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Abstract 

The integration of artificial intelligence (AI) into healthcare is becoming an increasingly 

mainstream activity. Leveraging digital technologies such as AI, especially through deep 

learning methodologies, has garnered significant attention among researchers, clinicians, and 

industry stakeholders due to its promising performance and clinical potential. Digital pathology 

is now a proven technology, enabling generation of high-resolution digital images from glass 

slides (whole slide images; WSI). WSIs has facilitated AI-based image analysis techniques to 

aid pathologists in diagnostic tasks, improve workflow efficiency, and address workforce 

shortages. Specific example applications include tumor segmentation, disease classification 

and detection, grading, rare object identification, and prognosis prediction. While notable 

advancements have been made, the integration of AI into clinical laboratories faces significant 

challenges, including concerns about evidence quality, regulatory adaptations, clinical 

evaluation, and safety considerations. Despite these barriers, the field is evolving, with ongoing 

research efforts addressing these challenges and generating new evidence. In paediatric and 

developmental histopathology, the adoption of AI could improve diagnostic efficiency, 

automate routine tasks, and address specific diagnostic challenges unique to the specialty, such 

as standardising placental pathology and developmental autopsy findings, as well as mitigating 

the staffing shortage in the subspeciality. Additionally, AI-based tools have the potential to 

mitigate medicolegal implications by enhancing reproducibility and objectivity in diagnostic 

evaluations. This article provides an overview of recent developments and challenges in 

applying AI to paediatric and developmental pathology, focusing on machine learning methods 

applied to WSIs of paediatric pathology specimens. 
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Introduction 

Harnessing artificial intelligence (AI) for cancer diagnosis, drug discovery and prediction of 

adverse patient outcomes is no longer a futuristic concept, but is becoming reality.1,2 Digital 

technologies are rapidly evolving within healthcare settings, impacting lives of patients and 

healthcare professionals globally.3 Building on these digital technologies; the potential of AI, 

particularly solutions using deep learning, has gained interest of researchers, clinicians and 

industry in recent years with their performance and clinical potential.4–6 Drug discovery, 

electronic health records (EHR), surgical procedures, screening, clinical decision making, 

health wearables and clinical imaging are all examples of areas of substantial AI research,7–12 

with successes and advances in this technology identified across multiple medical specialties.6 

Perhaps most notably, AI has been applied in ophthalmology to retinal images to diagnoses 

diseases such as diabetic retinopathy and to predict risk of systemic diseases, including 

myocardial infarction, stroke and Alzheimer’s disease.13–15 Example applications in radiology 

include deep learning for mammograms to identify breast cancer and for CT scans to identify 

lung nodules.16,17 Developments have been seen in dermatology with performance comparable 

to a dermatologist achieved in a study using AI for skin cancer diagnosis applied to a dataset 

of dermoscopy images.18 Improvements in computing power, data storage capacity and AI 

methods are resulting in growth of research innovations and potential clinical applications in 

this area.6,19 The use of AI to analyse medical data is also impacting diagnostic histopathology, 

with digital pathology the technology underpinning many developments in this area.20,21  

 

Digital pathology involves scanning of glass microscope slides to create high resolution digital 

images (whole slide images; WSIs).21 Increasing availability of WSI has provided a medium 

for development of image analysis techniques to assist the pathologist with diagnostic tasks.22 

In many countries, there are concerns around maintaining provision of expert pathology and 

laboratory medicine services and a specialised workforce who can meet growing demand; 

therefore, opportunities to improve workflow and assist healthcare professionals and allow for 

accessable digital consultations with subspeciality experts have generated substantial 

interest.23,24 AI solutions for an array of pathology tasks are described, with examples of 

specific applications including: outlining tumours or areas of interest, classification or 

detection of disease, grading and scoring diseases, identification and counting of rare or small 

objects and predicting prognosis or mutational status.20,25 There have been substantial advances 

in cancer detection in the adult population using WSI, with specific successes in breast and 

prostate cancer.26,27 CAMELYON was an early project that demonstrated the power of AI in 
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pathology, examining 32 algorithms used for breast cancer detection in lymph nodes, with the 

best algorithm achieving an area under the receiver operating curve (AUROC) of 0.994.28 

