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Online End-to-End Learning-based Predictive
Control for Microgrid Energy Management

Vittorio Casagrande, Martin Ferianc, Miguel Rodrigues, Francesca Boem

Abstract—This paper proposes an innovative Online Learning
(OL) algorithm designed for efficient microgrid energy manage-
ment, integrating Recurrent Neural Networks (RNNs) and Model
Predictive Control (MPC) in an End-to-End (E2E) learning-
based control architecture. The algorithm leverages the RNN
capabilities to predict uncertain and possibly evolving profiles of
electricity price, load demand, and renewable generation. These
are then exploited in an integrated MPC optimisation problem to
minimise the overall microgrid electricity consumption cost while
guaranteeing operation constraints. The proposed methodology
incorporates a specifically designed online version of the Stochas-
tic Weight Averaging (O-SWA) and Experience Replay (ER)
methods to enhance online learning capabilities, ensuring more
robust and adaptive learning in real-time scenarios. Additionally,
to address the challenge of model uncertainty, a task-based loss
approach is proposed by integrating the MPC optimisation as
a differentiable optimisation layer within the neural network,
allowing the OL architecture to jointly optimise prediction and
control performance. The performance of the proposed methodol-
ogy is evaluated through extensive simulation results, showcasing
its Transfer Learning (TL) capabilities across different microgrid
sites, which are crucial for deployment in real microgrids. We
finally show that our OL algorithm can be used to estimate the
prediction uncertainty of the unknown profiles.

Index Terms—Energy management system, Microgrid, On-
line learning, Model predictive control, End-to-end learning,
Learning-based control
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Fig. 1. Schematic of the control architecture. The controller receives current
measurements of the system states and current values of the unknown profiles
from the microgrid and then computes the power schedule.

αv Regression loss weight for the feature v
β Task loss weight
ϵ ER loss weight
γ, δ O-SWA decay factor and update period
nh LSTM hidden dimension
z
List of symbols
ψ•
t , ω•

t NN input/prediction at time t
σ, ηin, ηout Storage parameters
L Look-back window
P g
t Power exchanged with the grid at time t
P l
t Load power at time t
P r
t Renewable power generation at time t
P sin
t , P sout

t Storage input and output power at time t
pt Electricity price at time t
sm, sM , P s

M Storage charge and power limits
st Storage state at time t
T MPC prediction horizon
Ts Controller sampling time

I. INTRODUCTION



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY , VOL. 00, NO. 00, MONTH YEAR 2

THE microgrid concept, firstly introduced in [35], is
defined in [44] as a cluster of loads, distributed generation

units and energy storage systems, operated in coordination to
reliably supply electricity and connected to the power distri-
bution grid. The Microgrid higher control layer is responsible
for power flow control, power management and optimisation
of the microgrid operation [53] and includes the microgrid
EMS. This is defined in [59] as the controller that computes
the power flows to provide a stable delivery of power to loads
while optimising energy production and other operational
goals. One of the primary challenges in designing a microgrid
EMS is effectively addressing the uncertainty, particularly
concerning electricity price, load demand, and renewable
power generation. The conventional approach to tackle this
issue involves the separate design of a predictor to estimate
the uncertain profiles and of an optimiser to compute the
microgrid schedule accordingly. Typically, statistical tools are
utilised as predictors based on historical data. In the literature,
offline trained (i.e. before deployment) ML models are widely
proposed for this purpose [18]. However, the first drawback
of this approach is that such predictors can’t adapt to changes
in the environment, requiring retraining whenever significant
changes occur, such as installing new equipment, revamping,
maintenance, or the occurrence of faults. To address this
limitation, OL techniques offer a solution by enabling the
predictor to continuously adapt based on the incoming stream
of data [22]. Moreover, another drawback of the separate
design of the prediction and optimisation tools is that this
might lead to sub-optimal control performance. Performance-
based learning methods [33] are offering efficient solutions for
problems involving prediction and optimisation, such as micro-
grid scheduling [15]. In this paper, we propose a novel method
that integrates a comprehensive OL architecture, enabling the
predictor’s adaptability in real-time and MPC, allowing the
computation of the optimal scheduling while guaranteeing the
satisfaction of operational and safety constraints. Additionally,
we design an online version of performance-based learning to
further enhance the overall performance of the EMS by taking
into account the uncertainty in the model adopted by the MPC
(such as, for example, the uncertainty in the energy conversion
efficiency of a storage system), so to optimise prediction
and control performance jointly. A schematic of the proposed
architecture is shown in Fig. 1. The controller comprises a
NN part for profiles’ prediction and an integrated optimisation
layer for the scheduling computation. The controller receives
the microgrid’s measurements of the microgrid state and the
current values of renewable generation, load demand and price
profiles and computes the optimal power schedules for all
the microgrid components. Each agent then exchanges power
accordingly with the grid, and the storage system draws/injects
a certain amount of power in the microgrid, hence getting
to a new state at the subsequent time step. In the following
paragraphs, we first overview the relevant work in this field
and then list our contributions.

A. Related work
Learning-based MPC. The integration of MPC with ML

techniques has recently gained significant attention in the

control community for various purposes: notably, to enhance
prediction models [41], to derive explicit MPC laws [34,
45], for controller auto-tuning [40, 27] and to forecast future
profiles [46, 52]. In particular, for the EMS design problem,
the synergistic application of MPC and learning methodologies
has proven highly advantageous [61]. While MPC effectively
compensates for uncertainties and handles constraints, learning
tools are powerful for predicting uncertain profiles, such as
load demand or renewable power generation. For example,
in [46], Support Vector Machine regression is effectively
employed to predict future renewable power generation and
load demand. Authors of [26] incorporate a seasonal auto-
regressive moving average model in the EMS to generate a
set of future scenarios for a scenario-based MPC method.

Learning methods for microgrid EMS. NNs have emerged
as valuable tools in this context because they can approxi-
mate functions with arbitrary accuracy [38]. More specifically,
several examples exist in the literature where NNs are first
offline trained based on available datasets and then used
online for profile prediction [42, 46, 52, 58]. However, the
main drawback of this approach is that these prediction tools
are not able to adapt in real-time to possible changes in
the environment, which can lead to issues in applications
and scenarios involving ageing, sensor calibration, or the
installation of new equipment [22]. Furthermore, specific plant
datasets might not always be readily available beforehand. This
paper adopts an OL approach to overcome these limitations,
enabling the learning process to adapt in real-time. Though
beneficial, this approach comes with some theoretical and
implementation challenges. In [56], an ensemble combining
offline and online learning is used for load forecasting. In [22],
an OL Long Short-Term Memory (LSTM) model is pre-
sented, incorporating hyperparameter tuning to forecast load
prediction. Online uncertainty estimation is included in [4]
together with load forecasting. While achieving good results
in online profile prediction, the tools above focus on the
prediction of a single profile only, e.g. the load demand,
and do not consider the EMS control problem. Moreover,
one of the primary challenges of OL involves the trade-
off between adaptation to new incoming information and
retaining old knowledge, commonly referred to as catastrophic
forgetting [25]. To deal with this issue, authors of [12] propose
a renewable energy generation predictor that is retrained at
the end of each day using all available data, resulting in a
high computational cost. This paper proposes a method that
allows us to adapt to new data while maintaining the memory
of learnt information without requiring a high computational
cost. In this context, Reinforcement learning (RL) has emerged
as a promising approach for real-time controller adaptation
under uncertainties. Its application in the EMS design has been
explored in several papers, such as [31, 54, 37], which present
methods for battery scheduling under uncertain conditions
of load demand, renewable generation, and electricity price.
Furthermore, in [49], an RL-based controller is proposed for
EMS, demonstrating improved performance with respect to
MPC in terms of real-time computation but at the cost of
computationally expensive offline learning. However, it is
essential to note that a crucial challenge in implementing
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RL in real-world systems is that the RL exploration phase
may lead to unsafe system states, requiring reliable simulation
environments with ample available data, which is not always
feasible or accurate. To address this issue, authors of [57]
propose a safe exploration method that involves the implemen-
tation of an MPC-based safety filter after the RL controller
is entitled to modify the input to maintain safe operation.
Nevertheless, this approach requires adding an element to the
controller, which is unsuitable for scheduling problems.In this
respect, the proposed method allows us to take the best of
the two worlds, the OL adaptation capabilities and the MPC
constraints satisfaction ability, by integrating the control task
in the learning framework. To obtain this, we consider a
performance-based approach.

