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Abstract: 

Purpose: To extend a previously developed machine learning algorithm for harmonizing brain 

volumetric data of individuals undergoing neuroradiological assessment of Alzheimer disease not 

encountered during model training. 

Materials and Methods: Neuroharmony is a recently developed method that uses image quality 

metrics (IQM) as predictors to remove scanner-related effects in brain-volumetric data using random 

forest regression. To account for the interactions between Alzheimer disease pathology and IQM 

during harmonization, the authors developed a multi-class extension of Neuroharmony for individuals 

with and without cognitive impairment. Cross-validation experiments were performed to benchmark 

performance against other available strategies using data from 20,864 participants with and without 

cognitive impairment, spanning 11 prospective and retrospective cohorts and 43 scanners. Evaluation 

metrics assessed ability to remove scanner-related variations in brain volumes (marker concordance 

between scanner pairs), while retaining the ability to delineate different diagnostic groups (preserving 

disease-related signal). 

Results: For each strategy, marker concordances between scanners were significantly better (p <

0.001) compared to pre-harmonized data. The proposed multi-class model achieved significantly 

higher concordance (0.75 ± 0.09) than the Neuroharmony model trained on individuals without 

cognitive impairment (0.70 ± 0.11) and preserved disease-related signal (∆𝐴𝑈𝐶 = −0.006 ±

0.027) better than the Neuroharmony model trained on individuals with and without cognitive 

impairment that did not use our proposed extension (∆𝐴𝑈𝐶 = −0.091 ± 0.036). The marker 

concordance was better in scanners seen during training (concordance > 0.97) than unseen 

(concordance < 0.79), independently of cognitive status. 

Conclusion: In a large-scale multi-center dataset, our proposed multi-class Neuroharmony model 

outperformed other available strategies for harmonizing brain volumetric data from unseen scanners 

in a clinical setting.   
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Summary Statement: 

A novel multi-class Neuroharmony model was developed and evaluated against other approaches for 

harmonizing volumetric data in a clinical setting using a large, multicenter brain MRI dataset of 

individuals undergoing neuroradiological assessment of Alzheimer disease. 

Key Points:  

1. The proposed multi-class Neuroharmony model, trained on 20,864 participants, achieved 

state-of-the-art performance in harmonizing brain volumetric data from new MRI scanners. 

2. The proposed multi-class Neuroharmony model preserved disease-signal on volumetric 

features better than the other tested approaches. 

3. The multi-class Neuroharmony model performed better for harmonizing MRI-derived 

volumetric data in the clinical setting than other available approaches for harmonizing data 

from previously unseen scanners.   
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1 Introduction 

Structural MRI scans, such as T1-weighted MRI, are routinely acquired in memory clinics for diagnosing 

Alzheimer’s disease (AD) (1), clinical phenotyping (2), and for differentiating AD from other types of 

dementias (3). In current clinical practice, radiologists primarily assess global and regional brain 

atrophy through visual examination of MRI. However, visual examinations are subjective and prone 

to intra-rater and inter-rater variability. Quantitative imaging markers, such as brain volumetric data, 

are becoming increasingly popular due to their potential to improve diagnostic confidence (4). 

Quantitative imaging markers can be used for objective assessment in the radiological workflow either 

by using automated digital tools based on normative modelling (3) or using latest advances in artificial 

intelligence, including brain-age estimation (5) and data-driven subtyping (6).  

However, differences in MRI acquisition protocols and scanners affect consistency and reproducibility 

of brain volumetry (7) and are a major impediment for the clinical translation of automated tools. To 

tackle this problem, many data harmonization tools have emerged in recent years (8). Such algorithms 

can either harmonize original scans (e.g. DeepHarmony) (9) or derivatives extracted from the scans 

(e.g. ComBat) (10). Some of these algorithms have been shown to harmonize patient data affected by 

a neurodegenerative disease (11,12) while preserving disease-related signature. However, such 

harmonization techniques typically work only for the scanner models they have been trained on, and, 

in some instances require the same individuals to be scanned with different scanners (13). 

Harmonizing volumetric data from MRI scanners not encountered during initial model training 

requires additional training with a substantial number of images from these scanners (14). This poses 

a challenge for the deployment of such models for clinical use. 

