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Abstract – In recent decades, the population of European eel Anguilla anguilla has strongly declined and
the stock is outside safe biological limits. Freshwater habitat degradation has been cited as a key causal
factor in the European eel decline, but there are limited studies assessing the responses of this species to river
habitat restoration efforts. This study utilized mark-and-recapture data from annual electrofishing surveys
conducted between 2009 and 2014 to describe European eel population density and size structure (length,
weight) in the River Glaven � a chalk stream in eastern England. Short-term effects of river restoration on
European eel were assessed via a Before-After-Control-Impact experimental design. Of the recaptured
individuals, 73% were sedentary and the rest mobile. Despite re-meandering work increasing habitat
heterogeneity in the restoration reach relative to the control reach, no change in European eel density or size
structure was detected across treatments and time. While length and weight increased in the downstream
control reach over the study period, density declined. This can be attributed to various local stressors such as
barriers to European eel migration, as well as broader range-scale causes including climatic and oceanic
factors. Although further research is ideally necessary to ensure adequate sample sizes, as well as to provide
long-term monitoring of eel responses to river restoration, this study emphasizes the need for whole-
catchment efforts in European eel conservation that combine river–floodplain restoration with greatly
improved fish passage.
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1 Introduction

In recent decades, in response to widespread river
degradation, restoration initiatives involving in-stream habitat
modifications as well as channel re-profiling and repositioning
have become widespread in European and North American
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rivers (Brun, 2015; Friberg et al., 2016). River restoration
initiatives have sought to increase the hydrological connectiv-
ity, geomorphological complexity and biological richness of
aquatic ecosystems, in turn aiming to ameliorate the effects of
past river regulation (Brun, 2015; Deffner and Haase, 2018). In
Europe, river restoration has been widely recognized as an
integral tool (Schmitt et al., 2018; Deffner and Haase, 2018) in
the European Union (EU)Water Framework Directive (WFD).
This directive has the aim of returning rivers and streams to
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‘Good Ecological Status’ (European Commission, 2015a),
which more than half of the surface waters in the EU failed to
reach in 2012 and 2018. As implemented in the WFD, fishes
are often used as indicators of ecological status (Solimini et al.,
2006). Consequently, several studies have assessed the
response of fishes to a variety of measures implemented to
restore both river systems (e.g. Haase et al., 2013; Lorenz
et al., 2013; Smith, 2013) and adjacent floodplain habitats
(Stoltefaut et al., 2024). However, evidence for improvements
in fish communities following such measures is variable and
inconsistent, with some studies reporting positive responses
and others minimal beneficial change (e.g. Lorenz et al., 2013;
Thompson et al., 2018; Sinclair et al., 2023).

A fish species for which population uplift is urgently
needed and river restoration may have an important role for
conservation purposes is the critically endangered European
eel Anguilla anguilla � a catadromous fish of prominent
ecological and economic value (Pike et al., 2020). European
eels represent important prey for a range of piscivorous birds
and mammals (Knights, 2003; Almeida et al., 2012). The
European eel has also been exploited by humans as a food
source for centuries, forming the foundation of large
commercial fisheries (Feunteun, 2002; Bevacqua et al.,
2007; Dekker, 2019) and an aquaculture industry of global
significance (Nielsen and Prouzet, 1998). However, the status
of the European eel stock is critical, with recruitment
undergoing a strong decline since the 1980s, after which it
has remained at a very low level (ICES, 2023). This decline has
likely had ecological consequences for other species at both
lower (prey) and higher (predator) trophic levels. Moreover,
there are important economic implications of European eel
decline since more than 25,000 people in Europe depend upon
eel fisheries and aquaculture for a substantial proportion of
their income (Dekker, 2003, 2004). Therefore, a Council
Regulation (EU 1100/2007) established a framework for the
recovery of European eel stocks and the species was added to
CITES Annex II (Ciccotti et al., 2012). Since 2008, the
European eel has also been classified globally as critically
endangered by the IUCN Red List of Threatened Species (Pike
et al., 2020), and more recently, using IUCN criteria, as
threatened with extinction in the UK at both regional (Britain)
and national (England, Scotland andWales) levels (Nunn et al.,
2023).

