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Abstract— Nasal obstruction (NO), referring to blockage in 
the nasal cavity, is prevalent, affecting approximately one-third 
of the adult population. Consequently, diagnosis typically 
requires a combination of medical imaging techniques and tests, 
as NO is often subjective. This study aims to automate the grade 
classification of NO from anterior nasal cavity images using 
nasal endoscopy as a standalone diagnostic tool for common NO 
conditions: allergic rhinitis, chronic rhinosinusitis, and deviated 
nasal septum. To evaluate this, we examined a proposed method 
based on a support vector machine (SVM) using two explainable 
features: the number of the middle turbinate (MT) pixels and 
the MT contact ratio, derived from the segmentation map in our 
previous publication, involving 73 participants. This evaluation 
was compared against deep learning methods - ResNet-50 and 
Vision Transformers (ViT)-tiny using direct images as input. 
Our SVM-based method achieved an interrater agreement with 
the manual grade classification of NO, provided by an ear, nose 
and throat (ENT) consultant, of 0.46 (moderate agreement) and 
0.14 (none or slight agreement) on the validation set and testing 
set, respectively. While the proposed method introduces the first 
quantitative approach for differentially diagnosing common NO 
conditions, further investigation into additional features and 
strategies to obtain video-level grade classification from frame-
level classification data is warranted to achieve a suitable 
interrater agreement for clinical translation. This has the 
potential to facilitate the transition of ENT examinations from 
secondary care to primary care settings, consequently reducing 
unnecessary ENT referrals. 

Clinical relevance— This study showcases the first successful 
grade classification of NO using anatomical segmentation maps 
from the anterior nasal cavity. The findings hold significant 
clinical potential, aiding in the early detection of NO. 

I. INTRODUCTION 

 Nasal obstruction (NO) refers to insufficient airflow 
through the nose due to a blockage in the nasal cavity. It is 
prevalent in otolaryngology practices, affecting up to one-
third of the global adult population [1]. The primary mucosal 
causes of NO are allergic rhinitis (AR) and chronic 
rhinosinusitis (CRS), both with nasal polyps (CRSwNP) and 
without nasal polyps (CRSsNP). Structural causes include a 
deviated nasal septum (DNS), often necessitating nasal 
surgery, such as septoplasty, for NO treatment. The negative 
health impact of AR and CRS is substantial, leading to 
exacerbation of obstructive sleep apnea and reduced work 
efficiency. 

Nasal endoscopy (NE) involves a flexible tube with a 
small camera and bright lighting, providing a detailed 
assessment of the nasal cavity. This level of examination is not 
achievable through standard anterior rhinoscopy due to its 
invasiveness, making NE crucial in the differential diagnosis 
of NO [2]. Diagnosis using NE is typically complemented by 
clinical history, allergy testing, CT scans, and quality-of-life 
evaluation. Additionally, objective examinations such as nasal 

inspiratory peak flow (NIPF) and acoustic rhinometry are also 
employed. 

 To align with NHS England's initiative to streamline 
diagnostics in primary care and reduce ear, nose and throat 
(ENT) referrals [3], this paper aims to develop an automated 
differential diagnosis of major NO conditions (AR, CRS and 
DNS) from the anterior nasal cavity using nasal endoscopy. 
The anterior nasal cavity, situated within the nose and 
separated into left and right parts by the septum along the 
sagittal plane, plays a crucial role in normal breathing. 
Conditions like NO can arise if the internal nasal valve (INV) 
area narrows, contributing to two-thirds of the total nasal 
airway resistance [4]. 

 
Fig. 1. Different views of the anterior nasal cavity, with the endoscopic 
image location marked by a black star. Key structures highlighted include 
the septum (I - yellow), middle turbinate (II - green), inferior turbinate (III - 
red), and internal nasal valve region (IV - pink). 