Performance-based Learning. The concept of performance-
based learning, or E2E learning [33, 39], is closely intertwined
with RL and focuses on generating prediction models with the
objective of minimising decision errors rather than prediction
errors when learning is used as an aid in decision making [17].
This approach has found application in scheduling tasks, like
battery scheduling, as demonstrated in [15], where it shows
superior performance in minimising a task-specific loss with
respect to a controller trained to minimise a standard prediction
error. However, in that work, the controller is not adapted
online. Performance-based learning has also been considered
for control purposes in [7], where a Bayesian optimisation [51]
is used to select the best linear model for approximating the
nonlinear dynamics of a robotic system, thereby maximising
controller performance. Differentiable optimisation layers [2]
have proven valuable in this context, enabling the learning of
convex optimisation models [1] and policies [3]. An online
implementation of this approach is proposed in [6], where a
self-tuning MPC is developed using differentiable optimisation
layers, as proposed in this paper. However, the model there
is trained assuming the presence of an expert system (whose
availability is often impossible to assume) running alongside
it and minimising an imitation loss. Moreover, authors of [16]
employ differentiable layers to obtain a deep learning alterna-
tive to explicit MPC. However, the training phase is performed
fully offline, assuming the availability of a dataset of the
system dynamics.

B. Contributions

This paper proposes a novel learning-based MPC control
architecture for EMS that can adapt to changes in the environ-
ment thanks to a specifically designed online training method-
ology. As opposed to standard methods such as [46], where
the predictor is offline trained on an a priori available dataset,
here we present an OL algorithm to adapt the NN predictor to
possible changes based on the stream of incoming data. The
predicted profiles are then used to feed an optimisation layer
that computes the power schedule over the prediction horizon
in a receding horizon fashion.

To avoid catastrophic forgetting, without the need of retrain-
ing the network as in [12], we design novel O-SWA and ER
algorithms, able to be online implemented for the first time
in the literature, to the best of the Authors’ knowledge. While

the O-SWA implicitly maintains the knowledge gained in the
previous steps by averaging new and past NN weights, the
ER explicitly presents past input-output pairs to the network.
By using differentiable optimisation layers [2], it is possible
to differentiate through the constrained optimisation problem
at the last NN layer to train the network in an E2E fashion,
i.e. by tuning the weights of the NN targeting the closed-
loop controller performance instead of the unknown profiles
prediction or system identification loss. In this way, moreover,
it is possible to enforce the satisfaction of some operation
and safety constraints, embedding them in the NN. This paper
represents the first time that differentiable layers are used
online for an E2E implementation of a learning-based MPC
without requiring an expert controller, in general, not only
in the microgrids application. This is in contrast to [15, 16],
where the controller is offline trained, and to [6], requiring an
expert controller system running alongside it.

Hyperparameters are selected via the HPO algorithm suit-
able for online learning, employing a custom validation loss
that can target the unknown profile prediction or the EMS
performance. Moreover, since data of a specific microgrid
may not be available a priori in the EMS design phase, and
motivated by the fact that an online trained algorithm might
have poor performance for some initial steps, we show that
the proposed methodology has good TL [60] capabilities,
allowing to pre-train the algorithm on any available microgrid
dataset and obtain, from the beginning, better performance
when online implementing the algorithm on the actual system.
This shows that the method is suitable for implementation on
real systems and provides additional evidence of the effec-
tiveness of the OL algorithm in adapting from one microgrid
to another. We then provide an estimate of the memory
required for hardware implementation to show the feasibility
of implementation in real-world scenarios. These measures are
also used as performance indicators to compare controllers
characterised by different choices of hyperparameters affecting
the network size. Finally, we show that our method can easily
be extended to online uncertainty estimation. In particular, we
modify the regression loss function to estimate the quantiles
of the unknown profiles. We use this additional information
to estimate the cost uncertainty over the prediction horizon
online to support the decision process.

Preliminary results have been presented in [8, 9, 10]. In
this paper, we integrate some previously and separately pro-
posed results in a comprehensive architecture and significantly
extend the contributions. In particular, as opposed to [8, 9],
in this paper, we propose a different task loss, not requiring
the solution of one additional optimisation problem at each
time step, thus reducing the computational effort. Moreover,
we introduce a proper HPO procedure suitable for the online
learning algorithm. We propose enhancements to the online
learning algorithm, specifically the O-SWA and the ER pro-
cedures, and we explicitly consider the uncertainty in the
system’s parameters. Compared to [10], the main novelties
lie in integrating regression and task losses within the online
learning framework and the ER algorithm. Furthermore, we
provide extensive simulation results. Finally, as a novel con-
tribution with respect to all our previous papers, in this paper,
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we introduce a method for online uncertainty quantification
and consider the memory requirements for controller imple-
mentation.

Summarising, the two main contributions of the paper are:
1) a novel E2E task-based learning methodology that can
be implemented online without requiring the availability of
a priori training datasets or the presence of expert systems; 2)
a novel microgrid EMS which estimates uncertain profiles of
prices, demand and generation by jointly optimising prediction
error and controller performance and can adapt to uncertainty
and changes in the systems parameters and the environment.

Further novel contributions of this paper are:
• we propose an online implementation of the ER algo-

rithm;
• we define a task-based loss for the online NN training;
• we explore the algorithm capabilities in the case of an

uncertain system model, in particular, when the task-
based loss is used;

• we formally optimise the hyperparameters of the NN
targeting the closed loop controller performance and the
profile prediction accuracy;

• we investigate the transfer learning capabilities when the
task-based loss is used;

• we estimate an indicator for the memory required by
different controller architectures;

• we extend the method for online uncertainty estimation,
showing a possible application in the online estimation
of the future cost.

The code used for the numerical validation in the simulation is
available at https://github.com/vittpi/ol-ems.

The remainder of the paper is organised as follows. In
Section II, we describe the considered model of the microgrid
and the proposed EMS architecture. In Section III, we present
the online training algorithm, the NN architecture, and the
HPO procedure. In Section IV, we present the simulation
results. Conclusions are drawn in Section V.

C. Notation

We use subscripts to denote time instants. For example, the
variable vt is the value of v at time step t. To denote the value
of a variable k steps ahead of time t we use the short notation
vk|t, i.e. vk+t. We use the hat to represent predicted values,
e.g. v̂ estimates the variable v. Time sequences are denoted
using bold variables. Subscripts are used to state the sequence
length. Hence the sequence of N samples of the variable v
from time t is vN |t = {v0|t, v1|t, · · · vN−1|t}.

II. PROBLEM FORMULATION

In this Section, we describe the microgrid model and the
proposed EMS architecture, as illustrated in Fig. 2.

A. Microgrid model

We consider a microgrid model composed of four types of
agents, represented in the microgrid in Fig. 1: (i) renewable
generators; (ii) loads; (iii) storage systems; (iv) utility grid
connections. The work can easily be extended to other types

μGridMPCNN

Controller

Fig. 2. The architecture of the EMS controller and the microgrid system.

of agents [11]. Renewable generators are the power sources
in the grid; they collectively produce a power P r

t ≥ 0 at each
time step. On the other hand, loads are the power sinks, char-
acterised by their cumulative power demand P l

t ≥ 0. We as-
sume loads and renewable generators are non-controllable, i.e.,
changing their power profiles is impossible. The controllable
loads and renewable generators case is covered in [11]. There
are many reasons to install storage systems in microgrids,
from compensation for intermittence of renewable resources
to enhancing power quality [20, 24]. Here, we are mainly
interested in the peak shaving and valley-filling capabilities
of storage systems for microgrid energy management. Hence,
we model them as first-order linear systems, as commonly
done in the EMS literature [46, 48], as follows:

st+1 = (1− σ)st + TsP
s
t (1)

where σ ∈ [0, 1] is the self-discharge rate of the battery, Ts is
the sample time of the controller, the power P s

t is the sum of
the charging and discharging power:

P s
t = ηinP

sin
t − ηoutP sout

t (2)

where P sin
t ≥ 0, P sout

t ≥ 0 are the input/output powers, and
ηin ∈ [0, 1] , ηout ≥ 1 are the charging/discharging efficiencies
respectively. The storage power and charge are limited as:

−P s
M ≤ P s

t ≤ P s
M (3)

sm ≤ st ≤ sM (4)

where P s
M is the maximum power that can be exchanged with

the microgrid, sM is the maximum charge level of the battery,
and sm is the minimum charge level of the battery. In this
work, we assume all the agents are connected to a common
bus connected to the utility grid. Hence, all the agents are
coupled via the power balance constraint:

P s
t + P g

t = P r
t − P l

t (5)

where P g
t is the power exchanged with the utility grid (P g

t ≥ 0
when the microgrid is selling power).

