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Abstract 38 
Assessing illness severity in the ICU is crucial for early prediction of deterioration and prognosis. 39 
Traditional prognostic scores often treat organ systems separately, overlooking the body's 40 
interconnected nature. Network physiology offers a new approach to understanding these complex 41 
interactions. This study used the concept of transfer entropy (TE) to measure information flow 42 
between heart rate (HR), respiratory rate (RR), and capillary oxygen saturation (SpO2) in critically ill 43 
sepsis patients, hypothesizing that TE between these signals would correlate with disease outcome. 44 
The retrospective cohort study utilized the MIMIC III Clinical Database, including patients who met 45 
Sepsis-3 criteria on admission and had 30 minutes of continuous HR, RR, and SpO2 data. TE between 46 
the signals was calculated to create physiological network maps. Cox regression assessed the 47 
relationship between cardiorespiratory network indices and both deterioration (SOFA score increase 48 
of ≥2 points at 48 hours) and 30-day mortality. Among 164 patients, higher information flow from 49 
SpO2 to HR [TE(SpO2→HR)] and reciprocal flow between HR and RR [TE(RR→HR) and TE(HR→RR)] were 50 
linked to reduced mortality, independent of age, mechanical ventilation, SOFA score, and 51 
comorbidity. Reductions in TE(HR → RR), TE(RR→HR), TE(SpO2→RR), and TE(SpO2→HR) were associated 52 
with increased risk of 48-hour deterioration. After adjustment for potential confounders, only TE(HR→53 
RR) and TE(RR→HR) remained statistically significant. The study confirmed that physiological network 54 
mapping using routine signals in sepsis patients could indicate illness severity and that higher TE 55 
values were generally associated with improved outcomes. 56 
 57 
New & Noteworthy: This study adopts an integrative approach through physiological network analysis 58 
to investigate sepsis, with the goal of identifying differences in information transfer between 59 
physiological signals in sepsis survivors versus non-survivors. We found that greater information flow 60 
between heart rate, respiratory rate, and capillary oxygen saturation was associated with reduced 61 
mortality, independent of age, disease severity, and comorbidities. Additionally, reduced information 62 
transfer was linked to an increased risk of 48-hour deterioration in patients with sepsis. 63 
 64 
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Introduction 68 
 69 
Sepsis is a complex disease that causes life-threatening organ dysfunction due to a dysregulated host 70 
response to infection (1). It is one of the most frequent causes of death worldwide, requiring patients 71 
to be admitted to intensive care units (ICU) for intensive physiological and clinical monitoring (2). The 72 
complexity of its pathophysiology and the heterogeneity of its manifestations make sepsis challenging 73 
to detect, monitor, and treat. Quantifying illness severity is a crucial aspect of any ICU admission, as it 74 
allows for timely interventions to improve outcomes, aids in decision-making, and helps allocate 75 
scarce resources (3). However, despite the existence of severity scores for almost 40 years, 76 
predictions remain imperfect, and they are primarily used for hospital-level case-mix adjustment. 77 
Novel digital biomarkers for measuring illness severity may therefore be useful to ICU staff. 78 
 79 
The commonest approaches to date have assigned increasing numerical values for progressive 80 
dysfunction in each organ system in order to assess their overall association with mortality using 81 
regression. Well-known examples include the Sequential Organ Failure Assessment (SOFA) (4), the 82 
Simplified Acute Physiology Score II (SAPS II) (3), the Acute Physiology and Chronic Health Evaluation II 83 
(APACHE II) score (5), and the UK’s Intensive Care National Audit and Research Centre (ICNARC) 84 
model (6). However, these scores are usually only calculated at the time of critical care admission, or 85 
at most on a daily basis, and they often rely on summary measures such as the worst recorded value. 86 
Recent machine learning approaches using more granular data have managed to improve short-term 87 
prognostication for specific outcomes (7-11), but by treating organs as independent parts to be 88 
combined, even these techniques may be ignoring useful information. 89 
 90 
Network physiology is a new way of viewing the problem, focussing not on individual organs, but on 91 
the degree of interaction between them (12). Various measurable aspects of physiology, such as heart 92 
rate or respiratory rate, can be conceptualised as “nodes”, with an overall network created by 93 
functional connections or “edges” between each node pair if they interact. Strong networks are those 94 
which have multiple edges between multiple nodes, or high quantitative values for their connections, 95 
as measured by a variety of techniques including simple correlation (13-15) and information transfer 96 
(16-18). The relevance to illness prediction is that a strong, well-connected network, despite 97 
significant individual organ system stress, may represent physiological resilience and predict survival 98 
or response to therapy (13,19).  99 

According to information theory, the amount of information in a physiological time series (e.g., heart 100 
rate or capillary oxygen saturation fluctuations) can be measured by computing the degree of 101 
complexity (i.e., entropy) of the signal (20,21). This idea can be extended to quantify the amount of 102 
information exchanged between two physiological signals (18,22,23). Transfer entropy (TE) is one 103 
measure of information transfer between parallel time-series. It is a non-parametric, non-linear 104 
extension of the concept of entropy (16) that can detect the magnitude and direction of information 105 
flow between physiological time series data. TE increases when future values of one time series can 106 
be better predicted with knowledge of preceding values from a different time series – suggesting the 107 
former is influenced by the latter (Figure 1). One advantage of TE is that it can measure the 108 
bidirectional exchange of information between two nodes. For example, it allows us to separately 109 
assess how changes in respiratory rate influence capillary oxygen saturation and how changes in 110 
oxygen saturation affect respiratory rate. This allows for the assessment of directed interactions 111 
between different physiological time series for network mapping based on available physiological 112 
signals. For example, using TE, the strength of the cardiorespiratory network could be assessed in 113 
experimental hypoxia in healthy participants (18). Assessment of the strength of the cardiorespiratory 114 
network in critical illnesses is important in critical care as it may shed light on the pathophysiology of 115 
compensatory mechanisms and help predict deterioration or poor outcomes. This is particularly 116 
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important in complex disorders such as sepsis which is associated with multiorgan failure and high 117 
mortality (2,24). 118 