Nasal endoscopy is recognized as the gold standard for 
diagnosing deviated nasal septum (DNS), with various 
classification systems based on observed septum anatomical 
shapes [5]. For AR and CRS classification, physical 
appearances such as nasal polyps, mucopurulent secretions, 
inflamed mucosa, bluish discoloration, and mucosal edema 
are used [6], [7]. Nasal decongestants may help differentiate 
AR from CRSsNP patients, as AR patients show improved 
unilateral NIPF (uNIPF) after applying decongestants, while 
CRS patients show the opposite outcome [8]. 

There are already attempts to classify polyps in the anterior 
nasal cavity, a characteristic of CRSwNP, using deep learning 
[9], but no studies so far focusing on the classification of ARS, 
CRSsNP, and DNS. Hence, we review existing subjective 
grading systems based on key anatomical structures of the 
anterior nasal cavity [10], [11], [12]. The proposed grading 
method by Patel et al. has demonstrated high reliability and 
moderate correlation with unilateral NIPF measurements [10]. 
Given the association between the INV area, uNIPF, and NO 
grading, NO grading could aid in distinguishing between AR 
and CRSsNP, and identifying DNS patients by asymmetry in 
grading on each side of the nose. 

Our validated rule-based expert system [13] will use polyp 
appearance and NO grading as inputs, allowing for the use of 
video imaging, potentially digital anterior rhinoscopy, in 
primary care settings. By implementing this objective method, 
a standardized approach to assessing NO grading, diagnosing 



conditions, and determining appropriate treatment 
interventions can be established. 

We aim to utilize explainable features derived from the 
semantic segmentation of key anatomical structures in the 
anterior nasal cavity (see Fig. 1) for the grade classification of 
NO. We will employ a basic machine learning method, 
namely Support Vector Machine (SVM), due to its efficiency 
with small datasets, lower computational requirements, and 
suitability for primary care settings. This paper demonstrates 
the grade classification of NO, contributing to the study of NO 
by collecting and annotating a dataset from participants with 
or without NO. We aim to develop machine learning models 
that accurately grade the severity of NO. This approach not 
only contributes to the advancement of NO research but also 
provides valuable insights for the practical implementation of 
ENT examination in primary care settings. 

II. PROPOSED FRAMEWORK 

 
Fig. 2. Framework for grade classification of NO: A custom deep learning 
network, coupled with low-light image enhancement, was employed to 
generate the segmentation map [14]. The explainable features, specifically 
MT pixel and MT contact ratio, were extracted as inputs for SVM analysis 
to determine NO grading. 

Fig. 2 illustrates the framework for grade classification of 
NO. In our previous publication [14], we applied a low-light 
image enhancement algorithm to the original images from the 
anterior nasal cavity recording. Subsequently, we employed a 
fine-tuned Mask2Former to generate the corresponding 
semantic segmentation map. Each pixel in the map 
corresponds to one of the following classes: septum, inferior 
turbinate (IT), middle turbinate (MT), polyp, airway, and 
others (structures not present in the key structures mentioned 
in Fig. 1 or located in regions with excessive brightness). 

In this study, we employed the NO grading system 
proposed by Patel et al. [10], in which they categorized the 
INV into three grades based on MT visibility: 0, 1, and 2 (see 
TABLE I. for description). We have modified this grading, 
allowing doctors to assign a certain level if they are uncertain 
whether the patient belongs to grade 0 (maybe 0: 1/3) or grade 
1 (maybe 1: 2/3). This adjustment aims to better measure the 
INV's response level after applying a decongestant, as 
validated in our publication on the rule-based expert system 
[13]. 

TABLE I.  DESCRIPTION OF VALIDATED NO GRADING SYSTEM 

Grade Description 
0 The head of the MT can be seen clearly 
1 The MT is partially blocked from the view 
2 The MT cannot be seen at all 

Based on the NO grading description, we can quantify the 
MT in two ways: the size of the MT and the extent to which it 
is covered by other anatomical structures (septum, IT, polyp, 
and others classes). Therefore, we propose two explainable 
features as measures of NO grading by utilizing the number of 
pixels and the MT contact (MTC) ratio obtained from 
semantic segmentation as the main inputs for SVM. 

