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Abstract—This paper investigates a multiuser millimeter-wave
(mmWave) uplink system in which each user is equipped with a
multi-antenna fluid antenna system (FAS) while the base station
(BS) has multiple fixed-position antennas. Our primary objective
is to maximize the system capacity by optimizing the transmit
covariance matrices and the antenna position vectors of the users
jointly. To gain insights, we start by deriving upper bounds and
approximations for the capacity. Then we delve into the capacity
maximization problem. Beginning with the simple scenario of a
single user equipped with a single-antenna FAS, we demonstrate
that a closed-form optimal solution exists when there are only
two propagation paths between the user and the BS. In the case
where multiple propagation paths are present, a near-optimal
solution can also be obtained through a one-dimensional search
method. Expanding our focus to multiuser cases, in which users
are equipped with either single- or multi-antenna FAS, we show
that the original capacity maximization problems can be refor-
mulated into distinct rank-one programmings. Then, we propose
alternating optimization algorithms to deal with the transformed
problems. Simulation results indicate that FAS can improve the
capacity of the multiple access channel (MAC) greatly, and the
proposed algorithms outperform all the benchmarks.

Index Terms—Fluid antenna system (FAS), movable antenna,
multiple access, capacity maximization.

I. INTRODUCTION

RECENTLY, a new promising technology, widely known
as fluid antenna system (FAS), has been proposed for the

sixth generation (6G) mobile communication systems, e.g., [1],
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[2], [3], [4]. By adjusting the antenna position within a spatial
region, a transceiver gains the ability to navigate through the
fluctuations in a fading channel, thereby providing additional
degrees of freedom and significant performance gains [5]. The
concept of FAS is not limited to a specific implementation. It
can be implemented using the surface-wave based technology
[6] or reconfigurable pixel technology [7]. The former requires
a soft-material radiator to be mobilized in a confined space
using nano-pumps, while the latter is composed of a matrix
of pixels connected with electronic switches [7]. By turning
the pixels on or off, the structure can make an antenna instantly
appear or disappear in a given space. Experimental results on
FAS have recently been reported in [8] and [9].

A large body of literature has studied the performance of
FAS in point-to-point systems in terms of outage probability
[10], [11], [12], [13], diversity gain [14], [15], data rate [16],
secrecy rate [17], [18], and etc. Specifically, FAS was first
proposed by Wong et al. in [10], [11], and the effect of its size
and resolution on the probability was examined. The analysis
was subsequently extended to Nakagami fading channels by
[12]. By exploiting copula theory, [13] derived a closed-form
expression of the outage probability under arbitrary corre-
lated fading for a FAS-assisted point-to-point channel. More
recently in [14], three FAS architectures were considered,
and a linear prediction scheme as well as space-time coded
modulations were devised to enhance diversity. Adopting the
channel model in [19], which can more accurately characterize
the spatial correlation among the FAS ports, [15] studied both
the outage probability and diversity gain of FAS. In [16] and
[17], the rate and secrecy rate of FAS-aided systems were,
respectively, studied. Then it was shown in [18] that using the
coding-enhanced jamming strategy in [20], the secrecy rate of
the FAS-aided system in [17] can be further increased.

The performance of using FAS in supporting multiple access
channel (MAC) communications has also been explored, and
this technique is called fluid antenna multiple access (FAMA)
[21], [22], [23], [24]. The idea lies in the fact that multiuser
signals fade independently in space and as such, the FAS at a
given user can operate at the port where the interfering users
all fade deeply to have interference-less signal reception for
communication. Depending on how fast the user updates the
port, FAMA can be classified into fast [21], [22] and slow
FAMA [23]. Most recently in [24], the outage probability of a
two-user FAMA system was analyzed based on approximated
channel models that characterize the space correlation among
ports in a simplified but still accurate way.
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All the above references, nevertheless, focus on the sub-6G
frequency band, assuming rich scattering channels. To meet the
ultra-high communication performance requirements, the use
of millimeter-wave (mmWave) technology is essential for 6G
communication systems. Therefore, it is crucial to investigate
the performance of FAS subject to the channel characteristics
appropriate for the mmWave band. Several papers have already
explored this topic [25], [26], [27], [28]. Specifically, [25]
maximized the energy efficiency of a point-to-point system in
near-field communications and confirmed the effectiveness of
FAS. Since it is not easy to obtain the instantaneous channel
state information (CSI), in [26], the rate of a FAS-assisted
point-to-point system was maximized based on the statistical
CSI. Also, in [27], a low-sample size method was proposed to
estimate and reconstruct the CSI of a mmWave MAC system,
where all transmitters use FAS. Later in [28], the capacity of a
point-to-point mmWave system, in which both the transmitter
and receiver sides are equipped with a multi-antenna FAS each,
was investigated.1 However, thus far, the capacity performance
of FAS in multiuser systems, and how to achieve the capacity
gains of FAS, are not well understood.

This paper considers a multiuser mmWave uplink system,
where each user is equipped with a multi-antenna FAS while
the BS has multiple fixed-position antennas. Our objective is
to maximize the sum capacity of the system by optimizing the
transmit covariance matrices and antenna position vectors of
the users. The main contributions are summarized below.
• Given the channel characteristics of the mmWave band,

we first derive an upper bound on the maximum system
capacity. Based on this bound, we show that if there is
only one propagation path, i.e., line-of-sight (LoS) path,
between a user and the BS, in order to maximize capacity,
this user should transmit at the maximum power and align
its beamforming vector with the steering vector. In this
case, adjusting the positions of this user’s antennas will
not provide any capacity gain. If all users have only a LoS
path between them and the BS, the derived upper bound
is tight, and a closed-form expression for the maximum
system capacity can be obtained. In addition, we prove
that if all users have many antennas, the maximum system
capacity approaches to that of a fixed-antenna system.

• We address the capacity maximization problem by con-
sidering different cases. First, we consider the simple
scenario with a single-antenna user and show that, if there
are two propagation paths between the user and the BS,
a closed-form optimal solution is possible. If there are
multiple propagation paths, a near-optimal solution can
be found by using the one-dimensional search method.
Next, we consider the multiuser case in which each user
has a single antenna. In this case, all users should transmit
at the maximum power and we only need to optimize their
antenna positions. We provide two algorithms to solve the
problem. The first is a straightforward one that iteratively
optimizes the position of each user’s antenna. The scheme

1While the work in [28] is under the name ‘movable antenna system’, it is
worth pointing out that FAS includes all forms of movable and non-movable
flexible-position antenna systems. In other words, FAS represents any flexible-
position antenna system irrespective of the implementation.

in the single-user case can thus be applied in each itera-
tion. In the second algorithm, we transform the original
problem into a rank-one programming. Afterwards, we
propose an algorithm to jointly optimize the positions of
all users’ antennas. Once the rank-one problem is solved,
we map its solution to that of the original problem.
Finally, we consider the general multiuser multi-antenna
scenario. Although the problem becomes much more
complicated, we show that it can also be transformed to
the rank-one problem and thus be efficiently solved.

• Simulation results show that FAS can greatly improve the
capacity of the considered MAC system, and the proposed
algorithms outperform the benchmarks. Furthermore, we
undertake validation by simulation to confirm the connec-
tions between the system capacity, the established upper
bound, and the derived approximations.

The rest of this paper is organized as follows. In Section II,
the system model is provided and the problem is formulated. In
Section III, we provide an upper bound and analyze the system
capacity for some special cases. In Sections IV and V, we
solve the capacity maximization problems for the single- and
multi-antenna FAS cases, respectively. Simulation results are
given in Section VI, and we conclude the paper in Section VII.

Notations: R, R+, and C, respectively, represent the real,
non-negative real, and complex spaces. Moreover, boldface
lower and upper case letters are used to denote vectors and
matrices. IN stands for the N×N dimensional identity matrix
and 0 denotes the all-zero vector or matrix. Also, superscripts
(·)T and (·)H , respectively, denote the transpose and conjugate
transpose operations. ‖·‖F , ‖·‖∗, and ‖·‖2 are respectively the
Frobenius, nuclear, and spectral norms of a matrix, and 〈·, ·〉
represents the inner product of two vectors. Unless otherwise
specified, the logarithm function log is of base 2.

Before going into the main part, we would like to present
some equations and inequalities of matrices, since they will
be used frequently in this paper. First, for any matrices O1

and O2, if the dimensions match, we have [29]

|O1O2| = |O1||O2|, (1)
|O1O2 + I| = |O2O1 + I|, (2)

tr(O1O2) = tr(O2O1), (3)

where I is an identity matrix. Next, for positive semi-definite
(PSD) matrices O3,O4 ∈ CN×N , we have

tr(O3O4) ≤ tr(O3)tr(O4), (4)

which holds with equality if and only if O3 and O4 satisfy
O3 = ooH and O4 = ηooH , in which η ∈ R+ is a non-
negative real constant and o ∈ CN×1. Note that the inequality
(4) is proven by [30, Theorem 1]. However, the condition
under which (4) holds with equality is not given in [30]. For
this reason, we prove the above condition in Appendix A.

II. SYSTEM MODEL

A. Signal Model

As depicted in Fig. 1, we consider a narrow-band mmWave
uplink system in which U users simultaneously communicate
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Fig. 1. A FAS-assisted uplink MAC where the users have FAS for
transmission but the BS uses multiple fixed-position antennas for reception.

with the BS using the same time-frequency resource. The BS
is equipped with an M -antenna uniform linear array (ULA)
with antenna spacing d = λ

2 , where λ is the wavelength. Each
user is equipped with an Nu-antenna linear FAS of size Wu,
and each antenna can be instantly switched to any position
in a FAS.2 Let wu,n ∈ [0,Wu] denote the position of the n-
th antenna of user u and wu = [wu,1, . . . , wu,Nu ]

T . Note that
the antennas on the same FAS should be in different positions.
Then the received signal at the BS is given by

y =

U∑
u=1

Gu(wu)xu + z, (5)

where xu ∼ CN (0,Qu) denotes the signal vector of user u,
Qu ∈ CNu×Nu is the transmit covariance matrix, Gu(wu) ∈
CM×Nu denotes the channel matrix from user u to the BS,
and z ∼ CN (0, IM ) represents the additive white Gaussian
noise (AWGN). Then, the sum capacity of the system is given
by [31, Chapter 9.2.1]

C(QU ,wU ) = log

∣∣∣∣∣
U∑
u=1

Gu(wu)QuG
H
u (wu) + IM

∣∣∣∣∣ , (6)

where U = {1, . . . , U}, QU = {Q1, . . . ,QU}, and wU =
{w1, . . . ,wU}. Also, we define Nu = {1, . . . , Nu}.

