species. Patients were included once per positive blood culture 
episode, i.e. including the first positive blood culture with an 
Enterobacterales species per 14-day period. 

Antimicrobial resistance prediction 

We predicted antimicrobial susceptibility results for intravenous 
treatments for bloodstream infection that were commonly used in 
our institution with resistance rates > 5%, i.e. amoxicillin, co-amox-
iclav (amoxicillin-clavulanate), ceftriaxone, piperacillin-tazobactam, 
co-trimoxazole (trimethoprim-sulfamethoxazole), and ciprofloxacin. 
Predictions were not made for meropenem as resistance rates were 
< 1%. Predicted results were binary, i.e. susceptible (including inter-
mediate/dose-dependent susceptible) or resistant. During the study, 
hospital empirical antibiotic guidelines recommended co-amoxiclav 
± additional single-dose gentamicin for treatment of suspected 
sepsis of an unknown, urinary, or intra-abdominal source. 

We made predictions at two time points, firstly when blood was 
taken for culture and secondly when the species was identified 
(typically ∼24 h later). Input features included patient demo-
graphics, comorbidities, previous hospital-prescribed antibiotics, 
current clinical syndrome, hour of day the blood culture was taken, 
counts of the number of recent laboratory blood tests sent, previous 
hospital and community microbiology results including numbers of 
samples taken, number culture positive, and presence of antibiotic 
resistance to specific antibiotics, patient height and weight, previous 
hospital exposure, previous hospital-based procedures, current 
specialty, and counts of the number of recent vital sign measure-
ments (Table S1). We also included recent population-level rates of 
AMR. The species-level analysis additionally included the species 
identified and any history of AMR in previous isolates of the same 
species. Overall, there were 152 features in the baseline model, and 
182 in the species model. 

Model architecture, data partitioning and evaluation 

We fitted separate XGBoost models for each antibiotic, aiming to 
predict subsequently identified phenotypic resistance. We used a 
temporal training-test split to mimic real-world implementation 
(training: 01-January-2017 to 31-December-2021; testing 01- 
January-2022 to 31-December-2022 (Test dataset 1)), reporting 
performance in the test dataset (see Supplement, Table S2-S3). 

Model updating 

We used additional test data (Test dataset 2: 01-January-2023 to 
31-December-2023) to evaluate if performance changed over time 
and investigate different approaches for updating models. Three 
approaches were evaluated, in the first no further model training 
was undertaken, i.e. the model was based only on data from 
2017–2021. In the second we retrained the model from scratch using 
all available data, i.e. from 2017–2022 inclusive. In the final approach 
we used on online-training method, where the trained model from 
the 2017–2021 was updated with data from 2022, using an inbuilt 
method available within XGBoost. 

Comparison with clinical decision-making 

To compare our models with clinical practice, we combined both 
test datasets and considered patients initially treated with a beta- 
lactam antibiotic. Beta-lactams were the most commonly used an-
tibiotics in our institution and facilitated establishing a hierarchy of 
antibiotic choices. We included patients empirically treated with 
amoxicillin, co-amoxiclav, ceftriaxone, piperacillin-tazobactam, or a 
carbapenem (mostly meropenem; a small number receiving 
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empirical ertapenem), in order of increasing spectrum of coverage. 
The most common adjunctive antibiotic in our setting was single- 
dose gentamicin; however, we excluded it from our main analysis 
considering only the beta-lactam given, as we have previously 
shown gentamicin does not rescue patients with beta-lactam (co- 
amoxiclav) resistance from associated increases in mortality in 
Escherichia coli bloodstream infection.20 We excluded from the 
clinical comparison neutropenic patients (as piperacillin-tazo-
bactam or meropenem would have been the only appropriate em-
pirical treatments from our beta-lactam hierarchy), patients not 
started on antibiotics (as there was no clinician antibiotic choice to 
compare with), patients admitted to an ICU using a different pre-
scribing system not included in the dataset, and blood cultures 
missing ≥1 susceptibility results for the beta-lactams listed above 
(further details in supplement). No patient allergy data were 
available. 

