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Abstract
Given that AI systems are set to play a pivotal role in fu-
ture decision-making processes, their trustworthiness and
reliability are of critical concern. Due to their scale and
complexity, modern AI systems resist direct interpreta-
tion, and alternative ways are needed to establish trust in
those systems, and determine how well they align with hu-
man values. We argue that good measures of the informa-
tion processing similarities between AI and humans, may
be able to achieve these same ends. While Representa-
tional alignment (RA) approaches measure similarity be-
tween the internal states of two systems, the associated
data can be expensive and difficult to collect for human
systems. In contrast, Behavioural alignment (BA) com-
parisons are cheaper and easier, but questions remain as to
their sensitivity and reliability. We propose two new be-
havioural alignment metrics misclassification agreement
which measures the similarity between the errors of two
systems on the same instances, and class-level error sim-
ilarity which measures the similarity between the error
distributions of two systems. We show that our metrics
correlate well with RA metrics, and provide complemen-
tary information to another BA metric, within a range of
domains, and set the scene for a new approach to value
alignment.

1This is a preprint. The final manuscript is published in the Pro-
ceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence
(AAAI-25).

1 Introduction

With significant advancements in AI development, the
alignment of AI with human values has increasingly
drawn attention within the community. Generally, AI
alignment focuses on aligning the performance of AI sys-
tems towards goals [ZHM20, NCM22a, SS23], prefer-
ences [Str20], and social norms [IA19, GG21] intended
by humans. Improved human alignment can help build
more reliable and trustworthy AI systems. Considering
the potential for AI systems to play a crucial role in fu-
ture decision-making processes, the trustworthiness and
reliability of these systems emerge as critical concerns,
particularly in applications such as medical diagnosis
and autonomous driving. Studies in cognitive science
have demonstrated that a model more closely aligned
with the internal mechanism of the human brain can
improve the robustness of visual-based decision-making
tasks [DMS+20]. Studies that compare internal repre-
sentations used by systems are called representational
alignment (RA). RA approaches are often presented as
the gold-standard, as similarities between representational
structures of systems can provide deep insights about the
alignment between the internal processing of these sys-
tems [KMB08, HL20]. Nonetheless, RA studies are of-
ten limited by the high-costs and practical challenges as-
sociated with collecting and comparing complex, hetero-
geneous and difficult to access internal representations,
e.g. via fMRI in humans. In contrast, the study of how
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a system behaves can also inform us about both animal
and human systems [SC03, GFR+14, RSD15] as well as
computational systems [GMW+19, GNM+21]. However,
questions remain about how much behavioural alignment
(BA) approaches can tell us about deeper similarities
in the internal processing of systems [HCK20, RSD15,
SMW+23].

Figure 1: Different levels of representations. From left to
right, it enables the comparison of the decision-making
process of two systems at the latent representation level,
confidence level, instance level and class level.

The separation between RA and BA is not a strict
one [SMW+23], and there are finer distinctions in the
types of observations on a system’s information process-
ing pipeline used to evaluate alignment. Figure 1 shows
different levels at which observations can be drawn from
a typical machine system, with analogous choices for hu-
man or animal models. Left of the dotted line are what
we might call internal representations and right might
be termed behaviours. Here we describe RA approaches
as those based purely on internal representations, and
we further divide these into latent representations, refer-
ring to layer activations before the final layer, and con-
fidences, referring to activations in the final layer of the
network (commonly just before some soft-max opera-
tion). Techniques such as Canonical Correlation Analysis
(CCA) e.g. [RGYSD17] and Centered Kernel Alignment
(CKA) [KNLH19] have been used to assess the similar-
ity of latent representations, while elsewhere comparisons
between model confidences are used [GPSW17, PHD20].
In contrast, we describe BA metrics as those based on
observations drawn from right of the dotted line. BA ap-
proaches include, the error consistency (EC) scores from
[GMW20], and the matrices based on object discrimina-
tion tasks from (author?) [RSD15]. Some studies com-
pare representations of some systems, with behaviours of
others, e.g. [GFR+14, PAG18, LKW+24]. EC [GMW20],

a widely used metric for BA, measures the degree to
which two systems make correct or incorrect predictions
simultaneously. However, only measuring when two sys-
tems make errors can be problematic in revealing the sim-
ilarity of decision-making mechanisms, as whether an in-
stance is correctly predicted can highly depend on the un-
certainty carried by the data sample. Additionally, imag-
ine a scenario where two systems achieve almost the same
accuracy, but one classifies bears as cats, and the other
classifies bears as books. Which system is more reliable,
or which type of mistake is more acceptable to humans?
Therefore, we argue that the alignment should be assessed
not only based on when errors occur but also on how er-
rors are made.

