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Abstract  
 
Digital Twins (DT), as one of the emerging trends in digitalisation, has attracted a large amount 

of research in the past few years due to its ability to provide more accurate models and better 
predictions for various energy-related applications. In the context of demand response (DR), the 

real-time bidirectional communication characteristic of DT allows for functions such as real-time 

energy forecast and decision making aid, which provided high potential in DR applications due 

to the nature of DR being highly time sensitive. The objective of this paper is to explore the 

concept and application of DT in the domain of DR, as there are currently limited numbers of 

review on this topic. It was identified that most work in this area shows promising results but is 

still exploratory. The main application of DT in the domain of DR is using DT as an enabling tool 

by leveraging the real-time and data processing function of DT for monitoring and decision-
making, and providing a medium for better visualisation. Future studies can experiment with 

applying DT frameworks to larger case studies, and apply more elaborate DT with higher 

maturity levels. 
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Introduction 1 

The current energy crisis has led to soaring energy prices, this has attracted more attention on 2 

the urgency of efficient building energy management. For the existing housing stock, the options 3 

to improve its energy efficiency without retrofitting are limited. Demand flexibility, also relating to 4 

demand side management (DSM), involves the technologies, programs and policies that enable 5 

the potential and capability of energy consumers to alter their energy consumption patterns. 6 

Demand response (DR) is a measure of DSM that reduces energy consumption or improves 7 

energy consumption efficiency by controlling and scheduling the energy consumption pattern of 8 

the consumer (Onile et al., 2021). This is achieved by shifting or reducing their energy usage 9 

during the peak energy consumption period (Ali and Choi,2020). Improving demand flexibility 10 

and applying DR can allow the grid to be more reliable by reducing the stress at peak demand 11 

periods and utilising renewable energy. 12 

 13 

DR is highly time-sensitive, the two commonly used DR schemes: price-based and incentive-14 

based schemes (Asadinejad A and Tomsovic, 2017), both require responsible parties' active 15 

participation at a timely manner. In order to improve the demand flexibility and enable DR, there 16 

has been a focus on the development of various digital technologies. Digitalisation has been 17 

among the priorities, and investment has been seen increasing in the past few years. Digital 18 

Twins (DT), as one of the emerging trends in digitalisation, has attracted a large amount of 19 

research in the past few years due to the readily available data, advancement in computational 20 

power, and common implementation of sensors.  21 

 22 

Although the universal definition for DT is yet to be agreed upon, the Centre for Digital Built 23 

Britain (CDBB) provided a general definition for DT using the Gemini principles as an effective 24 

functioning and trustworthy digital model that serves a clear purpose (Bolton et al., 2018). 25 

Compared to other digital models, the main feature of a DT is that the digital model is connected 26 

to their physical counterpart via various remote sensing technologies. DT provides a dynamic 27 

virtual representation of an asset in real life, with real-time monitoring of the physical building 28 

and synchronising the associated events data (Austin et al.,2020).  29 

 30 
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In the application of DR, DT allows for real-time remote monitoring and control of the targeted 31 

system, continuous data can be monitored and collected (Djebali et al., 2024). By including 32 

data-driven methods (Song et al., 2022) (Behl et al., 2016), DT could also provide functions that 33 

aid decision-making, which is crucial in DR applications. Depending on the purpose of the DT, 34 

the scale of the DT could range from a single system to the whole grid, with the critical 35 

components of the DT remaining the same: physical system, virtual representation, data 36 

acquisition, data integration, modelling and simulation, and visualisation (Djebali et al., 2024). In 37 

the past few years, numerous reviews have analysed the application of DT. Zhang and Lv’s 38 