This study therefore aimed to understand whether cardiorespiratory transfer entropy, measured from 119 
bedside monitor data of patients with sepsis in the MIMIC-III database, could be used to assess their 120 
physiological network strength and its relationship with 48-hour deterioration and mortality.  121 
 122 
Materials and methods 123 
This was a retrospective cohort study using the Waveform Database Matched Subset of the Medical 124 
Information Mart for Intensive Care III (MIMIC-III) Clinical Database (25,26), reported in accordance 125 
with the RECORD guidelines (27).  126 
 127 
Ethics statement: The MIMIC-III was anonymized following HIPAA standards and the project received 128 
approval from the Institutional Review Boards of Beth Israel Deaconess Medical Center and MIT (IRB 129 
protocol nos. 2001P001699/14 and 0403000206, respectively) (25). The authors who handled the 130 
data underwent required ethics training at MIT and were credentialed (ID 10304625).  131 
 132 
Participants and data extraction: Details of patient enrolment flow diagram and data extraction is 133 
described elsewhere (28). In brief, inclusion was limited to patients over 18 years of age, with a single 134 
ICU stay who met the Sepsis-3 criteria on admission (an increase in SOFA score of >= 2 points and 135 
suspicion of infection (1)). Initially, the complete MIMIC-III clinical dataset was downloaded to a 136 
secured cloud storage of the University College London (UCL) and structure query language (SQL) 137 
code was used to extract the required data based on the inclusion criteria. Patients’ identity codes 138 
from SQL data were used to extract the numeric physiological data using the WFDB toolbox 139 
(https://archive.physionet.org/physiotools/matlab/wfdb-app-matlab/). Specifically, the earliest 140 
numeric time-series within the first ICU admission were downloaded for each patient using the 141 
“rdsamp” function. The extracted data were then curated and aligned with header files containing the 142 
signal information, sampling frequency, and signal class (variable names) using the “wfdbdesc” 143 
function. To ensure adequate data for stable estimation of TE, patients were included only if their 144 
waveform records contained at least 30 minutes of continuous, noise-free signals sampled at a rate of 145 
1 Hz (29). The first 30-minute segment of noise-free waveform data was used for analysis. Noise-free 146 
data were defined as having a valid time-stamped value for every second in the waveform database. 147 
Consequently, the included time series had no missing data, and no imputation was required. 79 148 
records met these criteria when considering three waveforms - heart rate (HR), respiratory rate (RR) 149 
and capillary oxygen saturation (SpO2) – and formed the basis of the final cohort.  150 
Matched information was retrieved from the Clinical Database on patient age, sex, SOFA scores, 151 
Elixhauser comorbidity index, mechanical ventilation, and date of death. A 30-day survival data was 152 
missing in 15 patients; therefore, 164 patients were included in the final survival analysis 153 
 154 
Definition of deterioration: The SOFA score was extracted for the day when a patient's physiological 155 
signals record was available and again 48 hours later. Deterioration was defined as SOFA score >= 2 156 
points at 48 hours. Due to early discharge or death, 55% of 48-hour SOFA scores in this study required 157 
imputation. To handle missing for data for 48 hour SOFA scores calculation, the maximum score of 24 158 
was applied if the patient had already died (30), and a score of 1 applied if discharged alive from ICU.  159 
  160 
Calculation of transfer entropy (TE) 161 
An existing open-source algorithm (https://www.physionet.org/content/tewp/1.0.0/) was used to 162 
calculate TE (in bits) for parallel physiological time-series. This algorithm employs an extension of 163 
Darbellay-Vajda adaptive partitioning (22) to estimate a non-linear probability density function in a 164 
computationally efficient manner. It calculates the probability of event B of a time lag window length 165 
of tB occurring after the outcome of event A of a time lag of window length of tA was observed (Figure 166 
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1), where A and B are representations of the physiological parameters (e.g., HR, RR, and SpO2). The 167 
returned value of transfer entropy represents the amount of directional information transferred from 168 
a data segment of one physiological time series to the future data segment of another time series. In 169 
addition to probability density function estimation, TE magnitude also depends on the lag chosen 170 
between the source and target time series. As the optimal lag for each node pair was not known a 171 
priori, TE was measured for a range of time lag values that set equally for both tA and tB, at 1, 5, 10, 172 
15, 20 and 25 seconds (Figure 1). This approach was conducted to ascertain the consistency of the 173 
results and establish an optimal time lag for future transfer entropy computations.  Based on these 174 
results, a time lag value of 5 seconds was chosen to calculate the TE estimate for each edge for all 175 
patients. 176 
 177 
Network visualization 178 
Network maps were constructed for qualitative assessment by conceptualising each physiological 179 
signal as a node, with edges drawn between nodes showing the strength of any directional 180 
information flow. TE edge strength was displayed as the average group value. Comparison of directed 181 
transfer entropy values between physiological time-series were conducted at a time lag of 5 seconds, 182 
with each mean transfer entropy calculation being compiled to form an adjacency matrix. This matrix 183 
was then used to plot a bidirectional network graph in MATLAB. 184 
 185 
Network indices 186 
In the context of network science, “Centrality” measures the importance of a node within a network, 187 
particularly in relation to the flow of information. Indegree (ID) and outdegree (OD) measure the 188 
centrality of a node by calculating the information that each node receives (ID) or sends out (OD). 189 
Indegree and outdegree centralities of SpO2, HR, and RR were calculated for each patient using 190 
respective transfer entropy adjacency matrices using MATLAB.  191 
 192 
Statistical analysis 193 
Data are shown as mean ± SD unless stated otherwise. The mean differences in network edges and 194 
node centralities between the groups (survivors vs non-survivors and deterioration vs no 195 
deterioration) were calculated using the Student’s t-test or its non-parametric equivalent (Mann-196 
Whitney U-test). 197 
Cox regression was used for estimation of hazard ratios with 95% confidence intervals.  Multivariate 198 
Cox regression was performed with covariates of SOFA, mechanical ventilation, Elixhauser 199 
comorbidity score, and age. ROC curve analysis was used to find optimum cut-off point (Youden’s 200 
index) with optimum sensitivity and specificity in prediction of 30-day mortality in the intensive care 201 
unit and of deterioration. To visualise patient survival, the Kaplan Meier curves were applied and 202 
analysed using a log rank (Mantel-Cox) method. P-value less than 0.05 was used for statistical 203 
significance. Two-way ANOVA was used for assessment of the effect of time lag on TEs. We also 204 
wondered if shorter time-series (namely, 20, 10, 5, 2 and 1-min) can estimate TE calculated from 30-205 
min time-series and predicts poor outcomes (mortality, deterioration) within this patient population. 206 
Thus, Bland-Altman plots were used to identify bias in TE of time series of 20, 10, 5, 2, and 1 minutes 207 
(starting from the beginning of recording) compared to the 30-min transfer entropy values. This 208 
method is based on the quantification of the agreement between two quantitative measurements 209 
(short time-series, A versus 30-min, B) by studying the relationship between 𝐴 − 𝐵 and (𝐴 + 𝐵)/2 210 
(Bland and Altman, 1999). The linear regression analysis was used to test for statistical significance of 211 
the bias for the intercept and slope in the Bland-Altman plots. 212 
 213 
Results 214 
Descriptive characteristics of the participants are shown in Table 1. Overall, 130 patients survived 215 
after a 30-day follow-up period. The non-survivors (n = 34) were older (65 ± 18 vs.75 ± 12, P=0.003) 216 
and had higher SOFA scores (4.1 ± 2.3 vs. 6.8 ± 4.1, P<0.001). The comorbidity index (Elixhauser) was 217 
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higher in non-survivors (P=0.027). Changes in SpO2 mean and pattern of fluctuations in this cohort has 218 
been reported elsewhere (28). In brief, the average SpO2 was marginally higher in the survivors 219 
compared to the non-survivors (97.4 ± 2.2 vs. 96.0 ± 6.3, P = 0.033). Mean HR was lower in survivors 220 
compared to the non-survivors (83.5 ± 18.3 vs. 94.0 ± 23.8 beats/min, P = 0.0063). There was no 221 
statistical difference in RR between survivors and non-survivors (19.7 ± 4.8 vs. 21.2 ± 6.0 breath/min, 222 
P=0.117). There was no difference in distribution of gender or ethnicity between survivors and non-223 
survivors. 224 
 225 
Association of transfer entropy and network indices with 30-day mortality 226 
The TE values are subsequently denoted as follows: 227 
 228 
From heart rate to respiratory rate:   TE (HR → RR) 229 
From heart rate to oxygen saturation:   TE (HR → SpO2) 230 
From respiratory rate to heart rate:    TE (RR → HR) 231 
From respiratory rate to oxygen saturation:  TE (RR → SpO2) 232 
From oxygen saturation to heart rate:   TE (SpO2 → HR) 233 
From oxygen saturation to respiratory rate:  TE (SpO2 → RR) 234 
 235 
 236 
As shown in Table 2, the highest average value of TE was during the transfer of information from SpO2 237 
to RR. The lowest TE between physiological signals was during the transfer of information from HR to 238 
SpO2. TE values in most directions were significantly higher in survivors compared to non-survivors 239 
after 30 days of follow-up (Table 2). 240 
  241 
Network indices: To assess the importance of each node within the network, centrality indices 242 
(indegree and outdegree) were measured and compared between the groups. The results indicate 243 
that within the HR-RR-SpO2 network, the RR node receives the highest amount of information from 244 
other nodes (highest indegree), and the SpO2 node sends the highest amount of information to other 245 
nodes (highest outdegree). Table 3 shows details of the network indices between groups. There is a 246 
significant difference between survivors and non-survivors in indegree or outdegree indicating that all 247 
nodes have higher information flow in survivors compared with non-survivors. 248 
 249 
Survival analysis: Cox regression analysis was conducted to evaluate the risk of 30-day mortality 250 
associated with TE and network indices (Table 4). Reduction in TE or centrality of individual nodes 251 
were associated with increased chance of mortality in this cohort of patients with sepsis. Since non-252 
survivors were older and had higher SOFA scores and comorbidities, we considered whether these 253 
characteristics might confound the association between TE and mortality. Additionally, factors such as 254 
mechanical ventilation and drugs such as the use of beta blockers could affect transfer of information 255 
between physiological signals and potentially influence these findings. To address these concerns, we 256 
conducted a multivariate Cox regression analysis to evaluate the dependence of individual network 257 
indices on factors such as age, SOFA score, Elixhauser comorbidity index, mechanical ventilation, and 258 
beta blocker (propranolol, metoprolol, or esmolol) use. The results indicated that among network 259 
indices, TE (SpO2 → HR), TE (HR → RR), TE (RR → HR), Indegree of HR, all outdegrees (HR, RR and SpO2) 260 
as well as the sum of TEs were independent predictors of 30-day mortality (Supplementary material 261 
1). Lower TE values in the group that went on to die, suggests reduced connectivity and weakened 262 
cardiorespiratory network in non-survivor. Graphical visualization of these network edges is shown in 263 
Figure 2.  264 
 265 
The results of the multivariate Cox regression analysis indicated that higher age, higher SOFA scores, 266 
and mechanical ventilation were independent predictors of mortality (Supplementary material 1). As 267 
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expected, mechanical ventilation altered the transfer of information between physiological signals, 268 
leading to reduced TE (SpO2 → RR), TE (HR → SpO2), TE (HR → RR) and TE (RR → SpO2) values compared 269 
to spontaneously breathing patients (Supplementary material 2A). To further investigate the influence 270 
of mechanical ventilation on TEs and network indices within our cohort, we compared TEs and 271 
network indices between survivors and non-survivors after excluding patients who received 272 
mechanical ventilation. The results again demonstrated that TE (SpO2 → HR), TE (HR → RR), TE (RR → 273 
HR), the indegree of HR and RR, and all outdegrees (HR, RR, and SpO2) were significantly lower in non-274 
survivors compared to survivors among patients with spontaneous breathing (Supplementary 275 
material 2B). These findings are consistent with the results of the multivariate Cox regression analysis, 276 
which demonstrated the independence of TE (SpO2 → HR), TE (HR → RR) and TE (RR → HR) from 277 
mechanical ventilation in predicting mortality within this cohort. 278 
 279 
The effect of time lag on transfer entropy: To ensure that an optimized time lag value is used for TE 280 
calculation, TE was measured for a range of time lag values at 1, 5, 10, 15, 20 and 25 second. Survivor 281 
group consistently had higher transfer entropy values at all time lags (Figure 3). It is noteworthy that 282 
when the calculation was set between a time lag of 5 and 25, the resulting transfer entropy values fell 283 
within a comparable range, as opposed to when a time lag of 1 was utilized. This substantiates the 284 
use of time lag 5 seconds in transfer entropy calculation. TE (SpO2 → HR), TE (HR → RR) and TE (RR → 285 
HR) were chosen for this analysis as they demonstrated a significant predictive power in multivariate 286 
Cox regression analysis for mortality. 287 
 288 
Association of transfer entropy and network indices with 48-hours deterioration 289 
31 (18.9%) patients had an increase in SOFA score >= 2 points at 48 hours. TE values and network 290 
indices of this group were compared with the rest of the patients who didn’t show 48-hour 291 
deterioration. As shown in Table 5, TE (SpO2 → HR), TE (HR → RR) and TE (RR → HR) were significantly 292 
lower in the group that exhibited deterioration. Likewise, the centrality measures of all nodes, except 293 
for indegree SpO2, were significantly lower in the deteriorating group (Table 6). 294 
 295 
Survival analysis: Cox regression analysis showed that reduction in most TE or network indices of 296 
individual nodes were associated with increased chance of 48-hour deterioration in this cohort of 297 
patients with sepsis (Table 7). However, after controlling for age, SOFA, Elixhauser comorbidity index 298 
and mechanical ventilation, only TE (HR → RR) and TE (RR → HR) remained statistically significant 299 
suggesting that these edges provide information on 48-hour deterioration independent of other 300 
clinical covariates. A summary of multivariate Cox regression analysis is shown in Supplementary 301 
material 3. Graphical visualization of these network edges is shown in Figure 4.  302 
 303 
Diagnostic performance of network indices for 30-day mortality 304 
ROC curve analysis was performed to evaluate diagnostic performance of TEs and network indices for 305 
mortality (Figure 5), where TE (HR → RR) and outdegree HR showed the highest accuracy for 306 
sensitivity and specificity than the other classifiers (AUC > 0.5, P<0.01 for all variables).  307 
 308 
Kaplan-Meier survival plots were constructed to compare survival between different directional TE 309 
groups and between outdegrees of TE, categorised based on the Youden index threshold of ROC for 310 
30-day mortality. Kaplan-Meier plots (Figure 6 and 7) showed separation of these groups’ survival 311 
curves based on the thresholds for TE (SpO2 → HR), TE (HR → RR), TE (RR → HR) and all outdegrees 312 
with statistical significance assessed using the log rank test (p < 0.001). Indegree of HR is also a 313 
significant predictor of mortality in the log rank test. Data not shown.   314 
 315 
 316 
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Discussion 317 
 318 