In this work, we propose two evaluation metrics: Mis-
classification Agreement (MA) and Class-Level Error
Similarity (CLES), to measure how similarly two systems
make errors at both instance-based and class-based lev-
els both based on behavioural observations. We argue that
people tend to believe two systems have similar decision-
making strategies if they both misclassify one instance to
the same wrong class, and MA is constructed to be sen-
sitive to this. In constrast, CLES represents a compari-
son between two systems’ error distributions, instead of
an instance-by-instance comparison. We conduct an ex-
tensive series of evaluations to determine the value of the
new measures we develop. Through the experiments, we
show MA captures different information from the previ-
ously proposed EC which has a comparable level of ac-
cess. We also demonstrate that CLES relaxes demands on
data access and hence can be applied more widely, even
comparing with historical models and data where only
the confusion matrices are available. Both of our mea-
sures have a strong correlation with more privileged mea-
sures, although the correlation of MA is stronger. Addi-
tionally, it can also be used as an auxiliary loss for the
training of a more human-aligned model. Our evaluations,
including with our new measures, shed light on how sim-
ilar models are in how they make errors and how similar
(or rather disimilar) these errors are from other systems.
In total, our results advance the understanding of the in-
formation processing strategies behind these models’ pre-
dictions, including differences between synthetically dis-
torted and naturally occurring data. Our measures could
facilitate low cost evaluation of human error alignment
which can help to explain existing models’ errors, and de-
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velop new models which better align with human errors.
We argue, as do others, that better aligned models are in-
herently more trustworthy and provide a new aspect to
interpretability [LCW23].

The central contributions of this work are two-fold. 1)
We propose two evaluation metrics of error patterns to
measure the behavioral alignment of two systems: Mis-
classification Agreements (MA) and Class-Level Error
Similarity (CLES). MA quantifies the similarity in how
systems make mistakes at the instance level. In contrast,
CLES operates at the class level, offering greater flexi-
bility than both MA and EC, particularly when instance-
level comparisons are difficult to achieve. 2) We report on
comprehensive experiments on four different datasets on
vision tasks: one synthetic dataset with a number of sub-
sets, and three naturalistic challenging dataset, including
both object recognition tasks on images and human activ-
ity recognition tasks on videos, to show the effectiveness
and generalisability of those metrics. We show that MA
can be a complementary metric for EC, while CLES can
be a more flexible proxy for MA. The results also demon-
strate that behavioural alignment can reflect the internal
representational alignment to a certain degree.

2 Metrics of Error Alignment

As argued in [GMW20], investigating whether two sys-
tems consistently make errors on the same stimuli can
help to investigate the similarity of decision-making
strategies behind the response. They propose error con-
sistency (EC), to measure behavioural similarity between
two classification systems in these terms. More precisely,
consider dataset D = {(xn, tn)}Nn=1 comprising inputs in
data (stimulus) space xn ∈ X , and target labels in finite
label space tn ∈ Y of C classes. Let A (resp. B) be a clas-
sification system that makes prediction yAn (yBn ) for each
input xn

1. On D, there are Nc jointly correct instances
(tn = yAn = yBn ), and Ne jointly incorrect instances
(yAn ̸= tn ̸= yBn ). The observed error overlap is the pro-
portion on which A & B agree, pobs = (Ne +Nc)/N .

1Most simply, a deterministic predictor g, will predict ygn = yg(xn),
for all xn. In general, both human and machine systems can give differ-
ent predictions for each presentation of the same stimulus. In this case,
two presentations of the same stimulus are treated as two different data-
points.