(2022) review focused on the application of DT in the distribution grid. They suggested that DT 39 

shows promising potential in the application in the area, allowing remote-friendly interaction with 40 

equipment, equipment clustering management and collaboration of the whole chain. The review 41 

done by Onile et al. (2021) focusing on the use of DT in energy services has noted the small 42 

number of publications associating DT to recommendation systems and DSM. However, a rising 43 

trend was observed between 2016 and 2019. Onile et al. (2021) concluded that data-driven twin 44 

technologies have the ability to determine the energy behaviours of consumers and showed 45 

promising results to be applied in DSM. 46 

 47 

The increasing attention to DT in the domain of DR is closely related to the positive results 48 

reported. Key characteristics of DT, such as real-time, bidirectional data communication, detail 49 

and accurate models, and integration of data-driven functions, all shows tremendous benefit in 50 

the application of DR. However, only limited reviews have been conducted for DT in the domain 51 

of DR. Moreover, due to the lack of unified definition of DT, the DT model applied buy different 52 

study may differ in structure, function and maturity. The scope of this work is to conduct a 53 

systematic literature review of recent research on DT and similar modelling systems within the 54 

context of DR applications, including the exploration of the differences in the DT structure and 55 

function applied by various studies. The following research questions are proposed: 56 

� How is a DT defined in the context of DR applications? 57 

� What is the state-of-the-art research and application of DT in DR? 58 

� What is the future possible work to be conducted in the application of DT in DR? 59 

 60 
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The rest of this paper is structured as follows. Section 2 presented the methodology used in 61 

conducting the systematic literature review. Section 3 investigated the current definitions of DT, 62 

DT’s maturity level model, and the definition of DT when applying in DR. Section 4 presented 63 

the literature review on the application of DT in the domain of DR conducted. Section 5 64 

discussed the findings from the review presented the previous section. Lastly, section 6 65 

concludes the main discoveries of this study. 66 

 67 

2. Methodology 68 

This study adopted the PRISMA method (BMJ, 2021) to conduct a systematic literature review. 69 

First, through the iterative search of various combinations of keywords and discussion between 70 

authors, the keywords determined for the search are shown in Table 1. The three main domains 71 

covered are DT, built environment and DR. The search keywords of each of the main domains 72 

are connected using the ‘AND’ statement. As DT did not yield enough results, Building 73 

Information Modelling (BIM) and Artificial intelligence (AI) were included as the keywords to 74 

broaden the search, this is also because BIM and AI are often closely associated with 75 

innovative building models. For example, the review done by Ali and Choi (2020) investigating 76 

the AI technics used for distributed smart grid, is highly relevant to the content of this study, yet 77 

DT was not mentioned in the abstract of the paper. The target keyword search components of 78 

articles were title, keyword and abstract. 79 

 80 

Table 1   Summarised keywords for the literature search. 81 

Main Domain Search Keywords 
Digital Twins ‘digital twins’ OR ‘cyber physical systems’ OR ‘digital 

shadow’ OR ‘BIM’ OR ‘artificial intelligence’ 

Built environment ‘building’ OR ‘city’ OR ‘built environment’ OR 
‘infrastructure’ OR ‘construction’ OR ‘facility’ 

Demand response ‘demand side management’ OR ‘demand response’ OR 
‘energy flexibility’ OR ‘demand flexibility’ OR ‘recommender 

system’ OR ‘decision support system’ OR ‘energy 
management’ OR ‘energy storage’ OR ‘building to grid’ OR 

‘microgrid’ 
 82 

The search was conducted on Web of Science and Scopus databases, including journal papers 83 

and conference papers from 2010 to 2024. Figure 1 illustrates the process used for the literature 84 
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screening based on the PRISMA method (BMJ, 2021). After removing duplicates, 4006 papers 85 

were found in total. The articles found were screened and further selected based on their title 86 

and abstract. 82 papers were finally selected for full-text review. A rating system of 1 to 5 stars 87 

was given to each article based on the relevance of the literature to the research questions by 88 

using keyword check boxes and assessing the quality of the paper. In the end, a total of 34 89 

pieces of literature were covered in this review. 90 

 91 

Figure 1. Literature screening flowchart.  92 

 93 

3. DT from definitions to different maturity levels 94 

This section will explore the current definitions of DT, and what DT means in the context of DR. 95 