To compare clinical practice and model predictions, we evaluated 
the number of patients who were i) optimally-treated, i.e. received 
the least broad-spectrum beta-lactam to which their blood culture 
isolate was sensitive, ii) under-treated, given a beta-lactam with 
resistance present, and iii) over-treated, given an active beta-lactam, 
but of broader spectrum than necessary. We also described the re-
lative usage rates of each antibiotic. 

We evaluated 4 strategies for applying our machine learning 
predictions (using models without species information), tuning the 
prediction thresholds using the training data to: 1) match total an-
tibiotic use to total clinician antibiotic use, but potentially dis-
tributing it between patients more optimally, 2) match total use to 
population antibiotic susceptibility rates, 3) match rates of over- 
treatment by clinicians, while aiming to increase active treatment, 
and 4) to quantify how much our models could reduce over-treat-
ment if the default antibiotic policy was switched from using co- 

amoxiclav to ceftriaxone first-line (details in Supplement). 
Thresholds were then applied in the combined test data and per-
formance summarised. 

Results 

Between 01 January 2017 and 31 December 2023, 252,849 blood 
cultures were taken. 24,228 (9.6%) were culture-positive, including 
6983 (2.8%) with an Enterobacterales species. After removing poly-
microbial infections and de-duplicating repeat positive samples 
within 14 days, there were 4752 Enterobacterales bloodstream in-
fections in 4273 patients; of these 43 blood cultures were excluded 
because antimicrobial susceptibility testing was not performed, 
leaving 4709 bloodstream infections in 4243 patients for model 
training and evaluation (Fig. 1). The median (IQR) patient age was 74 
(60−84) years, and 2611 (55%) episodes were in male patients. The 
median (IQR) Charlson comorbidity score was 1 (0−3). 3631 (77%) 
bloodstream infections were community-onset (i.e. taken within 
< 48 h of hospital admission). 

The most commonly isolated species were E. coli (3094, 66%), 
Klebsiella pneumoniae (545, 12%), Proteus mirabilis (203, 4%), 
Enterobacter cloacae (177, 4%), and K. oxytoca (153, 3%). Across all 
species, 3107/4664 (67%) infections were resistant to amoxicillin, 
1905/4666 (41%) to co-amoxiclav, 526/4677 (11%) to ceftriaxone, 
341/4691 (7%) to piperacillin-tazobactam, 461/4685 (10%) to genta-
micin, 1011/4593 (22%) to co-trimoxazole, and 584/4701 (12%) to 
ciprofloxacin (denominator varied as not all samples were tested for 
all antibiotics). Resistance to meropenem was uncommon, 7/ 
4689 (< 0.2%). 

The most frequently prescribed empirical antibiotics given 
within 4 h of obtaining blood cultures were co-amoxiclav alone 
(1194, 25%), no antibiotics (779, 17%), co-amoxiclav+gentamicin (761, 

Fig. 1. Blood cultures studied, and laboratory and clinical comparison groups. Repeat positive cultures from the same patient within the next 14 days after a positive blood culture 
were excluded. Only 7 blood cultures were resistant to meropenem; in the laboratory comparison 3 were in the training data, 2 in test 1 and 2 in test 2; in the clinical comparison 
3 meropenem resistant blood cultures were included, 1 in the training data and 2 in the test data. Not all blood cultures had susceptibility results reported for all antibiotics as 
shown. Within the 3198 blood cultures studied in the clinical comparison, 2064 (65%) were resistant to amoxicillin, 1225 (38%) to co-amoxiclav, 320 (10%) to ceftriaxone, 190 (6%) 
to piperacillin-tazobactam, and 3 (< 1%) to meropenem. Rates of resistance to gentamicin, ciprofloxacin and co-trimoxazole were 318/3195 (10%), 379/3196 (12%), and 674/3170 
(21%) respectively. Of the 381/4709 (8%) of patients treated with antibiotics other than one of beta-lactams studied, only 74 (2%) received an alternative beta-lactam. These were 
predominantly (n=49) beta-lactams not active against Enterobacterales, such as flucloxacillin or penicillin, most likely representing diagnostic uncertainty about the initial focus 
of infection, and therefore situations where even if our model was in use, it might not have been applied. 
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16%), ceftriaxone alone (236, 5%), and piperacillin-tazobactam alone 
(109, 2%); 82 (2%) patients received a carbapenem with or without 
another antimicrobial. 