The MTC ratio is defined as follows: MTC ratio = MT 
contact length excluding the airway / MT perimeter. The 
representation of the lengths used for MTC ratio calculations 
is presented in Fig. 3. The MTC ratio ranges from 0 to 1. In 
specific cases, the MTC ratio is defined as 2, accounting for 
grade 2 images where the MT is not visible. 

 

Fig. 3. A black line represents the MT perimeter (A) and MT contact length 
excluding the airway (B). Classes are color-coded as follows: septum 
(yellow), IT (red), MT (green), others (gray), and airway (pink). 

Fig. 4 shows example images from grades 0, 1, and 2 with 
corresponding MTC ratios. The MTC ratio is more likely to 
be 0 for grade 0 images, indicating less contact between the 
MT and other anatomical structures. Conversely, grade 1 
images yield an MTC ratio closer to 1.  

Ground truth Grade 0 Grade 1 Grade 2 

Enhanced 
image 

   

Ground truth 
segmentation 
map 

   
MTC ratio 0.586 0.774 2.000 

Fig. 4. Testing set images display various NO grades alongside their 
corresponding ground truth segmentation map and MTC ratio. Additionally, 
as color-coded in Fig. 3, polyp is represented in blue. 

It is expected that we would achieve a grade 0 view 
bilaterally for participants without NO and NO patients after 
treatment. However, one nasal cavity may appear blocked 
(misdiagnosed as grade non-zero) due to the cyclic 
enlargement of erectile tissue and asymmetrical blood flow 
known as the nasal cycle. In such cases, considering the NO 
grading after applying nasal decongestant in the rule-based 
expert system enhances the accuracy of differential diagnosis 
of NO. Nasal decongestants play a vital role in restoring 
normal physiology to the nasal cavity and paranasal sinuses 
[15]. 

III. METHODS 

A. Data collection 

We obtained full ethical approval from the London - City 
& East Research Ethics Committee, with reference number 
15/LO/0187, and written consent was obtained from all 
participants. Seventy-three participants were recruited at 
Royal National ENT and Eastman Dental Hospitals, including 



7 controls and 66 patients. The participants comprised 41 
males and 32 females, with a mean age of 42.4 years (95% CI: 
38.8-46.0). Controls aged 18 years or above had no history of 
rhinological conditions or symptoms. Based on their medical 
history and visual inspection, patients were diagnosed by an 
otolaryngologist with one or more of the following conditions: 
AR, CRS, or DNS. We recorded the nasal cavities using a 
Video Naso-Pharyngo-Laryngoscope (VNL9-CP) (Pentax 
Medical), and the videos were processed using a VIVIDEO 
Video Processor (CP-1000) (Pentax Medical). We also 
applied a nasal decongestant spray (xylometazoline 
hydrochloride 0.1% w/v) and repeated the recording 10 
minutes later.  

B. Datasets 

An ENT consultant graded each video based on the NO 
grading described in TABLE I. This assessment served as the 
ground truth for both training and evaluation purposes. In the 
selection process, every 5th frame was chosen for each video, 
excluding frames located outside the nostril, featuring 
excessive nasal hair, or positioned too deeply. Since nasal 
asymmetry is minor in most cases, all images from the right 
nasal side were horizontally flipped. The dataset is utilized 
using low-light image enhancement with alpha blending. 

For the training and evaluation of the model, every 4th 
participant was designated as part of the testing set, with the 
remaining participants assigned to the training set. The 
distribution of the NE-UCLH dataset is outlined in TABLE II.  

TABLE II.  THE BREAKDOWN OF THE NE-UCLH DATASET IN THE 
GRADE CLASSIFICATION OF NO. 