It is important to recognise that for different applications, the DT may consist of different 96 

components and have different structures. CDBB defined DT as an effective functioning and 97 

trustworthy digital model that serves a clear purpose following the Gemini principles (Bolton et 98 
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al., 2018). CDBB also emphasises that a DT is an accurate digital representation of physical 99 

assets, processes, or systems to the extent of detail appropriate to its purpose. This is a generic 100 

definition that fits well for all studies in the DT domain despite the type of application and 101 

provides a sound basis for the operation definition to be applied in this research.  102 

 103 

To explore the definition of DT further, a general framework of DT, as identified by Compos-104 

Ferreira et al. (2019), includes three main components: the physical asset, the virtual 105 

counterpart, and the connectivity between the two, allowing the physical asset and the virtual 106 

asset to have bidirectional communication. In addition, Lu et al. (2020) proposed a DT 107 

architecture consisting of 5 layers: data acquisition layer, transmission layer, digital modelling 108 

layer, data/model integration layer and service layer. This architecture will serve as a 109 

foundational reference for the subsequent analysis, where the literature will be examined in 110 

relation to the specific layers and aspects of framework development it addresses. 111 

 112 

Moreover, Evans et al. (2019) defined the maturity levels for DT on a scale of 0 to 5, as shown 113 

in Table 2, with level 0 being reality capture and level 5 being autonomous operations. At level 114 

3, the model is enriched with real-time data from sensors and IoTs, and this is where most of 115 

the models from the reviewed articles lie. The concept of maturity level provides a more 116 

quantitative measurement of DT's implementation level. There are other researchers like 117 

Sharma et al. (2022) who distinguished the difference between the integration level of a digital 118 

model, digital shadow and DT. A digital model does not have an information flow between the 119 

physical and virtual assets. In contrast, digital shadow has a unidirectional information flow, and 120 

DT has a bidirectional information flow. Sharma et al. (2022) also concluded in their review that 121 

there is a need for a quantitative measure for evaluating DT. Therefore, the combination of 122 

maturity level with integration level can provide a suitable scale that distinguish the existing DT 123 

definitions and applications. The literatures explored in later sections will be analysed based on 124 

the model’s maturity and integration level as the quantitative scale can provide a better 125 

comparison between the literatures. 126 

 127 

Table 2 DT maturity level with integration level (Evans et al., 2019) (Sharma et al., 2022) 128 
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Maturity 
level 

Key characteristic Integration level 

0 Reality capture Digital model 

1 2D map/system or 3D model Digital model 

2 Connect model to persistent (static) data, metadata 
and BIM Stage 2  

Digital model 

3 Enrich with real-time data Digital Shadow 

4 Two-way integration and interaction Digital Twin 

5 Autonomous operations and maintenance Digital Twin 
 129 

For application in DR, the scale of DT may range from a single system to the whole grid. Onile 130 

et al. (2021) summarised the key components of the DT framework when applied in DR as IoTs 131 

framework, where IoT devices can collect real-time data; data analysis function, where the 132 

collected data can be processed into more meaningful information and extract important 133 

features; and energy forecasting, where short to long term forecast could be analysed 134 

conjunctionally with past energy record. 135 

 136 

4. Literature analysis 137 

This section will analyse and present the chosen literature in further detail conjunctionally with 138 

the concept of DT presented previously, to understand the current state-of-the-art application 139 

and challenges of applying DT for the context of DR. To enable DR in building energy 140 

management, the DT applied should be more than just a digital model and have a maturity of 141 

over level 3. As DR is highly time-sensitive, at level 3, the DT will provide a model with a real-142 

time update on the information required, such as the current energy use and energy prices, 143 

where the real-time information captured could be further processed to provide timely DR 144 

strategies for the end-users.  145 

 146 

Figure 2 provided an overview of the maturity level of the DT applied in 34 of the analysed 147 

studies. Level 3 DT accounted for the highest proportion, with 47% of the studies analysed. 148 