Model performance at baseline 

In held-out test data from 2022 (Test dataset 1), predictive per-
formance was broadly similar for the seven antibiotics, with AUCs 
ranging from 0.680 [95%CI 0.641–0.720] for amoxicillin to 0.737 
[0.674 - 0.797] for ceftriaxone (Table 2A; Table S4 for training data 
performance). Jointly optimising sensitivity and specificity, sensi-
tivity ranged from 40.7% (32.7–49.6%) for co-trimoxazole to 62.2% 
(57.8–66.6%) for amoxicillin, while specificity ranged from 66.4% 
(60.2–72.3%) for amoxicillin to 91.5% (89.2–93.7%) for co-trimox-
azole. Positive predictive values (PPVs) and negative predictive va-
lues (NPVs), which are influenced by differences in resistance 
prevalence, ranged from 19.8% (14.2–26.3%) to 78.0% (73.9–81.9%) 
and 47.9% (42.6–53.7) to 94.2% (92.2–96.0%), respectively. Alter-
native values for sensitivity/specificity/PPV/NPV could be obtained 
by varying the threshold chosen for identifying resistance (e.g. 
prioritising sensitivity, Table S5). 

Model performance following species identification 

Performance improved for most antibiotics when species data 
were included as inputs to the prediction models, i.e., mimicking the 
point during laboratory work-up of a blood culture when the species 
is first identified, but susceptibility results remain pending. For ex-
ample, AUCs increased for amoxicillin (0.680 [95%CI 0.641–0.720] to 
0.827 [0.797–0.857]) and co-amoxiclav (0.684 [0.642–0.722] to 0.771 
[0.734–0.805]). Performance increases were seen for other anti-
biotics, but with minimal improvement for piperacillin-tazobactam 
(Table 2B, Table S6 for training dataset). 

Feature importance 

The most important features for making predictions were rela-
tively consistent across different antibiotics (Fig. 2A, Figs. S1-S6). The 
time since the last isolate from any anatomical site with resistance to 
the specific antibiotic modelled was the most important feature for 
all antibiotics except piperacillin-tazobactam. Shorter times con-
tributed most strongly to a prediction of resistance, with the im-
portance of a previous resistant isolate to the same antibiotic 
typically attenuating over 1 year (Fig. 2B). Other consistently im-
portant features included greater time since hospital admission at 
blood culture sampling, shorter time since a previous resistant iso-
late to other related antibiotics, increased hospital antibiotic ex-
posure (specifically for the antibiotic of interest, related antibiotics, 
and total antibiotics), and recent blood and urine cultures being sent. 

When adding the species identified as an input, this became an 
important model feature, particularly for antibiotics where species 
information improved performance the most, e.g., amoxicillin and 
co-amoxiclav (Fig. S7-13). In some cases, this reflected information 
in the data arising from intrinsic resistance (e.g. Klebsiella spp. and 
amoxicillin), and in others reflected different resistance prevenances 
in different species. 

Model updates over time 

Observed rates of resistance were relatively stable over time for 
the 7 antibiotics investigated (Fig. S14). Using held-out test data 
from 2023 (Test Dataset 2) there was minimal evidence that model 
performance changed over time compared to 2022. Results in 2023 
were similar using the original model, a retrained model, and an 
incrementally updated model (Fig. 3A). Models were relatively quick 
to train, taking around a minute on a high-performance personal Ta
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computer, such that savings in training time from not updating the 
models or from incremental updating were minimal (Fig. 3B). 

Comparison to clinical practice 

Of the 4709 blood cultures positive for an Enterobacterales spe-
cies, 3198 were treated with a beta-lactam commonly used in our 
hospitals and were included in the clinical comparison analysis (see  
Fig. 1 for exclusions). 