This study takes an integrative approach through network analysis to investigate sepsis and aims to 319 
identify differences in the information transfer and connectivity of organ systems between sepsis 320 
survivors and non-survivors. To optimize the mapping method's network analysis, we investigated the 321 
suitable range of time lag for transfer entropy calculation. Transfer entropy has rarely been applied in 322 
sepsis prognosis or organ deterioration assessment, even though HR, RR, and SpO2 signals are closely 323 
monitored in clinical settings, and transfer entropy calculation has a well-established algorithm. Using 324 
HR, RR, and SpO2 as clinical variables to represent the cardio-respiratory system, the study 325 
investigated the transfer entropy values of 164 sepsis patients in the ICU. 326 
 327 
Summary of results and interpretation 328 
This study demonstrated several important new findings: 329 
Firstly, the study found that the group means of all transfer entropy values were significantly higher in 330 
survivors than in non-survivors, indicating more active physiological systems and greater information 331 
transfer in patients with better prognoses. This supports the hypothesis that decreased homeostatic 332 
interorgan connectivity is associated with poor prognosis in critically ill sepsis patients, which is also 333 
consistent with previous studies on organ systemic dysfunction in critically ill patients (13) and 334 
patients with cirrhosis (14). In normal health, heart rate, cardiac output, blood pressure, respiratory 335 
rate, tidal volume and many other measurable aspects of cardiorespiratory physiology are intricately 336 
linked via positive and negative feedback systems. Exactly how mutual effects are mediated is still not 337 
perfectly understood (31), but increases in blood pressure stimulate arterial baroreceptors, leading to 338 
slowing of respiration (32), and changes in arterial oxygen saturation can similarly be precipitated by 339 
changes in the cardiovascular system, as these affect arterial oxygen tension via altered ventilation-340 
perfusion matching in the lung. The mechanism and benefits of respiratory sinus arrhythmia (changes 341 
in HR in each respiratory cycle) is well documented (33). The effect of RR on HR and blood pressure, 342 
via changes in intrathoracic pressure, is already used widely in anaesthesia and intensive care 343 
medicine to understand intravascular volume status (34). There is also a wealth of evidence showing 344 
that heart rate variability (HRV) is lower in patients with worse ICU outcomes (35), something which 345 
would be consistent with partial uncoupling of organ-systems and reduced TE in pairs that included 346 
heart rate. Likewise, reduced oxygen saturation entropy has recently been reported in non-surviving 347 
patients with sepsis (28) which is line with reduced transfer of information between nodes that 348 
included SpO2 in patients with poor prognosis. Reduced transfer of information between physiological 349 
signals may represent uncoupling of organ systems during a pathologic challenge (e.g. infection). 350 
While it is expected that compensatory mechanisms lead to enhanced coupling of physiological 351 
subsystems during physiologic challenges, in the group of patients who have uncoupled physiological 352 
networks, this may lead to deterioration and death (Figure 8). The reason behind the uncoupling of 353 
organ systems in life-threatening sepsis is not well understood. Experimental reports suggest end-354 
organ hypo-responsiveness to autonomic neural stimulation (36,37), decreased controllability of the 355 
cardiac pacemaker (38), and/or impaired neural processing within the brainstem autonomic 356 
regulatory centres (e.g., the Nucleus of the Solitary Tract) (39) during experimental sepsis. 357 
 358 
Secondly, the study demonstrated that directed transfer entropy from physiological time-series can 359 
predict mortality and 48-hour organ function deterioration in critically ill patients with sepsis, 360 
independent of SOFA score, comorbidity and ventilation status. These findings highlight the potential 361 
of transfer entropy in filling the gap in foreseeing the potential underlying dysfunctional connections 362 
between organ systems of complex diseases. Measurement of HR, RR, and SpO2 is easy both at the 363 
ICU bedside and during fieldwork (e.g., in poorly resourced or extreme environment settings using 364 
wearable devices). TE-based network measures can be added to ICU digital monitors or portable 365 
devices. The current survival prediction and analysis score in the ICU leaves room for foreseeing the 366 
potential underlying dysfunctional connections between organ systems in complex diseases. In this 367 

Downloaded from journals.physiology.org/journal/jappl at Univ of Hertfordshire (147.197.250.033) on December 19, 2024.