These studies all have elements that could provide a real-time or near-real-time update of data 149 

on the DT model. However, they do not allow bidirectional information flow, such as the ability to 150 

control the physical asset from the digital asset. 32% of the studies applied a DT of level 4 151 
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maturity. For example, the model developed by Behl and Mangharam (2016) allows for the 152 

automatic synthesis of DR strategies, in the case study in Benguerir, Morocco (Rochd et al., 153 

2021), the user was allowed to configure the system based on their preference via a live app. 154 

12% of the studies were reported as a level 2 DT. These studies are often a work in progress. 155 

For example, the model built by Agostinelli et al.(2022) has implemented BIM and Geographic 156 

Information System (GIS) data in the model but has yet to connect the physical asset to the 157 

virtual one with sensors or IoT. However, they have discussed the potential of utilising a more 158 

elaborated DT in the future. Only 3 of the papers analysed have an automated DT of level 5 159 

(Agostinelli et al., 2021) (Chandra et al., 2020) (Amato et al., 2021) and will be analysed in later 160 

sections. The lack of level 5 DT used in DR could be because DR is often related to flexible 161 

loads such as home appliances, which rely on manual control, and occupant willingness and 162 

preference. Based on the definition of DT by Sharma et al. (2022), only maturity levels 4 and 5 163 

are counted as “real” DT. The relatively low proportion of the studies in level 4 to 5 maturity 164 

implies much potential in upgrading a level 3 model to a “real” DT. 165 

 166 

Figure 2 DT maturity level of the model applied in work analysed.  167 

 168 

Figure 3 shows the relationship between the maturity level of the DT model used in each study 169 

and the year of publication of the literature. There is a clear trend of increasing focus on DT in 170 

the context of DR from 2019 to 2023. This review paper was reviewed in 2024 Q1, therefore, 171 

only a limited number of publications from 2024 is included. Regarding the maturity level of the 172 
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DT models, level 3 DT accounted for the most significant proportion of the work done between 173 

2021 and 2023. The number of level 4 DTs has also slightly increased in recent years. 174 

 175 

Figure 3 DT maturity level of the model in work analysed and their year of publication. 176 

 177 

4.1 DT Framework development for DR 178 

20 studies were analysed in further detail due to their relevance to DT and DR. They were 179 

grouped based on their main methodology into three groups, ones on presenting a new 180 

framework, ones on case study application, and ones on developing enabling technology for DT 181 

integration. Tables 3 and Table 4 provided an overview of the literature that focused on 182 

framework development. 13 studies were chosen as they provided an innovative framework 183 

involving the topic.  184 

 185 

In Table 3, most of the studies analysed targeted the data/model integration layer of the DT. 186 

From the system architecture defined by Lu et al. (2020), the data/ model integration layer is the 187 

layer that focuses on data analysis, processing, and visualisation. In the context of DR, this 188 

layer conducts load forecasting and synthesises decision-making schemes for DR. The only two 189 

exceptions are Pasini (2018) and Amato et al. (2021), where Pasini (2018) worked on the 190 

transmission layer and digital modelling layer by focusing on building the DT model with existing 191 

BIM and connecting the DT with IoT. While the work done by Amato et al. (2021) emphasised 192 

on the digital modelling layer by integrating a Multi-Agent-System (MAS) in the DT model.  193 

 194 

All the literature has proposed a framework with a DT maturity level of over level 4, with the 195 

exception of Abdelrahman and Miller (2022), which is level 3. Level 4 indicated that most 196 
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studies have proposed a DT with bi-directional communication and interaction. Not only is the 197 