Dataset 
NO grading 

Total 
0 Maybe 0 Maybe 1 1 2 

Frame-level 1933 445 1153 2503 2938 8972 
Train + val 1560 245 759 1821 2330 6715 
Test 373 200 394 682 608 2257 
Video-level 61 14 29 88 100 292 
Train + val 49 8 20 65 74 216 
Test 12 6 9 23 26 76 

C. Implementation details 

The networks were implemented in MATLAB R2023b 
using the Machine Learning Toolbox and Image Processing 
Toolbox. We employed a multiclass error-correcting output 
codes (ECOC) model, trained using explainable features (MT 
pixel and MTC ratio) as inputs for SVM learners in a one-vs-
one configuration [16]. 

To compare performance with deep learning networks, 
we pre-trained ResNet-50 [17] and the vision transformer 
(ViT)-tiny [18] models on the PASCAL VOC 2012 dataset 
[19]. Subsequently, fine-tuning was performed on our NE-
UCLH dataset, where all images were resized as specified in 
TABLE III. The Adam optimization algorithm updated the 
network weights, initiating an initial learning rate of 0.0001, 
which decayed by 0.3 every 5 epochs. The cross-entropy loss 
function was employed as the optimization criterion. The 
gradient decay factor β1 was set to 0.9, and the squared 
gradient decay factor β2 was set to 0.999. Training took place 
on a single GPU (NVIDIA GeForce RTX 3050 Ti, Nvidia 
Corp., Santa Clara, CA, USA) for 30 epochs, utilizing a mini-
batch size of 1. L2 normalization with a weight decay rate of 
10-4 served for regularization. To prevent overfitting, early 
stopping was implemented if the validation loss did not 

improve for three consecutive epochs. The weight 
configuration from the final epoch was then chosen. 

For validation and testing, a 5-fold cross-validation was 
executed on the training set. Data augmentation included 
rotations between -5° and +5° while avoiding vertical 
flipping and additional rotations as they were inappropriate 
for clinical images. All trained networks from cross-
validation were used with the testing set for evaluation. 
Frames-per-second (fps) measurement was conducted on an 
RTX 3050 GPU with a mini-batch size of 1. 

To assess the performance of NO grading, the evaluation 
employed weighted multiclass metrics, including accuracy, 
sensitivity, specificity, and F-1 score, as outlined in reference 
[20]. Additionally, the interrater agreement between the 
model predictions and the ground truth given by an ENT 
consultant for the grade classification of NO was compared 
using Cohen's kappa score. In general, a κ-score of zero or 
less indicates no agreement, while higher scores fall into the 
following categories: none to slight (κ ≤ 0.20), fair (0.21 ≤ κ 
≤ 0.40), moderate (0.41 ≤ κ ≤ 0.60), substantial (0.61 ≤ κ ≤ 
0.80), and almost perfect agreement (0.81 ≤ κ ≤ 1.00) [21]. 

IV. RESULTS AND DISCUSSION 

TABLE III.  THE MEAN PERFORMANCE METRICS (IN % EXCEPT FOR Κ 
SCORE) FOR THE GRADE CLASSIFICATION OF NO. THE BEST RESULTS ARE 

HIGHLIGHTED IN BOLD. 

Method Crop size Accuracy Sensitivity Specificity F-1 score κ score 

Validation set 
SVM [16] 400×400 79.6 60.8 84.3 60.3 0.46 
ResNet-50 [17] 224×224 85.0 69.1 89.7 69.4 0.59 
ViT-tiny [18] 384×384 94.8 89.5 96.5 89.4 0.86 
Testing set 
SVM [16] 400×400 69.6 35.3 78.0 31.8 0.14 
ResNet-50 [17] 224×224 66.7 27.8 76.9 25.9 0.05 
ViT-tiny [18] 384×384 71.1 35.4 80.8 33.1 0.16 

TABLE III. compares the performance of different 
methods in grade classification of NO. On the validation set, 
ViT-tiny achieved the highest scores for all evaluation 
metrics, demonstrating almost perfect interrater agreement (κ 
= 0.86 ± 0.12) with the grade given by an ENT consultant. It 
also achieved the highest specificity (96.5%), making it the 
preferred method for a grade classification of NO when 
minimizing false positives is crucial to avoid unnecessary 
invasive procedures or treatments. ResNet-50 and our method, 
based on SVM and explainable features, had the second and 
the lowest performance, respectively. 