Neuroharmony (15) is a recently developed harmonization approach that can harmonize volumetric 

data from images acquired using new and unseen MRI scanners. The Neuroharmony model is trained 

to predict the volumetric corrections estimated by ComBat harmonization in the training phase. When 

trained on large enough samples, the model generalizes well for predictions of harmonized volumes 

in previously unseen scanners. It works under the assumption that the corrections needed to 

harmonize data from multiple scanners can be predicted from image quality metrics (IQM) computed 

from the scans. While the original Neuroharmony study indicates that harmonization works for 

healthy individuals (15), harmonizing data from patients with neurodegenerative diseases remains an 

open problem. This is because disease pathology in patients may affect the IQM, and such effects 

remain unaccounted for in a Neuroharmony model trained on healthy controls. 

In this paper, we propose an extension of the Neuroharmony model to account for interactions 

between disease pathology and IQM to remove scanner-related effects (multi-class model of 
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Neuroharmony). We systematically compare the performances of the proposed multi-class model in 

harmonizing data with two other approaches: the original Neuroharmony model trained only on 

individuals without cognitive impairment (normative model of Neuroharmony) and the original 

Neuroharmony model trained on individuals with and without cognitive impairment that did not use 

our proposed multi-class extension (inclusive model of Neuroharmony). We used data from 11 cohorts 

across three continents for evaluating these approaches. Lastly, we identify key challenges for clinical 

implementation of the best multicentric harmonization strategy identified in our experiments for 

enabling quantitative neuroradiological assessment of AD.   
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2 Materials and Methods  

2.1 Study Participants and Data 

T1-weighted 3D MRI data of healthy controls (HC), participants with subjective cognitive decline (SCD), 

mild cognitive impairment (MCI), and AD from 11 prospective and retrospective data cohorts were 

included in our analysis. The cohorts considered for this study were: Amsterdam Dementia Cohort 

(ADC) (16), Alzheimer’s Disease Neuroimaging Initiative (ADNI) (17), Australian Imaging, Biomarker & 

Lifestyle Flagship Study of Ageing (AIBL) (18), Alzheimer’s Repository Without Borders (ARWiBo) (19), 

European DTI Study on Dementia (EDSD) (20), Hungarian Longitudinal Study of Healthy Brain Aging 

(HuBA) (21), Italian Alzheimer’s Disease Neuroimaging Initiative (I-ADNI) (22), National Alzheimer’s 

Coordination Center (NACC) (23), Open Access Series of Imaging Studies (OASIS, versions 1&2) (24), 

European Alzheimer’s Disease Neuroimaging Initiative (also known as PharmaCOG) (25), and UK Bio-

bank (UKBB) (26). Detailed information about each cohort is summarized in Supplementary Table 1.  

The clinical diagnoses of participants in these cohorts were made based on international consensus 

criteria; further details can be found in the respective studies cited above. Each study was approved 

by the respective institutional ethical committees, with informed consent obtained from each 

participant. 

Minimum inclusion criteria included the availability of a T1-weighted 3D MRI scan along with age, sex, 

and scanner information, and a clinical diagnosis of either HC, SCD, MCI or AD. All datasets were 

organized according to the Brain Imaging Data Structure (BIDS) standard (27) to ensure inter-

operability and data anonymization. An overview of the scanners used in this study is shown in Table 

1 and the scanning parameters are summarized in Supplementary Table 2. 

2.2 Image processing 

Cortical reconstruction and volumetric segmentation were performed with the cross-sectional 

pipeline of FreeSurfer v7.1.1 (28) in order to extract volumes of 68 cortical regions in the Desikan-

Killiany atlas, 14 subcortical brain regions, as well as total cerebrospinal fluid volume, total gray matter 

volume and total brain volume with and without ventricles. Supplementary Figure 1 lists all features 

derived from FreeSurfer. IQM were estimated using MRIQC v0.16.1 (29). Automatic quality control of 

the FreeSurfer segmentations was performed using the Euler number, where outliers, defined as 

1.5×IQR (inter-quartile range) below the first quartile (30), for each scanner were excluded from our 

experiments.  