This is contrasted using the error overlap expected by
chance:

pexp = papb + (1− pa)(1− pb)

where pa (pb) is the accuracy of A (B). And the EC mea-
sure is Cohen’s kappa (κ) [Coh60] based on these values:

EC(A,B) =
pobs − pexp
1− pexp

. (1)

Figure 2: (left) An illustration of dataspace, X , showing
decision regions for systems A and B across three classes
1, 2 and 3. Dotted lines indicate decision boundaries for
system A (green) and B (red), and decision regions are la-
belled. The region where system g makes correct classifi-
cations, Cg , is shaded appropriately. (right) The same data
space, with 3 data distributions, Di, indicated in black,
blue and yellow.

We argue that EC captures only one aspect of the be-
havioural alignment between systems A and B, and pro-
pose two complementary metrics. To see this, consider
the conceptual representation of data space, X , and as-
sociated regions shown in Figure 2. The left image shows
data space in which datapoints are deterministically asso-
ciated with ground-truth classes from Y . For simplicity,
we also assume each system g deterministically classifies
each datapoint x ∈ X , with label yg(x) ∈ Y . This parti-
tions dataspace into regions R(g)

c ⊆ X , such that for each
system g and class c ∈ Y then yg(x) = c ⇔ x ∈ R(g)

c .
Similarly, we presuppose that ground truth label for x is
determined its position in dataspace, and define for each
system g a correct region Cg ⊆ X , containing all dat-
apoints that would be correctly classified by system g
2. Figure 2 also shows correct regions for the two sys-

2Note that these simplifications are for the purposes of clarity of il-
lustration, and do not represent limits to the application of EC or our
metrics.
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tems A & B along with their intersection. Note that, in-
side the jointly correct region CA ∩ CB (shown in brown)
decision boundaries for both systems must necessarily
align. Put simply, to jointly correctly classify datapoints
they must also agree between themselves. Equally, where
one system is correct and another incorrect, e.g. CA \ CB
(shown bright green), the systems must necessarily dis-
agree. In the region where both systems are incorrect,
CA ∪ CB = X \ (CA ∪ CB) (shown in white), there are
no such constraints on decision boundaries and they can
agree or disagree arbitrarily.

Under these conditions, EC would be calculated solely
on the counts of datapoints arising in four distinct regions:
both systems correct (brown), A correct B not (green), B
correct A not (red), and neither correct (white). Different
data distributions for the prediction set give different ex-
pected counts within these four regions and hence a differ-
ent expected value for EC. For example, the right image
of Figure 2 shows different distributions as isoprobabil-
ity contours. Here D1 and D3 would have high expected
EC between A and B while D2 would not. This exam-
ple also illustrates a significant limitation of EC. While
distribution D3 would tend to give high EC scores be-
tween A & B, it also gives high probability to data on
which A & B disagree. This is because EC treats all
data within the dual-misclassification (white) region iden-
tically, while the decision boundaries in this region of the
two systems can vary substantially.

2.1 Misclassification Agreement
To directly address this insensitivity to differences in the
dual-misclassification region, we propose a novel metric
called Misclassification Agreement (MA). We first mo-
tivate this with an everyday analogy – student perfor-
mance in exams. In place of systems performing clas-
sification tasks, consider students engaged in a multiple
choice quiz. When some students answer a question cor-
rectly and others incorrectly, we can draw certain infer-
ences about students’ learning from when questions are
answered correctly and when they are not. This is the
essence of the EC metric. Conversely, when a question
is answered incorrectly by two or more students, we must
consider which incorrect choices each student makes to
draw further conclusions about their learning. Moreover,
statistical patterns in jointly incorrect choices may expose

more about the underlying decision-making of those stu-
dents. If two students consistently choose the same wrong
options, they may share similar misunderstanding about
the course content. Equally, this may suggest some ambi-
guity or common misreading of the question. In a similar
way, studying error patterns in classification agents helps
us understand the decision-making strategies of those sys-
tems. To this end, our novel MA metric offers insight on
error patterns by measuring how closely two systems er-
rors align instance-by-instance.

More precisely, with terms A, B, X , Y , D, xn,
tn, yAx and yBx taking their same meanings as above.
The error dataset for system g, Derr

g , is those data
on which g disagrees with ground truth, i.e. Derr

g =
{(xn, tn) ∈ D : ygx ̸= tn}, while the joint error dataset
between A and B, Derr

A,B , is the intersection of the two
systems’ error datasets, i.e. Derr

A,B = Derr
A ∩ Derr

B . For our
example in Figure 2, Derr

A,B corresponds to data arising in
the white region (CA ∪ CB).