B. EMS architecture

The architecture of the controller is represented on the left
of Fig. 2. The controller takes as input the past values of the
profiles of price renewable generation and loads over a look-
back window of length L and uses them to predict their future
values over a prediction horizon of length T . Other relevant
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data can easily be included in the proposed architecture as NN
inputs, if available, to obtain more reliable predictions; e.g.
in [15], information about the next day’s temperature forecast
and binary indicators of weekends are used. The selection
of features for prediction is out of the scope of this paper.
The MPC block uses the predicted profiles to compute the
power reference profile of the storage system. Subsequently,
the microgrid system schedules the operation of all the agents
connected to it by implementing the control action computed
by the controller. Namely, once the optimal input P s,⋆

t is
computed by the controller, the system evolves according to
Eqs. (6) and (7):

st+1 = (1− σ)st + TsP
s,⋆
t (6)

P g
t = P r

t − P l
t − P

s,⋆
t . (7)

The next state of the storage is measured and fed back to the
controller, whereas the power exchanged with the utility grid
determines the cost that the microgrid pays. At each time step,
the cost paid to the electricity grid is computed as:

Ct = −ptP g
t , (8)

where pt is the energy price at time t and the minus sign is
used since P g

t is positive when power is sold to the grid. The
goal of the energy management system is to minimise the total
energy cost due to energy trading, that is:

C =

∞∑
t=0

Ct (9)

and its units are a currency (e.g. e).

III. CONTROL ARCHITECTURE AND METHODOLOGY

In this Section, we introduce the novel OL-based MPC
methodology for EMS, illustrated on the left-hand side of
Fig. 2. The controller is an NN whose last layer is a
differentiable optimisation layer [2] implementing the MPC
optimisation. In the following subsections, we describe the
proposed control architecture and methodology and provide
details of the algorithms we developed to improve the con-
troller’s performance, allowing for real-time implementation.

A. Background on performance-based learning

In this paper, the so-called performance-based learning
approach, successfully adopted in the ML literature [33, 39,
17], is exploited for control purposes by extending it for real-
time implementation. In the performance-based framework,
ML methods are used to improve the solution of partially
defined optimisation problems:

min
ξ

J(ξ, ω) (10a)

s.t. ξ ∈ Γ(ω), (10b)

where J is the objective function, ξ is the decision variable,
Γ is a constraint set and ω is an unknown parameter vector.
Assuming we have a dataset of N observations of input-output
ψi-ωi pairs D = {ψi, ωi}Ni=1, the goal is to use supervised

learning to compute the best optimal solution ξ∗(ω̂), where ω̂
is the estimation of ω.

The standard approach, e.g. the one used in [46] in the
EMS case, consists in first estimating the unknown parameter
ω, for example, by training a NN based on the dataset D
minimising the mean squared error loss between ω and ω̂, and
secondly in using the estimate for the subsequent optimisation.
In contrast, the optimisation objective is explicitly considered
when defining the loss function used for NN training in the
performance-based approach. We refer to this loss function as
task loss, which can be defined in different ways, e.g. as the re-
gret in [9]. This paper uses the optimisation objective function
J of Eq. (10a) as task loss. There are two main difficulties in
the implementation of performance-based learning for control.
The first one is the differentiation through the argmin function
required to compute the gradients of the loss L with respect
to the NN weights θ for the backpropagation algorithm, i.e.
computing ∂L

∂θ = ∂L
∂ξ⋆

∂ξ⋆

∂ω̂
∂ω̂
∂θ . This has been done for different

types of optimisation problems: quadratic programming [5],
linear programming [17], combinatorial problems [23] and
a Python toolbox is presented in [2]. In particular, in [5]
an efficient method for convex problems has been proposed
by differentiating the KKT conditions of the problem at its
solution and this is the approach followed in this paper. The
main limitation of this method is that the optimisation problem
must be convex; however suitable convexification methods
might be used if non-convex constraints need to be included.
The second one is the online implementation for MPC. Since
the controller has to work in real-time, the whole dataset D
is not available beforehand, and the control action ξ has to be
computed at each time step. Hence, an online performance-
based learning algorithm is designed in this paper. Throughout
the paper, we denote performance-based learning as E2E
learning or task-based learning.

B. NN controller architecture

The first layers of the proposed NN are used to compute the
prediction of the unknown price, load and renewable generator
profiles, which we denote as p̂T |t, P̂l

T |t and P̂r
T |t respectively,

as in Fig. 2. The predictions are computed based on past
values of the profiles in a look-back window of length L.
Specifically, an LSTM RNN, firstly proposed in [29], is used
due to its ability to capture dependencies in time series while
maintaining a small number of parameters and flexible input
time window. The main hyperparameters to be selected are the
number of LSTM layers and the number of hidden units, which
we denote as nlayers and nh, respectively. This paper uses a
single RNN to jointly predict all three unknown profiles to
learn potential correlations among the input signals and obtain
more accurate predictions. It is important to note that other
NN architectures can be used in the proposed framework. For
example, a different network could be used for each profile, as
in [8], as well as other input data as in [15], or the prediction
of one profile could be the input for the prediction of another
in a cascaded fashion. However, since our goal is to develop
a general framework for jointly optimising profile prediction
and control performance, we did not introduce additional
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biases in the architecture, and we kept the NN as simple
as possible. At each time step the NN is fed with pL|t−L,
Pl

L|t−L and Pr
L|t−L, and outputs the predictions p̂T |t, P̂l

T |t
and P̂r

T |t over the MPC prediction horizon. The predictions
are obtained by collecting the last hidden state of the RNN
and feeding it to a dense layer. The NN output dimension is
T ×3, containing the predictions of the profiles over the MPC
prediction horizon. In contrast, the input dimension is L× 3,
the past values of the profiles over the look-back window.
Once the prediction is computed, it is passed to the subsequent
constrained optimisation layer of the NN. The optimisation
problem is reformulated at each time step considering the
newly available state measurements and profile predictions.
The optimisation problem can be written as:

min
P
sin
t ,P

sout
t

T−1∑
k=0

−p̂k|tP g
k|t (11a)

s.t. sk+1|t = (1− σ̂)sk|t + TsP
s
k|t (11b)

P s
k|t = η̂inP

sin
k|t − η̂outP

sout
k|t (11c)

− P s
M ≤ P s

k|t ≤ P
s
M (11d)

sm ≤ sk|t ≤ sM (11e)

P g
k|t + P s

k|t = P̂ r
k|t − P̂

l
k|t (11f)

s0|t = st (11g)

In the above optimisation problem, some values are not known;
hence, their estimate is used. In particular, the profiles over the
prediction horizon of the electricity price p̂t, renewable gen-
erator P̂r

t and load P̂r
t are estimated using the previous layers

of the NN. Moreover, the parameters of the storage model are
also supposed to be uncertain; hence, their estimate is used:
σ̂, η̂in and η̂out. In this work, we focus on the estimation of
the unknown profiles. At the same time, the uncertainty with
respect to the storage parameters is addressed using the task-
based approach as discussed in section III-C. The objective
function (11a) is the finite horizon approximation of (9) over
the prediction horizon computed using the predicted price
profile. Constraints (11b)-(11f) represent the model of the
microgrid and its agents, described in Section II-A. The last
constraint (11g) is the state feedback. The decision variables
of the optimisation problem are the input and output power
exchanged with the storage, Psin

t ,Psout
t . Once the optimal

solution of Problem (11a)-(11g) is computed, the control law
is defined as follows according to the MPC algorithm:

P sin
t = P sin⋆

0|t P sout
t = P sout⋆

0|t (12)

and P s,⋆
t is computed for Eq. (6) through Eq. (2).