In order to ensure reproducibility of our results across different computing environments (31), Docker 

containers for both FreeSurfer and MRIQC were prepared by author NPO, and shared with coauthors 
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(DA, VV, BW, PB) to process MRI from their local cohort (no images were shared, blinding was not 

necessary). These authors each have 5–15 years of MRI processing experience. The containers have 

been made available online to benefit the community (URLs indicated in the “Data and code 

availability” section).  

2.3 Multi-class Neuroharmony model 

In the training phase, volumetric data from all individuals in the training set were harmonized using 

ComBat (10) with empirical Bayes optimization to remove scanner related batch effects. While 

training, we imposed constraints that preserve the effects of age, sex, and cognitive status. Cognitive 

status was dichotomized based on the clinical diagnosis as either no cognitive impairment (HC and 

SCD) or cognitive impairment (MCI and AD). Subsequently, a random forest regressor was trained with 

MRIQC-derived IQM to predict the corrections needed to harmonize the volumes as predicted by 

ComBat. Additionally, to preserve disease-related signal during harmonization, we used the synthetic 

minority oversampling technique (SMOTE) (32) to avoid class imbalance (no cognitive impairment vs 

cognitive impairment) before training the random forest regressor. This ensured that IQM values with 

and without neurodegeneration were equally distributed. The use of dichotomized cognitive status 

instead of clinical diagnosis ensured that in the test phase, a full clinical diagnosis is not required to 

predict the harmonized volumes. The hyperparameters for the random forest regressor were chosen 

to be the same as the ones used in the original Neuroharmony paper (15). 

2.4 Model comparisons 

The performance of the proposed multi-class extension of Neuroharmony was compared with two 

other harmonization strategies that are generalizable to external datasets: 

2.4.1 Normative model: In the training phase, volumetric data from only individuals without cognitive 

impairment were harmonized using ComBat harmonization using the aforementioned strategy, while 

preserving the effects of age and sex. Subsequently, a random forest regressor was trained to predict 

the corrections needed to harmonize the volumes, as predicted by ComBat using MRIQC-derived IQM.  

2.4.2 Inclusive model: The training strategy remained the same as for the normative model, but 

volumetric data of individuals with and without cognitive impairment were used.  

2.5 Measures for model evaluation 

We used two measures for model evaluation to assess how well each method removes unwanted 

scanner-related noise while retaining disease-related signal. First, we define “marker concordance” 

(details below) as a statistical measure of similarity between brain-volumetric data from different 
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scanners. Increased marker concordance after harmonization shows that a method successfully 

reduces scanner-related variance (see “Statistical Analysis” section for details). Second, we used 

classification performance (HC vs AD) to assess the amount of disease-related signal. The best 

performing harmonization model will return the best classification performance. 

We used area under the receiver operating characteristic (ROC) curve (AUC) to quantify the amount 

of disease-related signal that is retained in the volumetric measures after harmonization. The ROC 

curve for distinguishing healthy control participants from participants with AD was computed 

independently for each volumetric measure with logistic regression. A reference measure for AUC was 

also computed for the non-harmonized data. 

2.6 Cross-validation experiments 

We performed two experiments in a cross-validation framework. Experiment 1 assessed concordance 

of the three harmonization strategies, by performing cross-validation at the scanner-level. Experiment 

2 performed cross-validation at the participant level, using the best-performing scanner-level 

harmonization models. 

Experiment 1: To investigate the generalizability of the model to unseen scanners (not included in the 

training set), we performed 5-fold cross-validation across the 43 available scanners. In each fold, 80% 

of the scanners were used for training the models, and the remaining 20% of the scanners were used 

for evaluation. To evaluate the bias introduced by using single-scanner data from the large UKBB 

cohort, we repeated this experiment for increasing portions of UKBB participants such that when the 

UKBB data were included in the training data, the proportions included were: 10%; 33%; 67%; 100%. 

However, in the cross-validation folds when UKBB cohort data were not used for training, we always 

used 100% of the cohort. 

To investigate if this approach can be used for harmonizing cortical thickness measures, we selected 

the two best performing approaches from the above analysis and repeated our experiment on cortical 

thickness measures obtained from 68 brain regions defined by the Desikan-Killiany atlas. 