We define the error agreement matrix, M err
A,B ∈ ZC×C

+ ,
as the frequency counts of joint error predictions from
systems A and B. More precisely, the (i, j)th cell counts
the number of joint error instances xn where yAn = i and
yBn = j, i.e.

[M err]ij =
∣∣{(xn, tn) ∈ Derr

A,B : yAn = i, yBn = j}
∣∣

The MA between A and B is then the multiclass Co-
hen’s κ [Coh60] of M err:

MA(A,B) = κ(M err) =
p̃o − p̃e
1− p̃e

Here p̃o is the observed error-agreement rate between sys-
tems, and p̃e the probability of chance error-agreement
under the null hypothesis that agreement is uncorrelated.
Note that these are calculated only over data in Derr

A,B .
Otherwise, these follow the definitions from [Coh60].

As such, p̃o is the proportion of joint errors on which A
& B agree, p̃o = N err

O /N err, with N err = |Derr
A,B | the total

number of joint errors and N err
O the number on which A

& B agree. Equivalently, p̃o is the fraction of counts ap-
pearing in the main diagonal of M err. A higher (lower) p̃o
indicates that two predictors tend to make more (fewer) of
the same types of errors. Similarly, probability of chance
agreement under the null hypothesis, p̃e, is what we would
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expect if the two predictors predicted independently on
error set, Derr

A,B :

p̃e =

C∑
i=1

p̂
(A)
i · p̂(B)

i

where p̂
(g)
i is the estimated probability that a random el-

ement of Derr
A,B is predicted as class i ∈ Y by system

g ∈ {A,B}. For A (resp. B), this is the fraction of counts
appearing in the ith row (resp. column) of M err.

2.2 Class-Level Error Similarity
Unlike MA, which is based on instance-level comparisons
(referred to as trial-by-trial in [GMW20]), our second
metric Class-Level Error Similarity (CLES) seeks to mea-
sure the similarity between predictions of two systems A
& B at the class-level, again based on system errors. More
precisely, we define, for system g ∈ {A,B}, the error
confusion matrix, F err

g , as the counts of actual (ground-
truth) and predicted class on g’s error instances, i.e. those
in Derr

g . This has (i, j)th element:[
F err
g

]
ij
=

∣∣{(xn, tn) ∈ Derr
g : tn = i, ygn = j}

∣∣
Note that by design the diagonal elements

[
F err
g

]
ii
= 0.

We then calculate a row-wise Jensen-Shannon diver-
gence (JSD), e.g. see [Vaj09], between two systems, by
first converting each row of each matrix to a categorical
probability distribution as the expectation of a posterior
Dirichlet distribution given prior α ∈ RC

+. 3 More pre-
cisely, if we collect system g’s row i of counts into vector,
fgi , and define the vector of all 1s as 1, this gives estimated
error distribution for system g on class i as:

π̂g
i =

fgi +α

1T (fgi +α)

The class level error distance (CLED) between system A
and B aggregates these differences as:

CLED(A,B) =

C∑
i=1

wi JSD(π̂A
i , π̂

B
i ) (2)

3Note that we use Dirichlet Prior with shape parameter α = 0.5 · 1
throughout our experiments.

where wi = 1T (fAi + fBi ).
To make the score comparable to other alignment met-

rics (and to potentially serve as an auxiliary loss for future
human-aligned models) we convert this dissimilarity into
a our class-level error similarity (CLES) as:

CLES(A,B) =
1

1 + CLED(A,B)
. (3)