C. Online learning

In this section, we describe the online training algorithm
used to train the NN at each time step t, i.e. the procedure
employed to update the weights of the NN from θt−1 to θt. In
particular, we describe the training and test sets and the loss
functions employed at each time step. We denote the input
tensor used at time step t as ψ∗

t ∈ RB∗×L×Fin , where ∗ is
used to denote the training and test sets respectively, with ∗ ∈

{tr, test}, B∗ is the size of the batch of data used for ∗ and
Fin is the number of input features. In this work, by feature,
we mean the profile of price, load or renewable generation.
Thus, we have the number of features Fin = 3 for our EMS
application. The output tensor is denoted as ω∗

t ∈ RB∗×T×Fout ,
where Fout is the number of output features. Therefore, Fout =
3 in the considered scenario. Fig. 3 illustrates the data splitting
in an example where the look-back window size is L = 4, the
MPC horizon window length is T = 3, and the batch size
is Btr = 2. We first present the training and test sets, then
the loss function employed for NN training. At time step t,
we first perform a training phase, i.e. the update of the NN
weights from θt−1 to θt. For the training phase, we use input
and output samples of the unknown profiles that are fully in
the past. Hence, the training set is as follows:

ψtr
t =



vL|t−T−L

...

vL|t−T−L−j

...

vL|t−T−L−Btr+1


ωtr
t =



vT |t−T

...

vT |t−T−j

...

vT |t−T−Btr+1


(13)

where j = 0, . . . , Btr − 1. After the training phase, the NN
is used to predict the future values of the uncertain profile
v• over the MPC prediction horizon to use them in the MPC
optimisation. The test set input is composed of the most recent
L samples, whereas the test set output is composed of the
future T samples:

ψtest
t =

[
vL|t−L

]
, ωtest

t =
[
vT |t

]
. (14)

It is important to note that the test set outputs ωtest
t (which

consist of the true future samples) are not used for the learning
process at time t, nor for the control optimisation, as they are
in the future and therefore unknown at time t: they are only
employed a posteriori in simulation to assess the prediction
performance and compare different architectures. The outputs
of the NN at time t injected by the current input test set are the
uncertain predictions for the future T samples and are the ones
used in the MPC optimisation problem in the horizon window.
At time step t+1, the test and training sets are shifted forward
by one, and the process is repeated.

We now introduce the loss function employed for the
NN training. We use as a loss function a weighted sum of
regression and a task loss:

Lt(θt−1, ψ
tr
t , ω

tr
t ) =

∑
v∈{p,P r,P l}

αvLreg,v
t (θt−1, ψ

tr
t , ω

tr
t )

+ βLtask
t (θt−1, ψ

tr
t , ω

tr
t ), (15)

where Lreg,v
t is the regression loss for feature v, Ltask

t is
the task loss, αv ∈ R is a weight associated to each feature
and β ∈ R is the weight associated to the task loss. These
parameters can be optimised during the HPO presented in
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time

time

time

t

t + Tt − L

t − Tt − T − L

t − T − 1

t − T − 1

t − T − L − 1

ψtestt ωtestt

ωtrt (2, :)ψtrt (2, :)

ωtrt (1, :)ψtrt (1, :)

Test set

Training set, j = 2

Training set, j = 1

Fig. 3. Representation of the training and test sets for L = 4, T = 3,
Btr = 2 at time t. The top and middle rows represent the first and second
training batches. The bottom row represents the test set at time t. Each black
square represents a feature sample ft. Samples highlighted in blue are the
inputs of the NN, and the ones in orange are the NN’s desired outputs.

Section III-F. Firstly, the regression loss at time t is defined
as the MSE loss for each feature:

Lreg,v
t (θt−1, ψ

tr
t , ω

tr
t ) =

Btr∑
j=1

T−1∑
k=0

(
vk|t̄j − v̂k|t̄j

)2
, (16)

where t̄j = t − T − j is introduced for the sake of clarity.
Secondly, we define the task loss as:

Ltask
t (θt−1, ψ

tr
t , ω

tr
t ) =

Btr∑
j=1

T−1∑
k=0

pk|t̄j P̂
g
k|t̄j (17)

where the predicted profile of power exchanged with the utility
grid P̂g

T |t̄j is computed as:

P̂g
T |t̄j = P̂r

T |t̄j − P̂l
T |t̄j −Ps,⋆

T |t̄j . (18)

In other words, by minimising the regression loss (16), we
aim at improving the prediction performance for the price, re-
newable generation, and load profiles as new data is collected.
Improved predictions allow one to compute the control action
in (11a)-(11g), which minimises the total electricity cost while
guaranteeing the defined operation and safety constraints. On
the other hand, the task loss (17) targets the electricity cost
directly. The reason behind the choice of integrating the
task loss, and therefore to implement an E2E or task-based
approach, is to allow the learning process to implicitly take
into account other potential sources of uncertainties in the
parameters of the system or external disturbances, such as the
energy conversion efficiencies for example, which would not
be estimated by a regression-loss-only trained NN but affect
the EMS performance. Computing the task loss downstream
of the optimisation problem implicitly allows us to consider
these unknown parameters. The advantages of employing the
task loss in the online training are shown in simulation results
Section IV-C, where more details are provided.

Remark 1: It is important to note that the task loss is defined
as the electricity cost over the prediction horizon under the
true price profile pk|t̄j . The electricity price profile is fully

available at time t since we only perform the training phase
using past samples. The subscript of the price in (17) is k|t̄j ,
which denotes only samples in the past with respect to t.

D. Online stochastic weight averaging

The main objective of the OL approach is to adapt to rapid
environmental variations, such as fluctuations in electricity
prices, while preserving the knowledge gathered in previous
steps. To bolster the learning process’ resilience to abrupt en-
vironmental changes and input signals, we adapt the Stochastic
Weight Averaging (SWA) method [30] for implementation in
OL-based controllers. SWA is commonly used to enhance the
generalisability of NNs in an offline learning context. It defines
the final model as the average across the last N training
iterations. However, in this work, we modify the algorithm
to fit an OL context, where an average model is updated at
every instance and denoted as O-SWA.

We symbolise θ∇t as the weights post-gradient update at
instance t. γ serves as the moving average decay factor, while
θavgt , θavgt+1 represent the moving averages of the weights at
instances t, t+1, respectively. The weights for the subsequent
instance θt+1 are updated every δ steps. Initially, we set
θavg0 = θ0, and subsequently, at each instance, we revise both
the average and current models via a moving average. In the
OL deployment context, updating the average weights θavgt

in t is required at every instance since we cannot anticipate
the last N training iterations as in [30]. Hyperparameters γ
and δ can be adjusted to modulate the learning algorithm’s
sensitivity. These parameters govern the degree to which the
current model relies on the average model θavgt , a smoothed
variant of the current model θt. The parameter γ regulates
the proportion of preserved weights. For instance, γ = 0.9
indicates that 0.9 of the average’s magnitude is maintained,
and 0.1 is the weighting of the current model at time step t.
The parameter δ controls the frequency with which the current
model is replaced with the average model; for instance, δ = 10
implies that every 10 time steps, we reset the current model to
be equivalent to the average model. The purpose of setting the
current model θt+1 to the average model θavgt+1 is to encourage
the NN’s generalisability by resetting its optimisation pathway.
This helps the network to avoid becoming entrapped in local
minima or to be overly sensitive to sudden changes in the
input signals.

E. Experience Replay

ER [13] is a method designed to make learning more
robust and generalisable over time by revisiting experiences
encountered at previous time steps. It operates by maintaining
a buffer B of |B| past examples, which can be updated at
each time step t with newly observed examples. In this work,
we consider the buffer incrementally updated by reservoir
sampling [55]. Reservoir sampling is a randomised algorithm
for selecting k from an unknown population of N samples.
This makes it ideal for the OL scenario since the number of
time steps is unknown.

Given the currently observed data ψtr
t , and data sampled

from the buffer ψB
t , we update the model with respect to a
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loss function and current model M(θt) and both the current
and past data ψtr

t ∪ψB
t . The ultimate value of the loss function

at each time step t is a linear combination of the loss over the
current and past data, weighted through the hyperparameter
ϵ. After the training step, reservoir sampling adds the current
data to B.