Experiment 2: We selected the two best performing models from Experiment 1 and performed a 

stratified 5-fold cross-validation across participants, stratified based on the dichotomized cognitive 

status. Differently from Experiment 1, the scanner was not used to define folds for cross validation in 

Experiment 2 in order to test the generalizability to new participants in seen scanners as opposed to 

unseen scanners tested in Experiment 1. For this, the proportion of the UKBB participants included 

was also decided based on Experiment 1. To provide a reference measure, we compared the 

accuracies obtained with the corresponding accuracies obtained in Experiment 1. 
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2.7 Statistical Analysis 

To compute marker concordance, we compared the distributions of each volumetric measure for each 

pair of scanners by means of the Kolmogorov-Smirnov (KS) test with the null hypothesis that the 

distributions between any pair of scanners were the same. This was done independently within each 

diagnostic group, and after correcting for the confounding effects of age and sex by regressing out 

their effects estimated in individuals without cognitive impairment. Marker concordance was 

calculated as the proportion of such comparisons where there was no evidence that distributions were 

different between each pair of scanners across all brain regions after controlling for multiple testing 

via false discovery rate (FDR ≥ 0.05) based on the p-values of Kolmogorov-Smirnov tests. For statistical 

validity, we excluded scanners with fewer than 10 participants of the same diagnostic group from this 

evaluation. 

AUCs of classification tasks for each harmonization strategy were compared with the AUCs in the case 

of non-harmonized data separately for each feature by means of a DeLong test. 

The non-parametric McNemar Chi-square test was used to compare concordances across 

harmonization strategies. To control for multiple hypothesis testing, resulting p-values were used to 

estimate the FDR. 

2.8 Data and code availability 

ADC data can be made available to academic researchers upon reasonable request; ADNI and AIBL 

data are managed by the Laboratory of Neuroimaging at the University of Southern California and 

are available to the general scientific community for download (http://ida.loni.usc.edu/); ArWiBO, 

EDSD, I-ADNI, OASIS and PharmaCog data are available for all researchers on the NeuGRID2 platform 

(https://www.neugrid2.eu/ https://doi.org/10.17616/R31NJN1E); HuBA data can be made available 

upon reasonable request; NACC data is available through the National Alzheimer’s Coordinating 

Center platform (https://naccdata.org/); UKBB data is available at the UK Biobank platform 

(https://www.ukbiobank.ac.uk/); 

Docker container source code for FreeSurfer and MriQC is available on GitHub 

(https://github.com/E-DADS/freesurfer, https://github.com/E-DADS/mriqc); Multi-class 

Neuroharmony harmonization algorithm is available on GitHub 

(https://github.com/88vikram/Multiclass-Neuroharmony);Trained model files forHarmonization 

using Multi-class Neuroharmony are available for all researchers on the NeuGRID2 platform 

(https://www.neugrid2.eu/index.php/edads_harmonization). 

  

http://ida.loni.usc.edu/
https://www.neugrid2.eu/
https://doi.org/10.17616/R31NJN1E
https://naccdata.org/
https://www.ukbiobank.ac.uk/
https://github.com/E-DADS/freesurfer
https://github.com/E-DADS/mriqc
https://github.com/88vikram/Multiclass-Neuroharmony
https://www.neugrid2.eu/index.php/edads_harmonization
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3 Results 

3.1 Participants 

Table 2 shows descriptive statistics for the combined study sample used in our experiments, which 

consisted of volumetric data that passed quality control from 20,864 participants (53.3% female, 

11,111/20,864) from 43 scanners across 11 cohorts. A total of 2,086 individuals were excluded based 

on low Euler number. Figure 1 shows age distributions by scanner and cognitive group. 

3.2 Model evaluation 

Figure 2 shows the first result of Experiment 1: marker concordance under cross-validation, 

independently for each diagnostic group and with increasing proportions of the UKBB dataset. 

Reference concordances for non-harmonized data are also shown for each diagnostic group for 

comparison. As expected, concordances for each harmonization strategy were significantly higher 

than the non-harmonized data for all the diagnostic groups (𝐹𝐷𝑅 < 0.001; 𝑝 < 0.001). The use of 

the inclusive and multi-class models significantly improved the concordance with respect to the 

normative model for the diagnostic categories of MCI and AD (𝐹𝐷𝑅 <  0.001; 𝑝 < 0.001). For 

diagnostic groups of HC and SCD, the concordance of the multi-class model was significantly higher 

than the normative model with 100% of UKBB included (11,058/11,058) (𝐹𝐷𝑅𝐻𝐶 = 0.01; 𝑝𝐻𝐶 =

0.009, 𝐹𝐷𝑅𝑆𝐶𝐷 = 0.02; 𝑝𝑆𝐶𝐷 = 0.02). There was no evidence of a difference in concordance for HC 

and participants with SCD between the inclusive model and normative model (𝐹𝐷𝑅 = 0.23; 𝑝 =

0.21). 