B. Channel Model

Using the planar-wave geometric channel model typical in
mmWave systems [32], Gu(wu) can be modeled as

Gu(wu) =
√
MNu

Lu∑
l=1

γu,lau,R(βu,l)a
H
u,T(θu,l,wu), (7)

where Lu is the number of propagation paths between user u
and the BS, and γu,l is the complex channel gain of the l-th

2Each antenna structure can be seen as a reconfigurable pixel-based linear
FAS that has many tiny pixels, among which certain number of pixels and their
connections are activated at each time to switch between many reconfigurable
states [9]. Using this technology, it is possible to switch the antennas with
almost no time delay. Also, extension to a two-dimensional (2D) FAS surface
at each user is possible but at the expense of complication in the notations.
We opt for the one-dimensional FAS case for simplicity.

path. Also, au,R(βu,l) and au,T(θu,l,wu) are, respectively, the
steering vectors at the receiver and transmitter sides, given by

au,R(βu,l)

=
1√
M

[
1, e−j

2π
λ d cos βu,l , . . . , e−j

2π
λ (M−1)d cos βu,l

]T
, (8)

au,T(θu,l,wu)

=
1√
Nu

[
e−j

2π
λ wu,1 cos θu,l , . . . , e−j

2π
λ wu,Nu cos θu,l

]T
, (9)

where βu,l, θu,l ∈ [0, π] are, respectively, the angle-of-arrival
(AoA) and angle-of-departure (AoD) of the l-th path of user u.
Now, we define

Γu = diag{γu,1, . . . , γu,Lu} ∈ CLu×Lu ,
Au,R = [au,R(βu,1), . . . ,au,R(βu,Lu)] ∈ CM×Lu ,

Au,T(wu) = [au,T(θu,1,wu), . . . ,au,T(θu,Lu ,wu)]∈CNu×Lu ,
(10)

based on which the channel matrix Gu(wu) in (7) can also
be expressed as

Gu(wu) =
√
MNuAu,RΓuA

H
u,T(wu). (11)

C. Problem Formulation

We aim to maximize the system capacity by optimizing the
transmit covariance matrices and antenna position vectors of
all users. The problem can be formulated as

max
QU ,wU

C(QU ,wU )

s.t. Qu � 0, tr(Qu) ≤ Pu, ∀u ∈ U ,
0 ≤ wu,n ≤Wu, ∀u ∈ U , n ∈ Nu,
wu,n 6= wu,n′ , ∀u ∈ U , n, n′ ∈ Nu, n 6= n′, (12)

where Pu denotes the maximum transmit power of user u, and
the last constraint restricts that no two antennas of the same
FAS should be in the same position.

Capacity maximization by precoding or beamforming is a
classical problem in multiple-input multiple-output (MIMO)
MAC communication systems [36], [37], [38]. For MIMO
MAC, where all nodes use traditional fixed-position antennas,
the problem only optimizes the transmit covariance matrices,
is convex, and can therefore be optimally solved by the
well-known iterative water-filling method [31, Chapter 9.2.1].
Nevertheless, in our case, where each user has multiple fluid
antennas, the problem becomes much more complicated. This
is because, due to the mobility property of the fluid antennas,
the channel matrices Gu(wu),∀u ∈ U are no longer fixed,
but reconfigurable, making the problem highly non-convex. In
the following sections, we first analyze (12) and then propose
several alternative algorithms to solve it.

Evidently, the effectiveness of FAS is closely linked to the
accuracy of the CSI. Consequently, the development of reliable
methods for obtaining accurate CSI is essential to unlocking
the full potential of FAS. Recently, several works proposed
channel estimation techniques for FAS [27], [33], [34]. Specif-
ically, in [33] and [27], compressed sensing methods were
applied to estimate and reconstruct the CSI of FAS-assisted
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point-to-point and multiuser systems, respectively. The impact
of system parameters on estimation accuracy was analyzed
theoretically and further examined through simulations. Mean-
while, [34] proposed a channel estimation and reconstruction
approach that combines Nyquist sampling with maximum
likelihood estimation. The study highlighted the importance
of oversampling to improve estimation accuracy. Nevertheless,
given the practical limitations of oversampling, a suboptimal
sampling distance was proposed to enable efficient channel
reconstruction while balancing accuracy and feasibility.

In this paper, we focus on maximizing the sum capacity,
a crucial metric for the FAS-assisted MAC system under
consideration, which has not yet been thoroughly studied. For
simplicity, we assume that the BS has complete knowledge
of the CSI for all users. Note that there have also been some
works that study how to evaluate or optimize the system per-
formance when perfect instantaneous CSI is unavailable. For
example, [26] maximized the rate of a FAS-assisted point-to-
point system based on statistical CSI rather than instantaneous
CSI. Additionally, [35] explored the integration of FAS and
the full-duplex technology in a homogeneous cellular network
characterized by stochastic geometry. A channel estimation
method was first proposed. Based on the obtained imperfect
CSI, the outage probability and the average sum rate of the
system were then analyzed. However, analyzing the impact of
imperfect CSI for the considered system is beyond this paper’s
scope. Future directions may focus on examining how channel
estimation errors influence the system capacity.

III. UPPER BOUND AND APPROXIMATION

As (12) is intractable, we first derive an upper bound on the
maximum system capacity, and then consider some special or
extreme cases, in which a closed-form expression or approxi-
mation of the maximum system capacity can be derived. These
results not only provide valuable insights, but also serve as
benchmarks for evaluating the capacity performance of FAS.

Theorem 1. The sum capacity of the considered system is
upper bounded by the optimal objective function value of the
following convex problem:

max
Q̃U

Cub(Q̃U )

s.t. Q̃u � 0, tr(Q̃u) ≤ LuPu, ∀u ∈ U , (13)

where Q̃u ∈ CLu×Lu , Q̃U = {Q̃1, . . . , Q̃U}, and

Cub(Q̃U )=log

∣∣∣∣∣
U∑
u=1

MNuAu,RΓuQ̃uΓ
H
u A

H
u,R + IM

∣∣∣∣∣ . (14)

Proof: See Appendix B.
Obviously, (13) can be seen as the sum capacity maximiza-

tion problem of a U -user uplink system with channel matrix√
MNuAu,RΓu between user u and the BS. This problem

is convex and its optimal solution can be efficiently obtained
by using the iterative water-filling method [31, Chapter 9].3

3Water-filling and iterative water-filling methods are frequently mentioned
in this paper. Due to space limitations and the fact that they are standard and
well known, we will not provide the details here. One may refer to [31] for
more details about these methods.

Although, as we will show by computer simulation results,
this bound is generally loose, we prove below that it is tight
in some cases and can greatly simplify problem (12).

Lemma 1. For any user u ∈ U , if Lu = 1, i.e., there is only
one path between this user and the BS, then problem (12) is
equivalent to

max
QU′ ,wU′

log

∣∣∣∣ ∑u′∈U ′ Gu′(wu′)Qu′GH
u′(wu′)

+MNuPu|γu,1|2au,R(βu,1)aHu,R(βu,1) + IM

∣∣∣∣
s.t. Qu′ � 0, tr(Qu′) ≤ Pu′ , ∀u′ ∈ U ′,

0 ≤ wu′,n ≤Wu′ , ∀u′ ∈ U ′, n ∈ Nu′ ,

wu′,n 6= wu′,n′ , ∀u′ ∈ U ′, n, n′ ∈ Nu′ , n 6= n′,(15)

where U ′ = U \ {u}.

Proof: See Appendix C.
Lemma 1 together with its proof in Appendix C shows that

if there is only one path between user u and the BS, we only
need to optimize the covariance matrices and antenna position
vectors of the other users. As for user u, it should transmit at
the maximum power and align its beamforming vector with
the steering vector au,T(θu,1,wu) (see (86)). Adjusting the
positions of this user’s antennas does not bring any gain.

Lemma 2. If Lu = 1,∀u ∈ U , i.e., there is only one path
between any user and the BS, then in the optimal case, the
upper bound provided in Theorem 1 is tight and

C∗ = Cub∗

= log

∣∣∣∣∣
U∑
u=1

MNuPu|γu,1|2au,R(βu,1)aHu,R(βu,1)+IM

∣∣∣∣∣ .
(16)

Proof: If Lu = 1,∀u ∈ U , then it is apparant from
Lemma 1 that the optimal objective function value of (12),
i.e., C∗, is equal to (16). Moreover, in this case, Q̃u in (13)
is a scalar variable within the interval [0, Pu]. Since Cub(Q̃U )
monotonically increases with Q̃u,∀u ∈ U , all users should
transmit at the maximum power in the optimal case. Therefore,
Cub∗ is also equal to (16), which completes the proof.

Remark 1. Interestingly, the observations made in Lemma 1
and Lemma 2 can also be explained by the condition under
which (4) holds with equality. In particular, if Lu = 1,
we know from (10) that Au,T(wu) = au,T(θu,1,wu). Then,
Au,T(wu)Au,T(wu)

H = au,T(θu,1,wu)au,T(θu,1,wu)
H is a

rank-one matrix. From the condition provided after (4) we
know that the first inequality in (82), i.e.,

tr(Au,T(wu)A
H
u,T(wu)Qu) ≤ tr(Au,T(wu)A

H
u,T(wu))tr(Qu),

(17)
holds with equality if and only if Qu takes on the form Qu =
ηuau,T(θu,1,wu)au,T(θu,1,wu)

H , where ηu is a non-negative
real constant. Note that to maximize the system capacity, ηu
should be Pu. Then, Qu = Puau,T(θu,1,wu)au,T(θu,1,wu)

H ,
which coincides with (86), and both inequalities in (82) hold
with equality. The upper bound provided in Theorem 1 is thus
tight if Lu = 1,∀u ∈ U . ♦
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Theorem 2. If Nu,∀u ∈ U are all large, the maximum
system capacity can be approximated by the optimal objective
function value of the following convex problem:

max
Q̂U

Capprox(Q̂U )

s.t. Q̂u � 0, tr(Q̂u) ≤ Pu, ∀u ∈ U , (18)

where Q̂u ∈ CLu×Lu , Q̂U = {Q̂1, . . . , Q̂U}, and

Capprox(Q̂U )=log

∣∣∣∣∣
U∑
u=1

MNuAu,RΓuQ̂uΓ
H
u A

H
u,R+IM

∣∣∣∣∣.
(19)

Proof: See Appendix D.
Similar to (13), problem (18) can also be optimally solved

by the iterative water-filling method. Theorem 2 indicates that
when the users have many antennas, the positions of their
antennas barely affect the system capacity, and the maximum
sum capacity can be approximated by the solution of (18).