Similarly for prostate cancer, a deep learning tool developed for use on routine haematoxylin 

and eosin (H&E) stained images reported overall accuracy of 97-98%.29 A tool capable of 

predicting tumour origins for cancers of unknown primary with a top-1 accuracy of 0.80 and 

top-3 accuracy of 0.93 on an external test set has also been described in adults.30 Other general 

applications of AI in general digital pathology include tools for kidney transplant assessment, 

classification of colorectal polyp subtypes and scoring of non-alcoholic steatohepatitis disease 

features.31–33 It should be noted that in addition to digital pathology, AI has also been applied 

to other pathology techniques, including genomic and transcriptomic techniques, free text 

pathology reports, fluorescence microscopy and 3D histopathology.34–37  

 

Whilst there is enthusiasm and investment into AI solutions for digital pathology, examples of 

implementation into clinical laboratory practice remain rare, with numerous challenges to 

address to enable widespread AI deployment in routine workflow.38 Concerns around the 

quality of evidence underpinning commercially available tools, adaptations required within 

existing regulatory frameworks, the need for robust evaluation within a clinical setting and 

gaps in evidence to address safety concerns and risks once implemented are among the barriers 

to routine utilisation of these tools.39–42 However, whilst there are challenges to overcome, the 

pace of change is rapid, with new understanding and evidence appearing continuously within 

this field.22,43  

 

Digital pathology is increasingly having impact across many areas of histopathological 

practice, with issues specific to paediatric and perinatal pathology (PPP) that should be 

considered. Generally, the ability of WSI and AI/ML tools to improve efficiency and speed of 

reporting, and to automate routine tasks such as provision of counts, have numerous 

applications across the speciality.  However, since PPP has distinct areas of practice, in addition 

to general areas applicable to other histopathology disciplines, there are associated specific 

areas of diagnostic challenge that require specialised exprtise and experience. For example, 

identification of ganglion cells in biopsies for suspected Hirschsprung disease and 

interpretation of placental pathology and developmentally adjusted fetal autopsy findings. 

Furthermore, PPP is a particular shortage speciality with significance workforce issues 

meaning that WSI-based tools which could both allow more effective triaging of cases for 

referral as well as facilitation of virtual referrals to highly specialist centres are likely to have 
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disproportionate benefit to service provision.44 Finally, there are significant medicolegal 

implications in particular areas, such as interpretation of placental pathology in cases of adverse 

neonatal outcome, such that reproducible objective and morphometric evaluation of cases is of 

major importance. At present, interpretation of many aspects of placental pathology remains 

subjective to the ‘expert’ consultants impressions. Furthermore digital WSI with AI/ML tools 

is likely to be associated with increased reproducibility and potential for reduced error, which 

would ultimately improve diagnostic accuracy. This article therefore provides an overview of 

developments in AI in paediatric and developmental histopathology, specifically machine 

learning methods applied to whole slides images of perinatal/paediatric pathology specimens. 

 

Rationale and areas of focus  

AI and machine learning in PPP has potential to assist paediatric pathologists in several areas 

currently lacking routine objective quantification, including measurements, counting, and 

screening for rare events. Paediatric pathology practice requires a range of measurement and 

counting tasks (e.g. mitosis/karyorrhexis index in neuroblastoma, eosinophil counts in 

eosinophilic esophagitis), screening for rare event detection (e.g. ganglion cell detection in 

biopsies for possible Hirschsprung disease, decidual vasculopathy in placentas, acid fast bacilli 

in necrotic granulomatous lymph nodes), and assessing extent of biomarker quantification (e.g. 

PD1/PDL1 in tumours). AI augmentation of such tasks, with oversight by a pathologist, should 

allow more time focused on enhancing performance in areas of interpretive diagnostic 

difficulty in highly specialized areas whilst reducing the burden of ‘simple’ tasks such as 

measurement/counting, and biomarker quantification; subsequent longer term developments in 

diagnostic support willalso  lead to improved diagnostic accuracy and reduced subjective 

variability. 