However, testing set results indicate that the performance 
of all models did not transfer as well compared to the 
validation set. Specifically, while ViT-tiny still achieved the 
highest scores for all evaluation metrics, it only showed none 
or slight agreement (κ = 0.16 ± 0.06) with the grade given by 
an ENT consultant. Additionally, our SVM-based method 
outperformed ResNet-50 for all evaluation metrics, with an 
interrater agreement κ = 0.14 ± 0.01, demonstrating no 
significant difference in κ compared to ViT-tiny (p = 0.43) and 
suggesting that our model is stable and less likely to overfit. 

 The current poor generalization indicates that the 
consistent ground truth NO grading may not be suitable for 
frame-based classification due to variations in MT visibility 
caused by different scope angles (see Fig. 5 for an example). 
Since the current set of explainable features used in SVM is 



static, the significant variations in MT visibility further render 
the method unsuitable. 

Ground truth Grade 0 (applied to all frames) 

Enhanced image 

   

Segmentation map 
generated by [14] 

   
SVM prediction Grade 0 Grade 0 Grade 2 

Fig. 5. Example images of the anterior nasal cavity from the testing set, 
captured from the same participant. The ground truth is consistent across all 
frames but yields different predictions due to variations in MT visibility. The 
head of the MT can be seen clearly (Grade 0: middle) or the MT is partially 
obscured (Grade 2/3: left, Grade 1: right) caused by different scope angles. 

Based on these insights, along with incorporating more 
clinically validated explainable features, two potential 
strategies could be explored: 1) automatically selecting a 
keyframe from a video, or 2) revising the ground truth to allow 
for varied NO grades throughout the video. Subsequently, 
observe the performance of various algorithms for obtaining 
video-level classification based on frame-level data, such as 
using minimum grading, averaging and rounding to the 
nearest grading, or employing voting methods. Specifically 
for method 2), determine the optimal number of frames 
required to achieve a suitable interrater agreement with 
manual NO grading given by an ENT consultant. 

TABLE IV.  COMPARISON OF THE NUMBER OF PARAMETERS AND 
INFERENCE TIME OF DIFFERENT MACHINE LEARNING NETWORKS 

Method #params fps 

SVM [16]  < 0.1M 7114 

ResNet-50 [17]  25.6M 124 

ViT-tiny [18] 5.7M 27 

 Our SVM-based method provides some advantages in 
interpretability, despite lower overall performance. It utilizes 
two clinically validated, explainable features extracted from 
segmentation maps, providing a highly interpretable and 
transparent model. Additionally, as shown in TABLE IV. , our 
method offers a lightweight model and considerably shorter 
inference time compared to deep learning networks. 
Ensembling this model after the fine-tuned Mask2Former 
network used for anatomical segmentation, which reported 
47M parameters and an inference speed of 6.28 fps in our 
previous publication [14], enables real-time segmentation and 
corresponding grade classification of NO. 

V. CONCLUSION 

This paper introduces an objective grade classification of 
NO based on explainable features - the size of the MT and 
MTC ratio derived from a semantic segmentation map from 
anterior nasal cavity images. The classification aids in 
differentiating common NO causes (AR, CRS, and DNS). 
Ultimately, we aim to use NO grading and polyp appearance 
pre- and post-nasal decongestant as inputs for a rule-based 
expert system in differential diagnosis of NO. Thus, the 
system could be translational to primary care settings, utilizing 
digital anterior rhinoscopy for ENT examination. 
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