Partly due to the complex life cycle of the European eel
(Wright et al., 2022), there are several different factors
attributed to its decline (Feunteun, 2002; van Ginneken and
Maes, 2005; Friedland et al., 2007). These include oceano-
graphic changes (Westerberg, 1998; Kettle et al., 2011), such
as declines in Atlantic Ocean productivity (Desaunay and
Guerault, 1997; Dekker, 1998) and changes in the Gulf Stream
current, which threaten the transport of larvae to the European
continent (White and Knights, 1994; Knights et al., 1996).
Additionally, several continental human-related factors may
have also contributed to the species' decline, particularly
artificial barriers (e.g. sea defences, weirs, sluices, watermills
and hydroelectric dams: Solomon and Beach, 2004; McCarthy
et al., 2008). Thesemay prevent both upstream and downstream
migration (Moriarty andDekker, 1997; Acou et al., 2008) and in
some cases cause high mortality (Winter et al., 2006; Brown
et al., 2007). Further, human-induced degradation of freshwater
habitats including channelization, water abstraction, eutrophi-
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cation and pollution also negatively affect the European eel
(Feunteun, 2002; Starkie, 2003). Therefore, the International
Council for theExplorationof theSeas (ICES,2023)has recently
added a strong conservation element in its advice on fishing
opportunities for the European eel, stating that all species'
habitats should be restored, including connectivity but also
chemical, physical and biological features.

To ameliorate the European eel decline, member states of
the EU have implemented national Eel Management Plans
(EMPs: Aprahamian et al., 2007; Bilotta et al., 2011) aimed at
facilitating increased escapement of adults to the Sargasso Sea
(European Commission, 2014). Conservation work has centred
on mitigating the impacts of barriers to the upstream migration
of juveniles through the implementation of eel passes (Knights
andWhite, 1998; Solomon and Beach 2004; Piper et al., 2023).
However, several EMPs have also included initiatives to
restock freshwater systems with juveniles (Moriarty and
Dekker, 1997; Feunteun, 2002; Bevacqua et al., 2015),
although the effectiveness of this measure remains unknown
(e.g. Haubrock et al., 2019; Rohtla et al., 2021). While river
restoration does feature in several regional EMPs (Couldrick
et al., 2011), assessments of the effects of habitat improvement
strategies on European eel populations are still widely lacking,
despite habitat degradation being cited as one of the primary
causes of the species' decline (Feunteun, 2002). It is of great
importance, therefore, that river restoration implications for
the European eel are more widely assessed.

The River Glaven in England (UK) was the subject of an
extensive two-phase river restoration initiative involving
embankment removal to reconnect the river with its flood
plain, followed by re-meandering (Champkin et al., 2018).
A previous study evaluated the impact of restoration on general
fish communities at Hunworth (Champkin et al., 2018),
whereas the current study focuses, in more detail, on European
eel density, size structure (length, weight), movement and
growth (Objective 1), as well as on the consequences of
restoration for the species (Objective 2). To address Objective
1, changes in European eel density and size structure were
assessed over the study period in the control reach, with spring
and annual growth as well as movement between reaches
described. To address Objective 2, a Before-After-Control-
Impact (BACI) study was undertaken, comprising one survey
prior to embankment removal (pre-restoration: 2009), two
surveys following embankment removal but prior to
re-meandering (post-embankment removal: 2009–2010) and
four surveys subsequently (2011–2014: post-re-meandering).
We hypothesized that physical changes in substrata, channel
character and meso-habitat resulting from the restoration
would have affected European eel growth rates and
demographic variables.

2 Methods

2.1 Study area

The River Glaven is a small chalk stream in North Norfolk,
eastern England, UK. It rises from headwaters in the Bodham
area (52.90°N, 1.13° E) and is 17 km long. It initially flows in a
south-westerly direction prior to a sharp turn at Hunworth,
after which it continues northwards, discharging into the North
Sea at Blakeney Point (Fig. 1). The Glaven River flows over
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Fig. 1. The River Glaven at Hunworth (North Norfolk, eastern England, UK). Both study reaches are shown as is Thornage Mill, downstream of
the restoration reach, and the Environment Agency gauging station between the two study reaches. The geographical extent of the River Glaven
catchment and its position in the UK are shown in the inset. Image courtesy of H. Clilverd (UCL).
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Upper Cretaceous chalk bedrock in turn overlain by chalk-rich
sandy till and glaciogenic sand and gravels (Clilverd et al.,
2013, 2016). Accordingly, much of the river is classified as
chalk stream (Pawley, 2008) � a river type of high
conservation importance that is highly vulnerable to human-
induced degradation (Bowes et al., 2005). The River Glaven
catchment area covers 115 km2 and consists of diverse land
use, predominantly arable land, ancient and other deciduous
woodland, coniferous plantations (upper river) and grazing
meadows (middle and lower reaches).