Figure 3 shows the second result of Experiment 1: the AUCs for classifying HC versus participants with 

AD, which were computed independently for each brain regional volume in the test set. Removing 

scanner-related differences decreased AUC for all harmonization approaches, potentially due to the 

significant imbalance (𝑝 < 10−4) in the number of HC and participants with AD in the different 

scanners (Supplementary table 3). For the normative model, the AUC was significantly lower than the 

pre-harmonized data for 45 volumetric features (∆𝐴𝑈𝐶 = −0.013 ± 0.023). For the inclusive model, 

the AUC was significantly lower than the pre-harmonized data for 82 features (∆𝐴𝑈𝐶 = −0.091 ±

0.036). For the multi-class model, the AUC was significantly lower than pre-harmonized AUC for 40 

features (∆𝐴𝑈𝐶 = −0.006 ± 0.027), indicating relative loss of disease-related signal when using the 

inclusive model harmonization strategy. Across all brain regions, the best AUCs were achieved for the 

amygdalae and hippocampi in all harmonization scenarios (Supplementary Figure 1). 

Based on marker concordance and AUC, the two best models were the normative and the multi-class 

Neuroharmony models, when trained with 100% UKBB data. For harmonizing cortical thickness 



    

 

  11 

 

measures, our proposed multi-class model achieved significantly higher marker concordance than the 

normative model (Supplementary Figure 2). 

3.3 Harmonization in seen vs unseen MRI scanners 

Figure 4 shows the results of Experiment 2: marker concordance for seen vs unseen scanners during 

model training for both the normative model and multi-class model. Supplementary Figure 3 shows 

these results for each brain volume individually. Marker concordance of the multi-class model was 

significantly higher than the normative model for unseen scanners for all diagnostic categories 

(𝐹𝐷𝑅𝐻𝐶 = 0.01; 𝑝𝐻𝐶 = 0.009,  𝐹𝐷𝑅𝑆𝐶𝐷 = 0.02; 𝑝𝑆𝐶𝐷 = 0.02, 𝐹𝐷𝑅𝑀𝐶𝐼 < 0.001; 𝑝𝑀𝐶𝐼 <

0.001, 𝐹𝐷𝑅𝐴𝐷 < 0.001; 𝑝𝐴𝐷 < 0.001 ). For seen scanners, the multi-class model harmonization 

strategy significantly outperformed the normative model for the diagnostic groups of HC, MCI, and AD 

(𝐹𝐷𝑅 < 0.001;  𝑝 < 0.001), but significantly underperformed for SCD (𝐹𝐷𝑅 = 0.02; 𝑝 = 0.02).  

Marker concordance using the multi-class model in a seen scanner (𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 > 0.97) was better 

for all diagnostic groups than in unseen scanners (𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 < 0.79). 
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4 Discussion 

We introduced a novel extension of the Neuroharmony harmonization model (15) to train a 

generalizable machine learning model for harmonizing multicentric brain volumetric data for 

quantitative assessment of AD. The data for these evaluation experiments were derived from T1-

weighted 3D MRIs acquired with 43 different scanners from 20,864 participants spanning 11 cohorts. 

Our experiments showed that the multi-class model, which accounts for the interaction between 

disease pathology and IQM to remove scanner-related effects, significantly improved marker 

concordance between scanner pairs for participants in unseen scanners as compared to normative 

modelling for all diagnostic groups (𝐹𝐷𝑅𝐻𝐶 = 0.01,  𝐹𝐷𝑅𝑆𝐶𝐷 = 0.02, 𝐹𝐷𝑅𝑀𝐶𝐼 < 0.001 𝐹𝐷𝑅𝐴𝐷 <

0.001). For seen scanners, it improved the marker concordance for all diagnostic groups except SCD, 

potentially due to the lower sample size of the SCD group or uncertainty in the etiology of this 

diagnostic category. Additionally, we showed that the multi-class model of Neuroharmony preserves 

disease-related signal during harmonization better than the other tested approaches that represent 

state-of-the-art methodologies. The newly introduced multi-class model would be helpful in 

harmonizing volumetric data while using automated tools in clinics and research where there could 

be data from new scanners not included in training. 