 

Cell counting 

AI applications may augment accuracy and precision of counting for discrete events within an 

area of WSI, such as number of cells or number of mitoses.45 For example, peak eosinophilic 

count (PEC) per high-power field is the gold standard for confirmation of eosinophilic 

esophagitis (EoE), but there is variability in quantification between pathologists.46 Accurate 

quantification of EoE is important at initial diagnosis and for long-term follow-up and assessing 

effects of therapy, since these patients will undergo  follow-up biopsies over the course of their 

disease. New drug studies, such as those sponsored by the US Food and Drug Administration 

(FDA), are invested in utilizing objective quantification methods for eosinophil counting in 
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response to different treatment protocols. Furthermore, with such tools utilized by WSI, other 

features, such as the density and distribution of eosinophils in the tissue can be assessed along 

with other global tissue features which are tediously evaluated in research settings , given their 

potential importance in classifying EoE subtypes47,47 and response to therapy, but are only 

haphazardly collected in routine clinical practice, without standard techniques. Using a multi-

label sematic segmentation approach, the PECNet algorithm uses image patches with deep 

convolutional neural networks (CNN) to improve efficiency and standardization in eosinophil 

counting that is being implemented into clinical workflow setting. The PECNet algorithm can 

detect intact, overlapping and degranulated eosinophils in addition to features such as basal 

hyperplasia and lamina propria fibrosis. Furthermore, automated triaging to areas of greatest 

eosinophilic density can be supported using generated heatmaps.47 The algorithm’s detection 

of intact eosinophils had the highest area under the curve (AUC) at 14-15 eosinophils per field, 

demonstrating clinical applicability in EoE.    

 

Rare event detection with morphometric assessment 

Diagnostic evaluation for rare events based on manual screening of histopathology sections is 

a source of potential medico-legal issues, since undetected rare events may lead to both under- 

and over- treatment, depending on the diagnosis, with potential lifelong consequences for a 

paediatric patient.48 For example, of around  3.7 million births per year in the US, less than 

20% of placentas are formally examined and of that minority, only representative sections are 

sampled for histopathological examination. Changes such as abnormal vasculature remodelling 

associate with decidual arteriopathy/vasculopathy (DV) are associated with adverse pregnancy 

outcomes and subsequent maternal health indications but overall detection rates remain low 

even in mothers with preeclampsia. This may be a consequence of intraplacental disease 

heterogeneity49 but AI algorithms have the potential to augment such examination through 

automated vessel detection classifiers. Such ancillary tools may circumvent the reliance on 

expert pathologists for initial detection,50 important given the shortages in expert trained 

pathologists.23 

 

An archetypal disease for PPP in which rare object detection is important is Hirschsprung 

disease (HD), in which the diagnosis is based on the absence of ganglion cells in a biopsy 

specimen (in addition to ancillary features). The identification of ganglion cells, or more 

specifically their absence in in HD, is a task that experienced paediatric pathologists routinely 

perform.51 However, such specimens may require reporting by generalist/GI pathologists who 
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may only see few cases per year. Medicolegal issues may arise if the pathologist fails to identify 

even a single ganglion cell in a tray of serial sections, since surgical resection of an apparently 

aganglionic rectum/bowel may be erroneously performed. While ancillary immunostains have 

helped improve the accuracy of a diagnosis, the complete absence of ganglion cells remains 

the most important diagnostic features.51 AI algorithms trained for automated detection of 

ganglion cells may help both the expert and non-experts in time saving and efficiency. 

However, current published studies reporting performance of ML tools in this setting still 

remain within research/non-clinical grade application but show potential.52–54 For example, in 

one study, slides from 31 specimens underwent immunostaining and WSI with machine 

learning using an ensemble voting classifier to achieve around 90% diagnostic accuracy on a 

test set for HD;55 however, in clinical practice for HD, as near to 100% diagnostic accuracy is 

required, which can only currently be achieved with expert human supervision. One area that 

shows promise is based on hierarchical grouping analysis of similar objects together while 

maintaining contextual analysis in which detection is based on the regions where ganglion cells 

should be located (i.e. a focus within the submucosa rather than mucosa or whole slide). In this 

case, the algorithm performed best when associated with a pathologist having undergone 

training on the algorithm. Together such tools may improve accuracy in rare event detection 

and increase time efficiency when coupled with a pathologist for optimal rare event detection. 