The River Glaven catchment is of high conservation
interest because it supports several species listed under Annex
II of the EU Habitats Directive (92/43/EEC). These include
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white-clawed crayfish Austropotamobius pallipes, European
bullhead Cottus gobio, brook lamprey Lampetra planeri and
European otter Lutra lutra (European Commission 2015b), in
addition to brown trout Salmo trutta and the European eel,
which are UK priority species (Joint Nature Conservation
Committee, 2014). Nevertheless, many reaches of the River
Glaven have suffered a long history of human-induced
alteration. These include straightening and relocation of the
channel, interruption of longitudinal connectivity through the
introduction of mills and weirs, and removal of bankside trees
and large in-channel wood pieces (Clilverd et al., 2013;
Harwood et al., 2022). Further, as for many lowland European
rivers, the River Glaven is degraded by nutrient and fine-
f 14
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sediment pollution associated with upper catchment farmland
and the influence of sewage treatment facilities.

The study area comprised the Hunworth meadow river
restoration reach immediately downstream of Hunworth
Bridge (52.882152°N, 1.0658938° E) and an unmodified
control reach just above the bridge (boundary: from
52.882035° N, 1.0661432° E to 52.880925° N, 1.0673284°
E) (Fig. 1). The two study reaches are situated around 8 km
upstream of the Glaven's tidal limit at Cley at an altitude of
around 20m. Four major barriers (three water mills and one
tidal sluice) are present below the study reaches which are in
themselves separated by a small Environment Agency gauging
weir (Harwood et al., 2022). This isolates the fish populations
of either reach to some extent, although not during periods of
elevated discharge.
2.2 The Hunworth Meadow restoration

Prior to restoration, the River Glaven was constrained by
embankments along the entire length of the Hunworth meadow,
which ranged from 0.4 to 1.1m above the meadow surface
(Clilverd et al., 2016). These embankments entirely eliminated
floodingat the site.The restoration reach is a400� 100mgrazed
grassland bordered by a minor road to the south and coniferous
woodland andarable land to thenorth.The river at the site is both
alkaline (pH 7.7–8.0) and eutrophic, with phosphate and nitrate
nitrogen concentrations of <0.05mg l�1 and 5.8–7.5mg l�1

respectively (Clilverd et al., 2013).
The restoration was undertaken in two phases. The first

phase was conducted during March 2009 and involved the
removal of embankments to reconnect the river with the flood
plain (Fig. S1). Then, in August 2010, the river was
re-meandered to create a more sinuous channel, with pools
and riffles incorporated into the design (Fig. S1). During this
process, six backwaters (ranging in length from 3 to 18m)
were also created from remnants of the old river channel and
were not in-filled (Sayer, 2014). For the most part, river banks
were left to natural plant colonization, although limited
planting was undertaken with small patches of locally sourced
manna grass Glyceria maxima (from the study reach) used to
assist bank stabilization.

The re-meandering increased channel length of the
restoration reach from 370 to 430m and decreased mean
channel width by approximately 0.5m (from ≈3.2 ± 0.4 to ≈
2.7 ± 0.5m). This resulted in an overall increase in channel
surface area of 407 m2 (from 1549 to 1956m). Mean water
depth did not change significantly following restoration, but
the dominant substrate changed from silt/sand to gravel, which
increased by >13% between 2009 and 2012. Restoration also
increased meso-habitat diversity, with a greater number of
deeper pools present at the restoration reach. In the control
stretch, mean depth declined by ≈ 23% (from 24.1 ± 2.2 cm in
2009 to 18.4 ± 1.5 cm in 2012) likely as result of reduced
discharge, but no change occurred in substrate composition. In
addition, the incidence of riffle meso-habitats declined, while
runs increased. The prevalence of glides or pools remained
unchanged in the control stretch between 2009 and 2012
(Champkin et al., 2018).
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2.3 Eel sampling and tagging

The eel population was sampled along the restoration and
control reaches of the River Glaven over the course of seven
successive sampling events to encompass geomorphological
and hydrological conditions prior to and following the two-
phase re-naturation scheme. Both reaches were initially
sampled in February or March 2009 (pre-restoration) and
then subsequently in June of the same year, following
embankment removal. Both reaches were sampled again in
June 2010, prior to re-meandering works (post-embankment
removal), and then over consecutive days in each subsequent
May or June for four years after the restoration was completed,
most recently in June 2014 (post-re-meandering). The
restoration (downstream) reach was always sampled first to
avoid disturbance-induced turbid water (due to sediment
resuspension while electro-fishing) from the control (up-
stream) reach making downstream fishing more challenging.