While adept at smoothing over rapid changes and avoiding
local optima, the O-SWA is fundamentally weighting the
previous experiences less over time. Integrating ER with O-
SWA creates a complementary learning system that is resilient
to rapid fluctuations and cognisant of an extensive range of
past experiences. It strengthens the robustness and adaptability
of our learning system, thereby ensuring optimal performance
even in highly dynamic environments. On the one hand,
ER collects a more comprehensive set of experiences to
learn from, increasing sample efficiency and mitigating issues
like catastrophic forgetting [25]. On the other hand, O-SWA
improves generalisation by capturing all weight configurations
throughout training rather than relying on the final weight set
that could be specific to the most recent experiences. Com-
bining these two approaches offers a method that efficiently
uses training data and generalises well to new situations. The
complete Algorithm 1 illustrates both methodologies together.

Algorithm 1 Online Training with O-SWA and ER
Input: θ0, γ, δ, θavg0 = θ0, α,B = ∅, t = 0

1: for t = 1,2,. . . do
2: Receive current data ψtr

t

3: Sample past data ψB
t from B

4: Compute loss Lt(θt−1, ψ
tr
t , ω

tr
t ) + ϵLt(θt−1, ψ

B
t , ω

B
t )

5: Perform gradient update and obtain θ∇t
6: θavgt = γθavgt−1 + (1− γ)θ∇t
7: if t+ 1 mod δ = 0 then
8: θt = θavgt

9: else
10: θt = θ∇t
11: end if
12: Add ψtr

t to B using reservoir sampling
13: Compute and implement the control action
14: end for

At time step t = 0 the Algorithm 1 first initiates weights θ0,
decay factor γ, the time interval for weight update δ, and an
empty buffer B for past experiences. At t it extracts additional
training data from the past samples that have been stored in
the experience buffer in the previous time steps ψB

t ∼ B and
uses it to replay past experiences to the NN and improve its
generalisation capabilities. If the buffer is not populated, no
data is fetched from the buffer, and the related operations to
ψB
t are skipped. The algorithm then computes a combined loss,

a weighted average of losses from the current and past data,
governed by a hyperparameter α. Subsequently, the gradient
update is performed using this calculated loss. The next step
involves updating the average model weights using a decay
factor γ. Depending on the predefined time interval δ, the
model decides whether to use the average weights θavgt+1 or
the gradient-updated weights θ∇t for the next time step t +
1. After this, the current data is added to the buffer using a

reservoir sampling technique, and the time step is incremented.
This approach amalgamates the benefits of O-SWA and ER,
offering an efficient learning method that adapts quickly to
environmental changes and prevents catastrophic forgetting by
effectively leveraging past experiences.

F. Hyperparameter optimisation

To enhance the efficacy of the learning, it is crucial to tune
the hyperparameters of the algorithm and identify the optimal
NN architecture for the specific considered problem as well
as the hyperparameters γ, αv, β, |B|, δ, ϵ, nh, learning rate
and weight decay. Moreover, the HPO algorithm has to be
suitable for the proposed online learning algorithm presented
in Section III-C, i.e. the winning hyperparameters have to work
optimally when implemented online. We frame the HPO task
in terms of a domain dataset, denoted as D1, a predefined
wall-clock time budget C, for example the HPO will run
for a maximum of 3 hours, and a validation loss Lval

t . We
assume the set D1 is available before the deployment of the
EMS, for example, recordings coming from another microgrid
with similar characteristics. The a priori available dataset D1

is used to initialize the weights of the NN and to validate
the hyperparameters. As for validation loss, we decided to
consider either the regression loss Lreg

t or the task loss Ltask
t

respectively when we use the regression or the task loss for
training, i.e.:

Lval
t =


∑

v∈{p,P r,P l}

Lreg,v
t (θt−1, ψ

val
t , ωval

t ) if β = 0

Ltask
t (θt−1, ψ

val
t , ωval

t ) if β ̸= 0
(19)

The training and validation sets for the HPO are selected
by employing sample sequences that are fully in the past.
Given a training batch size Btr and a validation batch
size Bval, the HPO training and validation batches are:
ψtr
t =

[
vL|t−T−L−Bval−j

]
, ωtr

t =
[
vT |t−T−Bval−j

]
for

j = 0, . . . , Btr and ψtr
t =

[
vL|t−T−L−Bval−i

]
ωtr
t =[

vT |t−T−Bval−i

]
for i = 0, . . . , Bval. Our goal is to find

the optimal hyperparameters and architecture that yield the
lowest value of a chosen loss function Lval

t , within the time
budget C using the validation set from D1. This optimisation
process results in a winning model M⋆ and its associated
hyperparameters. Furthermore, the winning modelM⋆ and its
configuration can serve as an initialisation point for learning
on a dataset D2, offering potential advantages for Transfer
Learning (TL) scenarios. TL capabilities are explored in
Section IV.

G. Estimating uncertainty

In this Section, we present a methodology to assess the
confidence of the learning-based predictions and provide a
real-time indicator of the reliability of the prediction of the
NN controller. In general terms, an NN predictor, by using
an MSE loss function for training, focuses on the mean of
the prediction error, thus urging the network to learn the
expected value of the output target variable. However, the
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target distribution’s variance, or other uncertainty measures,
often hold important information. To estimate uncertainty, an
alternative to what was previously introduced, we can train the
NN predictor online using the quantile loss function defined
in [32] as:

Lt(τ, ŷ, y) =

N∑
i=1

ρτ (ŷi − yi), (20)

where ŷi denotes the predicted value and yi is the target value.
The function ρτ , parameterised by the quantile τ , is defined:

ρτ (x) =

{
τx if x ≥ 0

(τ − 1)x if x < 0
(21)

By minimising the quantile loss function during training, the
NN learns the quantiles of the output distribution. Conse-
quently, we expand the output layer of the NN predictor to
2×Nquantiles neurons, where Nquantiles is the count of quantiles
that need to be learned. In our default configuration, we set
Nquantiles = 3, which corresponds to the 10th, 50th, and 90th

quantiles. Here, the 50th quantile represents the median of the
target distribution, while the 10th and 90th quantiles signify
the lower and upper limits of a predetermined confidence
interval, respectively. In our implementation, the NN predictor
is trained to minimise the quantile loss function in (20) for
each quantile, resulting in a loss that is an equally weighted
accumulation of individual quantile losses. This approach pro-
motes a comprehensive understanding of the underlying target
distribution, thus allowing the enhancement of the reliability
of the proposed OL-based MPC, providing a support decision
tool able to evaluate the uncertainty in the prediction and real-
time evaluation of the cost over the prediction horizon. In
this work, in the Numerical Results Section IV-E, we use the
uncertainty measure to estimate the cost over the prediction
horizon. For example, load agents can use this estimation to
adjust their power demand depending on the predicted cost.

H. Real-world deployment

While in this work, we do not consider any particu-
lar hardware restriction for controller implementation. We
still aim to design an efficient controller architecture that
could be deployed in real-world systems. Moreover, NNs
implementation may require large memory units to store the
weight of the network, possibly making their deployment
uneconomical. Hence, the memory requirements have to be
adhered to starting from the controller algorithm design. To
guide our architecture choices, we provide estimates of the
memory requirements for our controller’s NN, considering the
number of parameters needed for the prediction horizon, look-
back window, and other hyperparameters. Though not strictly
constrained, staying mindful of potential hardware limitations
will allow us to balance controller performance with practical
implementability.

In the following, we compute the total number of samples
stored at each time step by the proposed OL NN controller,
depending on the specific architecture choices. This will be
used in the next Section to compare the performance of

different designed controllers. Firstly, the number of input-
output samples is computed as:

Ni,o = Fin × L+ Fout × T. (22)

In case the ER algorithm presented in Section III-E is em-
ployed with a buffer of size |B|, then an additional number of
input-output pairs needs to be stored:

NB = Ni,o × |B|. (23)

Naming the number of NN weights that need to be stored as
Nθ, the O-SWA requires the storage of additional Nθ weights.
As shown in Section IV, the main parameters influencing the
required parameters are the LSTM hidden dimension nh and
the buffer size |B|. The previous equations allow us to consider
the scalability of the method with respect to the number of
parameters like the look-back window and MPC prediction
horizon. If additional agents join the microgrid, the memory
requirements can still be estimated through Eq. (22) by
increasing the number of input/output features (one additional
profile for each additional renewable generator or load agent).
Moreover, the optimisation problem (11a)-(11g) has to be
modified by introducing specific constraints for the additional
agent (e.g. (3) and (4) for a storage system) and including the
power profile of the agent in the power balance (11f).