Remark 2. It should be noted that although the formulas in
Theorem 1 and Theorem 2 look similar, they are fundamentally
different. The covariance matrix Q̃u in (13) has power limit
LuPu and Theorem 1 is always true in any case. In contrast,
Q̂u in (18) has power limit Pu and Theorem 2 holds only
when Nu,∀u ∈ U are all large. ♦

IV. SINGLE-ANTENNA FAS

Here and in the next section, we start by on solving (12)
under simple scenarios. As we will show below that in some
cases, the optimal closed-form solution of (12) can be found,
but in other cases finding the optimal solution is impossible.
Thus, we propose specific methods targeting a particular set of
circumstances. All considered scenarios and the corresponding
solutions to problem (12) are listed in Table I.

First, we consider the case where each FAS has only one
antenna in this section. For brevity, we omit the antenna index
‘n’. In this case, Qu and wu reduce to qu and wu, and the
channel matrix in (7) or (11) becomes a vector

gu(wu) =
√
M

Lu∑
l=1

γu,lau,R(βu,l)a
∗
u,T(θu,l, wu)

=
√
MAu,RΓu

 a
∗
u,T(θu,1, wu)

...
a∗u,T(θu,Lu , wu)

 , (20)

where au,T(θu,l, wu) = e−j
2π
λ wu cos θu,l . It can be proven that

with one antenna at each FAS, every user should transmit at the
maximum power in the optimal case, i.e., qu = Pu,∀u ∈ U .4

Therefore, the sum capacity (6) can be rewritten as

C(wU ) = log

∣∣∣∣∣
U∑
u=1

Pugu(wu)g
H
u (wu) + IM

∣∣∣∣∣ , (21)

4This can be easily proven by doing eigen-decomposition to (6) and using
reductio ad absurdum. Due to space limitations, the details are omitted here.

where wU = {w1, . . . , wU}, and we only need to optimize the
antenna positions by solving

max
0≤wu≤Wu,∀u∈U

C(wU ). (22)

In the following two subsections, we respectively consider the
single-user and multiuser cases.

A. Single-User Case

If there is only one user, we further drop the user index ‘u’.
The channel (20) and capacity (22) thus become

g(w) =
√
MARΓ

a
∗
T(θ1, w)

...
a∗T(θL, w)

 , (23)

C(w) = log
∣∣Pg(w)gH(w) + IM

∣∣ , (24)

and we consider problem

max
0≤w≤W

C(w). (25)

Before solving (25), we first provide an approximation in the
following theorem.

Theorem 3. In the single-user case where the user uses a
single-antenna FAS, if M is large enough, then for any w ∈
[0,W ], C(w) approaches

C0 = log

(
L∑
l=1

PM |γl|2 + 1

)
, (26)

where γl is channel gain of the l-th path.

Proof: See Appendix E.
Now we solve (25). Note that if there is only one path, i.e.,

L = 1, the optimal solution of (25) can be obtained directly
from Lemma 2. In the following, we show that if L = 2,
the optimal solution can also be obtained in closed form, and
in the general multi-path case, a near-optimal solution can be
easily found by a one-dimensional search.

1) Two Paths: If L = 2, denote ρ = 2π
λ (cos θ1 − cos θ2),

Ψ = PMΓHAH
R ARΓ ,

[
ψ1 ψ2

ψ∗2 ψ3

]
, (27)

ψRe
2 = Re(ψ2), and ψIm

2 = Im(ψ2). Then, according to (23)
and (24), C(w) can be reformulated as

C(w)

= log

∣∣∣∣PMARΓ

[
a∗T(θ1, w)
a∗T(θ2, w)

]
[aT(θ1, w), aT(θ2, w)]Γ

HAH
R +IM

∣∣∣∣
= log

(
[aT(θ1, w), aT(θ2, w)]

[
ψ1 ψ2

ψ∗2 ψ3

] [
a∗T(θ1, w)
a∗T(θ2, w)

]
+ 1

)
= log

(
ejρwψ∗2 + e−jρwψ2 + ψ1 + ψ3 + 1

)
= log

(
2ψIm

2 sin(ρw) + 2ψRe
2 cos(ρw) + ψ1 + ψ3 + 1

)
, (28)

where the second step follows from using (2) and (27). Thus,
problem (25) is equivalent to

max
0≤w≤W

ψIm
2 sin(ρw) + ψRe

2 cos(ρw). (29)
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TABLE I
DIFFERENT SCENARIOS AND CORRESPONDING SOLUTIONS TO PROBLEM (12)

Scenario Solution of (12)
Single-path, Lu = 1,∀u ∈ U The optimal solution in closed-form is given in Lemma 2

Single-antenna FAS, Nu = 1,∀u ∈ U
Single user L = 2 The optimal solution in closed-form is given in Theorem 4

L > 2 A near-optimal solution can be found based on (34)

Multiple users Algorithm 1 or Algorithm 2

Multi-antenna FAS Single user Algorithm 3
Multiple users Algorithm 4

Note that we assume θ1 6= θ2, since otherwise the channel
reduces to the one-path case. Then, ρ 6= 0. Denote µ =

arctan
ψRe

2

ψIm
2
∈ [−π/2, π/2] and

w0 =



π/2−µ
ρ , if ψIm

2 > 0 and ρ > 0,

−π/2−µ
ρ , if ψIm

2 > 0 and ρ < 0,

3π/2−µ
ρ , if ψIm

2 < 0 and ρ > 0,

−3π/2−µ
ρ , if ψIm

2 < 0 and ρ < 0.

(30)

In the following theorem, we provide the optimal solution of
(29) or (25) for the two-path case.

Theorem 4. In the two-path case, if ψIm
2 = 0, the optimal

solution of (25) is given by

w∗ =


0, if ψRe

2 ≥ 0,

π/|ρ|, if ψRe
2 < 0 and π/|ρ| ∈ [0,W ],

W, otherwise.
(31)

Otherwise, if ψIm
2 6= 0, the optimal solution is found as

w∗ =


w0, if w0 ∈ [0,W ],

0, if w0 /∈ [0,W ] and C(0) ≥ C(W ),

W, otherwise,
(32)

where w0 is defined in (30).

Proof: See Appendix F.
2) Multiple Paths: Unlike the single/two-path case, if L >

2, it is intractable to obtain the optimal solution of (25) in
closed form. Using (2) and (23), we rewrite C(w) in (24) as

C(w)=log

[aT(θ1, w), . . . , aT(θL, w)]Ψ

a
∗
T(θ1, w)

...
a∗T(θL, w)

+1

,
(33)

where Ψ = PMΓHAH
R ARΓ . Then, for any w, the value of

C(w) can be easily computed. We evenly discretize the inter-
val [0,W ] into K +1 points and obtain set {0, ε, 2ε, . . . ,W},
where ε = W/K. Then, a near-optimal solution of (25) can
be easily found by using the exhaustive search (ES) (or one-
dimensional search) method, i.e.,5

w∗ = arg max
w∈{0,ε,...,W}

C(w). (34)

5Here we say that the solution is near-optimal since the variable w is
continuous and it is impossible to really perform ES. Therefore, we discretize
the interval and carry out one-dimensional search, whose performance depends
on the size of the search step ε.

B. Multiuser Case

Now we consider the multiuser case and provide two
schemes to solve problem (22).

1) Alternative Optimization: Since problem (22) is non-
convex and intractable, we iteratively optimize wu,∀u ∈ U .
For any u ∈ U , denote U ′ = U \ {u} and

Υu =
∑
u′∈U ′

Pu′gu′(wu′)gHu′(wu′) + IM , (35)

Ψu = PuMΓ
H
u A

H
u,RΥ

−1
u Au,RΓu. (36)

Then, if wu′ ,∀u′ ∈ U ′ are given, using (2) and (20), the sum
capacity in (21) can be rewritten as

C(wu) = log
∣∣Pugu(wu)gHu (wu)Υ

−1
u + IM

∣∣+ log |Υu|

= log

(
[au,T(θu,1, wu), . . . , au,T(θu,Lu , wu)]Ψu

×

 a
∗
u,T(θu,1, wu)

...
a∗u,T(θu,Lu , wu)

+ 1

)
+ log |Υu| . (37)

If Lu = 1, we know from Lemma 1 that changing the antenna
position of user u does not bring any capacity gain. As such,
we simply let wu = 0. If Lu = 2, then (37) can be similarly
expressed as (28). The optimal antenna position can therefore
be obtained based on Theorem 4. If Lu > 3, we evenly
discretize the interval [0,Wu] into Ku + 1 points, obtain set
{0, εu, 2εu, . . . ,Wu}, where εu = Wu/Ku, and then find a
near-optimal solution from this set by the ES method, i.e.,

w∗u = arg max
wu∈{0,εu,...,Wu}

C(wu). (38)

The main steps are summarized in the following Algorithm 1.
2) Joint Optimization: To avoid iterative and element-wise

optimization of wu,∀u ∈ U , we propose another algorithm be-
low, which makes joint optimization of all variables possible.
Most importantly, we will show in the next section that the
technique can be modified and applied in solving the problem
in the multi-antenna case.