On each sampling date, the reach to be sampled was
isolated using upstream and downstream stop nets (8mm
mesh). Each reach was then electro-fished using a 230V
Electracatch control box, 50Hz Pulsed Direct Current, 2m
twin-tailed cathode and two persons fishing, each with a
300mm ringed anode and hand net. This was performed in
successive removals style (DeLury, 1951), based on three
complete runs through the 370 and 160m restoration and
control reaches, respectively, with approximately the same
fishing effort (in terms of time and people involved) put into
each. All captured fishes were quickly transferred to large,
aerated tanks adjacent to the river, identified to species level,
with their abundance recorded (Champkin et al., 2018).
European eel density was calculated as abundance, estimated
using the general weighted k-pass estimator (Carle and Strub,
1978) in the removal function of package FSA (Ogle, 2017) for
R v. 4.3.3 (R Core Team, 2024), divided by the area surveyed.

All captured fish were anaesthetized on the bankside in a
solution of 2-phenoxyethanol (2ml l�1), measured for total
length (TL, nearest mm) and then weighed (precision 0.1 g). To
allow recapture inferences and calculations of growth rate, fish
captured from both reaches during the pre-restoration (March
2009) and post-embankment removal sampling (June 2009)
were tagged utilizing two distinct tagging methods, depending
on body length. Fish larger than 250mm TL had a passive
integrated transponder (PIT) tag inserted into the peritoneal
cavity, specifically to lie in the posterior third of this region. Fish
< 250mm TL were injected with visible implant elastomer
(VIE) tags, with different colours and bodily locations used to
allow for distinctive identification. Following the completion of
three electrofishing runs, andonce they had fully recovered from
the effects of the anaesthesia, all fish were returned to the reach
from which they were captured. During successive sampling
events, allfishwere anaesthetized and scannedwith a PITreader
to identify recaptured individuals; if no PIT tag could be
detected, then a VI light was used to illuminate theVIE tag. Any
untagged fish captured post-embankment removal were also
tagged using the methods described above. The numbers of fish
caught, tagged and recaptured per each time period are shown in
Table 1. All work was carried out under a UK Home Office
Project Licence (PPL 80/2302).
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Table 1. Numbers of European eels Anguilla anguilla in the River Glaven at Hunworth (north Norfolk, eastern England, UK) caught, tagged and
recaptured during the study. n.a. = not applicable.

Number of individuals

Reach Time period Year Treatment Caught Tagged Recaptured

Control 1 2009 Pre-restoration 38 34 n.a.

Control 2 2009 Post-embankment removal 30 17 10
Control 3 2010 Post-embankment removal 38 n.a. 17
Control 4 2011 Post-re-meandering 17 n.a. 6
Control 5 2012 Post-re-meandering 15 n.a. 5
Control 6 2013 Post-re-meandering 10 n.a. 0
Control 7 2014 Post-re-meandering 6 n.a. 0
Restoration 1 2009 Pre-restoration 81 35 n.a.
Restoration 2 2009 Post-embankment removal 87 58 18
Restoration 3 2010 Post-embankment removal 42 n.a. 15
Restoration n.a. 2010 Fish rescue 14 n.a. 3
Restoration 4 2011 Post-re-meandering 18 n.a. 4
Restoration 5 2012 Post-re-meandering 26 n.a. 7
Restoration 6 2013 Post-re-meandering 34 n.a. 0
Restoration 7 2014 Post-re-meandering 32 n.a. 0
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During the re-meandering works in August 2010 and prior
to the old river channel being backfilled, a ‘fish rescue’ was
carried out by a private contract team using the aforementioned
sampling approach in order to temporarily remove and relocate
fishes. However, these data are derived from short reaches of
the existing channel only; as such, they are not representative
and were excluded from all population demography analyses.
However, tagged fish recorded during this operation were
opportunistically used for growth rate calculations (Tab. 1).

2.4 Data analysis

Annual growth rates were based upon a fish individual's
increase in length between June 2009 and its most recent
capture, divided by the duration of the time interval between
capture in days. The resulting values for daily growth rate (mm
day�1) were then multiplied by 365 to calculate annual (mm
year�1) growth rates. For fish not captured in June 2009,
calculations of annual growth rates were based upon their
original length in February or March 2009 and their most
recent capture. Growth increments for a spring period (the
approximate three-month period between the initial two
sampling events in February or March 2009 and in June 2009)
were also calculated, where recaptures allowed.