Antibiotic use by clinicians – over, under and optimal treatment 
Of the 3198 Enterobacterales bloodstream infections with anti-

biotics recorded in the 4 h after blood was taken for culture, 2512 
(79%) received at least one active baseline antibiotic, and 686 (21%) 
did not. Considering the beta-lactam given, 806 (25%) were opti-
mally-treated, 974 (30%) under-treated, and 1418 (44%) over-treated. 
Most patients were treated with co-amoxiclav (2286, 71%), which 
also accounted for the greatest proportion of patients under-treated 
(Fig. 4A). In an ideal scenario where all infections were treated with 
the narrowest spectrum active antibiotic, more patients would have 

Fig. 2. SHAP (SHapley Additive exPlanations) plot showing feature importance and impacts on model output for predicting amoxicillin resistance at blood culture sampling (A) 
and SHAP plots showing the time since last resistant isolate and impact on model output for predicting resistance to the same antibiotic at blood culture sampling (B). In panel A, 
positive values on the x-axis indicate contributions towards predicting resistance, and negative values contributions towards predicting susceptibility. Absolute x-axis values 
reflect the relative importance or contribution of the feature in making a prediction. Colour indicates the value of the feature, red dots indicate higher values and blue dot lower 
values. For example, the shorter the time since the last isolate with resistance to amoxicillin the more likely a prediction of resistance. See Figs. S1-S6 for other antibiotics. Shorter 
times since the last urine culture with Enterobacterales were associated with predicting susceptibility, although this might seem surprising, it needs to be interpreted considering 
also having the time since a resistant isolate in the model, such that given that result, shorter times may represent evidence of a recent susceptible isolate. In panel B, where no 
resistant isolate was seen in the last year, the value is set to 365, hence when interpreting change over time values exactly equal to 365 days should be ignored. The grey histogram 
indicates the relative frequency of each observation on the x-axis. The spread of blue points arises from other features also influencing the SHAP value on the y-axis. 

Fig. 3. Model performance for predicting antibiotic resistance at blood culture sampling in held-out test dataset 1 (01 January 2022 – 31 December 2022) and 2 (01 January 2023 – 
31 December 2023), panel A and model training, retraining and model updating times, panel B. For test dataset 2 three approaches to updating the model over time are presented 
– no retraining, full re-training from scratch using data from 2017–2022 inclusive, incremental updating of the original model trained using 2017–2021 data with the data from 
2022. AUC, area under the receiver operating curve. Confidence intervals were generated by bootstrapping with 1000 iterations. In panel B, all times are from training using a 
single Apple M3 Max core. Original and repeat training include hyperparameter optimisation, incremental updates are based on previously obtained hyperparameters from initial 
training. 
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Fig. 4. Clinician prescribing practice in 3198 positive blood cultures (A-C) and percentage of patients receiving optimal, under or over treatment (panel D), and specific antibiotics 
(panel E) according to clinician prescribing and model predictions under scenario 1. Panel A shows the number of infections treated with different beta-lactams, classified by 
whether treatment was optimal, broader than necessary (‘over-treated’), or had resistance to the beta-lactam used (‘under-treated’). Panel B displays the optimal breakdown of 
antibiotic use, had the narrowest spectrum active agent been used to treat each infection. Panel C shows the distribution of optimal antibiotics by whether the actual beta-lactam 
treatment given was inactive (left hand sub-panel) or active (right). In panels D-E, predictions in test data from 2022–2023 are shown for a model constrained to match the total 
use of each antibiotic as closely as possible (scenario 1) (differences in antibiotic use arise from differences between training and test dataset model fit and calibration). 
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received amoxicillin, fewer co-amoxiclav and more ceftriaxone, with 
small increases compared to actual practice in piperacillin-tazo-
bactam and carbapenem use (Fig. 4B). Most patients given inactive 
treatment would have been optimally treated with ceftriaxone with 
a smaller number requiring piperacillin-tazobactam or a carba-
penem (Fig. 4C). 

The implied sensitivity of clinicians for detecting resistance, i.e., 
the proportion of patients with resistance to a given antibiotic re-
ceiving treatment with any active broader spectrum beta-lactam was 
97% (2005/2064) for amoxicillin, 29% (360/1225) for co-amoxiclav, 
19% (61/320) for ceftriaxone, and 6% (11/190) for piperacillin-tazo-
bactam. 