Based on (20) and (21), (22) can be rewritten as

max
0≤wu≤Wu,∀u∈U

log

∣∣∣∣∣
U∑
u=1

PuMAu,RΓuJu(wu)Γ
H
u A

H
u,R+IM

∣∣∣∣∣,
(39)
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Algorithm 1 Alternative optimization for solving (22)
1: Initialize wU = {w1, · · · , wU}.
2: repeat
3: for u = 1 : U do
4: Compute Υu and Ψu based on (35) and (36).
5: if Lu = 1 then
6: Let wu = 0.
7: else if Lu = 2 then
8: Find the optimal wu based on Theorem 4.
9: else

10: Find the near-optimal wu based on (38).
11: end if
12: end for
13: until convergence

where

Ju(wu) =a
∗
u,T(θu,1, wu)

...
a∗u,T(θu,Lu , wu)

[au,T(θu,1, wu), . . . , au,T(θu,Lu , wu)].(40)

Noticing that Ju(wu) is a rank-one PSD matrix with all 1
diagonal elements, we replace Ju(wu) in (39) with another
square matrix Ĵu ∈ CLu×Lu and consider the following
problem instead:

max
ĴU

log

∣∣∣∣∣
U∑
u=1

PuMAu,RΓuĴuΓ
H
u A

H
u,R + IM

∣∣∣∣∣ (41a)

s.t. Ĵu � 0, ∀u ∈ U , (41b)

rank(Ĵu) = 1, ∀u ∈ U , (41c)

diag(Ĵu) = 1, ∀u ∈ U , (41d)

where ĴU = {Ĵ1, . . . , ĴU}. Obviously, any solution of (39)
corresponds to a feasible solution of (41) (by simply letting
Ĵu = Ju(wu)). However, the reverse does not hold, since all
elements of Ju(wu) are determined by the scalar variable wu,
while this is not a restriction for Ĵu. In the following, we first
solve (41), and then map its solution to that of (39).

We replace the rank-one constraint (41c) with (42c) and
arrive at the following equivalent problem:

max
ĴU

log

∣∣∣∣∣
U∑
u=1

PuMAu,RΓuĴuΓ
H
u A

H
u,R + IM

∣∣∣∣∣ (42a)

s.t. Ĵu � 0, ∀u ∈ U , (42b)∥∥∥Ĵu∥∥∥
∗
−
∥∥∥Ĵu∥∥∥

2
≤ 0, ∀u ∈ U , (42c)

diag(Ĵu) = 1, ∀u ∈ U , (42d)

where ‖·‖∗ and ‖·‖2 are the nuclear and spectral norms of
a matrix, which are, respectively, defined as the sum of all
singular values of the matrix and the maximum singular value
of the matrix. Since Ĵu is a PSD matrix and is not a zero
matrix (due to the constraint (42d)), it is obvious that (42c)
holds with equality if and only if Ĵu is rank-one and is thus
equivalent to (41c). Constraint (42c) takes on a difference of

convex (DC) form and is thus non-convex. To overcome the
non-convexity, we move (42c) to the objective function by the
penalty-based method [39, Ch. 17] and therefore get

max
ĴU

log

∣∣∣∣∣
U∑
u=1

PuMAu,RΓuĴuΓ
H
u A

H
u,R + IM

∣∣∣∣∣
−

U∑
u=1

τ
(∥∥∥Ĵu∥∥∥

∗
−
∥∥∥Ĵu∥∥∥

2

)
(43a)

s.t. Ĵu � 0, ∀u ∈ U , (43b)

diag(Ĵu) = 1, ∀u ∈ U , (43c)

where τ is the penalty factor penalizing the violation of (42c).
Problem (43) is a DC programming. The iterative majorization
minimization (MM) based algorithm, which solves a sequence
of convex problems by linearizing the non-convex objective
function in each iteration, can thus be applied [40]. Specif-
ically, let Ĵ (i)

u denote the solution obtained in the previous
iteration. By utilizing the first-order Taylor series approxima-
tion to linearize

∥∥∥Ĵu∥∥∥
2
, a lower bound can be obtained as∥∥∥Ĵu∥∥∥

2
≥
∥∥∥Ĵ (i)

u

∥∥∥
2
+ vHu (Ĵ (i)

u )(Ĵu − Ĵ (i)
u )vu(Ĵ

(i)
u ), (44)

where vu(Ĵ
(i)
u ) is the eigenvector of Ĵ (i)

u associated with the
maximum eigenvalue of Ĵ (i)

u . By replacing
∥∥∥Ĵu∥∥∥

2
in (43a)

with the lower bound, we solve (43) by iteratively dealing
with the following problem:

max
ĴU

log

∣∣∣∣∣
U∑
u=1

PuMAu,RΓuĴuΓ
H
u A

H
u,R + IM

∣∣∣∣∣
−

U∑
u=1

τ
[∥∥∥Ĵu∥∥∥

∗
− vHu (Ĵ (i)

u )Ĵuvu(Ĵ
(i)
u )
]

s.t. Ĵu � 0, ∀u ∈ U ,
diag(Ĵu) = 1, ∀u ∈ U , (45)

which is convex and can be optimally solved by CVX tool.
Once (41) is solved, for each user u, we look for the wu

that minimizes the distance between Ju(wu) and Ĵu, i.e.,

wu = arg min
ŵu∈{0,εu,...,Wu}

∥∥∥Ju(ŵu)− Ĵu∥∥∥
F
, ∀u ∈ U , (46)

where {0, εu, . . . ,Wu} represents the quantization of the in-
terval [0,Wu]. Then, we let wU be the solution of (39). The
main steps are summarized in Algorithm 2.

Algorithm 2 Joint optimization for solving (39)
1: Initialize wU = {w1, · · · , wU} and τ . Let i = 0.
2: For any u ∈ U , let Ĵ (i)

u = Ju(wu), which can be
computed based on (40).

3: repeat
4: Calculate vu(Ĵ

(i)
u ),∀u ∈ U and let i = i+ 1.

5: Solve problem (45) by CVX and obtain Ĵ (i)
u ,∀u ∈ U .

6: until convergence
7: Let Ĵu = Ĵ

(i)
u ,∀u ∈ U be the solution of problem (41).

8: Obtain wU from (46) and take it as the solution of (39).
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C. Convergence and Complexity Analysis

In this subsection, we analyze the convergence and com-
plexity of the proposed Algorithm 1 and Algorithm 2.

1) Convergence Analysis: As shown in Algorithm 1, for
each user u, the problem of maximizing (37) can either be
optimally solved if Lu ≤ 2 or near-optimally solved if Lu >
2. Hence, in each iteration, the objective function increases.
Since the capacity is limited, the convergence of Algorithm 1
is guaranteed. The convergence of Algorithm 2 is determined
by that of steps 3 to 6, which solve (43) using the MM-based
algorithm. From [40] and [41], it is known that by successive
convex approximation, the iterative steps will converge to a
stationary point of (43). Algorithm 2 thus converges.

2) Complexity Analysis: To evaluate the complexity of the
proposed algorithms, we count the total number of floating-
point operations (FLOPs), where one FLOP represents a
complex multiplication or summation. We express it as a poly-
nomial function of the dimensions of the matrices involved,
and simplify the expression by ignoring all terms except the
leading (i.e., highest order or dominant) terms [42], [43]. It is
worth mentioning that the given analysis only shows how the
bounds on computational complexity are related to different
problem dimensions. The actual load may vary depending on
the structure simplifications and used numerical solvers.

For convenience, we assume Lu = L, Nu = N , and Ku =
K, ∀u ∈ U when analyzing the complexity. One may also use
max{Lu,∀u ∈ U}, max{Nu,∀u ∈ U}, and max{Ku,∀u ∈
U} instead. The complexity of Algorithm 1 mainly lies in
step 10, which looks for the near-optimal antenna position
of user u by one-dimensional search. In this step, C(wu) in
(37) has to be computed K + 1 times. Since the product
of a c1 × c2 dimensional matrix and a c2 × c3 dimensional
matrix costs O (c1c2c3) FLOPs, computing C(wu) requires
a complexity of O

(
L2
)
. Considering that step 10 has to be

carried out κ1U times in Algorithm 1, where κ1 is the number
of outer iterations, the overall complexity of Algorithm 1 is
O
(
κ1U(K + 1)L2

)
. The complexity of Algorithm 2 mainly

lies in solving problem (45). Since (45) can be easily trans-
formed to the general determinant maximization optimization
problem [44, (19)] with UL2 variables (i.e., all entries in
Ĵu,∀u ∈ U), an M -dimensional matrix inside the determinant
operation, and a UL-dimensional constraint space, using the
results in [44, (20)] and [45, Section 10], Algorithm 2 involves
a total complexity of O

(
κ2
√
UU2L3

(
U2L4 +M2

))
, where

κ2 is the number of iterations of Algorithm 2.

V. MULTI-ANTENNA FAS

Here, we consider the case where each FAS has multiple
antennas. To ease our explanation, we start with the single-user
case and then consider the general multiuser case.

A. Single-User Case

With only one user, we omit the user index ‘u’ for brevity.
Problem (12) thus becomes

max
Q,w

log |G(w)QGH(w) + IM |

s.t. Q � 0, tr(Q) ≤ P,
0 ≤ wn ≤W, n ∈ N ,
wn 6= wn′ , ∀n, n′ ∈ N , n 6= n′. (47)

For any (Q,w), according to the Reciprocity Lemma of a
point-to-point MIMO channel [31, Lemma 9.1], we know that
there always exists a PSD matrix F ∈ CM×M such that
tr(F ) ≤ P and

C(Q,w) = log |G(w)QGH(w) + IM |
= log |GH(w)FG(w) + IN |. (48)

Then, we consider the following problem instead:

max
F ,w

log |GH(w)FG(w) + IN |

s.t. F � 0, tr(F ) ≤ P,
0 ≤ wn ≤W, n ∈ N ,
wn 6= wn′ , ∀n, n′ ∈ N , n 6= n′. (49)

In the following Theorem 5 we show that the problems (47)
and (49) are equivalent in the sense that their optimal objective
function values are equal. To facilitate the statement below, we
define two problems

max
Q

log |G(w)QGH(w) + IM |

s.t. Q � 0, tr(Q) ≤ P, (50)

max
F

log |GH(w)FG(w) + IN |

s.t. F � 0, tr(F ) ≤ P, (51)

which can be seen as the subproblems resulting from (47) and
(49) with given w.