Several tagged fish had ascended the small weir
separating the upstream and downstream reaches. Conse-
quently, the data were separated into three classes: individuals
tagged and subsequently always recaptured in the restoration
reach (sedentary group 1); individuals tagged and always
recaptured in the control reach (sedentary group 2); and
individuals captured at least once in each reach (mobile
group). Growth rates of all individuals recaptured prior to
major restoration work were included when describing mean
annual and spring growth rates in the Glaven, but for
comparison between reaches, growth rates of all individuals
that were captured consecutively in the same reach at least
twice were considered.
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Changes in European eel density (per 100 m2), length and
weight over time were assessed only at the control reach using
linear models given potential effects of restoration on observed
trends at the restoration reach, with Time period (1–7; see Tab.
1) used as a continuous explanatory variable (Objective 1).
Length and weight were log-transformed prior to being fitted
as response variables to comply with the linear regression
assumptions of normality and homoscedasticity of model
residuals. ANOVA was used to compare annual and spring
growth rates of individuals between the restoration and control
reaches. Annual growth rates were also compared between
mobile and sedentary individuals as well as VIE-tagged and
PIT-tagged individuals using ANOVA to see if there were any
differences in growth between different groups.

Impact of restoration on European eel density (per 100 m2),
length and weight were assessed using a BACI design, with
one sampling event pre-restoration, two post-embankment
removal, and four following re-meandering (Objective 2). Due
to the lack of tagged fish captured at least twice following the
re-naturation (n= 3 over both reaches: Table 1), it was not
possible to assess impact of restoration on eel growth rates. In
the BACI design, a statistically significant effect is identified if
a change in any of the response variables is detected at the
restoration reach following intervention relative to the control
reach (Schwarz, 2014), so that the parameter of interest is the
Reach�Treatment period interaction. Given small sample
sizes and lack of replicates, a randomization approach was
used to test for impact of restoration on European eel density.
Abundance data were bootstrapped from the normal distribu-
tion using mean and standard deviation values from the Carle
and Strub model, within the stratification Reach, Treatment
and Time period (10,000 iterations). These bootstrapped
values were then transformed into densities and averaged per
Treatment and Reach. Differences between the restoration and
control reaches was calculated for each Treatment, and
resulting boxplots were compared for overlap to determine if
there was any statistically significant difference (a = 0.05)
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Fig. 2. Marginal effects from linear models showing significant
changes in density, length, and weight of European eel Anguilla
anguilla during the study period in the control reach. Error bars
represent 95% confidence intervals of the estimated effects.
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between different treatments. To test for impact of restoration
on European eel length and weight, linear models were fitted,
with log-transformed eel length and weight used as response
variables and Reach (restoration vs control reach), Treatment
(pre-restoration vs post-embankment removal vs post-re-
meandering) and their interaction used as fixed effects.

Linear models were fitted using package lme4 (Bates et al.,
2015) of R and evaluated by anF-test with theAnova function in
the car package (Fox and Weisberg, 2011). When testing for
effect ofTimeperiod, aswell as restoration (Reach�Treatment)
on European eel length and weight, fish ID was not fitted as a
random effect on the intercept given the small overall proportion
of tagged and recaptured eel individuals (Tab. 1) and thus any
effect of autocorrelation was considered negligible. Marginal
effect plots were constructed in R package ggplot2 (Wickham,
2009). Model residuals were tested against the assumptions of
normality, homogeneity, and independence using standard
graphical validations (Figs. S2–S6; Zuur et al., 2009).

3 Results

The density of European eel showed a pronounced decrease
between 2009 and 2014 in the control reach (F1,5 = 44.31,
P< 0.05), with mean density decreasing by 1.5 individuals 100
m�2 (Fig. 2). The size structure of the population in the control
reach also changed, with both the length (F1,152 = 11.65, P <
0.05) and weight of individual fish (F1,152 = 16.46, P < 0.05)
showing increases of 11.5mm year�1 and 6.2 g year�1, on
average, respectively between 2009 and 2014 (Fig. 2).

Of the 59 recaptured individuals, the majority (73%) showed
high site fidelity and were classified as sedentary, with some
individuals being captured at the same reach three to four
times during the study period. Sixteen individuals were observed
to move from one reach to another and were thus classified as
mobile.Most of thesemobile individuals (75%)moved upstream.
Two mobile individuals undertook multiple trips over the weir
from one reach to another and back to the initial reach.