Together such applications could have more realistic clinical useability by augmenting human 

pathologists through rapidly directing attention to ‘high yield’ areas of interest, allowing for a 

focused, improved diagnostic proficiency and accuracy. 

 

Morphometric evaluation 

Morphometric analysis, beyond binary detection of features such as decidual arteriopathy, 

would also provide quantitative data to support standardized approaches for reproducible 

grading of pathologies such as placental villitis and syncytial knot formation.56 Additional areas 

of benefit include automatic integration of WSI measurements directly into cancer checklists 

(e.g. tumour size and distance to closest margin) or for automated feature and measurement of 

submucosal nerve hypertrophy as an additional ancillary tool in HD with integration into the 

lab management reporting tool. AI tools now exist for identifying micrometastasis in lymph 

nodes while also identifying percent fibrosis in renal and liver biopsies for more objective 

quantification.57–59 Quantitative immunostaining that impacts therapy and its utilization has 

been reported in adult breast pathology; however, in paediatric cases, current use cases remain 
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more limited such as PD-L1/PD-1 staining assessment, with variable results but the underlying 

principle remains valid.60  

   

Predicting outcomes based on histological features 

Neuroblastoma is a quintessential paediatric tumour in which the histological features define 

the tumor subtype based on the degree of cytodifferentiation; additional factors such as markers 

of cellular turnover (i.e. Mitotic and karyorrhexis index per 5000 cells -MKI) and molecular 

changes and may provide additional prognostic information.61 While classification of 

neuroblastic tumours is tractable, associated counting tasks such as MKI determination could 

be standardised with AI algorithms that augment manual counting and increase 

reproducibility.62 Furthermore, non-specialist pathologists tasked with primary diagnosis of 

such paediatric tumours likely would also benefit from an automated classifier that could help 

identify neuroblastic differentiation and Schwannian stroma for diagnostic purposes.63  

However, there remains a paucity of clinically-driven studies focused on such algorithms for 

clinical deployment. 

 

Another focus in paediatric tumours is the association of molecular drivers on specific tumour 

subtypes and how machine learning may help in recognizing these associations. This is 

particularly evident in rhabdomyosarcoma (RMS) in which fusion positive (i.e. PAX3/7-

FOX01) and fusion negative RMS are associated with significantly different outcomes.  Even 

with modern approaches, molecular result confirmation is often delayed a few days to weeks 

after an initial tissue diagnosis thus the potential of AI algorithms with deep learning based on 

convolutional neural networks (CNNs) to accurately subclassify RMS by fusion status, based 

only on H&E WSI with realtime fusion prediction could revolutionize the field, both for 

resource poor centres in which molecular testing is not possible, and even for large, academic 

medical centres to improve clinical workflow and treatment optimisation. Furthermore, the 

ability of WSI based algorithms to stratify low, intermediate- and high-risk fusion negative 

RMS, may be superior to the current clinical risk prediction models based on tumour size, site, 

stage, and patient age.64   

 

Current evidence for WSI and AI in PPP 

The potential for WSI and AI/ML applied to PPP has been described in general terms,65 

however, there is minimal published evidence to date reporting on performance of such 

approaches in real-world paediatric pathology clinical practice. In general, use of WSI is 
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feasible and effective in this setting. In a study of 60 paediatric surgical pathology cases, there 

was high concordance with glass slide findings (>98%)66 and in another study of 80 surgical 

cases and 20 placentas, concordance was also >90%.67 In this study identification of nucleated 

fetal red blood cells was reported as more challenging using WSI, suggesting that speciality 

specific guidance and organ specific validation may be required.67 The use of WSI for web 

based learning of digital pathology has also been reported as potentially useful for subspeciality 

training in disease-specific pathology.68 

 