However, we note that the AUC was slightly reduced compared to non-harmonized data for some 

brain regions, implying that Multi-class Neuroharmony can remove some disease-related signal in the 

presence of diagnostic class imbalance across scanners. Future work should explore model-based 

mechanisms for disentangling such associations to preserve disease-related signal.  

Harmonization of marker data from unseen scanners remains a challenge: marker concordance for 

both normative and multi-class models in unseen scanners was lower than in seen scanners. While 

this leaves scope for further methodological improvements to harmonization strategies for unseen 

scanners, it would also be useful to investigate if the achieved harmonization performance is sufficient 

for the generalizability of machine learning approaches such as classification, subtyping (33), and brain 

aging. 

The different number of participants used to train the respective models could potentially bias the 

results against the model that uses a smaller dataset for training (normative model). However, we 

believe that this setting is a realistic and fair comparison because normative modelling always discards 

data from individuals with cognitive impairment. Through our modifications to the Neuroharmony 

model, we provided a way to include individuals with and without cognitive impairment in the training 

data, and our experiments showed improved harmonization in both seen and unseen scanners while 

preserving disease-related signal. 
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The harmonization performance obtained with the normative model in our experiments was lower 

than reported in the original Neuroharmony paper (15). This may be due to removal of sex and age 

variability in the original Neuroharmony method. We preserved these effects, retaining this biological 

variability, which we would argue is important for both research studies and clinical implementation.  

Challenges in the clinical implementation of the harmonization strategy: while the multi-class model 

outperformed the normative model in terms of marker concordance, the implementation of the 

model in memory clinics might require additional work to include cognitive status of a patient during 

regular radiological workup. Machine learning models could potentially be used to overcome this 

limitation, as it has been shown in recent studies that classifying cognitive impairment from healthy 

control or SCD can be done with high accuracy using MRI (34). To avoid a circular dependency between 

the two tasks, developing multi-task machine learning models to jointly harmonize and predict 

cognitive status is an important avenue of future work. Also, for broader employment in memory 

clinics, the harmonization algorithm should be validated on other segmentation algorithms beyond 

Freesurfer.  

While the current work was focused on the AD spectrum, we expect that our new method will be 

valuable for impaired cognition in general (e.g.: vascular dementia, frontotemporal dementia, 

dementia with Lewy bodies). We expect the approach to also be applicable for patients with 

psychiatric disorders, but further work would be needed for patients with other neurological 

conditions — especially those where the brain is affected by large lesions and other major structural 

modifications.  

Some limitations of the original Neuroharmony model (15) apply to this work as well. The 

harmonization performance for an individual in the test-set depends on the contrast-to-noise ratio in 

the T1-weighted 3D MRI and the pipeline cannot guarantee effective harmonization if the ratio is 

outside the range seen in our training data, and might lead to incorrect harmonization. Secondly, the 

harmonization performance based on marker concordance across scanner-pairs is a surrogate 

measure to measure consistency in the absence of a ground-truth. A potential limitation of this study 

is the lack of a study to assess within-participant variability across scanners, i.e., where a group of 

participants including all diagnostic classes are scanned across multiple scanners. This would allow for 

evaluation of the ability of the model to remove scanner effects at the individual level, but such a 

study would face considerable ethical issues related to repeatedly scanning patients. Another 

potential issue of the present work is the definition of marker concordance, which may not be 

statistically robust as it implies that the failure of rejection of the null hypothesis (i.e. failure to state 

that marker distributions are significantly different) corresponds to the null hypothesis being true (i.e.: 
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marker distributions are similar), consistency of future works may benefit from more apt definitions 

of marker concordance. An important limitation of this study, as with most research studies in this 

field, is that the imaging data used predominantly came from the developed Western countries of the 

EU, US, UK, and Australia. A more generalizable and inclusive model for harmonization would require 

data from nations in South-America, Asia, and Africa. This would include low field-strength scanners 

that are predominantly used in these regions, as well as more diverse biological variation in the 

training data. Large global consortia such as the UNITED consortium (35) could potentially help in 

getting access to such diverse neuroimaging data. Further developing Neuroharmony for distributed 

or federated learning for harmonizing imaging data can also facilitate inclusion from under-

represented countries. 