DT system enriched with real-time data, but the physical system can also be controlled via its 198 

digital counterpart. At maturity of level 5, the framework proposed by Chandra et al. (2020) with 199 

the use of energy nodes, a programmable representation of the electrical resources and 200 

interactions, was able to act DR decisions based on the electrical price and the building 201 

manager’s preference and achieve cost savings of up to 62%. Amato (et al., 2021) also 202 

proposed a DT framework with level 5 maturity, where the MAS will execute control to minimise 203 

power consumption while maintaining occupant comfort. The studies analysed here are tested 204 

via simulation (Behl and Mangharam, 2016) (Bu and Yu, 2013) (Amato et al., 2021) (Song et al., 205 

2022), small-scale controlled implementation (Abdelrahman and Miller, 2022) (Chou and 206 

Truong, 2019) or testbeds (Chandra et al., 2020) (Chen et al., 2021). Although all show positive 207 

results, they lack further testing of the proposed framework on larger-scale case studies. This is 208 

likely due to the complexity of conducting an elaborated case study and the constraints on 209 

resource availability.  210 

 211 

Table 3 Overview of articles that targeted providing a new DT framework 212 

Reference Objective Role of DT Data Source 
Behl and 
Manghara
m (2016) 

To provide a DR recommender system 
using the regression tree algorithm for 
the building’s facilities manager that 
allows for closed-loop DR strategy 

synthesis and load forecasting. 

Allows for real-time 
control synthesising 

Historical 
weather and 
power data 

Bu and Yu 
(2013) 

Provide a decision-making scheme for 
optimal energy pricing using a four-

stage Stackelberg game involving both 
retailer and customer for DSM. 

Providing real-time 
bidirectional 

communications 
between retailers 
and customers 

Advanced 
metering 

infrastructure 

Chandra et 
al. (2020) 

Creating a transactive energy-based 
energy management system with 

energy nodes for a scalable control 
strategy for DR 

Allows for 
coordination of 

controls 

Testbed with 
emulators 

Amato et 
al. (2021) 

DSM system for minimising power 
consumption and maximising human 

comfort using Multi-Agent System 
(MAS) 

To be used as an 
autonomous network 

Sensors 

Abdelrahm
an and 
Miller 
(2022) 

Using spatial proximity through 
applying BIM, GNN and wearable 
technology to identify occupants’ 

thermal preferences. 

Real-time 
visualisation 

BIM, Smart 
watch 



10 
 

Chen et al. 
(2021) 

Non-intrusively identify electrical 
appliances using fog-cloud computing 
and provide bi-directional information 
exchange interface between energy 

demand and supply sides. 

Allows user 
intervention via a 
clean interface 

Smart meter, 
IoT 

Chou and 
Truong 
(2019) 

Developing a web-based energy 
management system that allows load 
monitoring, forecasting, and automatic 

warnings for end users via a web 
interface and email. 

Provide real-time 
information 

Smart meters 

Pasini 
(2018) 

Provide real-time building insight 
through apps and websites to user to 

improve their awareness. 

Connect information 
of different systems, 

allows user 
interaction 

BIM, IoT 

Song et al. 
(2022) 

To provide a DT-based data-model 
fusion dispatch strategy for building 
energy flexibility that is capable of 

parameter fault tolerance and privacy 
protection by integrating data-driven 
methods with model-driven methods. 

Simulation and 
testing, real-time 
update, privacy 

protection. 

Meteonorm, 
TRNSYS 

 213 

Table 4 also listed the literature that focused on proposing a new framework. However, the main 214 

focus of the literature was on proposing new demand response algorithms, DT was used as a 215 

medium for simulation to test out different algorithms for optimising DR schedule. Li and Xu 216 

(2024) applied Improved Whale Optimisation Algorithm (IWOA) and Long-Short Term Memory 217 