Theorem 5. If (Q∗,w∗) and (F>,w>) are respectively the
optimal solutions of (47) and (49), the following statements
are true:

1) The optimal objective function values of (47) and (49)
are equal, i.e.,

log |G(w∗)Q∗GH(w∗) + IM |
= log |GH(w>)F>G(w>) + IN |. (52)

2) Given w∗, letting F ∗ be the optimal solution of (51),
then, (F ∗,w∗) is the optimal solution of (49) and

log |GH(w∗)F ∗G(w∗) + IN |
= log |GH(w>)F>G(w>) + IN |. (53)

3) Given w>, letting Q> be the optimal solution of (50),
then, (Q>,w>) is the optimal solution of (47) and

log |G(w∗)Q∗GH(w∗) + IM |
= log |G(w>)Q>GH(w>) + IM |. (54)

Proof: See Appendix G.
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Theorem 5 indicates that we can first solve (49) and then
obtain a solution for the original problem (47). Denote

Φ =MNΓHAH
R FARΓ , (55)

Jn(wn) =

a
∗
T(θ1, wn)

...
a∗T(θL, wn)

[aT(θ1, wn), . . . , aT(θL, wn)]. (56)

Based on the definition of G(w), the objective function of
(49) can be rewritten as

log |GH(w)FG(w) + IN |
= log |MNAT(w)ΓHAH

R FARΓA
H
T (w) + IN |

(a)
= log |AH

T (w)AT(w)Φ+ IL|

= log

∣∣∣∣∣
N∑
n=1

Jn(wn)Φ+ IL

∣∣∣∣∣ , (57)

where (a) follows from using (55) and (2). Note that Jn(wn)
is a rank-one PSD matrix and all of its diagonal elements are
1. Based on this observation, we make a relaxation to (49).

In particular, we define another rank-one PSD matrix Ĵn ∈
CL×L, whose diagonal elements are all 1/N . With these
properties, Ĵn can be expressed as

Ĵn = bnb
H
n , (58)

where bn ∈ CL×1 and all its elements have module 1/N . We
further define

ÂT(ĴN ) =

b
H
1
...
bHN

 ,
Ĝ(ĴN ) =

√
MNARΓÂ

H
T (ĴN ), (59)

where ĴN = {Ĵ1, . . . , ĴN}. Here ÂT(ĴN ) and Ĝ(ĴN ) can be
seen as the approximations AT(w) and G(w). Then, instead
of (49), we consider the following relaxed problem:

max
F ,ĴN

log |ĜH(ĴN )FĜ(ĴN ) + IN |

s.t. F � 0, tr(F ) ≤ P,
Ĵn � 0, ∀n ∈ N ,
rank(Ĵn) = 1, ∀n ∈ N ,
diag(Ĵn) = 1/N, ∀n ∈ N . (60)

Any solution to (49) corresponds to a feasible solution of (60),
but the reverse does not hold. In the following we first solve
(60) and then map its solution to that of (49). Then, a solution
of (47) can be obtained, given its equivalence to (49).

Since (60) is non-convex and intractable, we solve it by
iteratively optimizing F and ĴN , i.e., dealing with

max
F

log |ĜH(ĴN )FĜ(ĴN ) + IN |

s.t. F � 0, tr(F ) ≤ P, (61)

and

max
ĴN

log |ĜH(ĴN )FĜ(ĴN ) + IN |

s.t. Ĵn � 0, ∀n ∈ N ,
rank(Ĵn) = 1, ∀n ∈ N ,
diag(Ĵn) = 1/N, ∀n ∈ N , (62)

in an alternative manner. For given ĴN , (61) is convex and
can be optimally solved using the water-filling method. For
given F , similar to (57), the objective function of (62) can be
rewritten as

log |ĜH(ĴN )FĜ(ĴN ) + IN | = log

∣∣∣∣∣
N∑
n=1

ĴnΦ+ IL

∣∣∣∣∣ , (63)

based on which (62) can be equivalently transformed to

max
ĴN

log

∣∣∣∣∣
N∑
n=1

ĴnΦ+ IL

∣∣∣∣∣
s.t. Ĵn � 0, ∀n ∈ N ,

rank(Ĵn) = 1, ∀n ∈ N ,
diag(Ĵn) = 1/N, ∀n ∈ N . (64)

Obviously, (62) and (64) are equivalent. Problem (64) is non-
convex due to the rank-one constraint. However, noticing that
it takes on a similar form as (42), it can be efficiently solved
by iteratively dealing with the following problem:

max
ĴN

∣∣∣∣∣
N∑
n=1

ĴnΦ+IL

∣∣∣∣∣−
N∑
n=1

τ
[∥∥∥Ĵn∥∥∥

∗
−vHn (Ĵ (i)

n )Ĵnvn(Ĵ
(i)
n )
]

s.t. Ĵn � 0, ∀n ∈ N ,
diag(Ĵn) = 1/N, ∀n ∈ N , (65)

where τ is the penalty factor and vn(Ĵ
(i)
n ) is the eigenvector

corresponding to the maximum eigenvalue of Ĵ (i)
n .

Once (60) is solved, we map its solution (F , ĴN ) to the
“best” feasible solution (F ,w) of (49). That is, we optimize
w1, . . . , wN one by one, and for each antenna n, we find the
wn that minimizes the distance between Jn(wn) and Ĵn as

wn = arg min
ŵn∈{0,ε,...,W}\X

∥∥∥Jn(ŵn)− Ĵn∥∥∥
F
, (66)

where {0, ε, . . . ,W} is a quantization of the interval [0,W ],
and X is the record of antenna positions that have already been
determined. With the obtainedw, we updateQ by solving (50)
using the water-filling method, and then take (Q,w) as the
solution of (47). The details are summarized in Algorithm 3.

B. Multiuser Case

We solve (12) by iteratively updating (Qu,wu). Denote
U ′ = U \ {u},

Υu =
∑
u′∈U ′

Gu′(wu′)Qu′GH
u′(wu′) + IM , (67)
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Algorithm 3 Algorithm for solving (47)
1: Initialize w = [w1, · · · , wN ]T and τ . Let X = φ.
2: Compute G(w) and Jn(wn),∀n ∈ N .
3: Let Ĝ(ĴN ) = G(w) and Ĵn = Jn(wn),∀n ∈ N .
4: repeat
5: Update F by solving (61) via the water-filling method.
6: Let i = 0 and Ĵ (i)

n = Ĵn,∀n ∈ N .
7: repeat
8: Calculate vn(Ĵ

(i)
n ),∀n ∈ N and let i = i+ 1.

9: Solve (65) by CVX and obtain Ĵ (i)
n ,∀n ∈ N .

10: until convergence
11: Let Ĵn = Ĵ

(i)
n ,∀n ∈ N be the solution of (62).

12: until convergence
13: for n = 1 : N do
14: Obtain wn from (66) and let X = X ∪ {wn}.
15: end for
16: Compute G(w), update Q by solving (50) via the water-

filling method, and take (Q,w) as the solution of (47).

the eigen-decomposition of its inverse by Υ−1u = SuΛuS
H
u ,

and

Gu(wu) = Λ
1
2
uS

H
u Gu(wu)

=
√
MNuΛ

1
2
uS

H
u Au,RΓuA

H
u,T(wu). (68)

The sum capacity in (6) can thus be rewritten as

C(QU ,wU )

= log
∣∣Gu(wu)QuG

H
u (wu)Υ

−1
u + IM

∣∣+ log |Υu|

= log
∣∣∣Gu(wu)QuG

H

u (wu) + IM

∣∣∣+ log |Υu|, (69)

where the last step follows from using (2) and (68). Then,
for given Qu′ ,wu′ ,∀u′ ∈ U \ {u}, problem (12) can be
equivalently transformed to

max
Qu,wu

log
∣∣∣Gu(wu)QuG

H

u (wu) + IM

∣∣∣
s.t. Qu � 0, tr(Qu) ≤ Pu,

0 ≤ wu,n ≤Wu, n ∈ Nu,
wu,n 6= wu,n′ , n, n′ ∈ Nu, n 6= n′. (70)

Obviously, (70) can be solved similarly as (47) by Algo-
rithm 3. The details for solving (12) are in Algorithm 4.

In Algorithm 3, we first optimize ĴN and then map it to w
according to (66). Note that this step may not always make
the capacity increase. To ensure that Algorithm 4 converges,
at the end of each iteration (step 8 of Algorithm 4), we update
(Qu,wu) only if the capacity can be improved.

C. Convergence and Complexity Analysis

In this subsection, we analyze the convergence and com-
plexity of the proposed Algorithm 3 and Algorithm 4.

Algorithm 4 Algorithm for solving (12)
1: Initialize wU and τ . Given wU , solve (12) by using the

iterative water-filling method and obtain QU .
2: Compute the sum capacity and denote it by C1.
3: repeat
4: for u = 1 : U do
5: Solve (70) by Algorithm 3 (without the first step).
6: Compute the sum capacity and denote it by C2.
7: if C2 > C1 then
8: Update (Qu,wu) and let C1 = C2.
9: end if

10: end for
11: until convergence

1) Convergence Analysis: The convergence of Algorithm 3
is determined by that of steps 4 to 12, which solve problem
(60) by iteratively optimizing F and ĴN in (61) and (62). Note
that in each outer iteration, the optimal solution of problem
(61) is first obtained by using the water-filling method, and a
suboptimal solution of (62) is then obtained by using the MM-
based method. Since the objective function of (60) is obviously
limited, the convergence is thus guaranteed. In Algorithm 4,
problem (12) is solved by iteratively dealing with (70) using
Algorithm 3. Note that we have proven the convergence of
Algorithm 3, which is determined by its 4-th to 12-th steps.
Although the mapping operation in the subsequent steps does
not affect the convergence of Algorithm 3, it may make the
capacity decrease when this algorithm is iteratively performed
in Algorithm 4. Therefore, as we have stated in the previous
subsection, at the end of each iteration (step 8 of Algorithm 4),
we update (Qu,wu) only if the capacity can be improved, and
this guarantees the convergence of the algorithm.