One key aspect of the CLES metric is that the confusion
matrices are derived from each system g’s error dataset,
Derr

g . In terms of Figure 2, CLES is estimating the er-
ror distribution of system A’s (resp. B’s) predictions over
the white and red (resp. green) regions. Thus, it combines
counts used by both EC and MA, but then measuring simi-
larity between distributions rather than using instance-by-
instance agreements. Moreover, this metric is much less
sensitive to the degree of difficulty of a given domain
compared to a comparison between conventional confu-
sion matrices – as in [RSD15, KGGM16a, KGGM16b].
To see why, note that if two systems both classify a dat-
apoint correctly, they must necessarily agree on the label
(as previously discussed). Hence, a domain in which both
systems have a high accuracy will result in two confu-
sion matrices with a high proportion of counts in the main
diagonals, which skews similarity comparisons. Another
key aspect of this approach is the use symmetric infor-
mation theoretic measure, the JSD, to evaluate the differ-
ence between distributions derived from rows of the con-
fusion matrices. This has the dual advantages of taking ac-
count of the non-euclidean geometry of the space in which
these predictive distributions sit, and having a meaningful
information-theoretic interpretation of the difference be-
tween distributions. JSD is preferred over KL-divergence
as it is symmetric, and handles zero probabilities more
gracefully [Vaj09]. More details are given in supplemen-
tary materials.

3 Experiment

This section describes evaluations on our two new BA
alignment metrics, alongside pre-existing BA and RA
alignment metrics. We aim to investigate what these met-
rics can tell us about the similarities between pairs of sys-
tems both within, and across domains, including human
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and deep neural network systems. We also wish to eval-
uate whether, and to what degree, different metrics pro-
vide overlapping or complementary information about the
similarities between systems. This includes, to our knowl-
edge, the first systematic study on correlations between
BA and RA metrics across a range of settings, datasets
and system types.

3.1 Dataset and Metrics

Our experiments include two groups of classifica-
tion datasets: synthetic and naturalistic. The synthetic
group contains 14 subsets of the modelvshuman
image dataset [GNM+21], with both machine and
human predictions. The naturalistic group com-
prises three challenging datasets: one image recog-
nition task – ImageNet-A [HZB+21]), and two
video-based Human Activity Recognition (HAR)
tasks – MPII-Cooking [RRR+16] and Epic-
Kitchen [DDF+18]. For the image datasets, we eval-
uate a selection of ImageNet1K pre-trained models
(see supplementary materials), and use the complete
modelvshuman and ImageNet-A data for test-
ing. For video datasets, models were trained on the
corresponding training set. In all cases, alignment mea-
surements are based on corresponding testing sets. For
every pair of systems, across all datasets, we evaluate
the three BA metrics already described: EC, MA and
CLES, alongside 3 RA metrics: CKA [KNLH19]; SOC,
the average Jenson-Shannon Divergence (JSD) between
the confidences (soft-max logits) of the two systems; and
SOCE, the SOC measure applied to jointly incorrect pre-
dictions only. CKA is a state-of-the-art RA metric able to
reliably measure multivariate similarity between arbitrary
representational spaces. SOC (and SOCE) embodies our
own approach to measuring confidence alignment. It is
similar in character to the soft cross-entropy loss from
[PBGR19], but SOC is symmetric and more gracefully
deals with zero confidences. SOC is also similar to the
Hellinger distance based approach from [LKW+24],
except SOC better reflects the information geometry of
the space of confidences. More dataset and RA metric
details are given in supplementary materials.

Figure 3: Example heatmap for MA scores on the Stylized
subset from modelvshuman. Darker cells represent a
higher value of similarity.

3.2 Error Patterns between Systems.
We evaluate the alignment of each distinct pair of sys-
tems by different BA metrics, producing a single score
for each model pair on each metric. Figure 3 shows an
example heatmap for MA for all pairs of systems on one
subset of modelvshuman. More heatmaps for different
metrics are presented in the supplementary material. The
first five rows/columns correspond to humans, followed
by CNN-based models then transformer-based models.
Relative comparisons within one heatmap indicate which
pairs of systems are more/less similar according to that
metric. Some consistent patterns emerge, for example
both human-human and model-model pairs tend to exhibit
higher values compared to human-model pairs. This ob-
servation aligns with the conclusion drawn in [GMW20],
which states that the prediction behaviour between hu-
mans and models is less aligned. However, there are dif-
ferences between metrics and datasets. For example, the
MA values for human-human pairs are significantly lower
than most model-model pairs within the dataset, whereas
EC does not show this same trend, suggesting that EC
and MA can measure different aspects of decision-making
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systems.

Figure 4: EC vs MA (left) and MA vs CLES (right) on
modelvshuman data, with model-model, model-human
and human-human pairs coloured differently, and shaded
according to mean accuracy of the pair.