Spring and annual growth rates of all individuals recaptured
prior to restoration ranged from �5 to 36mm year�1 (mean±
SE=7.2 ± 2.0mm year�1) and �5 to 104mm year�1 (mean±
SE=35.8 ± 2.5mm year�1), respectively. One individual
exhibited a negative annual growth rate, three individuals had
negative spring growth rates, and three individuals did not grow
over the springperiod.WhencomparingallVIE-taggedandPIT-
tagged individuals, no difference was found in annual growth
rates (F1,55 = 2.98, P= 0.09). Similarly, mobile (mean± SE=
34.9 ± 3.8mm year�1) and sedentary individuals (mean± SE=
34.1 ± 2.3mm year�1) exhibited similar growth rates
(F1,55 = 0.47, P= 0.50). Mean annual growth of sedentary
eels was 35% greater in individuals residing at the restoration
reach (37.56 ± 3.00mm year�1) than at the control reach
(27.90 ± 3.68mm year�1), albeit marginally not statistically
significant (F1, 33 = 3.60, P= 0.06; Fig. 3). There was no
difference in the spring growth rate of eels between the two
reaches (F1, 24 = 0.48, P> 0.05; Fig. 3). Both spring and annual
growth rates of individuals at either reach varied widely, and
several individuals resident in the restoration reach increased in
length by over 30mm between March and June 2009, while
others showed very little or no change in length over the same
period.
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There was no difference in European eel density between
the control and restoration reaches post-embankment removal,
but density had slightly increased in the restoration reach
compared to the control reach following re-meandering,
although was not statistically significant when compared to the
pre-restoration phase (Fig. 4). Habitat improvement also had
no effect on European eel length or weight as indicated by a
lack of significant BACI interaction term, i.e. Reach�
Treatment (Tab. 2; Figs 5 and 6).

4 Discussion

Habitat improvement measures have been identified as
important to European eel conservation in many catchments
f 14



Fig. 3. Spring growth (March–June 2009) and annual growth rate of two populations of European eel resident in the two adjacent reaches of the
Hunworth restoration reach, calculated using length data of tagged and recaptured individuals between 2009 and 2012. Boxes represent all
values between the 25th and 75th quartiles and show the median (—) and mean (•) for each category. Box plot whiskers represent minimum and
maximum calculated growth increments for each population. Outliers (þ) are also shown. n= number of individuals fromwhich growth rate was
calculated.
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under regional EMPs (Couldrick et al., 2011). Despite this, our
study is one of the first to assess the local effects of a typical
river restoration initiative on the European eel population in
detail (see Champkin et al., 2018).

The European eel population in the control reach of the
River Glaven declined over the study period, with a concurrent
increase in the length and weight of individuals. This likely
relates to more general trends in European eel escapement and
recruitment over the study period. Specifically, decreasing
European eel density in the River Glaven can be linked to the
overall decline in recruitment observed across the species'
distribution range. A northward shift in the position of the Gulf
Stream was associated with reductions in elver catches in most
European catchments throughout the 1980s and early 1990s
(White and Knights, 1994). Therefore, climate change-induced
oceanographic changes with consequent shortages of available
food resources (Bonhommeau et al., 2008) may have
decreased recruitment of European eel larvae to the East
Anglian coast (Chang et al., 2019) and hence the River Glaven.
At a local river scale, barriers to upstream migration can
represent one of the main factors determining the demography
and density of European eel populations (White and Knights,
1997). Very few man-made barriers in British rivers are
completely impassable by the European eel, and consequently
the proportion of freshwater habitat rendered inaccessible by
such structures (<5%) is much less than in other European
countries where hydropower stations and large dams prevail
(Moriarty and Dekker, 1997). Nevertheless, river flows for
most lowland British rivers are interrupted by numerous mills,
weirs, sluices and tidal gates, which can prevent the complete
colonization of habitats by European eel (Moriarty and
Dekker, 1997; Lasne and Laffaille, 2008).

European eels tend to migrate progressively further
upstream throughout their development, such that their mean
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age and size are generally greater in upper catchment areas,
while abundance is accordingly lower (Feunteun et al., 2003;
Couldrick et al., 2011). Evidence from recaptured individuals
in this study suggests that many eels lead a relatively sedentary
lifestyle and show high site fidelity in the River Glaven prior to
maturation, with some individuals being recaptured in the
same short reach up to three years after initially being tagged.
Other tagging and telemetry studies that have tracked
movements in the freshwater stage of catadromous Anguilli-
dae species in small streams and marsh ecosystems have
demonstrated similar behaviour (Baras et al., 1998; Laffaille
et al., 2005; Ovidio et al., 2013). Many tagged individuals
recaptured in this study exceeded 350mm at which size a
proportion of an eel population (i.e.males) is known to mature
and begin seaward migration (Tesch, 2003). This suggests that
eels could have vacated the river system over the survey
period, but did not.