2) Complexity Analysis: The complexity of Algorithm 3
mainly lies in solving (65), which takes on a similar form
as (45). It can thus be similarly analyzed that Algorithm 3
involves an overall complexity of

O
(
κ3κ4

√
NN2L3

(
N2L4 + L2

))
, (71)

which can be simplified as O
(
κ3κ4

√
NN4L7

)
by keeping

the highest-order term only. Here κ3 and κ4 are respectively
the numbers of outer and inner iterations of Algorithm 3.
Note that to solve (12), Algorithm 3 is carried out κ5U times
in Algorithm 4, where κ5 is the number of outer iterations
of Algorithm 4. Therefore, Algorithm 4 requires an overall
computational complexity of O

(
κ3κ4κ5U

√
NN4L7

)
.

VI. SIMULATION RESULTS

Here, we assess the system performance by Monte Carlo
simulations. For convenience, we assume Lu = L, Nu =
N , Pu = P , Wu = W , and Ku = K,∀u ∈ U , which are
respectively the number of propagation paths, the number of
transmit antennas, maximum transmit power, FAS size, and
quantization level of user u. Since we consider normalized
noise power in this paper, the signal-to-noise ratio (SNR) is
10 log10 P dB. In the simulations, we set K = 100 and τ = 2.
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Fig. 2. Single-antenna FAS & Single-user: average capacity versus M with
U = 1, N = 1, SNR = 10 dB, W = 10λ, and L = 5.

The other parameters are specified in each figure. Besides the
derived upper bound and approximations, we also compare the
proposed algorithms with the following benchmarks:
• Fixed-antenna system: each user has N fixed antennas

with spacing λ
2 . Without loss of generality, we assume

that the first antenna of each user locates at position 0.
Denote the capacity of this system by Cfixed, which can
be obtained by the iterative water-filling method.

• Exhaustive search (ES) method: we apply this method
only in the single-antenna FAS case since in this scenario,
all users should transmit at the maximum power, and we
only need to optimize the antenna position of each user.
We evenly discretize [0,W ] with s being the step size,
and then obtain the near-optimal solution by considering
all possible combinations of wu,∀u ∈ U .

• Iterative water-filling and exhaustive search (IWF-
ES) method: when a FAS has multiple antennas, we
optimize Qu and wu iteratively by respectively using the
water-filling and ES methods. When performing ES, we
evenly discretize [0,W ] and then consider all possible
combinations of wu,n,∀n ∈ N . Since the complexity of
this step increases exponentially with N , we apply this
method only in the single-user case (Fig. 5).

• Simplified IWF-ES method: to reduce the computational
complexity of the IWF-ES method, when optimizing
wu = [wu,1, . . . , wu,N ]T , instead of considering all
possible combinations of wu,n,∀n ∈ N , we optimize
them one by one in an alternating manner.

A. Single-antenna FAS
1) Single-user Case: Fig. 2 compares the obtained C with

Cfixed as well as C0, which is derived in Theorem 3. It can be
seen that when the search step size s is 0.5λ, further reducing
s brings little capacity gain. When M is small, we observe a
large capacity gain by FAS. However, as M increases, both
C and Cfixed grow and approach C0, and the effect of FAS
becomes insignificant. This is consistent with Theorem 3.
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Fig. 3. Single-antenna FAS & Multiuser: average capacity versus M with
U = 2, N = 1, SNR = 10 dB, W = 10λ, and L = 5.
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Fig. 4. Single-antenna FAS & Multiuser: average capacity versus L with
U = 2, N = 1, SNR = 10 dB, and W = 10λ.

2) Multiuser Case: Figs. 3 and 4 consider the two-user
case and respectively investigate the effect of M and L. In
Fig. 3, problem (22) is solved by different schemes, i.e.,
the ES method, Algorithm 1, and Algorithm 2. It can be
seen that the line obtained by Algorithm 1 almost coincides
with that obtained by the ES method, and the line derived
from Algorithm 2 also exhibits a remarkable proximity to the
line obtained through the ES method, which shows the great
performance of the proposed algorithms. Fig. 4 mainly aims
to evaluate the upper bound Cub derived in Theorem 1. For
clarity, we only depict Cfixed, Cub, and C obtained by the ES
method. It can be seen that when L and M are small, the
gap between C and Cub is small. Especially when L = 1, the
gap disappears. This has been proven by Lemma 2. However,
when L or M is large, the gap between C and Cub is obvious,
indicating that the upper bound is loose in this case. In the
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following, we consider relatively large L and M . Therefore,
we no longer depict Cub, and we evaluate the performance of
FAS and the proposed algorithms by other schemes.

B. Multi-antenna FAS

1) Single-user Case: Fig. 5 considers solving (47) by using
Algorithm 3, the IWF-ES method, and the simplified IWF-ES
method. Cfixed is also depicted as a benchmark. We see that
the performance of Algorithm 3 is quite closed to that of IWF-
ES, and better than the simplified IWF-ES method. In addition,
unlike the single-antenna case, where the gap between C and
Cfixed gets smaller and smaller as M increases (see Fig. 2),
in the multi-antenna case, the gap increases with M . This can
also be observed when there are multiple users (see Fig. 7),
indicating that when the BS has a large number of antennas,
the advantage of the multi-antenna FAS over the fixed-antenna
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Fig. 7. Multi-antenna FAS & Multiuser: average capacity versus M with
N = 4, SNR = 10 dB, W = 10λ, and L = 5.
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Fig. 8. Multi-antenna FAS & Multiuser: average capacity versus N with
U = 2, M = 64, SNR = 10 dB, W = 10λ, and L = 5.

system is more obvious than that of the single-antenna FAS.
This can be explained in an intuitive way as follows. If a user
uses a single-antenna FAS, adjusting the position of its antenna
only changes the phase of the transmit steering element. The
channel gain brought by this is limited. Thus, if M is large, the
capacity gain is mainly determined by the receive antennas.
In contrast, if a user uses a multi-antenna FAS, the system
capacity benefits not only from the phase matching achieved
by jointly adjusting the positions of the transmit antennas, but
also from the transmit beamforming achieved by designing the
covariance matrix. Therefore, the capacity gain is determined
by both the transmit and receive antennas. Then, even if M
is large, using FAS can still bring significant capacity gain
compared with the fixed antenna scheme.

2) Multiuser Case: Fig. 6 investigates the effect of the FAS
size W . As expected, the sum capacity of the system increases
with W . Moreover, it is evident that with the increasing value
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of W , the capacity achieved by the simplified IWF-ES method
converges rapidly, while that obtained through the proposed
Algorithm 4 steadily increases. This discrepancy leads to a
widening gap between the two methods.

In Figs. 7 and 8, the effects of M and N under different con-
figurations are investigated. As anticipated, all results increase
with M and N . In addition, we can see that the gap between
C and Cfixed increases with M and U . Interestingly, as N
grows, the gap between C and Cfixed first increases and then
decreases. This can be explained by Theorem 2, which proves
that when N is large, both C and Cfixed approach Capprox.

VII. CONCLUSIONS

This paper investigated the capacity of a FAS-assisted
MAC. First, we derived upper bounds and approximations
for the capacity, which not only provide valuable insights,
but also serve as benchmarks for evaluating the performance
of FAS. Then, we maximized the sum capacity by designing
the transmit covariance matrices and antenna position vectors
of the users. We showed that in some simple cases, the
closed-form optimal solution exists, but in the general case,
the problem is highly non-convex and intractable. Therefore,
we proposed iterative algorithms to deal with the problem.
The simulation results have validated the upper bounds and
approximations on the sum capacity proposed in Section III
and Theorem 3. Moreover, the superior performance of the
proposed algorithms over the considered benchmarks and the
effectiveness of FAS in increasing the system capacity have
also been verified. Note that unlike the traditional MIMO
MAC system where all nodes use the fixed-position antennas,
the problem in our case is much more complicated, and
considering that FAS is a new topic, in this paper, we assume
that all transmitters use FAS, but the receiver, i.e., the BS, uses
the traditional fixed-position antennas. The investigation of
the sum capacity maximization problem for the more general
case where all nodes employ FAS remains a fascinating, yet
challenging future work.

APPENDIX A
CONDITION FOR (4) TO HOLD WITH EQUALITY

The inequality (4) is proven by [30, Theorem 1]. However,
[30] does not give the condition under which (4) holds with
equality. The authors did not find the condition in anywhere
else. Therefore, we prove the condition below.

First, we perform eigen-decomposition to O3 and O4, and
obtain O3 = V3D3V

H
3 and O4 = V4D4V

H
4 , where V3

and V4 are unitary matrices, and D3 and D4 are diagonal
matrices consisting of the corresponding eigenvalues. Denote
∆ = V3D

1
2
3 V

H
3 and Ω = V4D

1
2
4 V

H
4 . Then, O3 =∆∆H =

∆H∆ and O4 = ΩΩH = ΩHΩ. From the proof of [30,
Theorem 1], we directly have

tr(O3O4) = tr(∆ΩHΩ∆H)

=
∥∥∆ΩH

∥∥2
F

≤ ‖∆‖2F ‖Ω‖
2
F

= tr(O3)tr(O4). (72)

The (k,m)-th element of the matrix ∆ΩH is
∑N
r=1 δk,rω

∗
m,r,

where δk,r and ωm,r are respectively the (k, r)-th and (m, r)-
th elements of ∆ and Ω. Then using the definition of
Frobenius norm, the inequality in (72) can be written in detail
as

∥∥∆ΩH
∥∥2
F
=

N∑
k=1

N∑
m=1

∣∣∣∣∣
N∑
r=1

δk,rω
∗
m,r

∣∣∣∣∣
2

≤
N∑
k=1

N∑
m=1

(
N∑
r=1

|δk,r|2
)(

N∑
r=1

|ωm,r|2
)

=

N∑
k=1

N∑
m=1

(
N∑
r=1

|δk,r|2
)(

N∑
t=1

|ωm,t|2
)

=

(
N∑
k=1

N∑
r=1

|δk,r|2
)(

N∑
m=1

N∑
t=1

|ωm,t|2
)

= ‖∆‖2F ‖Ω‖
2
F , (73)

where the second step follows from the Cauchy-Schwarz
inequality, i.e.,

∣∣∣∣∣
N∑
r=1

δk,rω
∗
m,r

∣∣∣∣∣
2

≤

(
N∑
r=1

|δk,r|2
)(

N∑
r=1

|ωm,r|2
)
,∀k,m ∈ N ,

(74)

and N = {1, . . . , N}. For convenience, denote

δk = [δk,1, . . . , δk,N ]T , ∀k ∈ N , (75)

ωm = [ω1,m, . . . , ωN,m]T , ∀m ∈ N , (76)

which are respectively the transpose of the k-th row of ∆ and
the m-th row of Ω. Thus, (74) can be equivalently rewritten
as

|〈δk,ωm〉|2 ≤ 〈δk, δk〉〈ωm,ωm〉,∀k,m ∈ N . (77)

Note that for any given k,m ∈ N , (74) or (77) holds with
equality if and only if δk and ωm are parallel. Then, from
(72) and (73), we know that (4) holds with equality if and
only if any row of ∆ is parallel to any row of Ω. Noticing
that ∆ (or Ω) is a Hermitian matrix, all of its rows are thus
parallel and all of its columns are also parallel. Then, we know
that ∆ is rank-one and can be expressed as ∆ = ôôH , where
ô ∈ CN×1. Since Ω is also Hermitian and any of its row is
parallel to any row of ∆, we know that it must be of the form
Ω =

√
ηôôH , where η ∈ R+ is a non-negative real constant.