In summary, we have generalized the Neuroharmony model to harmonize Freesurfer-based MRI 

marker data from multiple scanners and sites while retaining disease signal that could otherwise be 

removed by the harmonization procedure. When evaluated on brain MRI marker data from 

participants along the AD spectrum, our new model outperformed the other approaches we tested 

on both seen and unseen scanners. Further validation using different processing pipelines and 

evaluation criteria would be essential for clinical use of the model in applications related to cognitive 

decline, such as memory clinics and clinical trials of new interventions for neurodegenerative diseases.   
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Figures and Tables 

Manufacturer Scanner Model Magnetic Field (T) Number of scans 

𝑛 (Female), 𝑛 (Male) 

Canon Titan 3.0 252, 329 

GE 

Discovery MR750 3.0 290, 372 

Discovery MR750w 3.0 8, 16 

Genesis Signa 1.5 6, 3  

Signa Excite 1.5 181, 197 

Signa PET/MR 3.0 15, 16 

Signa HDx 1.5 10, 19 

Signa HDx 3.0 44, 55  

Signa HDxt 1.5 225, 261 

Signa HDxt 3.0 463, 535 

Signa Premier 3.0 6, 8 

Philips 

Achieva 1.5 4, 7 

Achieva 3.0 179, 116 

Achieva dStream 3.0 13, 10 

Eclipse 1.5 28, 13 

Gemini 3.0 312, 214 

Gyroscan NT 1.0 127, 68 

Ingenia 3.0 18, 33 

Ingenuity 3.0 298, 339 

Intera 1.0 275, 161 

Intera 1.5 19, 42 

Intera 3.0 27, 27 

Intera Achieva 1.5 1, 4 

Intera Gyroscan 1.5 11, 16 

Siemens 

 

Allegra 3.0 50, 34 

Avanto 1.5 150, 153 

Biograph 3.0 0, 5 

Espree 1.5 3, 4 

Magnetom Expert 1.0 397, 416 

Magnetom Impact 1.0 7, 2 

Magnetom Vida 3.0 6, 14 
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Magnetom Vision 1.5 20, 7 

Prisma 3.0 131, 122 

Prima fit 3.0 122, 84 

RCNS 3.0 68, 48  

Skyra 3.0 6146, 5035 

Sonata 1.5 189, 226 

Sonata Vision 1.5 3, 2 

Symphony 1.5 90, 66 

Trio 3.0 41, 21 

Trio Tim 3.0 457, 380 

Verio 3.0 186, 137 

Vision 1.5 233, 126 

Table 1: Scanners considered in this study and their characteristics. 
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Data Cohort Participants 

(processed/ 

considered 

after removing 

outliers) 

Age (mean ± 

standard 

deviation) 

[years] † 

Sex (F (%) /M 

(%))† 

Diagnosis  

 (HC (%) / SCD (%) / MCI (%) / AD (%)) † 

 

Unique 

scanners † 

ADC 

4,086 / 3,722 63.9 ± 9.2 

1,717 

(46.1%) / 

2,005 

(53.9%) 

0 (0%) / 1,355 (36.4%) / 805 (21.6%) / 

1562 (42.0%) 
12 

ADNI 
2,044 / 1,830 72.2 ± 7.06 

889 (48.6%) / 

941 (51.4%) 

687 (37.5%) / 0 (0%) / 851 (46.5%) / 

292 (16.0%) 
27 

AIBL 
557 / 524 72.7 ± 6.5 

299 (57.1%) / 

225 (42.9%) 

388 (74.0%) / 0 (0%) / 83 (15.8%) / 53 

(10.1%) 
3 

ARWiBo 
913 / 831 56.3 ± 16.2 

529 (63.7%) / 

302 (36.3%) 

603 (72.6%) / 16 (1.9%) / 116 (14.0%) / 

96 (11.6%) 
7 

EDSD 
416 / 384 70.4 ± 7.3 

197 (51.3%) / 

187 (48.7%) 