9 
 

case, TE and network indices can be continuously calculated and monitored as a digital value for 368 
tracking individuals who require more attention and for making important clinical decisions during 369 
patient care. The independence of TEs from SOFA in predicting deterioration and outcomes means 370 
that network indices have the potential to be used in conjunction with SOFA and other 371 
clinical/laboratory measures in patient care. The independence of TE-based network indices in 372 
predicting poor outcomes also provides insight into the pathophysiology of sepsis and emphasizes the 373 
importance of an integrated network approach in understanding the mechanisms of dysregulated 374 
host responses to infection. Organ system connectivity probably plays an important role in the 375 
regulated host physiological response to infection, a concept that is not typically assessed in most 376 
cellular/molecular studies, which are carried out using a reductionistic approach (40). 377 
 378 
Thirdly, the findings in Figure 3 optimized the transfer entropy calculation by demonstrating that TE 379 
(SpO2 → HR), TE (HR → RR) and TE (RR → HR) reaches a plateau at a time lag of approximately 5 380 
seconds and remains stable afterward. This finding is interesting and aligns with previous reports that 381 
attempted to estimate the memory length within the cardiorespiratory system (41,42). In the context 382 
of physiological time-series, memory is a statistical feature that persists for a period and distinguishes 383 
the time-series from a random, or memory-less, process (41). Shirazi et al. developed a method for 384 
quantifying memory in physiological time-series and reported that the memory length is estimated to 385 
be around 5 to 25 seconds in the cardiorespiratory system in both health and disease (41). This means 386 
any intrinsic perturbation within the physiological system would affect the system for a limited time 387 
before the effect dissipates. This limited memory length makes the system more controllable, as 388 
prolonged memory can impair the adaptability of the physiological system (38,43). Furthermore, a 389 
time lag of 5 seconds also represents approximately two respiratory cycles, which aligns with the 390 
known physiological interaction between RR and HR within this time frame (e.g., respiratory sinus 391 
arrhythmia). 392 
  393 
In the analysis of mortality and deterioration prediction, we found that only two directed transfer 394 
entropy values showed a consistent pattern of significance for all statistical analyse were HR → RR and 395 
RR → HR. In the context of HR → RR and RR → HR, a study of directional coupling between the cardio-396 
respiratory system may explain the clinical significance of transfer entropy. In a recent study, 397 
Borovkova et al. revealed the presence of bidirectional couplings between cardiac and respiratory 398 
cycles across all age groups in healthy participants (44). Their findings showed that the coupling from 399 
respiration to the parasympathetic control of HR is stronger than the coupling in the opposite 400 
direction in health. They also suggested that the directed interaction between RR and HR may be 401 
disrupted in complex diseases such as sleep apnoea, leading to an increase in the directional coupling 402 
from the main heart rhythm to respiration (44). This interpretation may also apply to sepsis, where 403 
the information transfer is disrupted from RR to HR in patients with poor prognoses due to the loss of 404 
directional coupling. Our study indicates that both TE (HR → RR) and TE (RR → HR) are reduced in non-405 
surviving patients with sepsis compared to survivors. However, a full interpretation of these findings 406 
awaits further research involving physiological network mapping in health as well as transition from 407 
health to disease. We wondered if TE (RR → HR) shows any correlation with the degree of respiratory 408 
sinus arrhythmia and thus measured short-term HRV in this cohort using the Poincaré plot, where 409 
SD1 is commonly used as a measure of respiratory sinus arrhythmia (42,45). We observed that SD1 410 
exhibits a statistically significant correlation with TE (RR → HR) (data not shown). Further studies are 411 
required to elucidate the exact interpretation of TE (HR → RR) and its interaction with TE (RR → HR) in 412 
health and disease. 413 
 414 
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To shed light on the effect of mechanical ventilation on network indices, we compared the reciprocal 415 
interactions between RR, HR, and SpO₂ between mechanically ventilated and spontaneously 416 
breathing patients using the concept of TE. Our results showed that TE (SpO2 → RR), TE (HR → SpO2), 417 
TE (HR → RR) and TE (RR → SpO2) were significantly lower in mechanically ventilated patients 418 
compared to spontaneously breathing patients (Supplementary material 2A). This finding is expected, 419 
as mechanical ventilation minimises the spontaneous physiological feedback loops involved in 420 
respiratory pattern control. Our multivariate Cox regression analysis demonstrated that network 421 
indices predict survival independently of mechanical ventilation (Supplementary material 1). Similarly, 422 
in spontaneously breathing patients without mechanical ventilation, network indices were 423 
significantly higher in survivors in comparison with non-survivors (Supplementary material 2B). These 424 
findings suggest that mechanical ventilation has not introduced bias into our results. Interestingly, 425 
even in mechanically ventilated patients, RR and SpO2 time-series show subtle fluctuations, which 426 
might be linked to ventilator settings such the Assist-Control mode (where each breath can be either 427 
patient-initiated or controlled by the ventilator). Such variations in respiratory cycles in mechanically 428 
ventilated patients may activate physiological feedback loops within the patient control system, 429 
potentially resulting in information transfer that, while weaker, still exists in mechanically ventilated 430 
patients. Details on ventilator settings are not readily available in the MIMIC-III dataset, preventing 431 
their inclusion in our analysis. Future prospective studies could investigate these settings to gain a 432 
deeper understanding of their impact on cardio-respiratory information transfer in critically ill 433 
patients with sepsis. 434 
 435 
In this study, we focused on cardio-respiratory information transfer to explore physiological networks 436 
in patients with sepsis. The potential application of network physiology in critically ill patients has 437 
been suggested by other investigators (13,46) for prognostication as well as for evaluating weaning 438 
readiness from mechanical ventilation (47-49). The results of the present study are promising and 439 
may pave the way for extending the analysis and applying the reconstruction of causal networks in 440 
physiology and critical care using other non-linear methods (50-52) and machine learning approaches 441 
(53,54). 442 
 443 
Linear methods (e.g., correlation analysis) and non-linear methods have been extensively used to 444 
study the coupling of cardio-respiratory systems in sepsis (55,56). The advantage of non-linear 445 
methods, such as transfer entropy, is that they provide an interpretation of the complexity of 446 
physiological signal fluctuations in terms of the amount of information (in bits) exchanged between 447 
different physiological processes. However, other entropy-based measures can also be used to 448 
analyse the coupling of physiological time-series, such as cross-entropy and mutual information 449 
(57,58). Cross-entropy measures the synchronization between two parallel signals (59). While 450 
synchronization is often observed in the context of physiological rhythms, the exchange of 451 
information between two processes does not necessarily lead to synchronization. Thus, TE can 452 
estimate information transfer more accurately. Although mutual information does not share the same 453 
limitation as cross-entropy, it lacks directionality (60). In contrast, the exchange of information 454 
between physiological processes (e.g., heart rate and respiratory rate) is inherently directional. 455 
Therefore, the use of TE for assessing directed information transfer is justified in the present study. 456 
Future investigations, however, should aim to extend the analysis to identify the optimal analytical 457 
methodology that can be used and validated in prospective studies. 458 
 459 
Limitations 460 
There were important limitations to this study. The principal ones were the small cohort size and the 461 
use of only three physiological signals. These related issues were due to the relatively low proportion 462 
of patients in MIMIC-III with waveform data; the relatively demanding requirement of 30 minutes 463 
simultaneous signals with no missing data; and the a priori choice to limit inclusion to a Sepsis-3 464 
cohort to reduce the heterogeneity seen in ICU patients. This lack of appropriate data in MIMIC-III 465 
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may portend issues with TE measurement in the real world: as probes are removed for toileting or 466 
other transfers, it may be difficult to obtain unbroken waveform records of sufficient duration for 467 
stable estimation of TE and this may limit its potential as a monitor of health.  We wondered if shorter 468 
time-series can estimate TE calculated from 30-minute time-series and predict poor outcomes 469 
(mortality, deterioration) within this patient population. Therefore, we analysed 20-, 10-, 5-, and 1-470 
minute time-series for the calculation of TEs (see Supplementary material 4). Using Bland-Altman 471 
analysis, the results showed that different TEs are subject to varying degrees of bias when shorter 472 
time-series are used. The most robust TEs were TE (HR → RR) and TE (RR → HR), where 10- and 20-473 
minute time-series could estimate TEs calculated from 30-minute time-series (Supplementary 474 
material 4-B2 and B3). Survival analysis also indicated that TE (HR → RR) and TE (RR → HR) calculated 475 
from 20-minute time-series could predict mortality and 48-hour deterioration independently of age, 476 
SOFA, mechanical ventilation, and comorbidity (Supplementary material 4C). This finding is promising 477 
as it shows that shorter time-series can be used for network mapping, which facilitates clinical 478 
translation. 479 
 480 
It should also be noted that due to early discharge or death, 55% of 48-hour SOFA scores in this study 481 
required imputation. While we used a reasonable method imputation of 48-hour SOFA, our findings 482 
on prediction of deterioration may be subject to bias and a larger sample size in future studies could 483 
provide more solid evidence for the value to TE-based network mapping in prediction of deterioration 484 
in sepsis.  485 
 486 
This study has potential confounders, including the effects of medications (e.g., dexmedetomidine) 487 
and arrhythmias (e.g., atrial fibrillation), which may influence the dynamics of physiological signals. 488 
Data on the presence or absence of atrial fibrillation during the collection period were unavailable 489 
and, therefore, not included in this analysis. Future studies can investigate the impact of atrial 490 
fibrillation on TE and network indices. Further limitations were the impact of mechanical ventilation 491 
and of excessive supplemental oxygen on the measurement of TE. Both of these factors are partially 492 
under the control of the clinician, meaning that measured TE may not always directly reflect the 493 
patient’s own physiology. In this study, “mechanical ventilation” was defined as both patients 494 
undergoing positive pressure ventilation and those using spontaneous breathing modes. Those who 495 
were positive pressure ventilated, and in particular paralysed, may have had very low TE values, even 496 
if this ventilation was temporary for patients with relatively normal lung function (for example, 497 
postoperatively). Supra-normal oxygen saturation levels were also sometimes seen due to excessive 498 
supplemental oxygen, both in ventilated and non-ventilated patients. Accidental excessive oxygen 499 
administration is common in real world clinical practice (61), but it may have major effect on TE 500 
calculation, as it can result in ceiling oxygen saturation (100%) being recorded for every value in the 501 
waveform record. These patients then have low or zero TE edge estimates – as target values can be 502 
predicted using past information from the target alone. While our results showed that the prognostic 503 
value of TEs was independent of mechanical ventilation, future studies can investigate the effect of 504 
respiratory support on TEs further. 505 
 506 
The retrospective design of this study may introduce unaccounted bias. Hence, a prospective study is 507 
essential to evaluate both classical scoring systems and novel physio-markers for the early diagnosis 508 
of sepsis, enabling the development of a smart alarm for proactive clinical intervention. 509 
 510 
Conclusion 511 
This work has confirmed the potential of transfer entropy measurement as a novel digital biomarker 512 
in intensive care. Extension of the current methodology to larger datasets is needed to fully 513 
understand the interactions of individual TE edges and the impact of patient confounders and 514 
mechanical ventilation on its predictive ability. 515 
 516 