Denote o =
√
ôH ôô. Then, we have

O3 =∆∆H = ôôH ôôH = ooH , (78)

O4 = ΩΩH = ηôôH ôôH = ηooH , (79)

which is the necessary and sufficient condition for (4) to hold
with equality. This completes the proof.
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APPENDIX B
PROOF OF THEOREM 1

According to (11), the sum capacity of the system given in
(6) can be written in detail as

C(QU ,wU ) =

log

∣∣∣∣∣
U∑
u=1

MNuAu,RΓuA
H
u,T(wu)QuAu,T(wu)Γ

H
u A

H
u,R+IM

∣∣∣∣∣.
(80)

Given that (QU ,wU ) is a feasible solution to (12), let

Q̃u = AH
u,T(wu)QuAu,T(wu),∀u ∈ U . (81)

Obviously, for any u ∈ U , Q̃u is PSD. Moreover, it also
satisfies the power constraint in (13) since

tr(Q̃u) = tr(AH
u,T(wu)QuAu,T(wu))

(a)
= tr(Au,T(wu)A

H
u,T(wu)Qu)

(b)
≤ tr(Au,T(wu)A

H
u,T(wu))tr(Qu)

(c)
= tr(AH

u,T(wu)Au,T(wu))tr(Qu)

= Lutr(Qu)

≤ LuPu, (82)

where (82a), (82b), and (82c) follow from using (3), (4), and
(3), respectively. Therefore, Q̃u is a feasible solution of (13),
indicating that from any feasible solution of (12), by using
(81), we could obtain a feasible solution for (13). Note that
the reverse does not necessarily hold true, i.e., from a feasible
solution for (13) we do not necessarily get a feasible solution
for (12). Denote the optimal solutions of (12) and (13) by
(Q∗U ,w

∗
U ) and Q̃∗U , respectively. Then, we must have

C(Q∗U ,w
∗
U ) ≤ Cub(Q̃∗U ), (83)

since otherwise, the solution of (13) can be further improved
based on (81). Theorem 1 is thus proven.

APPENDIX C
PROOF OF LEMMA 1

Following similar steps in Appendix B, we can prove that
the optimal objective function value of (12) is upper bounded
by that of the following problem:

max
Q̃u,QU′ ,wU′

log

∣∣∣∣∣ ∑
u′∈U ′

Gu′(wu′)Qu′GH
u′(wu′)

+MNuAu,RΓuQ̃uΓ
H
u A

H
u,R + IM

∣∣∣∣∣
s.t. Q̃u � 0, tr(Q̃u) ≤ LuPu,

Qu′ � 0, tr(Qu′) ≤ Pu′ , ∀u′ ∈ U ′,
0 ≤ wu′,n ≤Wu′ , ∀u′ ∈ U ′, n ∈ Nu′ , (84)

where Q̃u ∈ CLu×Lu . Different from Appendix B where
the relaxation is made to all users, in (84), it is made only
to user u. If Lu = 1, then Au,R and Γu are reduced to
au,R(βu,1) and γu,1, respectively, and Q̃u becomes a scalar

variable within the interval [0, Pu]. It can be easily proven
that in the optimal case, user u should transmit its signal at the
maximum power, i.e., Q̃u = Pu, since otherwise, the objective
function of (84) can be further increased by increasing Q̃u.
Then, (84) becomes (15), indicating that the optimal objective
function value of (12) is upper bounded by that of (15). In the
following we show that this upper bound is achievable and is
thus tight.

If Lu = 1, we know from (10) that

Au,T(wu) = au,T(θu,1,wu). (85)

Let
Qu = Puau,T(θu,1,wu)a

H
u,T(θu,1,wu), (86)

which is obviously a PSD matrix and satisfies the maximum
power constraint since

tr(Qu) = tr(Puau,T(θu,1,wu)aHu,T(θu,1,wu))

= tr(PuaHu,T(θu,1,wu)au,T(θu,1,wu))

= Pu. (87)

Therefore, Qu given by (86) satisfies the conditions on it in
(12). Based on (85) and (86) we know that for any wu,

AH
u,T(wu)QuAu,T(wu) = Pu[a

H
u,T(θu,1,wu)au,T(θu,1,wu)]

2

= Pu. (88)

Then, the objective function of (12) can be rewritten as

C(QU ,wU ) = log

∣∣∣∣∣ ∑
u′∈U ′

Gu′(wu′)Qu′GH
u′(wu′)

+MNuAu,RΓuA
H
u,T(wu)QuAu,T(wu)Γ

H
u A

H
u,R + IM

∣∣∣∣∣
= log

∣∣∣∣∣ ∑
u′∈U ′

Gu′(wu′)Qu′GH
u′(wu′)

+MNuPu|γu,1|2au,R(βu,1)aHu,R(βu,1) + IM

∣∣∣∣∣, (89)

which equals that of (15). Thus, (12) and (15) are equivalent
in the sense that their optimal function values are the same.

APPENDIX D
PROOF OF THEOREM 2

Let (Q∗U ,w
∗
U ) and Q̂∗U denote the optimal solutions of (12)

and (18), respectively. In the following, we derive a lower
bound and an upper bound to C(Q∗U ,w

∗
U ), and show that if

Nu,∀u ∈ U are all large, both of them are approximate to
Capprox(Q̂∗U ). Therefore, we have

C(Q∗U ,w
∗
U ) ≈ Capprox(Q̂∗U ), (90)

which proves Theorem 2.
To obtain the lower bound, we assume that for each user u,

all of its Nu antennas are equally spaced, and denote w′u =
[w′u,1, . . . , w

′
u,Nu

]T , where w′u,n = Wu

Nu−1 (n − 1), n ∈ Nu.
Given w′u, problem (12) reduces to

max
QU

C(QU ,w
′
U )

s.t. Qu � 0, tr(Qu) ≤ Pu, ∀u ∈ U , (91)
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where w′U = {w′1, . . . ,w′U}. Let Q′U denote the optimal
solution of (91). Since w′u is fixed in (91), it is obvious that
C(Q′U ,w

′
U ) is a lower bound to C(Q∗U ,w

∗
U ), i.e.,

C(Q′U ,w
′
U ) ≤ C(Q∗U ,w∗U ). (92)

In the following, we prove that if Nu,∀u ∈ U are all large, for
any feasible point QU of (91), we can always find a feasible
point Q̂U of (18) such that C(QU ,wU ) ≈ Capprox(Q̂U ), and
the reverse is also true. Then, in the optimal case, we have

C(Q′U ,w
′
U ) ≈ Capprox(Q̂∗U ). (93)

Since the elements in w′u are equally spaced, when Nu is
large enough, the columns of Au,T(w

′
u) are approximately

orthogonal to each other [46, Lemma 1], i.e.,

aHu,T(θu,l,w
′
u)au,T(θu,l′ ,w

′
u) ≈

{
1, if l = l′,

0, if l 6= l′,
(94)

based on which we get

Au,T(w
′
u)
HAu,T(w

′
u) ≈ ILn . (95)

We prove the approximation by separately discussing different
users. Without loss of generality, we start from user 1. For
convenience, denote

Θ1 =

U∑
u′=2

Gu′(w′u′)Qu′GH
u′(w′u′) + IM , (96)

which is a PSD matrix. The sum capacity of the system can
thus be rewritten as

C(QU ,w
′
U )

= log
∣∣G1(w

′
1)Q1G

H
1 (w′1) +Θ1

∣∣
= log |Θ−

1
2

1 G1(w
′
1)Q1G

H
1 (w′1)(Θ

− 1
2

1 )H + IM |+ log |Θ1|,
(97)

where the last step follows from using (1) and (2). Note that
the first log-determinant of (97) can be seen as the capacity of a
point-to-point MIMO channel with channel Θ−

1
2

1 G1(w
′
1) and

covariance matrix Q1. According to the Reciprocity Lemma
of a point-to-point MIMO channel [31, Lemma 9.1], we know
that for any given Q1, there always exists a PSD matrix F1 ∈
CM×M such that tr(F1) ≤ P1 and (97) can be transformed
and approximated as

C(QU ,w
′
U )

= log |GH
1 (w′1)(Θ

− 1
2

1 )HF1Θ
− 1

2
1 G1(w

′
1) + IN1

|+ log |Θ1|

= log|MN1A1,T(w
′
1)Γ

H
1 A

H
1,R(Θ

− 1
2

1 )HF1Θ
− 1

2
1 A1,RΓ1A

H
1,T(w

′
1)

+ IN1
|+ log |Θ1|

(a)
= log|MN1Γ

H
1 A

H
1,R(Θ

− 1
2

1 )HF1Θ
− 1

2
1 A1,RΓ1A

H
1,T(w

′
1)A1,T(w

′
1)

+ IL1
|+ log |Θ1|

(b)
≈ log |MN1Γ

H
1 A

H
1,R(Θ

− 1
2

1 )HF1Θ
− 1

2
1 A1,RΓ1+IL1 |+log |Θ1|.