Remark 2: We are proposing a centralised approach where
it is possible to aggregate agents of the same type; in this
sense, the proposed methodology can easily take an increasing
number of agents into account, for example, by considering
the sum of the loads as a single load. In this case, the
computational complexity of the method would not change
if more agents were considered.

To clarify the procedure for the controller deployment,
Algorithm 2 lists all the required steps. Step 1 involves the
optimisation of the hyperparameters and the pre-training on a
dataset D1 (optional), including the uncertain profiles of price,
demand and generation possibly available a priori (even from
a different microgrid system), where θ̃ represents the initial
NN weights that are randomly initialised. Subsequently, the
winning model M⋆ with weights θ0 is deployed in the actual
microgrid represented by the dataset D2, where θ0 are the
NN weights after the pre-training phase. The following steps
2-7 represent the controller’s online training and operations
to compute the control action. Finally, the total cost can be
computed to assess the controller’s performance.

IV. NUMERICAL RESULTS

In this section, we show the performance of the proposed
OL-based MPC for EMS and analyse the advantages of
each proposed tool and methodology. All simulations were
repeated with different random seeds, and the results were
given in terms of mean and single standard deviation. We
developed the simulations in Python 3.9.16 and the code,
that will be available on GitHub at https://github.
com/vittpi/ol-ems, uses PyTorch 1.10.1 [47], PyTorch
Lightning 1.5.10 [21], syne-tune 0.2 [50] and cvxpylayers
0.1.5 [2]. The optimisation problem (11a)-(11g) is convex;
hence, it is modelled using CVXPY [14] and solved using SCS
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Algorithm 2 Controller implementation
Offline phase (optional): HPO and/or pre-training
Input: D1, M, θ̃

1: HPO and pre-training on dataset D1

Online phase: training and input computation
Input: D2, M⋆, θ0

2: for t = 1,2,. . . do
3: Online training step (Algorithm 1): θt−1 ← θt
4: Retrieve current state st
5: Compute control action −→ Psin

t ,Psout
t

6: Apply control action P sin
t P sout

t =⇒ st ← st+1

7: end for

Compute performance
8: Total cost (9)

solver [43]. The considered microgrid comprises the agents
described in Section II-A. The comparison among different
simulations is based on two performance indicators: (i) the
total cost over the simulation steps computed by (9); and
(ii) the MSE on the test set for all the involved features:

CMSE =
∑

v∈{pt,P rt ,P lt}

S∑
t=0

T−1∑
k=0

(
vk|t − v̂k|t

)2
. (24)

In the following subsection, we present the datasets considered
for the simulations. The time required for the execution of one
step (online training and computation of the control action) is
0.07 seconds using an Intel® Core™ i7-2600 CPU @ 3.4GHz
and 16GB RAM for all the simulations, making this method
compliant with the EMS application where the sampling time
of the controllers is in the order of minutes [59]. We then
describe, in subsection IV-B, the results obtained by applying
the OL algorithm presented in Section III-C, using only the
regression loss (16). The goal is to show that the algorithm can
learn online and adapt the controller to environmental changes.
The advantages of O-SWA and ER algorithms presented
in paragraphs III-D and III-E respectively, to improve the
performance of the OL methodology are then shown in IV-B.
In subsection IV-C, we present the effectiveness of using the
task loss (17) for training the controller. We then explore the
capabilities of the proposed TL algorithm in Section IV-D.
Finally, in subsection IV-E, we show the results related to the
estimation of quantiles of the electricity price.

A. Dataset description

We used the profiles of the electricity price, load de-
mand and renewable generator for the simulation results
from two different datasets. The first data source is the
EMSx benchmark dataset collected by Schneider Elec-
tric, presented in [36], that collects the power profiles
of loads and renewable generators and provides the pa-
rameters of the storage systems. Among the 70 industrial
sites, we randomly picked site 10 and site 12, specifically
the recordings between 01/01/2016 and 07/10/2017. The
storage parameters (sM [kWh], ηin[−], ηout[−], P s

M [kW]) are

(400, 0.95, 1.05, 100) and (800, 0.95, 1.05, 200) for site 10
and 12 respectively. The electricity price profiles instead are
downloaded from the ENTSO-E Transparency Platform [19],
described in [28]. The website collects the day-ahead electric-
ity price for different European bidding zones. Specifically,
we employed the profiles of IT-Centre-North of the same
period of the power profiles. All the profiles are normalised
in the 0-1 range; even though normalisation factors may not
be available beforehand in the OL framework, they can be
inferred from past recordings. Moreover, TL simulations show
that good results can be achieved even if the normalisation
factors do not squeeze all the samples in the specified range.
The other numerical values used for simulations are: Ts = 1h,
T = 24, L = 168, sm = 0.1sM , σ = 0.0042, s0 = 200kWh,
Btr = Bval = 1, nlayers = 1.

B. Online learning
This Section presents the simulation results related to OL,

O-SWA and ER. The OL algorithm aims to adapt the predic-
tion to changes in the profiles. Results are presented in Table I
and Fig. 4. As opposed to [10], here the results are obtained
considering uncertain storage model, i.e. setting σ̂ = 0 in (11b)
and η̂in, η̂out = 1 in (11c). The hyperparameters for each in-
dustrial site are selected using the procedure explained in III-F
using a random search algorithm with 4 CPU workers for a
maximum time of 3 hours. The optimised hyperparameters are
the learning rate, the weight decay, δ, γ and nh and results are
respectively (3.38× 10−4, 1.88× 10−4, 400, 7.07× 10−1, 48)
and (3.31 × 10−3, 8.88 × 10−5, 50, 8.00 × 10−1, 48) for site
10 and 12. In Fig. 4, the blue line represents the ground truth
price profile. The orange line is the prediction obtained using
our OL algorithm for the entire simulation length. The green
line is the prediction obtained using our OL algorithm, but
stopping the learning process at t̄ after one year of training,
on the 30th of December 2016, a day denoted by a red vertical
line. In other words, the NN weights θt after t̄ are θt̄+k = θt̄.
After this date, when the price starts increasing, the figure
shows that our OL algorithm can adapt the prediction, which
takes approximately one day to adjust. The predictor that is
not adapting online instead maintains the prediction on the
same range as before t̄, hence achieving a worse prediction
performance. A similar simulation has been considered for the
prediction of the load demand: Fig. 5 shows how the proposed
methodology (orange) allows the load demand prediction to
adapt when some new machinery is installed in the microgrid
and the load changes subsequently. Instead, in the case that
we do not use our proposed adaptive method and employ an
NN predictor trained with the data till March 8 (red vertical
line), the predictor does not adapt to the change.

This result is also evident from Table I. The first two lines
of each simulation, OL and 1 year OL, report the total cost
and the MSE of the two controllers for the two datasets,
respectively. Using the OL algorithm allows the adaptation
of the predictor to changes in the profiles, hence achieving
a lower MSE and, therefore, a lower cost. We highlight that
in this case, only the regression loss (16) is used; hence, the
controller that predicts better the unknown profiles achieves
the best performance in terms of electricity cost.
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The third line for each site of Table I shows the results
obtained disabling the O-SWA. To compare the results with
the other cases fairly, we re-run the HPO, optimising all the
other hyperparameters except the ones related to the SWA.
Disabling the O-SWA increases the variability of the results
and the mean value of the price with respect to the OL case.

The last line of Table I, denoted as “Prescient”, shows
the total cost obtained by an ideal controller when the true
future values of the unknown profiles are used instead of the
predicted one. In this case, the estimation error CMSE is zero.
The prescient controller’s performance is the best. However,
this scenario is ideal and cannot be realised in practice, but this
controller represents the baseline against which to compare the
novel proposed controllers given a prediction horizon T .