(LSTM) to simulate the DT of 10 different case studies. Zhou et al. (2023) applied Q-value 218 

enabled reinforcement learning on the DT of 5 case studies. Dellaly et al. (2023) specified the 219 

platform used for the DT simulation, a commercial microgrid platform SMARTNESS. They 220 

stated that the platform would provide a reliable framework to validate the proposed algorithms 221 

and allow for comparisons between simulated and experimental results. All other studies, 222 

although did not provide extensive detail on the DT simulation, they recognised that adopting 223 

DT for simulation allows for accurate real-time data collection and analysis, scenario testing, 224 

and energy simulations, which is highly beneficial in the application of DR. It is also worth noting 225 

that all literature analysed here were published more recently, between 2023 to 2024. 226 

 227 

Table 4 Overview of articles that applied DT for simulation. 228 

References Objectives Roles of DT Data source 
Li and Xu 

(2024) 
To optimise the scheduling of 
household devices using the 
Improved Whale Optimisation 

Simulation and 
testing of different 

DR algorithm 

Historic data 
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Algorithm (IWOA) and Long-Short 
Term Memory (LSTM) model. 

Zhou et al. 
(2023) 

Applying Q-value enabled 
reinforcement learning method to 

optimise home appliance scheduling 
based on user preferences. 

Simulation and 
testing 

Historic data 

Zhao and 
Zhang (2024) 

Applying the Multi-Microgrid (MMG) 
architecture in renewable energy 

resources (RERs), with the 
integration of Covariance Matrix 

Adaptation algorithm and LSTM for 
precise forecasting and management 

of energy sources and storages. 

Simulation and 
testing, real-time 
decision-making, 

personalised insight 
and interface 

Historic data 

Dellaly et al. 
(2023) 

To develop an optimised energy 
management system that manages 

the injection of energy from 
photovoltaic (PV) systems into the 

distribution grid.  

Simulation and 
testing 

SMARTNESS 
platform 

 229 

 230 

4.2 Case studies of DT in DR 231 

Table 5 lists the literature overview that focuses more on the case study applications. Overall, 232 

fewer studies applied case studies, as the application is usually considered the next step in the 233 

research after developing the framework. Moreover, it is often resource-intensive to complete. 234 

The main trend for the application of DT in this domain is its application in the energy 235 

management system. Rochd et al. (2021) applied a home energy managing system (HEMS) in 236 

a case study in Morocco, where a level 4 DT was applied in conjunction with AI for multi-237 

objective optimisation. The main role of the level 4 DT was to allow real-time bidirectional 238 

information exchange between systems and to provide a user interface for better control. 239 

Agostinelli et al. (2021) applied a level 5 DT in their energy management system of a residential 240 

district in Rome, Italy. Compared to the study done by Rochd et al. (2021), the level 5 DT by 241 

Agostinelli et al. allows automatic control by the digital model based on the optimised energy 242 

schedule produced by the model using ML methods. Furthermore, the level 5 DT was enriched 243 

with BIM and GIS data for near real-time building simulation, which enables a more detailed 244 

investigation towards the buildings’ behaviours. The live app developed by Banfi et al. (2022) 245 

allowed users to visualise real-time building performance. However, the user could not control 246 

the system via the app; hence, the DT applied in Banfi et al.’s study is only at the maturity of 247 

level 3.  248 
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 249 

Agostinelli et al. (2021) highlighted that applying DT-based real-time monitoring can bridge the 250 

gap between the projected energy performance of the buildings and the actual building 251 

performance. By combining historical and live data, and coupling it with AI algorithms, the DT 252 

system can produce a more accurate consumption projection and provide a more tailored 253 

application and response for DR. The typical limitations identified by the analysed literature are 254 

the cost and complexity of implementing the system. As an elaborated DT is often associated 255 

with highly complex models and large sets of data; moreover, implementing a large number of 256 

sensors and their maintenance is costly. Agostinelli et al. (2021) also noted the difficulties in 257 

identifying the individual energy source due to the large number of sensors applied.  258 

 259 

Table 5 Overview of articles that focused on DT applications in DR 260 

Reference Objective Role of DT Data 
source 

Limitations 

Agostinelli 
et al. 