Strategy 1 – matching clinician antibiotic use 
Model performance without species information was compared 

to clinicians by attempting to constrain the predictions made to 
result in the same total number of prescriptions for each antibiotic 
as used by clinicians. Within the combined test data, clinician pre-
scribing resulted in 70% of patients receiving an active beta-lactam: 
44% were over-treated, 26% optimally-treated, and 30% under- 
treated. Model predictions resulted in more patients being actively 
treated, 75%, fewer being over-treated, 42%, fewer under-treated, 
25%, and therefore more being optimally-treated, 33% (Fig. 4D). Due 
to differences in model fit and calibration between training and test 
data, despite targeting no change, small variations in antibiotic use 
relative to clinicians were observed (Fig. 4E, Table 3). 

Strategy 2 – matching antibiotic use to susceptibility rates 
Using alternative prediction thresholds that matched total anti-

biotic use to susceptibility rates resulted in more patients receiving 
optimal treatment compared to clinician’s prescribing, 42% (cf. 26% 
by clinicians) and reduced over-treatment in 29% (cf. 44%). However, 
overall active treatment was similar, 71% (cf. 70%). In a sensitivity 
analysis where 20% reductions in amoxicillin and co-amoxiclav use 
were allowed relative to susceptibility rates, the percentage of pa-
tients predicted to receive active treatment increased to 77%, while 
overtreatment at 36% remained less than with clinicians’ prescribing. 

Strategy 3 – fixing overtreatment rates, aiming for more active 
treatment 

If prediction thresholds were set by matching clinician over- 
treatment rates, using the machine learning algorithm 79% of pa-
tients would have received an active beta-lactam and 34% would 
have been optimally-treated, 45% over-treated, and 21% under- 
treated. This performance was predominantly achieved by moving a 
subset of patients treated by clinicians with co-amoxiclav to receive 
ceftriaxone, with fewer given piperacillin-tazobactam or a carba-
penem to offset this. 

Switching to ceftriaxone as first-line treatment and strategy 4 
We also compared performance to a simpler intervention, 

changing first-line treatment to ceftriaxone, i.e. switching all pa-
tients receiving amoxicillin or co-amoxiclav to ceftriaxone. This 
would reduce the number of under-treated patients to 11%, but also 
cause 65% to be over-treated. Setting our models to achieve the same 
level of active treatment allowed over-treatment to be reduced 
to 59%. 

Discussion 

Machine learning models can predict resistance to commonly 
used antimicrobials in Enterobacterales bloodstream infection with 
moderate accuracy. Despite considering a wide range of input fea-
tures, including hospital and some community data, model perfor-
mance was broadly consistent with previous findings for similar 
tasks.3–18 This suggests there is a ceiling on the performance of Ta
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machine learning in this context that is unlikely to be improved on 
without further data, e.g. for our models, data on community pre-
scribing. It may also reflect intrinsic stochasticity where bacteria 
with and without AMR exist within a patient’s microbiome, and 
cause disease with or without AMR with a degree of randomness. 

Despite modest performance of machine learning models, de-
tecting resistance is also a highly challenging task for clinicians. In 
our hospital group antimicrobial stewardship is given a high priority, 
seeking to minimise over-use of broad-spectrum antibiotics to pro-
tect local needs and meet national prescribing incentives.21,22 

However, this also results in a substantial proportion of patients 
receiving inactive initial treatment, 21% overall, with 30% receiving 
inactive initial beta-lactam treatment. The implied sensitivity of 
clinician detection of resistance was low at 29% for co-amoxiclav, 19% 
for ceftriaxone, and 6% for piperacillin-tazobactam. Prescriptions up 
to 4 h after blood culture sampling were considered; they represent 
the practice of clinicians with a range of experiences, e.g., from 1–2 
years post-graduation to > 10 years, as senior reviews will not all 
have been completed for all patients within the time window 
chosen. However, this is representative of those making antibiotic 
prescribing decisions. 