22 Dec 2016 30 Dec 2016 13 Jan 2017

50

100

150

p
(t
)

[e
/M

W
h]

Ground Truth
OL

Non-adaptive

Fig. 4. Comparison of the performance of the proposed online learning-based
predictor (OL) and a non-adaptive predictor where the training is stopped
in correspondence with the red line (December 30). When the price starts
increasing, our predictor (orange) adapts to the change.
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Fig. 5. Comparison of the performance of the proposed online learning-based
predictor (OL) and a non-adaptive predictor where the training is stopped in
correspondence with the red line (March 8). A new machinery is installed
in the microgrid on March 10 causing a change in the load profile and a
subsequent adaptation of the adaptive predictor.

We then tested the ER algorithm presented in Section III-E.
We aim to show that using a buffer of |B|. It is possible
to obtain better results with respect to the ones presented in
Table I for the OL case. Numerical results in Table II show
that with a buffer of size |B| = 200 and |B| = 100 for site 10
and 12, respectively, it is possible to obtain better results with
respect to the OL case of Table I. This good result comes at
the cost of storing a number of samples that can be computed
via (23) and computing the loss for the buffer samples.

TABLE I
OL RESULTS

Site Controller C
[
e
]

CMSE

10

OL 286,849 ± 149 1.234 ± 0.015
1 year OL 288,072 ± 306 1.654 ± 0.018
NO SWA 287,220 ± 325 1.323 ± 0.059
Prescient 280,922 0.000

12
OL 61,578 ± 195 1.220 ± 0.005

1 year OL 63,869 ± 385 1.681 ± 0.017
NO SWA 62,480 ± 466 1.260 ± 0.029
Prescient 49,781 0.000

TABLE II
EXPERIENCE REPLAY RESULTS

Site B C
[
e
]

CMSE

10
100 286,797 ± 192 1.103 ± 0.016
200 286,563 ± 47 1.112 ± 0.009
300 286,721 ± 108 1.095 ± 0.018

12
100 60,949 ± 45 1.095 ± 0.021
200 61,438 ± 337 1.091 ± 0.015
300 61,422 ± 502 1.102 ± 0.014

C. E2E learning simulations

In this Section, we show the advantages of using the task
and the regression loss to train the NN. To do this, we ran
simulations for both sites 10 and 12, enabling the task loss, i.e.
setting β ̸= 0 in (17), setting nh to different values in the range
[2; 48]. To fairly compare the results, HPO was done for all the
NNs. The optimised hyperparameters are the learning rate, the
weight decay, parameters αv of (16) for each feature of the
regression loss and β of the task loss (17). In the previous
case, the O-SWA is active with hyperparameters δ and γ
obtained for each site while the ER buffer is not used. For
the controller trained with task loss only, we defined the HPO
loss as the task loss on the validation dataset to find the best
hyperparameters to minimise the total electricity cost. Fig. 6
shows the number of parameters Nθ required by the NN given
the LSTM hidden dimension nh. This information compares
the controllers and estimates the memory requirement for
hardware implementation for storing the NN parameters.

Tables III, IV, V and VI present the simulation results,
comparing the performance in terms of total electricity cost,
for the two industrial sites, in the case the model of the storage
(i.e. the values of σ, ηin and ηout) is known –Tables III, V) or
not –Tables IV, VI). The first column of the tables shows the
number of hidden units of the LSTM layer employed for the
simulation. The second column presents the results obtained
by performing the training only minimising the regression
loss (16) – i.e. setting αv ̸= 0 and β = 0 in (15). The third
column instead presents the results obtained when the sum
of regression (16) and task loss (17) are jointly used for the
training – i.e. both αv, β ̸= 0 in (15).

We can see that task loss provides an advantage in all
the cases considered by reducing total costs and variability.
When the parameters of the storage model are not known, the
following values are used: (σ, ηin, ηout) = (0, 1, 1). For the
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TABLE III
RESULTS OF SITE 10 WITH NO MODEL UNCERTAINTY

Training loss
nh regression only regression + task

2 288, 124± 50 288, 060± 190

4 287, 587± 42 287, 783± 146

8 288, 576± 250 286, 994± 307

16 286, 961± 136 286, 382± 54

24 286, 781± 330 286, 632± 51

32 286, 552± 257 286, 075± 131

36 287, 349± 304 286, 215± 148

48 285, 874± 76 286, 209± 229

reader’s convenience, Figures 7 and 8 from Tables III and VI,
respectively, are provided. Fig. 7 shows the results of Table III
and the obtained CMSE for site 10 as a function of the NN
hidden dimension when no model uncertainty is considered.
Fig. 8 shows the results of Table VI and the obtained CMSE

for site 12 as a function of the NN hidden dimension when
the parameters of the storage are not assumed to be known.
Blue lines identify the results obtained using regression loss
only. Orange lines identify results obtained using the task and
regression loss.

The first outcome of the simulations can be deduced from
Tables IV and VI: when the parameters of the storage are
not known with certainty, by using both regression and task
losses allows to achieve a lower electricity cost, especially
with small nh. Intuitively, this is because, being the loss
calculated after the optimisation problem, which includes the
storage system model, it is possible to learn the uncertain
parameters implicitly. Secondly, from Tables III and V, we see
that even when we assume to know perfectly the parameters
of the storage system, the controller trained with task loss
can achieve better performance for most nh. For example,
for nh = 48, the controller trained with regression loss
achieves a lower cost for both datasets. This result complies
with the results presented in Section IV-B and [10], where
the HPO procedure selects 48 as the optimal LSTM hidden
dimension. The total cost using the task loss instead decreases
until nh = 32 and then increases again, possibly due to
overfitting. This suggests that the optimal nh when the task
loss is used is lower than the optimal hidden dimension for
profiles prediction. Hence, if limited hardware memory is
available for controller implementation, training the controller
with task loss is beneficial for better performance, especially
in the relevant case when model parameters are uncertain.
Finally, Fig. 7 shows the prediction accuracy and total cost
obtained for site 10 when the storage model is assumed to
be known. One interesting fact of these results is that, even
though the storage parameters are known, a better performance
in terms of cost can be obtained even with a higher CMSE. E.g.
for nh = 4 and nh = 24, the CMSE is higher for the controller
trained with task and regression loss. However, the total cost
is lower, meaning that a good profile prediction accuracy does
not necessarily lead to better ultimate performance, even if the
system model is known.

TABLE IV
RESULTS OF SITE 10 WITH MODEL UNCERTAINTY

Training loss
nh regression only regression + task

2 291, 444± 972 289, 792± 1107

4 289, 770± 453 288, 852± 816

8 290, 261± 731 287, 845± 570

16 288, 668± 508 287, 180± 156

24 287, 662± 372 286, 856± 356

32 287, 432± 574 286, 821± 178

36 289, 072± 560 286, 827± 187

48 286, 849± 149 286, 741± 37

TABLE V
RESULTS OF SITE 12 WITH NO MODEL UNCERTAINTY

Training loss
nh regression only regression + task

2 65, 200± 1, 063 64, 050± 188

4 63, 259± 298 62, 931± 652

8 64, 481± 389 61, 996± 419

16 60, 979± 244 60, 792± 143

24 61, 107± 815 60, 069± 316

32 60, 773± 691 60, 021± 155

36 62, 742± 595 60, 513± 972

48 59, 999± 272 61, 144± 309

8 16 24 32 40 48
0

1

2

·104

nh[−]

N
θ
[−

]

Fig. 6. Number of NN parameters Nθ as function of the LSTM hidden
dimension nh.

D. Transfer learning simulations

We now show the TL capabilities of the algorithm, which
is particularly useful when a dataset of a specific microgrid is

TABLE VI
RESULTS OF SITE 12 WITH MODEL UNCERTAINTY

Training loss
nh regression only regression + task

2 68, 841± 1, 465 68, 953± 2, 134

4 66, 006± 283 65, 474± 360

8 67, 097± 742 63, 470± 979

16 63, 097± 308 63, 074± 212

24 63, 595± 357 61, 924± 329

32 62, 225± 241 61, 603± 191

36 65, 889± 489 61, 571± 246

48 61, 578± 195 62, 531± 199
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Fig. 7. Total electricity cost and profiles prediction accuracy for site 10 when
the storage system parameters are perfectly known.
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Fig. 8. Total electricity cost and profiles prediction accuracy for site 12 when
the parameters of the storage system are unknown.

not available. Preliminary results were presented in [10] for the
regression loss only when no model uncertainty is considered.