Downloaded from journals.physiology.org/journal/jappl at Univ of Hertfordshire (147.197.250.033) on December 19, 2024.



12 
 

SUPPLEMENTAL MATERIALS 517 
 518 
Supplemental material 1: https://doi.org/10.6084/m9.figshare.27881040 519 
Supplemental material 2: https://doi.org/10.6084/m9.figshare.27882240 520 
Supplemental material 3: https://doi.org/10.6084/m9.figshare.27883869 521 
Supplemental material 4: https://doi.org/10.6084/m9.figshare.27884325 522 
 523 
 524 
 525 
 526 
 527 
Acknowledgements: The authors are grateful to UCL Advanced Research Computing Centre (ARC) for 528 
collaboration and support.  529 
 530 
Conflict of interest: None 531 
 532 
Authors contribution:  533 
Conceived and designed research (MW, WL, ARM), analysed data (CM, MW, QL, EI, CT, P-YC, AC, TO, 534 
ARM), interpreted results of experiments (CM, MW, QL, WL, ARM), prepared figures (CM, MW, CT, 535 
QL, ARM), drafted manuscript (MW, QL, ARM), edited and revised manuscript (CM, EI, CT, P-YC, WL), 536 
approved final version of manuscript (All authors). 537 
 538 
References: 539 
 540 
1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard 541 
GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld 542 
GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and 543 
Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801-10. doi: 10.1001/jama.2016.0287. PMID: 544 
26903338; PMCID: PMC4968574. 545 
 546 
 2. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, 547 
Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson 548 
RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M. Global, 549 
regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of 550 
Disease Study. Lancet. 2020 Jan 18;395(10219):200-211. doi: 10.1016/S0140-6736(19)32989-7. 551 
PMID: 31954465; PMCID: PMC6970225. 552 
 553 
3. Zimmerman JE, Kramer AA. A history of outcome prediction in the ICU. Curr Opin Crit Care. 2014 554 
Oct;20(5):550-6. doi: 10.1097/MCC.0000000000000138. PMID: 25137400. 555 
 556 
4. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs 557 
LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. 558 
On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive 559 
Care Medicine. Intensive Care Med. 1996 Jul;22(7):707-10. doi: 10.1007/BF01709751. PMID: 560 
8844239. 561 
 562 
5. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification 563 
system. Crit Care Med. 1985 Oct;13(10):818-29. PMID: 3928249. 564 
 565 

Downloaded from journals.physiology.org/journal/jappl at Univ of Hertfordshire (147.197.250.033) on December 19, 2024.



13 
 

6. Harrison DA, Parry GJ, Carpenter JR, Short A, Rowan K. A new risk prediction model for critical care: 566 
the Intensive Care National Audit & Research Centre (ICNARC) model. Crit Care Med. 2007 567 
Apr;35(4):1091-8. doi: 10.1097/01.CCM.0000259468.24532.44. PMID: 17334248. 568 
 569 
7. Chen L, Ogundele O, Clermont G, Hravnak M, Pinsky MR, Dubrawski AW. Dynamic and Personalized 570 
Risk Forecast in Step-Down Units. Implications for Monitoring Paradigms. Ann Am Thorac Soc. 2017 571 
Mar;14(3):384-391. doi: 10.1513/AnnalsATS.201611-905OC. PMID: 28033032; PMCID: PMC5427723. 572 
 573 
8. Davies SJ, Vistisen ST, Jian Z, Hatib F, Scheeren TWL. Ability of an Arterial Waveform Analysis-574 
Derived Hypotension Prediction Index to Predict Future Hypotensive Events in Surgical Patients. 575 
Anesth Analg. 2020 Feb;130(2):352-359. doi: 10.1213/ANE.0000000000004121. Erratum in: Anesth 576 
Analg. 2023 Sep 1;137(3):e33. doi: 10.1213/ANE.0000000000006674. PMID: 30896602. 577 
 578 
9. Henriques TS, Costa MD, Mathur P, Mathur P, Davis RB, Mittleman MA, Khabbaz KR, Goldberger AL, 579 
Subramaniam B. Complexity of preoperative blood pressure dynamics: possible utility in cardiac 580 
surgical risk assessment. J Clin Monit Comput. 2019 Feb;33(1):31-38. doi: 10.1007/s10877-018-0133-581 
4. Epub 2018 Mar 21. PMID: 29564751; PMCID: PMC6150848. 582 
 583 
10. Subramaniam B, Khabbaz KR, Heldt T, Lerner AB, Mittleman MA, Davis RB, Goldberger AL, Costa 584 
MD. Blood pressure variability: can nonlinear dynamics enhance risk assessment during 585 
cardiovascular surgery? J Cardiothorac Vasc Anesth. 2014 Apr;28(2):392-7. doi: 586 
10.1053/j.jvca.2013.11.014. Epub 2014 Feb 6. PMID: 24508020; PMCID: PMC4042180. 587 
 588 
11. Yoon JH, Jeanselme V, Dubrawski A, Hravnak M, Pinsky MR, Clermont G. Prediction of hypotension 589 
events with physiologic vital sign signatures in the intensive care unit. Crit Care. 2020 Nov 590 
25;24(1):661. doi: 10.1186/s13054-020-03379-3. PMID: 33234161; PMCID: PMC7687996. 591 
 592 
12. Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PCh. Network physiology reveals relations 593 
between network topology and physiological function. Nat Commun. 2012 Feb 28;3:702. doi: 594 
10.1038/ncomms1705. PMID: 22426223; PMCID: PMC3518900. 595 
 596 
13. Asada T, Aoki Y, Sugiyama T, Yamamoto M, Ishii T, Kitsuta Y, Nakajima S, Yahagi N, Doi K. Organ 597 
System Network Disruption in Nonsurvivors of Critically Ill Patients. Crit Care Med. 2016 Jan;44(1):83-598 
90. doi: 10.1097/CCM.0000000000001354. PMID: 26496455. 599 
 600 
14. Tan YY, Montagnese S, Mani AR. Organ System Network Disruption Is Associated With Poor 601 
Prognosis in Patients With Chronic Liver Failure. Front Physiol. 2020 Aug 5;11:983. doi: 602 
10.3389/fphys.2020.00983. PMID: 32848892; PMCID: PMC7422730. 603 
 604 
15. Zhang H, Oyelade T, Moore KP, Montagnese S, Mani AR. Prognosis and Survival Modelling in 605 
Cirrhosis Using Parenclitic Networks. Front Netw Physiol. 2022 Feb 21;2:833119. doi: 606 
10.3389/fnetp.2022.833119. PMID: 36926100; PMCID: PMC10013061. 607 
 608 
16. Schreiber T. Measuring information transfer. Phys Rev Lett. 2000 Jul 10;85(2):461-4. doi: 609 
10.1103/PhysRevLett.85.461. PMID: 10991308. 610 
 611 
17. Bartsch RP, Liu KK, Bashan A, Ivanov PCh. Network Physiology: How Organ Systems Dynamically 612 
Interact. PLoS One. 2015 Nov 10;10(11):e0142143. doi: 10.1371/journal.pone.0142143. PMID: 613 
26555073; PMCID: PMC4640580. 614 
 615 

Downloaded from journals.physiology.org/journal/jappl at Univ of Hertfordshire (147.197.250.033) on December 19, 2024.