143 (37.2%) / 0 (0%) / 119 (31.0%) / 

122 (31.8%) 
8 

HuBA 
121 / 116 62.4 ± 6.9 

68 (58.6%) / 

48 (41.4%) 
116 (100%) / 0 (0%) / 0 (0%) / 0 (0%) 1 

I-ADNI 
179 / 172 72.2 ± 8.0 

106 (61.6%) / 

66 (38.4%) 

2 (1.2%) / 5 (2.9%) / 35 (20.3%) / 130 

(75.6%) 
4 

NACC 
1,861 / 1,731 71.9 ± 9.8 

910 (52.6%) / 

821 (47.4%) 

0 (0%) / 0 (0%) / 949 (54.8%) / 782 

(45.2%) 
22 

OASIS 
373 / 359 73.2 ± 10.7 

233 (64.9%) / 

126 (35.1%) 

211 (58.8%) / 0 (0%) / 111 (30.9%) / 37 

(10.3%) 
1 

PharmaCog 
141 / 137 69.0 ± 7.3 

80 (58.4%) / 

57 (41.6%) 
0 (0%) / 0 (0%) / 137 (100%) / 0 (0%) 7 

UKBB 

12,259 / 

11,058 
63.5 ± 7.6 

6,083 

(55.0%) / 

4,975 

(45.0%) 

11,058 (100%) / 0 (0%) / 0 (0%) / 0 (0%) 1 

Total 

22,950 / 

20,864 
65.3 ± 9.4 

11,111 

(53.3%) / 

9,753 

(46.7%) 

13,208 (63.3%) / 1,376 (6.6%) / 3,206 

(15.4%) / 3,074 (14.7%) 
43 

Table 2: Participant Demographics. † Values indicated in the column are calculated after removing the outliers, as 

described in section 2.2. Abbreviations: HC: healthy control; SCD: subjective cognitive decline; MCI: mild cognitive 

impairment; AD: Alzheimer’s Disease. 
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Figure 1: Age distributions by diagnosis for each scanner in the training cohort. Abbreviations: HC: healthy control; SCD: 

subjective cognitive decline; MCI: mild cognitive impairment; AD: Alzheimer’s Disease.  

 

Figure 2: Experiment 1: Marker concordance for brain volumes on unseen scanners using different harmonization 

strategies. Concordance for non-harmonized data has also been shown here as a reference measure for comparison. In 

each diagnostic class, colored stars on top of bars indicate statistically significant differences (FDR<0.05) between the 

model where the bar is located and the model indicated by the color of the star. Boxes represent individuals between the 

first and third quartile, black lines inside the boxes represent the medians, whiskers represent individuals above the third 

quartile and below the first quartile and circles indicate concordance outliers. Abbreviations: HC: healthy control; SCD: 

subjective cognitive decline; MCI: mild cognitive impairment; AD: Alzheimer’s Disease; UKBB: UK Bio-Bank.  

 

Figure 3: Experiment 1: Boxplots of AUCs for distinguishing CN participants from participants with AD in the test set based 

on the 86 brain ROIs considered before and after harmonization. Boxes represent individuals between the first and third 

quartile, black lines inside the boxes represent the medians and whiskers represent individuals above the third quartile and 

below the first quartile. Abbreviations: AUC = area under the receiver operating characteristic curve; HC: healthy control; 

AD: Alzheimer’s Disease; UKBB: UK Bio-Bank.  

 

Figure 4: Experiment 2: Marker concordance for brain volumes on unseen versus seen scanners using normative model and 

multi-class model. For each diagnostic class, crosses on top of bars indicate statistically significant differences (FDR<0.05) 

between marker concordances of normative and multi-class model in seen scanners, whereas stars on top of bars indicate 

statistically significant differences between marker concordances of normative and multi-class model in unseen scanners. 

Boxes represent individuals between the first and third quartile, black lines inside the boxes represent the medians, 

whiskers represent individuals above the third quartile and below the first quartile and circles indicate concordance 

outliers. Abbreviations: HC: healthy control; SCD: subjective cognitive decline; MCI: mild cognitive impairment; AD: 

Alzheimer’s Disease. 