TABLE VII
TRANSFER LEARNING RESULTS - REGRESSION LOSS ONLY

D1 D2 TL method C
[
e
]

CMSE

12 10
NO TL 287,227 1.250
Only TL 292,205 12.307
OL+TL 287,413 1.269

10 12
NO TL 62,454 1.223
Only TL 72,601 13.655
OL+TL 61,795 1.204

Here, we show that similar results are obtained when either
the regression loss or task loss is used. We assume to have two
datasets D1 and D2 related to two different microgrid systems.
Dataset D1 is available before the controller deployment and
can be used to design the EMS. Dataset D2 represents the
microgrid system where the controller has to be implemented
and is used to test the controller. We aim to show that the
combination of TL and OL allows us to achieve the best
performance. In other words, the lowest cost is achieved by
pre-training the EMS on D1 and continuing the learning online
on D2. To show this, we ran three simulations: (i) D1 is
used for HPO, the controller is only trained online on D2,
this is denoted as NO TL; (ii) D1 is used for HPO and
pre-training, the controller is then deployed to D2 without
training it online, this is denoted as Only TL; (iii) D1 is used
for HPO and pre-training, and the controller is then deployed
to D2 where the training continues online, denoted as OL+TL.
The data samples are normalised for all the simulations using
normalisation factors of D1. Results are shown in Table VII for
the regression loss only and Table VIII for the combination of
task and regression loss. The three simulations are denoted
in the tables as no-TL, only-TL and OL-TL, respectively.
In both cases, site 10 as D1 and site 12 as D2 and vice-
versa are considered. Similar observations can be made for
the two tables. Worst results are obtained in the Only TL
case since the controller is not adapted online for dataset D2.
Even though the hyperparameters have not been optimised for
dataset D2 specifically, the online training of the controller has
a beneficial effect. Hence, the best performance is obtained
by combining OL and TL, again showing the OL algorithm’s
effectiveness. We point out that regardless of the presence or
not of the pre-training phase, the computed control input is
optimal with respect to the MPC cost function and satisfies
the MPC constraints at each time step thanks to the presence
of the last layer of the NN which is a constrained optimisation
layer. Moreover, the total costs obtained in the NO TL and
OL+TL cases are similar; the difference is due to the faster
convergence of the OL+TL method (where the training starts
with network weights that are not randomly initialised).

E. Quantile regression simulations

In this subsection, we use the method explained in Sec-
tion III-G to give an online prediction of the cost over
the prediction horizon. Fig. 9 compares the predicted cost
(computed online as (25)), using different price quantiles, with
the actual cost over the prediction horizon (calculated at the
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TABLE VIII
TRANSFER LEARNING RESULTS - REGRESSION AND TASK LOSS

D1 D2 TL method C
[
e
]

CMSE

12 10
NO TL 286,800 1.264
Only TL 287,697 14.825
OL+TL 286,752 1.263

10 12
NO TL 61,734 1.280
Only TL 72,597 16.196
OL+TL 61,319 1.243

end of the simulation as (26)). The predicted cost, over the
horizon T , is computed at each time step, using the price
quantile and the prediction of the power exchanged with the
utility grid as given by the MPC, as:

Ĉτ
T |t =

T−1∑
k=0

pτk|tP̂
g
k|t, (25)

where pτk|t is the τ -th quantile of the price computed at time
t related to the time instant t + k and P̂ g

k|t is the predicted
power that is exchanged with the utility grid at time t over
the prediction horizon T . This prediction is compared with
the actual cost over the horizon CT |t, computed at the end of
the simulation as:

CT |t =

T−1∑
k=0

pk|tP
g
k|t, (26)

pk|t is the true price at time t+k and P g
k|t is the actual power

exchanged with the utility grid at time t+ k.
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Fig. 9. True horizon cost in blue and predicted horizon cost over the horizon
using different quantiles for the predicted price.

In Fig. 9, we see that the predicted cost decreases when
a lower quantile is used, as expected from the definition of
quantiles. Depending on the selected quantile τ , it is possible
to obtain more or less conservative estimates that can be used
to predict the expected cost of the microgrid operation over
a future horizon with a certain confidence level. To validate
these results, we counted the number of times the actual cost
over the horizon is lower than the predicted cost. Results are

TABLE IX
QUANTILE REGRESSION RESULTS.

τ 60 80 90

CT |t ≤ Ĉτ
T |t 72% 81% 86%

presented in Tab. IX, where the first row shows the value of the
considered quantile τ and the second row shows the percentage
of times, over all the time steps in the simulations, that the
actual cost is lower than the predicted cost, which is consistent
with the quantile definition. For example, this information can
be used for microgrid budget analysis, worst-case analysis, or
risk analysis.

V. CONCLUSION
In this paper, we propose an OL-based MPC control al-

gorithm for microgrid EMS to learn online and adapt the
predictions of the unknown profiles of price, renewable gen-
eration and load demand. O-SWA and ER algorithms have
been designed for the specific online methodology to improve
generalisation capabilities and avoid catastrophic forgetting.
We introduced a task-specific loss so that the controller
implicitly learns the uncertainty in the microgrid model, and
we showed it achieves a lower total electricity cost with less
complex NNs than using the regression loss only. We then
showed that the combination of TL with our OL algorithm
allows us to use a pre-trained NN and adapt it online to
the new incoming data while improving performance. We
concluded by giving an estimate of the controller memory
requirement and showing that our OL algorithm can be used
to estimate uncertainties of the predicted variables. As a future
research direction, we would like to explore the field of online
uncertainty estimation further and investigate the opportunity
to leverage it in the control optimisation problem. Moreover,
we will consider extending the proposed methodology to a
general control framework considering non-linear plant models
and different sources of uncertainty.
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Lozano. “Probabilistic load forecasting based on adap-
tive online learning”. In: IEEE Transactions on Power
Systems 36.4 (2021), pp. 3668–3680.

[5] Brandon Amos and J Zico Kolter. “Optnet: Differen-
tiable optimization as a layer in neural networks”. In:
International Conference on Machine Learning. PMLR.
2017, pp. 136–145.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY , VOL. 00, NO. 00, MONTH YEAR 15

[6] Brandon Amos et al. “Differentiable mpc for end-to-
end planning and control”. In: Advances in neural
information processing systems 31 (2018).

[7] Somil Bansal et al. “Goal-driven dynamics learning via
Bayesian optimization”. In: 2017 IEEE 56th Annual
Conference on Decision and Control (CDC). IEEE.
2017, pp. 5168–5173.

[8] Vittorio Casagrande and Francesca Boem. “A novel
learn-based MPC with embedded profiles predic-
tion for microgrid energy management”. In: IFAC-
PapersOnLine. Vol. -. -. (Accepted). 2023, pp. -.

[9] Vittorio Casagrande and Francesca Boem. “Learning-
based MPC using Differentiable Optimisation Layers
for Microgrid Energy Management”. In: 2023 European
Control Conference (ECC). IEEE. 2023, pp. 1–6.

[10] Vittorio Casagrande et al. “An Online Learning Method
for Microgrid Energy Management Control”. In: 2023
31st Mediterranean Conference on Control and Au-
tomation (MED). IEEE. 2023, pp. 263–268.

[11] Vittorio Casagrande et al. “Resilient Microgrid Energy
Management Algorithm Based on Distributed Optimiza-
tion”. In: IEEE Systems Journal ().

[12] Michelangelo Ceci et al. “Spatial autocorrelation and
entropy for renewable energy forecasting”. In: Data
Mining and Knowledge Discovery 33.3 (2019), pp. 698–
729.

[13] Arslan Chaudhry et al. In: arXiv preprint
arXiv:1902.10486 (2019).

[14] Steven Diamond and Stephen Boyd. “CVXPY: A
Python-embedded modeling language for convex opti-
mization”. In: Journal of Machine Learning Research
17.83 (2016), pp. 1–5.

[15] Priya L Donti, Brandon Amos, and J Zico Kolter. “Task-
based end-to-end model learning in stochastic optimiza-
tion”. In: arXiv preprint arXiv:1703.04529 (2017).
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