EC vs MA. For a more comprehensive investigation
of this difference between MA and EC, we systemati-
cally compare these alignment scores for all distinct pairs
of systems across all subsets in modelvshuman. Fig-
ure 4 (left) is a scatter plot of these data, where each
dot represents a pair of systems on a given subset in
modelvshuman, such that the x-position is the MA
score, and the y-position is the EC score, on that subset.
Model-model comparisons are shown in green, human-
human in blue, and model-human (hybrid) in red. The
colour saturation of these points indicates average accu-
racy for the two systems on the subset.

Note that, a significant minority of points exhibit high
EC but low MA, and others have high MA but low EC,
substantiating the previous indication that these metrics
are complementary. Specifically, pairs with high EC and
low MA indicate a high level of agreement on which in-
stances they make errors, but less agreement on which
incorrect classes are predicted. Most of the dots in this
cluster represent comparisons on highly-corrupted sub-
sets where both systems have low accuracy. We argue that
the high EC here, rather than indicating similar decision-
making strategies, may stem from a lack of test examples
in regions of data space where one system performs better
than the other, such as with distribution D3 from Figure 2
(right). Conversely, the points with medium to high MA
but very low EC represent those systems with some agree-
ment on joint errors, but with substantial disagreement on
which points are predicted correctly. Most points here cor-

respond to high mean accuracy, and may stem from a lack
of test examples in the joint error region, such as with
distribution D1 from Figure 2 (right). It is also worth not-
ing that if we consider only darker dots (those with higher
mean accuracy) there is a stronger correlation between the
measures, likewise if we restrict ourselves only to lighter
dots (those with lower mean accuracy).

This potential sensitivity of EC to low accuracy do-
mains and MA to high accuracy, and the complementar-
ity of measures, advises some caution when interpreting
these measures (particularly in isolation). Nonetheless,
we can read off some patterns in terms of model-model,
human-human and hybrid comparisons here. The emerg-
ing picture is that the most highly (behaviourally) aligned
system pairs are model-model, while other model-model
pairs, as well as human-human pairs, tend to exhibit in-
termediate levels of alignment, and hybrid pairs show the
weakest levels of alignment.

MA vs CLES Recall that CLES, like MA, measures er-
ror prediction similarity between systems, but at the distri-
butional level, rather than instance-by-instance. Figure 4
(right) compares the log(MA) and CLES scores, for all
system pairs across all subsets of modelvshuman. Each
point represents the two scores for a single system pair
coloured as before. Unlike EC vs MA, log(MA) vs CLES
exhibits a strong global correlation across all subsets. This
relationship is most evident using log(MA) rather than
MA, and motivates our use of rank correlation scores in
subsequent sections. There is some complementarity here
too. For instance, higher mean accuracy points sit more
to the right of the group of points (those with relatively
higher log(MA) for the same CLES score). This may
again be due to MA’s sensitivity in low accuracy domains.
CLES may be less sensitive as it is drawing data from in-
dividual error, rather than joint error, regions. CLES ap-
pears to tell a similar story as for EC and MA. The most
closely aligned system pairs are model-model. Interme-
diate alignment is seen with human-human, and some
model-model pairs, while hybrid pairs are less aligned.
Weaker hybrid scores raise concerns about trustworthi-
ness, and value alignment, of these machine systems.
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3.3 Correlations across Levels of Align-
ment.

From Figure 4, we observe some evidence of correlation
and some complementarity among the BA metrics, and
we argue that the complementarity may partly arise due
to the influence of domain conditions on different metrics.
To explore this further, we report in-domain Spearman’s
r between pairs of metrics EC, MA and CLES in Table 1
(columns 1, 2 & 3), for all synthetic domains and natural-
istic domains. We use Spearman’s r to measure rank cor-
relations as this captures relationships even when they are
non-linear (as between MA and CLES). Note that, EC and
MA are weakly-negatively correlated, with r = −0.23
(r = −0.29) when all synthetic (naturalistic) scores are
grouped together. However, they consistently show (typ-
ically strong) positive correlation within domain. Strong
positive in domain correlation can also typically be seen
for EC vs CLES and MA vs CLES, supporting our claim
that CLES captures elements of both metrics. Notable
exceptions include: EC vs MA on color, and EC vs
CLES and MA vs CLES on Epic-Kitchen. The ta-
ble also presents in-domain rank correlations between our
gold-standard RA metric, CKA, and the three BA met-
rics. As discussed, questions remain about how effectively
BA metrics can stand in for RA metrics, when the latter
are infeasible. These results show that, across a broad se-
lection of domains, all three BA metrics strongly align
with CKA. Notable exceptions include: CKA vs MA on
color, and CKA vs CLES on Epic-Kitchen. These
and previously noted exceptions may be explained by MA
suffering on color due to very high accuracy, and CLES
on Epic-Kitchen as a result of extreme class bias.