14 
 

18. Jiang Y, Costello JT, Williams TB, Panyapiean N, Bhogal AS, Tipton MJ, Corbett J, Mani AR. A 616 
network physiology approach to oxygen saturation variability during normobaric hypoxia. Exp Physiol. 617 
2021 Jan;106(1):151-159. doi: 10.1113/EP088755. Epub 2020 Jul 20. PMID: 32643311. 618 
 619 
19. Oyelade T, Forrest E, Moore KP, O'Brien A, Mani AR. Parenclitic Network Mapping Identifies 620 
Response to Targeted Albumin Therapy in Patients Hospitalized With Decompensated Cirrhosis. Clin 621 
Transl Gastroenterol. 2023 Jun 1;14(6):e00587. doi: 10.14309/ctg.0000000000000587. PMID: 622 
37019645; PMCID: PMC10299770. 623 
 624 
20. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 625 
1991 Mar 15;88(6):2297-301. doi: 10.1073/pnas.88.6.2297. PMID: 11607165; PMCID: PMC51218. 626 
 627 
21. Bhogal AS, Mani AR. Pattern Analysis of Oxygen Saturation Variability in Healthy Individuals: 628 
Entropy of Pulse Oximetry Signals Carries Information about Mean Oxygen Saturation. Front Physiol. 629 
2017 Aug 2;8:555. doi: 10.3389/fphys.2017.00555. PMID: 28824451; PMCID: PMC5539125. 630 
 631 
22. Lee J, Nemati S, Silva I, Edwards BA, Butler JP, Malhotra A. Transfer entropy estimation and 632 
directional coupling change detection in biomedical time series. Biomed Eng Online. 2012 Apr 633 
13;11:19. doi: 10.1186/1475-925X-11-19. PMID: 22500692; PMCID: PMC3403001. 634 
 635 
23. Faes L, Marinazzo D, Montalto A, Nollo G. Lag-specific transfer entropy as a tool to assess 636 
cardiovascular and cardiorespiratory information transfer. IEEE Trans. Biomed. Eng. 2014: 61; 2556–637 
2568. https://doi.org/10.1109/TBME.2014.2323131. 638 
 639 
24. Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, 640 
Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced 641 
Multiple Organ Dysfunction. Int J Mol Sci. 2024 Jul 16;25(14):7770. doi: 10.3390/ijms25147770. PMID: 642 
39063011. 643 
 644 
25. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, 645 
Mark RG. MIMIC-III, a freely accessible critical care database. Sci Data. 2016 May 24;3:160035. doi: 646 
10.1038/sdata.2016.35. PMID: 27219127; PMCID: PMC4878278. 647 
 648 
26. Moody B, Moody G, Villarroel M, Clifford G, Silva I, 2017. MIMIC-III Waveform Database. 649 
https://doi.org/10.13026/C2607M. 650 
 651 
27. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, 652 
Langan SM; RECORD Working Committee. The REporting of studies Conducted using Observational 653 
Routinely-collected health Data (RECORD) statement. PLoS Med. 2015 Oct 6;12(10):e1001885. doi: 654 
10.1371/journal.pmed.1001885. PMID: 26440803; PMCID: PMC4595218. 655 
 656 
28. Gheorghita M, Wikner M, Cawthorn A, Oyelade T, Nemeth K, Rockenschaub P, Gonzalez 657 
Hernandez F, Swanepoel N, Lilaonitkul W, Mani AR. Reduced oxygen saturation entropy is associated 658 
with poor prognosis in critically ill patients with sepsis. Physiol Rep. 2022 Dec;10(24):e15546. doi: 659 
10.14814/phy2.15546. PMID: 36541282; PMCID: PMC9768724. 660 
 661 
29. Ito S, Hansen ME, Heiland R, Lumsdaine A, Litke AM, Beggs JM. Extending transfer entropy 662 
improves identification of effective connectivity in a spiking cortical network model. PLoS One. 663 
2011;6(11):e27431. doi: 10.1371/journal.pone.0027431. Epub 2011 Nov 15. PMID: 22102894; 664 
PMCID: PMC3216957. 665 
 666 

Downloaded from journals.physiology.org/journal/jappl at Univ of Hertfordshire (147.197.250.033) on December 19, 2024.



15 
 

30. Lambden S, Laterre PF, Levy MM, Francois B. The SOFA score-development, utility and challenges 667 
of accurate assessment in clinical trials. Crit Care. 2019 Nov 27;23(1):374. doi: 10.1186/s13054-019-668 
2663-7. PMID: 31775846; PMCID: PMC6880479. 669 
 670 
31. Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol. 671 
2014 Oct;4(4):1511-62. doi: 10.1002/cphy.c140004. PMID: 25428853; PMCID: PMC4794276. 672 
 673 
32. West JB and Luks AM. West’s Respiratory Physiology, 2020. Wolters Kluwer. URL 674 
https://www.lww.co.uk/9781975139261/wests-respiratory-physiology/ (accessed 8.27.21). 675 
 676 
33. Ben-Tal A, Shamailov SS, Paton JF. Evaluating the physiological significance of respiratory sinus 677 
arrhythmia: looking beyond ventilation-perfusion efficiency. J Physiol. 2012 Apr 15;590(8):1989-2008.  678 
doi: 10.1113/jphysiol.2011.222422. Epub 2012 Jan 30. PMID: 22289913; PMCID: PMC3573317. 679 
 680 
34. Vistisen ST, Enevoldsen JN, Greisen J, Juhl-Olsen P. What the anaesthesiologist needs to know 681 
about heart-lung interactions. Best Pract Res Clin Anaesthesiol. 2019 Jun;33(2):165-177. doi: 682 
10.1016/j.bpa.2019.05.003. Epub 2019 May 7. PMID: 31582096. 683 
 684 
35. Karmali SN, Sciusco A, May SM, Ackland GL. Heart rate variability in critical care medicine: a 685 
systematic review. Intensive Care Med Exp. 2017 Dec;5(1):33. doi: 10.1186/s40635-017-0146-1. Epub 686 
2017 Jul 12. PMID: 28702940; PMCID: PMC5507939. 687 
 688 
36. Hajiasgharzadeh K, Mirnajafi-Zadeh J, Mani AR. Interleukin-6 impairs chronotropic responsiveness 689 
to cholinergic stimulation and decreases heart rate variability in mice. Eur J Pharmacol. 2011 Dec 690 
30;673(1-3):70-7. doi: 10.1016/j.ejphar.2011.10.013. Epub 2011 Oct 25. PMID: 22044916. 691 
 692 
37. Gholami M, Mazaheri P, Mohamadi A, Dehpour T, Safari F, Hajizadeh S, Moore KP, Mani AR. 693 
Endotoxemia is associated with partial uncoupling of cardiac pacemaker from cholinergic neural 694 
control in rats. Shock. 2012 Feb;37(2):219-27. doi: 10.1097/SHK.0b013e318240b4be. PMID: 695 
22249221. 696 
 697 
38. Mazloom R, Shirazi AH, Hajizadeh S, Dehpour AR, Mani AR. The effect of endotoxin on the 698 
controllability of cardiac rhythm in rats. Physiol Meas. 2014 Mar;35(3):339-49. doi: 10.1088/0967-699 
3334/35/3/339. Epub 2014 Jan 30. PMID: 24480859. 700 
 701 
39. Eftekhari G, Shojaei A, Raoufy MR, Azizi H, Semnanian S, Mani AR. Neonatal Sepsis Alters the 702 
Excitability of Regular Spiking Cells in the Nucleus of the Solitary Tract in Rats. Shock. 2020 703 
Aug;54(2):265-271. doi: 10.1097/SHK.0000000000001453. PMID: 31626038. 704 
 705 
40. Oyelade T, Moore KP, Mani AR. Physiological network approach to prognosis in cirrhosis: A shifting 706 
paradigm. Physiol Rep. 2024 Jul;12(13):e16133. doi: 10.14814/phy2.16133. PMID: 38961593; PMCID: 707 
PMC11222171. 708 
 709 
41. Shirazi AH, Raoufy MR, Ebadi H, De Rui M, Schiff S, Mazloom R, Hajizadeh S, Gharibzadeh S, 710 
Dehpour AR, Amodio P, Jafari GR, Montagnese S, Mani AR. Quantifying memory in complex 711 
physiological time-series. PLoS One. 2013 Sep 5;8(9):e72854. doi: 10.1371/journal.pone.0072854. 712 
PMID: 24039811; PMCID: PMC3764113. 713 
 714 
42. Satti R, Abid NU, Bottaro M, De Rui M, Garrido M, Raoufy MR, Montagnese S, Mani AR. The 715 
Application of the Extended Poincaré Plot in the Analysis of Physiological Variabilities. Front Physiol. 716 

Downloaded from journals.physiology.org/journal/jappl at Univ of Hertfordshire (147.197.250.033) on December 19, 2024.