The challenging nature of antibiotic selection meant clinician’s 
choice of beta-lactam resulted in 30% of patients being under- 
treated, 44% being over-treated and only 26% being optimally- 
treated. Several modelling approaches were able to improve on this. 
The main potential application of our models is helping select which 
antibiotics to start initially, i.e. using the models that do not use 
species information. Using these models, if total antibiotic use was 
kept similar, but redistributed, an additional 5% of patients received 
active treatment, 75% overall, and optimal treatment rose to 33%. 
Alternatively, if we matched antibiotic use to rates of antibiotic 
susceptibility and allowed for some over-prescribing of broader- 
spectrum agents to offset imperfect model performance, then 79% of 
patients could be actively treated, 9% more than by clinicians, while 
still only over-treating 45% (similar to clinicians). A simpler approach 
of switching all first-line antibiotics to ceftriaxone increased active 
treatment to 89% but caused 65% to be over-treated; the latter could 
be reduced to 59% if a model rather than a guideline change was 
used. Additionally, as our models perform better once a species is 
identified, they could also potentially be used to screen at this 
timepoint for patients with a high probability of having been started 
on inactive empirical therapy. 

Model performance was relatively consistent over time and 
models could be retrained rapidly if needed. The features con-
tributing most to predictions, such as infections with AMR within 
the last year or antibiotic exposures, are likely to be relatively stable 
over time. To improve overall performance and facilitate anti-
microbial stewardship, better models are particularly needed for the 
narrower spectrum agents including amoxicillin and co-amoxiclav. 
Data on community use of these antibiotics and other narrow 
spectrum agents may help. It is unlikely that other model archi-
tectures would have substantially improved performance given the 
range of approaches tried in other studies without much better 
performance.8,12,13,17,18 

This study has several limitations. A fundamental limitation with 
all studies of this kind is that the data are trained and tested on 
patients known to have positive blood cultures, and in our models, 
we specifically focused on cultures with Enterobacterales species. 
However, < 10% of sampled patients will have positive blood cultures 
and these results are not known a priori. Hence, we have to assume 
the predictors of resistance are similar in those with and without 
positive cultures, and that rates of resistance are similar too. 
However, this same assumption underlies use of antibiotic resistance 
patterns in positive cultures to determine population-level institu-
tional or regional antimicrobial guidelines. This assumption may 
only be partially true though, especially if AMR contributes to blood 

cultures being positive in patients with prior community antibiotic 
exposures. By focusing on Enterobacterales we also did not consider 
infections with other species or polymicrobial infections; future 
work could consider focusing on predicting AMR in all pathogens 
causing specific clinical syndromes to improve applicability. 

We did not have data available on allergies. Hospital guidelines 
during the study suggested that in patients with mild penicillin al-
lergy (i.e. a rash), ceftriaxone could be substituted for co-amoxiclav 
(adding metronidazole where anaerobic cover was required). 
Patients with severe penicillin allergy were predominantly treated 
with non-beta-lactam antibiotics. It is therefore possible that some 
of the model improvements in reducing over-treatment from 
switching ceftriaxone to co-amoxiclav may not have been possible in 
reality due to penicillin allergies. However, this is less important for 
increases in patients receiving active treatment, where the switches 
were generally to ceftriaxone. 

We did not have data on community antibiotic exposures, which 
may have improved model performance. We did however have data 
on community microbiology samples as nearly all samples were sent 
to the single regional hospital laboratory. It is possible that clinician 
prescribing in Oxfordshire is unusual in the priority given to anti-
biotic stewardship, but national prescribing data suggest it is not 
atypical for the UK.22 In our setting patients receiving inactive initial 
treatment are typically switched to active treatment within 24–72 h 
of blood cultures being obtained.20 Our model was validated on two 
independent internal validation datasets, but further external vali-
dation is required before it can be deployed, for example as a deci-
sion support aid for hospital clinicians. 

In conclusion, predicting who will have AMR is challenging for 
clinicians and models alike. Despite relatively modest performance 
of machine learning models, these could still potentially increase the 
proportion of patients receiving active treatment by up to 9% over 
current clinical practice in an environment prioritising antimicrobial 
stewardship. 
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