There are few published studies examining real world use of AI/ML with WSI in paediatric 

pathology, those that exist predominantly reporting on gastrointestinal biopsies. In a study of 

around 70 cases of paediatric inflammatory bowel disease, which included clinical, radiological 

and histopathological findings, a random forest (RF) based classifer was developed which 

successfully clustered 58 patients into two groups, broadly representing ulcerative colitis and 

Crohn disease, with the RF classifier correctly labelling 97% and identifying the most 

important histological features.69 Of note, however, this study did not directly apply ML 

techniques to WSI themselves. In another study, duodenal biopsy slides from 102 children were 

used to train a neural network (NN), which demonstrated 93% accuracy with only 2% false-

negative rate for identification of coeliac disease. In this study feature maps and patterns were 

learned including microlevel features such as alterations in secretory cell populations, 

demonstrating the feasibility of machine learning-based histopathological analysis.70 AI for 

paediatric tumour pathology remains limited. In one study of 244 neuroblastoma (NB) cases, 

CD3+ and CD8+ T cell density was determining using WSI and image analysis techniques to 

demonstrate associations with overall and event-free survival, specifically the finding that low 

density T cell infiltration was associated with greater risk of death even after adjusting for other 

factors,71 and evidence suggests that deep learning approaches trained on manually annotated 

cases can achieve results similar to trained pathologists in regard to extent of immune cell 

infiltration in NB.72 Automated image analysis using feature extraction and classification of 

NB cases using a Support Vector Machine classifier has been described in concept.73   

 

Future development and research 

There are significant advantages to WSI/AI based approaches from a research perspective for 

PPP, particularly since many disorders are rare and therefore require significant collaboration, 

often international. The ability of whole WSI to remove the issues involved in material transfer 

arrangements and other associated governance and ethical limitations significantly facilitates 
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such collaborative multi-institutional research, which is needed for rare pediatric tumor and 

disease investigation. With greater ease of sharing WSI for collaborative research there is 

potential benefit of improved reproducibility, objectivity and auditability of studies. The 

establishment of such specialist federated networks of paediatric centres not only supports 

collaborative research but also encourages rapid and specialist central review, for example for 

paediatric tumours, which has been demonstrated to have value to improve the reproducibility 

of diagnosis and classification.74 In addition, one of the main challenges in paediatric tumour 

pathology is relating to risk stratification and prognosis prediction. For many paediatric 

tumours, diagnosis of tumour type may be relatively straightforward, often since these may be 

associated with specific and diagnostic molecular findings, but reliable risk stratification within 

groups to direct personalised therapy remains difficult. Given that many paediatric tumours 

demonstrate a poorly differentiated and mesenchymal phenotype, with minimal distinctive 

cytological and morphological features identifiable to the subjective human eye, the potential 

ability of WSI with ML techniques such as neural networks to identify as yet undescribed 

morphological markers which may relate to disease prognosis of treatment response represents 

an exciting area of future research. 

 

Despite the opportunities, numerous challenges remain in order to achieve the benefits 

described. Many of these are common to all domains of histopathology, such as requirement 

of annotated WSI for some types of supervised methods, and challenges of weak labelling for 

feature identification. However, an additional significant aspect to address in placental 

pathology relates to difficulties in clear definitions of the ‘gold standard’ for supervised 

learning.  For example, many placental pathology entities, whilst being well described, have a 

significant element of subjectivness and are often associated with poor reproducibility, for 

example evaluation of villous maturity.75 Furthermore, the vast majority of placental pathology 

collections available are associated with relatively minimal clinical information and represent 

highly preselected populations. Without clear success or failure for ‘reward’ in terms of the 

ultimate purpose of the algorithm, machine learning approaches such as neural networks will 

be unable to achieve their potential. Nevertheless, the future combination of widespread WSI 

with evolving AI tools heralds a new and exciting era for PPP and it is essential that the 

specialty grasps these opportunities and supports the next generation of paediatric pathologists 

to work seamlessly with such technologies. 
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Figures 

Need a couple of figures for eye candy 

Eg one WSI of placenta or tumour, one example of counting with AI etc? 
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