16 
 

2019 Feb 19;10:116. doi: 10.3389/fphys.2019.00116. Erratum in: Front Physiol. 2019 May 28;10:669. 717 
doi: 10.3389/fphys.2019.00669. PMID: 30837892; PMCID: PMC6390508. 718 
 719 
43. Taghipour M, Eftekhari G, Haddadian Z, Mazloom R, Mani M, Mani AR. Increased sample 720 
asymmetry and memory of cardiac time-series following endotoxin administration in cirrhotic rats. 721 
Physiol Meas. 2016 Nov;37(11):N96-N104. doi: 10.1088/0967-3334/37/11/N96. Epub 2016 Oct 13. 722 
PMID: 27734806. 723 
 724 
44. Borovkova EI, Prokhorov MD, Kiselev AR, Hramkov AN, Mironov SA, Agaltsov MV, Ponomarenko 725 
VI, Karavaev AS, Drapkina OM, Penzel T. Directional couplings between the respiration and 726 
parasympathetic control of the heart rate during sleep and wakefulness in healthy subjects at 727 
different ages. Front Netw Physiol. 2022 Sep 6;2:942700. doi: 10.3389/fnetp.2022.942700. PMID: 728 
36926072; PMCID: PMC10013057. 729 
 730 
45. Bhogal AS, De Rui M, Pavanello D, El-Azizi I, Rowshan S, Amodio P, Montagnese S, Mani AR. Which 731 
heart rate variability index is an independent predictor of mortality in cirrhosis? Dig Liver Dis. 2019 732 
May;51(5):695-702. doi: 10.1016/j.dld.2018.09.011. Epub 2018 Sep 24. PMID: 30293892. 733 
 734 
46. Moorman JR, Lake DE, Ivanov PCh. Early Detection of Sepsis--A Role for Network Physiology? Crit 735 
Care Med. 2016 May;44(5):e312-3. doi: 10.1097/CCM.0000000000001548. PMID: 27083036. 736 
 737 
47. Papaioannou V, Dragoumanis C, Pneumatikos I. Biosignal analysis techniques for weaning 738 
outcome assessment. J Crit Care. 2010 Mar;25(1):39-46. doi: 10.1016/j.jcrc.2009.04.006. Epub 2009 739 
Jul 9. PMID: 19592203. 740 
 741 
48. Papaioannou VE, Chouvarda IG, Maglaveras NK, Pneumatikos IA. Study of multiparameter 742 
respiratory pattern complexity in surgical critically ill patients during weaning trials. BMC Physiol. 2011 743 
Jan 21;11:2. doi: 10.1186/1472-6793-11-2. PMID: 21255420; PMCID: PMC3031268. 744 
 745 
49. Armañac-Julián P, Hernando D, Lázaro J, de Haro C, Magrans R, Morales J, Moeyersons J, 746 
Sarlabous L, López-Aguilar J, Subirà C, Fernández R, Orini M, Laguna P, Varon C, Gil E, Bailón R, Blanch 747 
L. Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation. Sci 748 
Rep. 2021 Aug 6;11(1):16014. doi: 10.1038/s41598-021-95282-2. PMID: 34362950; PMCID: 749 
PMC8346488. 750 
 751 
50. Günther M, Kantelhardt JW, Bartsch RP. The Reconstruction of Causal Networks in Physiology. 752 
Front Netw Physiol. 2022 May 3;2:893743. doi: 10.3389/fnetp.2022.893743. PMID: 36926108; 753 
PMCID: PMC10013035. 754 
 755 
51. Shao K, Logothetis NK, Besserve M. Information theoretic measures of causal influences during 756 
transient neural events. Front Netw Physiol. 2023 May 31;3:1085347. doi: 757 
10.3389/fnetp.2023.1085347. PMID: 37323237; PMCID: PMC10266490. 758 
 759 
52. Pichot V, Corbier C, Chouchou F. The contribution of granger causality analysis to our 760 
understanding of cardiovascular homeostasis: from cardiovascular and respiratory interactions to 761 
central autonomic network control. Front Netw Physiol. 2024 Aug 8;4:1315316. doi: 762 
10.3389/fnetp.2024.1315316. PMID: 39175608; PMCID: PMC11338816. 763 
 764 
53. Moor M, Rieck B, Horn M, Jutzeler CR, Borgwardt K. Early Prediction of Sepsis in the ICU Using 765 
Machine Learning: A Systematic Review. Front Med (Lausanne). 2021 May 28;8:607952. doi: 766 
10.3389/fmed.2021.607952. PMID: 34124082; PMCID: PMC8193357. 767 

Downloaded from journals.physiology.org/journal/jappl at Univ of Hertfordshire (147.197.250.033) on December 19, 2024.



17 
 

 768 
54. Ganglberger W, Krishnamurthy PV, Quadri SA, Tesh RA, Bucklin AA, Adra N, Da Silva Cardoso M, 769 
Leone MJ, Hemmige A, Rajan S, Panneerselvam E, Paixao L, Higgins J, Ayub MA, Shao YP, Coughlin B, 770 
Sun H, Ye EM, Cash SS, Thompson BT, Akeju O, Kuller D, Thomas RJ, Westover MB. Sleep staging in the 771 
ICU with heart rate variability and breathing signals. An exploratory cross-sectional study using deep 772 
neural networks. Front Netw Physiol. 2023 Feb 27;3:1120390. doi: 10.3389/fnetp.2023.1120390. 773 
PMID: 36926545; PMCID: PMC10013021. 774 
 775 
55. Shashikumar SP, Li Q, Clifford GD, Nemati S. Multiscale network representation of physiological 776 
time series for early prediction of sepsis. Physiol Meas. 2017 Nov 30;38(12):2235-2248. doi: 777 
10.1088/1361-6579/aa9772. PMID: 29091053; PMCID: PMC5736369. 778 
 779 
56. Campanaro CK, Nethery DE, Guo F, Kaffashi F, Loparo KA, Jacono FJ, Dick TE, Hsieh YH. Dynamics 780 
of ventilatory pattern variability and Cardioventilatory Coupling during systemic inflammation in rats. 781 
Front Netw Physiol. 2023 Jul 31;3:1038531. doi: 10.3389/fnetp.2023.1038531. PMID: 37583625; 782 
PMCID: PMC10423997. 783 
 784 
57. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and 785 
sample entropy. Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49. doi: 786 
10.1152/ajpheart.2000.278.6.H2039. PMID: 10843903. 787 
 788 
58. Pinto H, Lazic I, Antonacci Y, Pernice R, Gu D, Barà C, Faes L, Rocha AP. Testing dynamic 789 
correlations and nonlinearity in bivariate time series through information measures and surrogate 790 
data analysis. Front Netw Physiol. 2024 May 21;4:1385421. doi: 10.3389/fnetp.2024.1385421. PMID: 791 
38835949; PMCID: PMC11148466. 792 
 793 
59. Raoufy MR, Ghafari T, Darooei R, Nazari M, Mahdaviani SA, Eslaminejad AR, Almasnia M, 794 
Gharibzadeh S, Mani AR, Hajizadeh S. Classification of Asthma Based on Nonlinear Analysis of 795 
Breathing Pattern. PLoS One. 2016 Jan 29;11(1):e0147976. doi: 10.1371/journal.pone.0147976. 796 
PMID: 26824900; PMCID: PMC4732950. 797 
 798 
60. Shirazi AH, Badie Modiri A, Heydari S, Rohn JL, Jafari GR, Mani AR. Evolution of Communities in the 799 
Medical Sciences: Evidence from the Medical Words Network. PLoS One. 2016 Dec 800 
2;11(12):e0167546. doi: 10.1371/journal.pone.0167546. PMID: 27911929; PMCID: PMC5135137. 801 
 802 
61. Palmer E, Post B, Klapaukh R, Marra G, MacCallum NS, Brealey D, Ercole A, Jones A, Ashworth S, 803 
Watkinson P, Beale R, Brett SJ, Young JD, Black C, Rashan A, Martin D, Singer M, Harris S. The 804 
Association between Supraphysiologic Arterial Oxygen Levels and Mortality in Critically Ill Patients. A 805 
Multicenter Observational Cohort Study. Am J Respir Crit Care Med. 2019 Dec 1;200(11):1373-1380. 806 
doi: 10.1164/rccm.201904-0849OC. PMID: 31513754; PMCID: PMC6884048. 807 
 808 
 809 
  810 

Downloaded from journals.physiology.org/journal/jappl at Univ of Hertfordshire (147.197.250.033) on December 19, 2024.