Global and Average rs. Here we investigate these
global versus in-domain relationships further. Figure 5
shows the global r (lower triangular) and the average r
(upper triangular) between each pair of metrics on the
synthetic dataset (left) and the naturalistic dataset (right) -
description in caption. Here we include our two final RA
metrics, SOC and SOCE. As anticipated, we see consis-
tently lower global r than average r for almost all pairs
of metrics on both synthetic and naturalistic data. In ad-
dition, global rs are substantially lower in the synthetic
domain. This supports the argument made in [SMW+23]
that datapoints from naturalistic domains are more likely

EC vs MA vs CKA vs
Dataset MA CLES CLES EC MA CLES
colour 0.01 0.40 0.48 0.62 0.08 0.30
contrast 0.52 0.74 0.80 0.71 0.70 0.78
eidolonI 0.55 0.38 0.81 0.70 0.67 0.40
eidolonII 0.73 0.61 0.78 0.64 0.61 0.25
eidolonIII 0.73 0.59 0.82 0.72 0.64 0.38
false-colour 0.36 0.50 0.45 0.64 0.53 0.44
high-pass 0.66 0.59 0.79 0.76 0.62 0.44
low-pass 0.58 0.53 0.80 0.75 0.48 0.38
phase-scrambling 0.55 0.24 0.66 0.83 0.54 0.20
power-equalisation 0.46 0.76 0.57 0.74 0.53 0.65
rotation 0.42 0.90 0.56 0.76 0.62 0.76
sketch 0.57 0.67 0.75 0.68 0.76 0.70
stylized 0.50 0.48 0.82 0.54 0.87 0.74
uniform-noise 0.67 0.50 0.78 0.52 0.41 0.27
ImageNet-A 0.51 0.65 0.90 0.49 0.73 0.87
MPII-Cooking 0.70 0.73 0.75 0.58 0.89 0.58
Epic Kitchen 0.94 0.11 0.20 0.83 0.80 0.08

Table 1: Spearman’s r between metrics for each dataset.
(All results are significant)

to express features closer to those of the training distri-
bution, and hence be more consistently influenced by the
training process.

We now address the question: to what extent are
these metrics measuring the same thing? Overall, average
rs show strong, or very strong, in-domain correlations.
Among other things, this indicates that under a broad set
of conditions, high behavioural alignment between two
systems, as measured by EC, MA and CLES, provides
strong evidence that two in-silico systems are also closely
representationally aligned. However, degree of alignment
is best judged relative to other system pairs within the
same domain. Note that these BA vs RA comparisons are
based on in-silico systems , but our earlier BA results on
modelvshuman data give strong indication that these
findings will generalise to human-human and hybrid com-
parisons too.

In-domain Analysis. Here, we use in-silico compar-
isons on the ImageNet-A dataset to illustrate how simi-
larities might be investigated within a domain. Figure 6
shows the pairwise z-scores for all six metrics within and
across family for three families of models: CNN-based
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Figure 5: Spearman’s r for each pair of metrics for all
system-pairs in both synthetic and naturalistic datasets.
Global rs measure correlation for all pairs across all
datasets; while average rs are the mean in-domain r-
value.

Figure 6: The pair-wise z-scores of different families of
models measured by different alignment metrics for the
ImageNet-A dataset.