The growth rates of yellow-stage European eels are
typically highly variable between individuals and among
different water bodies (Moriarty, 2003), being dependent on
factors such as habitat characteristics, water temperature,
population density and food availability (Tesch, 2003). This
concurs with the present findings in which calculated annual
growth rates varied extensively between individuals. Never-
theless, the mean annual growth rate of 36mm year�1 was
consistent with values calculated for European eel populations
in other British river systems: e.g. 38mm year�1 in the upper
River Thames (Naismith and Knights, 1993), 31mm year�1 in
the River Frome, southern England (Mann and Blackburn,
1991), 33mm year�1 in the Barrow River, Northern Ireland
(Moriarty, 1983), and 16–28mm year�1 in the lower River
Severn, western England (Aprahamian, 2000). Higher annual
and spring growth rates were observed for European eels at the
restoration reach, although this was not statistically significant.
f 14



Table 2. Statistical results of ANOVA applied to linear model testing for changes in European eel length and weight in the two reaches of the
River Glaven pre-restoration, post-embankment removal, and post-re-meandering (Treatment). * Denotes significant effect at a= 0.05.

Length Weight

F P F P

Reach 0.13 0.72 0.35 0.55

Treatment 20.1 <0.01* 28.2 <0.01*
Reach � Treatment 0.17 0.85 0.25 0.78

Fig. 4. Boxplots showing changes in density of European eel in the restoration and control reaches of the River Glaven during the study period
following a randomization approach. Top plot: boxplot showing bootstrapped density values during pre-restoration (1), post-embankment
removal (2–3) and post-re-meandering (4–7). Bottom left plot: boxplot showing averaged bootstrapped densities per Treatment and Reach,
where a = pre-restoration, b = post-embankment removal, and c = post-re-meandering. Bottom right plot: boxplot showing difference in
bootstrapped densities between restoration and control reach per Treatment. Dark black horizontal line represents 50% of the data, light black
horizonal lines represent 25% and 75% of the data (Interquartile Range� IQR) and light black vertical lines minimun and maximum data values
in comparison to IQR. Dark black dots represent outliers.
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In this study, no significant response of the European eel
population to habitat restoration was detected during the study
period. This could suggest that increases in meso-habitat
heterogeneity were not sufficient to initiate a change in the size
structure or density of the European eel population, that other
factors may be more important, or that the period monitored
after the restoration measure was not sufficiently long (Didham
et al., 2020). Although European eels inhabit a great diversity
of freshwater meso-habitats (Ovidio et al., 2013), they are
typically closely associated with cryptic areas comprising soft
(silt) substrate, high aquatic macrophyte cover and crevices
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between boulders, roots or beneath undercut banks in which
they seek refuge from predators and bright light (Ovidio et al.,
2013). Recently, in a study of European eel distribution and
habitat preferences in Swedish coastal rivers and streams, it
was concluded that restoration efforts aimed at enhancing
European eel populations should focus on the lower reaches of
larger rivers (where European eels are more abundant) with
stony substrates (Degerman et al., 2019). However, in the
River Glaven itself, Harwood et al. (2022) did not find a strong
positive relationship between European eel occurrence and
coarse substrates, instead showing that presence of eels was
f 14



Fig. 5. Plots showing changes in the length of European eel in the restoration and control reaches of the River Glaven during the study period.
Top plot: line plot showing mean length with 95% confidence intervals in restoration and control reaches during pre-restoration (1), post-
embankment removal (2–3) and post-re-meandering (4–7). Emanating vertical dotted lines denote embankment removal and re-meandering.
Bottom plot: marginal effects plot from the linear model showing no significant impact of interaction of Reach and Treatment on eel length,
where a = pre-restoration, b = post-embankment removal, and c = post-re-meandering. The error bars represent 95% confidence intervals of the
estimated effects.
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significantly benefited by overhanging branches and in-stream
large wood. This may be due to the vastly different bed
structure of the Glaven compared to a typical rocky Swedish
stream, where large boulders are present. Given the association
between large wood habitat and European eel occurrence in the
Page 9 o
wider River Glaven catchment, it is possible that habitat
modifications were not beneficial for European eel because
they failed to provide suitable refuge habitat. Both before and
after restoration, overhanging trees were rare and the
restoration section entirely lacks tree root and in-stream large
f 14