18 
 

Tables: 811 
 812 
Table 1. Summary of descriptive results.  813 

Variable Summary value 
Age (years) (median, Interquartile range)
 

68 (53-84) 

Male/Female (count, %) 
 

93/71 (57%/43%) 

Ethnicity (count, %) 
 
White 
Black 
Hispanic 
Asian 
Other 
Unknown 

 
125 (76%) 

10 (6%) 
5 (3%) 
3 (1%) 
3 (1%) 

18 (11%) 
Hospital admission primary diagnosis (count, %) 
 
Neurological 
Cardiac 
Infective 
Gastrointestinal 
Orthopaedic 
Other 

 
 

46 (28%) 
35 (21%) 
34 (21%) 

9 (5%) 
4 (2%) 

35 (21%) 
Elixhauser index (median, Interquartile range) 
 

3 (0-7) 

Mechanically ventilated during TE measurement 
(count, %) 

45 (27.4%) 

SOFA score on day of TE was measured 
(median, Interquartile range) 

4 (2-6) 

SOFA score 48 hours after TE was measured 
(median, Interquartile range) 

1 (1-5) 

Deterioration in SOFA score >= 2 points at 48 
hours (count, %) 

31 (18.9%) 

30-day mortality (count, %) 34 (20.7%) 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 
 822 
 823 
 824 
 825 
 826 
 827 
 828 
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Table 2: Comparison of Transfer Entropy Means between Survivors and Non-survivors:  829 
 Survivors Non-Survivors P-value  

TE(SpO2→HR) 0.537 ± 0.144 0.449 ± 0.182 0.003 

TE(HR→SpO2) 0.336 ± 0.187 0.245 ± 0.185 0.013 

TE(HR→RR) 0.532 ± 0.163  0.390 ± 0.195  <0.001 

TE(RR→HR) 0.510 ± 0.143  0.417 ± 0.207 0.083  

TE(SpO2→RR) 0.582 ± 0.168  0.490 ±0.212 0.083 

TE(RR→SpO2) 0.361 ± 0.198 0.272 ± 0.208 0.022 

 830 
Table 3: Comparison of Network Indices (Indegree and Outdegree) between Survivors and Non-831 
Survivors 832 
 Survivors Non-Survivors P-value  

Indegree SpO2  0.696 ± 0.380 0.517 ± 0.388 0.016 

Indegree HR 1.046 ± 0.277 0.866 ± 0.382 0.034  

Indegree RR 1.113 ± 0.316 0.880 ± 0.378 <0.001 

Outdegree SpO2 1.118 ± 0.224 0.939 ± 0.248   <0.001 

Outdegree HR 0.868 ± 0.285 0.636 ± 0.283 <0.001 

Outdegree RR 0.870 ± 0.224 0.689 ± 0.249 <0.001 

 833 
 834 
Table 4: Monovariate Cox regression analysis to predict 30-day mortality based on Transfer Entropies, 835 
and Network Indices (Indegrees and Outdegrees): 836 
 B  SE P-value Exp(B) Confidence Interval 

(95%)  

TE(SpO2→HR) -2.633 0.901 0.003 0.072 0.012 – 0.421 

TE(HR→SpO2) -2.070 0.881 0.019 0.126 0.022 – 0.709 

TE(HR→RR) -3.357 0.789 <0.001 0.035 0.007 – 0.166 

TE(RR→HR) -2.694 0.898 0.003 0.068 0.012– 0.393 

TE(SpO2→RR) -2.122 0.763 0.005 0.120 0.027 – 0.535 

TE(RR→SpO2) -1.765 0.821 0.032 0.171 0.034 – 0.856 
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Indegree SpO2 -0.965 0.426 0.023 0.381 0.165 – 0.877 

Indegree HR -1.382 0.453 0.002 0.251 0.103 – 0.610 

Indegree RR -1.421 0.388 <0.001 0.242 0.113 - 0.517 

Outdegree SpO2 -2.476 0.629 <0.001 0.084 0.025 – 0.289 

Outdegree HR -2.015 0.511 <0.001 0.133 0.049 – 0.363 

Outdegree RR -2.629 0.693 <0.001 0.072 0.019 – 0.281 
 837 
 838 
Table 5: Comparison of Transfer Entropy Means between Patients with 48-hour Deterioration and 839 
without Deterioration. 840 
 Deterioration No Deterioration  P-value  

TE(SpO2→HR) 0.451 ±  0.173 0.534 ± 0.149  0.007 

TE(HR→SpO2) 0.282 ± 0.180 0.325 ± 0.191 0.247 

TE(HR→RR) 0.391 ± 0.211 0.528 ± 0.161 0.005 

TE(RR→HR) 0.428 ± 0.195  0.505 ±0.151 0.016 

TE(SpO2→RR) 0.479 ± 0.234  0.582 ± 0.161 0.231 

TE(RR→SpO2) 0.325 ± 0.213 0.346 ± 0.200 0.590 

 841 
Table 6: Comparison of Network Indices (Indegree and Outdegree) between Patients with 48-hour 842 
Deterioration and without Deterioration 843 
 Deterioration No Deterioration  P-value  

Indegree SpO2  0.606 ± 0.388 0.672 ± 0.388 0.398 

Indegree HR 0.878 ± 0.365 1.0395 ± 0.288 0.009 

Indegree RR 0.870 ± 0.426 1.11 ± 0.304 0.017 

Outdegree SpO2 0.929 ± 0.268  1.116 ± 0.220 <0.001 

Outdegree HR 0.673 ± 0.312 0.854 ± 0.286 0.002 

Outdegree RR 0.752 ± 0.241  0.852 ± 0.237 0.038 

 844 
 845 
Table 7: Monovariate Cox regression analysis to predict 48-hour Deterioration based on Transfer 846 
Entropies, and Network Indices (Indegrees and Outdegrees) 847 
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 B  SE P-value Exp(B) Confidence Interval 
(95%)  

TE(SpO2→HR) -2.267 0.955 0.018 0.104 0.016 – 0.674 

TE(HR→SpO2) -0.969 0.928 0.296 0.380 0.062 – 2.340 

TE(HR→RR) -2.842 0.842 0.001 0.058 0.011 – 0.304 

TE(RR→HR) -2.032 0.950 0.032 0.131 0.020 – 0.843 

TE(SpO2→RR) -1.998 0.788 0.011 0.136 0.029 – 0.635  

TE(RR→SpO2) -0.427 0.876 0.626 0.652 0.117 – 3.631  

Indegree SpO2 -0.347  0.453 0.444 0.707 0.291 – 1.718 

Indegree HR -1.115 0.481 0.020 0.328 0.128 – 0.842 

Indegree RR -1.267 0.409 0.002 0.282 0.126 – 0.628 

Outdegree SpO2 -2.247 0.657 <0.001 0.106 0.029 – 0.383 

Outdegree HR -1.478  0.549 <0.007 0.228 0.078 – 0.669 

Outdegree RR -1.330 0.714 0.062 0.264 0.065 – 1.071 
 848 
 849 
  850 
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Figure legends: 851 
 852 
Figure 1. A schematic diagram to explain the concept of transfer entropy (TE). The transfer of 853 
information from a physiological time-series A to another parallel time-series B is annotated as TE (A 854 
→ B) and is defined as how much additional information the past of the A time-series contains about 855 
the future observation of the B time-series (red arrows) independently of our knowledge of the past 856 
state of B (black arrow). Such transfer of information can be presented as an edge in a network 857 
connecting directed information from nodes A to B. tA: time lag in A from present. tB: time lag in B 858 
from present. As the optimal lag for each node pair is not known a priori, TE in this study is measured 859 
for a range of time lag values that set equally for both tA and tB, at 1, 5, 10, 15, 20 and 25 seconds. 860 
 861 
Figure 2. Network maps for survivors and non-survivors, showing mean TE values (in bits) for each 862 
edge. Red: TEs which are significant predictors of mortality, independent of covariates (age, SOFA, 863 
comorbidity index and mechanical ventilation). Edge weighting correspond to magnitude of 864 
information flow. HR: heart rate; RR: respiratory rate; SpO2: oxygen saturation. 865 
 866 
Figure 3: Comparison of Transfer Entropies [TE (SpO2 → HR), TE (HR → RR) and TE (RR → HR)] between 867 
survivors and non-survivors at different time lags.  Data are shown as mean standard error or mean. 868 
Two-way ANOVA showed that group (Survivors/Non-Survivors) and time lag both significantly affect 869 
TEs (P<0.001 for all TEs) and there is no interaction between group and time-lag.  870 
 871 
Figure 4. Network maps for patients with 48-hour deterioration and no deterioration, showing mean 872 
TE values (in bits) for each edge. Edge weighting correspond to magnitude of information flow. HR: 873 
heart rate; RR: respiratory rate; SpO2: oxygen saturation. 874 
 875 
Figure 5. ROC Curves for Prediction of 30-day mortality based on Transfer Entropies (A) and Network 876 
Indices (B) 877 
 878 
Figure 6: Kaplan Meier Graphs for Visualization of Prediction of Mortality based on Transfer Entropies. 879 
ROC curves were used to obtain optimum cut-off points. 880 
 881 
Figure 7: Kaplan Meier Graphs for Visualization of Prediction of Mortality based on Network Indices. 882 
ROC curves were used to obtain optimum cut-off points.  883 
 884 
Figure 8. Graphical representation of possible underlying relationship between physiological 885 
stress and TE 886 
 887 
 888 
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