(2021) 

Using DT and ML for energy 
management optimisation and 

automation of a residential 
district in Rome to reach zero 
energy building requirements. 

Investigate 
building 

behaviours 

BIM, 
BEM, 
GIS, 
IoT, 

Sensors 

Complex to 
identify 

individual 
energy 

source, i.e 
appliances 

Banfi et al. 
(2022) 

Applying a scan to BIM to BEM 
method for energy-efficient 

building envelope retrofit and 
developing a live app for 

monitoring the DT. 

Real-time 
visualisation and 

life cycle 
management 

BIM, 
IoT, 

Sensors 

Cost of 
sensor 

maintenance 

Abrol et al. 
(2018) 

Developing a data-enabled 
energy-saving model to align the 
occupant's thermal preference 

with the apartment's unregulated 
temperature. 

Real-time 
monitoring of 

thermal 
preference 

Sensors Work 
depended 
highly on 

assumptions 

Rochd et 
al. (2021) 

Proposing a HEMS with AI-
based multi-objective 

optimisation methods for 
demand side and supply side 

management in a case study in 
Morocco 

Real-time two-
way information 
communications

, provide 
human-machine 

interface 

IoT Implementati
on cost, 
complex 
model 

 261 

4.3 Tools development for DT in DR 262 

In addition, several tools have been developed that allow for better application of DT in DR. As 263 

summarised in Table 6, the tools developed by Chen and Yan (2018) and Chen et al. (2019) 264 
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focused on allowing the information transfer from sensors and IoT to be more efficient using 265 

machine learning methods. HyTube, the tool developed by Chen and Yan (2018) is a 266 

middleware layer between the data and management layer and the physical devices. It provides 267 

added data security and coordinates the otherwise heterogenous appliances, which were two of 268 

the main limitations in the application of DT as identified by Chen and Yan (2018). The smart 269 

power meter created by Chen et al. (2019) also overcomes the limitation of coordination 270 

between heterogenous devices by identifying them non-intrusively using the Artificial Neural 271 

Network. The DR-Adviser developed by Behl and Mangharam (2016) is a recommender system 272 

that uses the regression trees algorithm for DR strategy synthesis for building facility managers. 273 

 274 

Table 6 Tools developed for DT implementation in DR 275 

Reference Tool 
developed 

Function 

Chen and Yan 
(2018) 

HyTube Provide a middleware layer to unify logic and control of 
heterogenous physical devices in building energy 

system. 

Behl and 
Mangharam 

(2016) 

DR-Adviser Conduct load forecasting and automatically synthesise 
DR strategies  

Chen et al. (2019) Smart power 
meter 

Based on the Arduino micro-controller unit, the smart 
meter can non-intrusively identify electrical appliances. 

 276 

5. Discussion 277 

This section will explore further the findings presented in the previous sections, providing a 278 

detailed analysis of the current applications, identifying existing challenges, and proposing 279 

directions for future research.  280 

 281 

Recently, there has been a drastic increase in the number of studies utilising DT and similar 282 

concepts in the application of DR. DT proven to be beneficial in the application of DR, as DR is 283 

highly time-sensitive, for adopting shedding and shifting events, simpler approaches might not 284 

provide ideal performance. Moreover, DR is often associated with adopting renewable 285 

generation, which requires more advanced forecasting models and decision support tools to 286 

implement short-term control strategies (Zhao and Zhang, 2024).  287 

 288 
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Although the definition of DT varies, this review mainly utilised the maturity level defined by 289 