(98)

where (a) and (b) respectively follow from using (2) and (95).
Again, based on the Reciprocity Lemma, we can always find

a PSD matrix Q̂1 ∈ CL1×L1 such that tr(Q̂1) ≤ P1 and (98)
can be equivalently transformed to

log |MN1Γ
H
1 A

H
1,R(Θ

− 1
2

1 )HF1Θ
− 1

2
1 A1,RΓ1+IL1

|+log |Θ1|

= log |MN1Θ
− 1

2
1 A1,RΓ1Q̂1Γ

H
1 A

H
1,R(Θ

− 1
2

1 )H+IM |+log |Θ1|
= log |MN1A1,RΓ1Q̂1Γ

H
1 A

H
1,R +Θ1|. (99)

Combining (98) and (99), we know that if N1 is large,

C(QU ,w
′
U ) ≈ log |MN1A1,RΓ1Q̂1Γ

H
1 A

H
1,R +Θ1|. (100)

Now we consider user 2. Let

Θ2 =MN1A1,RΓ1Q̂1Γ
H
1 A

H
1,R

+

U∑
u′=3

Gu′(w′u′)Qu′GH
u′(w′u′) + IM . (101)

If N2 is large, then we can prove by following similar steps
that for any Q2, there exists a PSD matrix Q̂2 ∈ CL2×L2 such
that tr(Q̂2) ≤ P2 and

C(QU ,w
′
U ) ≈ log

∣∣∣MN2A2,RΓ2Q̂2Γ
H
2 A

H
2,R +Θ2

∣∣∣
= log

∣∣∣∣∣
2∑

u=1

MNuAu,RΓuQ̂uΓ
H
u A

H
u,R

+

U∑
u′=3

Gu′(w′u′)Qu′GH
u′(w′u′) + IM

∣∣∣∣∣ . (102)

By analogy, we know that if Nu,∀u ∈ U are all large, for any
feasible solution QU of (91), there always exists a feasible
point Q̂U of (18) such that

C(QU ,w
′
U ) ≈ log

∣∣∣∣∣
U∑
u=1

MNuAu,RΓuQ̂uΓ
H
u A

H
u,R + IM

∣∣∣∣∣
, Capprox(Q̂U ). (103)

Following similar steps, it can be further proven that if
Nu,∀u ∈ U are all large, for any feasible point Q̂U of problem
(18), there exist PSD matrices Qu ∈ CNu×Nu ,∀u ∈ U such
that QU is a feasible point of (91), and the approximation in
(103) still holds. Then, (93) is true.

Next, we derive an upper bound to C(Q∗U ,w
∗
U ), and show

that if Nu,∀u ∈ U are all large, this bound also approaches
Capprox(Q̂U ). Once (Q∗U ,w

∗
U ) is obtained, we know the

optimal antenna positions of all users. Note that the antennas
of each user may not be equally spaced. Then, (94) cannot be
directly used. To apply the above approximation technique,
we can always construct a new system, where each user u
has N̂u ≥ Nu equally spaced antennas and Nu of them are
located at the positions defined by w∗U . All the other settings
are the same as the system considered in this paper. Denote
w′′u = [w′′u,1, . . . , w

′′
u,N̂u

]T , where w′′u,n = Wu

N̂u−1
(n − 1), n ∈

N̂u and Nu of them construct w∗U , and consider the following
problem:

max
QU

C(QU ,w
′′
U )

s.t. Qu � 0, tr(Qu) ≤ Pu, ∀u ∈ U , (104)
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where Qu ∈ CN̂u×N̂u , QU = {Q1, . . . ,QU}, and w′′U =
{w′′1 , . . . ,w′′U}. Note that C(QU ,w

′′
U ) has a similar definition

as C(QU ,wU ) in (6). The only difference lies in that the
dimension at the user-side has changed from Nu to N̂u. Let
Q
′′
U denote the optimal solution of (104). Then, it is obvious

that C(Q
′′
U ,w

′′
U ) is an upper bound to C(Q∗U ,w

∗
U ), i.e.,

C(Q
′′
U ,w

′′
U ) ≥ C(Q∗U ,w∗U ). (105)

In addition, we can prove by following similarly steps as above
that if Nu,∀u ∈ U are all large, C(Q

′′
U ,w

′′
U ) is approximate

to Capprox(Q̂U ), i.e.,

C(Q
′′
U ,w

′′
U ) ≈ Capprox(Q̂∗U ). (106)

Combining (92), (93), (105), and (106), if Nu,∀u ∈ U are all
large, (90) is true. Theorem 2 is thus proven.

APPENDIX E
PROOF OF THEOREM 3

When M is large, C(w) in (24) can be approximated as

C(w) = log
∣∣Pg(w)gH(w) + IM

∣∣
(a)
= log

(
PgH(w)g(w) + 1

)
(b)
≈ log

PM [aT(θ1, w), . . . , aT(θL, w)]Γ
HΓ

a
∗
T(θ1, w)

...
a∗T(θL, w)

+1


= log

(
L∑
l=1

PM |aT(θl, w)γl|2 + 1

)

= log

(
L∑
l=1

PM |γl|2 + 1

)
, C0, ∀w ∈ [0,W ], (107)

where (a) holds due to (2), and (b) follows from using (23)
and the fact that if M is large, AH

R AR ≈ IL, which can be
analogously proven as (95).

APPENDIX F
PROOF OF THEOREM 4

We prove Theorem 4 by separately discussing three different
cases of ψIm

2 , i.e., ψIm
2 = 0, ψIm

2 > 0, and ψIm
2 < 0. First, if

ψIm
2 = 0, the objective function of (29) satisfies

ψIm
2 sin(ρw) + ψRe

2 cos(ρw) = ψRe
2 cos(|ρ|w) ≤ |ψRe

2 |, (108)

which holds with equality if cos(|ρ|w) equals −1 or 1,
depending on the sign of ψRe

2 . If ψRe
2 ≥ 0, the upper bound in

(108) can be achieved when w = 0. Hence,

w∗ = 0. (109)

Note that since cos(|ρ|w) is a periodic function, there may be
multiple w ∈ [0,W ] that can make (108) hold with equality.
Here we provide only one solution. If ψRe

2 < 0, the minimum
positive w that satisfies cos(|ρ|w) = −1 and thus makes (108)
hold with equality is π/|ρ|. Noticing that w is in the interval
[0,W ]. Therefore, if π/|ρ| ∈ [0,W ],

w∗ = π/|ρ|. (110)

Otherwise, (108) is always strict, and it can be easily checked
that ψRe

2 cos(|ρ|w) increases with w in [0,W ]. Therefore,

w∗ =W. (111)

Combining (109), (110), and (111), we obtain (31).
Next, if ψIm

2 > 0, using the auxiliary angle method of
trigonometric functions, the objective function of (29) can be
rewritten and upper bounded as

ψIm
2 sin(ρw)+ψRe

2 cos(ρw) =
√
(ψIm

2 )2+(ψRe
2 )2 sin (ρw+µ)

= |ψ2| sin (ρw + µ) ≤ |ψ2|,
(112)

where µ has been defined in (30). When ρ > 0, since µ ∈
[−π/2, π/2], the minimum positive w that makes (112) hold
with equality is π/2−µ

ρ . Considering that w should be in the
interval [0,W ], if π/2−µ

ρ ∈ [0,W ],

w∗ =
π/2− µ

ρ
. (113)

Otherwise, if π/2−µ
ρ /∈ [0,W ], inequality (112) is always

strict, and it can be easily checked that the w that maximizes
|ψ2| sin (ρw + µ) or C(w) must be one of the boundary points
of the interval [0,W ]. Therefore,

w∗ =

{
0, if π/2−µ

ρ /∈ [0,W ] and C(0) ≥ C(W ),

W, otherwise.
(114)

If ρ < 0, it can be proven similarly that

w∗ =


−π/2−µ

ρ , if −π/2−µρ ∈ [0,W ],

0, if −π/2−µρ /∈ [0,W ] and C(0) ≥ C(W ),

W, otherwise.

(115)

The details are omitted here for brevity.
Last, if ψIm

2 < 0, the auxiliary angle method of trigonomet-
ric functions can still be applied to get the following bound

ψIm
2 sin(ρw)+ψRe

2 cos(ρw)=−|ψ2| sin (ρw+µ) ≤ |ψ2|.
(116)

By following similar steps, we can prove that if ρ > 0,

w∗ =


3π/2−µ

ρ , if 3π/2−µ
ρ ∈ [0,W ],

0, if 3π/2−µ
ρ /∈ [0,W ] and C(0) ≥ C(W ),

W, otherwise,

(117)

and if ρ < 0,

w∗ =


−3π/2−µ

ρ , if −3π/2−µρ ∈ [0,W ],

0, if −3π/2−µρ /∈ [0,W ] and C(0) ≥ C(W ),

W, otherwise.
(118)

Then, we know that (32) is true. This completes the proof.
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APPENDIX G
PROOF OF THEOREM 5

We prove (52) by contrapositive. If (52) is not true, there
exist two possible cases, i.e.,

log|G(w∗)Q∗GH(w∗)+IM |> log|GH(w>)F>G(w>)+IN |,
(119)

and

log|G(w∗)Q∗GH(w∗)+IM |< log|GH(w>)F>G(w>)+IN |.
(120)

If (119) holds, for given w∗, the optimal solution of (50) must
be Q∗ since otherwise the assumption that (Q∗,w∗) is the
optimal solution of (47) will be violated. In addition, let F ∗

be the optimal solution of (51) for given w∗. According to
(48), we know that given w∗, the optimal objective function
values of (50) and (51) are the same, i.e.,

log |G(w∗)Q∗GH(w∗) + IM |
= log |GH(w∗)F ∗G(w∗) + IN |. (121)

Then, based on (119) and (121), we have

log |GH(w∗)F ∗G(w∗) + IN |
> log |GH(w>)F>G(w>) + IN |, (122)

which contradicts the assumption that (F>,w>) is the optimal
solution of (49). Similarly, it can be proven that if (120) holds,
the assumption that (Q∗,w∗) is the optimal solution of (47)
will be violated. The equation (52) is thus true.

Combining (52) and (121), we know that (53) is true. It
can be proven in an analogous way that (54) is also true. This
completes the proof of Theorem 5.
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