Fig. 6. Plots showing changes in the weight of European eel in the restoration and control reaches of the River Glaven during the study period.
Top plot: line plot showing the mean weight with 95% confidence intervals in restoration and control reaches during pre-restoration (1), post-
embankment removal (2–3) and post-re-meandering (4–7). Emanating vertical dotted lines denote embankment removal and re-meandering.
Bottom plot: marginal effects plot from the linear model showing no significant impact of interaction of Reach and Treatment on eel weight,
where a = pre-restoration, b = post-embankment removal, and c = post-re-meandering. The error bars represent 95% confidence intervals of the
estimated effects.
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wood habitat. In the context of Eurasian otter recovery in the
catchment for which European eel is a key diet item (Almeida
et al., 2012), absence of sufficient predation-refuges in fallen
trees and associated debris dams may be of critical
importance.
Page 10
As they grow, European eels demonstrate ontogenetic
shifts in meso-habitat preference in fresh water (Laffaile et al.,
2003, 2004). Smaller individuals (<300mm) typically inhabit
shallower regions with a greater density of aquatic macro-
phytes and deeper silt substrate, whereas larger individuals are
of 14
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most commonly associated with slow-flowing, deeper water
courses (Lafaille et al., 2004; Couldrick et al., 2011) that have
less macrophyte cover (Lafaille et al., 2003, 2004). These
findings suggest that, to preserve and promote freshwater
habitats for European eel, a heterogeneous patchwork of
habitats must be maintained throughout a catchment. Thus, it
cannot be concluded that the Hunworth restoration will not be
beneficial for European eel when considered at the whole-
catchment scale. In addition, the lack of significant changes in
eel density and size structure could be an artefact of small
sample size, lack of replicates and unbalanced design, which
could have hampered the detection of positive effects on the eel
population. Future studies are therefore required that
incorporate an adequate experimental design to see if the
patterns observed immediately following restoration are
upheld in the longer term. This is especially pertinent given
the return of trees to the banks of the restoration reach in the
present day (C. Sayer, pers. obs).

5 Conclusion

Whilst river restoration initiatives can be beneficial to fish
assemblages (Hohausová and Jurajda, 2005; Summers et al.,
2008; Lorenz et al., 2013), many studies show that positive
responses of fish populations to such approaches are not
assured (e.g. Smith, 2013; Sinclair et al., 2023). Previous
studies recommend larger-scale rehabilitation efforts to boost
fish density and diversity, advising a focus on catchment-scale
improvements such as barrier removal and enhanced
connectivity, and addressing water quality issues including
eutrophication, sedimentation and pollution for ecosystem
recovery (Champkin et al., 2018). This includes small coastal
streams, which may have an important, but overlooked, role in
conservation strategies for European eel (Copp et al., 2021).
Given its small size, theRiverGlavencouldbemore important as
a conduit for eel upstream and downstream passage, rather than
as permanent habitat (Harwood et al., 2022). Other studies have
also concluded that the restoration and protection of wider
wetland ecosystems, which are among the most important
freshwater macro-habitats for European eels (Laffaille et al.,
2004), would be more beneficial than river restoration (Eybert
et al., 1998). In the River Glaven, it is known that outfall sluices
fromold artificial lakes act as considerable barriers for European
eels, with substantial aggregations observed for elvers down-
stream of these structures (Harwood et al., 2022). Thus, future
eel conservation work might be best focused on addressing
wider-scale river-to-lake European eel passage issues. Due to its
complex life cycle, the European eel is threatened by different
factors, from the global to the local scale, and these interactions
make it difficult to assess the effectiveness of small-scale
conservation projects (Bevacqua et al., 2015). Reducing fishing
pressure (Lyach, 2022), tackling the illegal trade in glass eels
(Richards et al., 2020) and implementing habitat restoration
plans (as here), may not yield significant contributions to the
restoration offish stocks if they are not integrated into a cohesive
management strategy (Ciccotti et al., 2012). In this case of the
Hunworth restoration reach, further investigation is required to
establish whether European eel and other fishes will derive
benefits fromthe river restoration initiativedescribedhereinover
the longer term.
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Fig. S1. Restoration reach of the River Glaven at Hunworth
(north Norfolk, UK): (a) in January 2009, prior to the renaturation
project; (b) after removal of embankments in March 2009; and (c) in
December 2010, after recreation of meanders in August.

Fig. S2. Diagnostic plots suggesting that the assumptions of
normally distributed, homoscedastic and independent residuals of
linear model testing for effect of Time period on eel density at the
control reach were not severely violated.

Fig. S3. Diagnostic plots suggesting that the assumptions of
normally distributed, homoscedastic and independent residuals of
linear model testing for effect of Time period on eel length at the
control reach were not severely violated.

Fig. S4. Diagnostic plots suggesting that the assumptions of
normally distributed, homoscedastic and independent residuals of
linear model testing for effect of Time period on eel weight at the
control reach were not severely violated.

Fig. S5. Diagnostic plots suggesting that the assumptions of
normally distributed, homoscedastic and independent residuals of
linear model testing for effect of interaction of Reach and Treatment
on eel length were not severely violated.

Fig. S6. Diagnostic plots suggesting that the assumptions of
normally distributed, homoscedastic and independent residuals of
linear model testing for effect of interaction of Reach and Treatment
on eel weight were not severely violated.

The Supplementary Material is available at https://www.kmae.
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