Evans et al., (2019), where six different levels (from 0 to 5) are used to describe the level of 290 

integration between the physical and digital systems. The use of a quantitative description 291 

allows for a better comparison between the DT of different studies. The above analysis also 292 

shows the potential of future studies to be conducted on utilising or upgrading the DT to a 293 

maturity level of 4 or over, as most of the current studies only applied a DT framework with a 294 

maturity level of 3. The high complexity of DT with maturity over level 4 is one of the main 295 

obstacles slowing the pace of progressing the DT model further, a possible research direction is 296 

to develop tools or methods that will assist the integration of DT. For example, adopting 297 

methods to increase the scalability and portability of frameworks across buildings to allow for 298 

more seamless application. In addition, most work in this area is still exploratory, focusing on 299 

framework development and has yet to be experimented on in more comprehensive 300 

experiments or case studies. Further testing would be beneficial for identifying the advantages 301 

and disadvantages of employing DT for DR on a larger scale, taking into account user 302 

behaviour and willingness, as well as how the users engage with such technologies. 303 

 304 

Addressing the research questions set forth at the beginning of this study, DT primarily serves 305 

as an enabling tool for DR due to its capacity for real-time information exchange and clear 306 

visualisation. For instance, in a home energy management system (Rochd et al., 2021), DT 307 

could act as the system controller, providing human-machine interface, and clear visualisation, 308 

allowing the implementation of DR to be more user-friendly for stakeholders with limited 309 

knowledge such as the consumers. However, including a more elaborated DT model in a DR 310 

system increased the complexity of the modelling process compared to a more traditional DR 311 

system (Agostinelli et al., 2021). Moreover, the implementation cost, namely the maintenance of 312 

the sensor network that is required for a DT, could be substantial (Rochd et al., 2021).  313 

 314 

As seen in the recent increase in the number of studies that used DT as a medium for 315 

simulation to test out different DR scenarios and algorithms, it is evident that simulation 316 

conducted on a DT can provide valuable and accurate insight in terms of DR. DT with the 317 

characteristic of being real-time and accurate, could allow for accurate simulation, and enable 318 
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validation between simulated and experimental data (Dellaly et al., 2023). However, most of the 319 

analysed literature, although recognising the significance of using DT for simulation, they only 320 

provided simulation data and minimal detail on the DT model itself. Future studies could benefit 321 

from providing more detailed information on the DT model applied, enhancing the transparency 322 

and reproducibility of their applications. 323 

 324 

6. Conclusions 325 

This review explored the state-of-the-art research conducted on DT in the context of DR. To be 326 

applied in DR, the DT used should be more than just a digital model and have a maturity of over 327 

level 3, which will enable bidirectional information exchange. A total of 34 articles were analysed 328 

and presented in this paper. 47% of the analysed studies utilised a DT with a maturity of level 3, 329 

where real-time data was integrated into the model but did not allow for bidirectional information 330 

flow. 20 of the 34 articles were analysed further and grouped based on their methodology. The 331 

primary trend in the use of DT in the domain of DR is to conduct monitoring and simulation, 332 

such as energy load forecasting, and to provide decision-making aid, such as producing DR 333 

strategies. Applying DT allows for a much clearer visualisation of the model, thus providing a 334 

human-machine interface and improving the user experience of the system. Another recent 335 

trend is to use the DT of different buildings to conduct simulation and testing of DR algorithms. 336 

This gained popularity as it leverages the characteristics of DT to accurately represent the 337 

physical asset, hence allowing accurate testing. 338 

 339 

Overall, the dramatic increase in the number of studies recently shows significant potential for 340 

further research in this domain. It is important to explore areas that could further enhance DT’s 341 

functionality and integration. Such as the incorporation of knowledge graphs and portable 342 

analytics to improve the connectivity and scalability of DT systems. Future work could benefit 343 

from focusing on the examination of these developments. The main takeaway from this paper is 344 

the clear visualisation and real-time data exchange facilitated by DT significantly enhances the 345 

implementation of DR. Furthermore, future research should aim to bridge the gap between 346 

theoretical frameworks and their practical application, emphasising on conducting experiments 347 
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and applying case studies to validate the advantages and address the challenges of employing 348 

DT in larger-scale DR implementations. 349 

 350 
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