(CNN), ViT-based (ViT), and larger image transformers
pretrained on larger datasets (Large), where z-scores stan-
dardise scores within a metric. This follows findings from
above that relative scores for a metric in-domain are the
best indicator of alignment. In general, similar patterns of
relative similarity within and across model families are
observed across different metrics, although some differ-
ences do occur. Looking at CKA (as our reference metric),
the representations of CNNs are observed to be more sim-
ilar to each other in the latent space, as evidenced by the
relatively higher positioning of the CNN-CNN dots com-
pared to other groups. Notably, there are several CNN-
CNN dots positioned distinctly below the main group un-
der the CKA, SOC, SOCE, and MA metrics. These dots
represent alignment scores between Inception and other
CNNs, strongly suggesting that Inception employs dif-

ferent decision-making strategies compared to its CNN
counterparts. EC appears to be less effective in captur-
ing these differences between Inception and other CNN
models. Moreover, looking at CKA (and other RA met-
rics) there appears to be an ordering of alignments from
CNN-CNN to CNN-ViT to CNN-Large, but in EC and
MA (BA metrics) these three groups overlap considerably.
Suggesting EC and MA are less sensitive to some repre-
sentational differences. Another interesting point is that
although both ViT and Large models have transformer
architectures, they differ significantly in the model and
training data sizes between groups, and these differences
are sufficient to make Large models less well aligned than
other transformer models. This finding is inline with other
recent findings that scaling matters (at least for vision
transformers) [ZKHB22].

4 Related Work
Investigating the alignment of representations of differ-
ent information processing systems is crucial for the un-
derstanding of decision-making strategies behind those
systems. In RA studies, researchers have focused on
measuring the similarity between internal representa-
tions of systems [KMB08, KNLH19, SMW+23]. Mea-
suring alignments across individuals usually requires
the collection of signals from human brain [KMB08,
NCM+22b, SL22]. For the exploration of DNN models,
hidden activations or confidences are required. For exam-
ple, [NRK20, RUK+21] conduct comprehensive compar-
ison for the architectures of different models by use of
CKA [KNLH19]. The alignment between model and hu-
mans can also be used to make the prediction of a DNN
model more like humans. Peterson et al. [PBGR19] pro-
pose a novel approach that leverages human perceptual
uncertainty to improve robustness of DNNs by adjusting
the confidence. Several complementary works [PAG18,
GTR+18, FDGM19, KDC+20, MDL+22] have instead
used behavioural patterns to reveal the difference be-
tween the predictions of neural network models and hu-
man results. The alignment of prediction can be done
at the instance (trial-by-trial) level [GMW20, GNM+21],
based on class level behaviours, e.g. confusion matrices,
as in [RSD15, KGGM16a, KGGM16b], or at the se-
mantic level [XBO+24]. We argue that our MA metric
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complements methods from previous instance level ap-
proaches as it captures different features of system-system
BA. Moreover, unlike previous class-level approaches,
our CLES metric is more sensitive to differences as it ex-
cludes the influence of correct predictions and is based on
the Jensen-Shannon divergence (JSD) which gives a sym-
metric, parametrization-independent differences between
error distributions.

Another important aspect of any alignment study is
the choice of data. Most previous works focus on only
one type of dataset, either synthetic datasets (e.g. Out-of-
Distribution datasets ) [PBX+19, HBM+21, YWZ+22,
LKW+24] or a naturally occurring datasets [MDL+22,
KSG22]. As argued by [SMW+23], the alignment of
representations can significantly depend on the selected
dataset, underscoring the need for more general studies
across different datasets. Additionally, existing research
has primarily concentrated on either internal representa-
tions or observable behaviours, leaving the relationship
between these two aspects under-explored.

5 Conclusion

In this work, we propose two new metrics for error align-
ment: MA and CLES, which measure the similarity of
errors between classification systems. We evaluate these
metrics under a range of conditions and find they correlate
well with other BA and RA metrics, and this includes the
first systematic study on BA and RA correlations. In par-
ticular, our human-model findings correspond with other
recent works indicating current image models to be poorly
aligned with humans, although more studies are expected
to be conducted on the naturalistic datasets. We argue that
the latter provides a route to establishing trustworthiness
guarantees for systems based on human alignment. How-
ever further studies on human-human or human-machine
comparisons are needed to determine whether these BA
metrics can act as proxies for RA metrics under these con-
ditions. Additionally, those metrics for errors, which can
be influenced by accuracy, might not be reliable for the
alignment of behaviours in the tasks where systems have
achieved nearly perfect performance.
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